blob: 04c6933573360b40909212fc9a9fc91ad10cd0c6 [file] [log] [blame]
/*
* linux/fs/ext4/super.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/module.h>
#include <linux/string.h>
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/vmalloc.h>
#include <linux/jbd2.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/blkdev.h>
#include <linux/parser.h>
#include <linux/smp_lock.h>
#include <linux/buffer_head.h>
#include <linux/exportfs.h>
#include <linux/vfs.h>
#include <linux/random.h>
#include <linux/mount.h>
#include <linux/namei.h>
#include <linux/quotaops.h>
#include <linux/seq_file.h>
#include <linux/proc_fs.h>
#include <linux/ctype.h>
#include <linux/log2.h>
#include <linux/crc16.h>
#include <asm/uaccess.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#define CREATE_TRACE_POINTS
#include <trace/events/ext4.h>
static int default_mb_history_length = 1000;
module_param_named(default_mb_history_length, default_mb_history_length,
int, 0644);
MODULE_PARM_DESC(default_mb_history_length,
"Default number of entries saved for mb_history");
struct proc_dir_entry *ext4_proc_root;
static struct kset *ext4_kset;
static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
unsigned long journal_devnum);
static int ext4_commit_super(struct super_block *sb, int sync);
static void ext4_mark_recovery_complete(struct super_block *sb,
struct ext4_super_block *es);
static void ext4_clear_journal_err(struct super_block *sb,
struct ext4_super_block *es);
static int ext4_sync_fs(struct super_block *sb, int wait);
static const char *ext4_decode_error(struct super_block *sb, int errno,
char nbuf[16]);
static int ext4_remount(struct super_block *sb, int *flags, char *data);
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
static int ext4_unfreeze(struct super_block *sb);
static void ext4_write_super(struct super_block *sb);
static int ext4_freeze(struct super_block *sb);
ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_block_bitmap_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
}
ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_inode_bitmap_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
}
ext4_fsblk_t ext4_inode_table(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le32_to_cpu(bg->bg_inode_table_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
}
__u32 ext4_free_blks_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_free_blocks_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
}
__u32 ext4_free_inodes_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_free_inodes_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
}
__u32 ext4_used_dirs_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_used_dirs_count_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
}
__u32 ext4_itable_unused_count(struct super_block *sb,
struct ext4_group_desc *bg)
{
return le16_to_cpu(bg->bg_itable_unused_lo) |
(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
(__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
}
void ext4_block_bitmap_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
}
void ext4_inode_bitmap_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
}
void ext4_inode_table_set(struct super_block *sb,
struct ext4_group_desc *bg, ext4_fsblk_t blk)
{
bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
}
void ext4_free_blks_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
}
void ext4_free_inodes_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
}
void ext4_used_dirs_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
}
void ext4_itable_unused_set(struct super_block *sb,
struct ext4_group_desc *bg, __u32 count)
{
bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
}
/*
* Wrappers for jbd2_journal_start/end.
*
* The only special thing we need to do here is to make sure that all
* journal_end calls result in the superblock being marked dirty, so
* that sync() will call the filesystem's write_super callback if
* appropriate.
*/
handle_t *ext4_journal_start_sb(struct super_block *sb, int nblocks)
{
journal_t *journal;
if (sb->s_flags & MS_RDONLY)
return ERR_PTR(-EROFS);
/* Special case here: if the journal has aborted behind our
* backs (eg. EIO in the commit thread), then we still need to
* take the FS itself readonly cleanly. */
journal = EXT4_SB(sb)->s_journal;
if (journal) {
if (is_journal_aborted(journal)) {
ext4_abort(sb, __func__, "Detected aborted journal");
return ERR_PTR(-EROFS);
}
return jbd2_journal_start(journal, nblocks);
}
/*
* We're not journaling, return the appropriate indication.
*/
current->journal_info = EXT4_NOJOURNAL_HANDLE;
return current->journal_info;
}
/*
* The only special thing we need to do here is to make sure that all
* jbd2_journal_stop calls result in the superblock being marked dirty, so
* that sync() will call the filesystem's write_super callback if
* appropriate.
*/
int __ext4_journal_stop(const char *where, handle_t *handle)
{
struct super_block *sb;
int err;
int rc;
if (!ext4_handle_valid(handle)) {
/*
* Do this here since we don't call jbd2_journal_stop() in
* no-journal mode.
*/
current->journal_info = NULL;
return 0;
}
sb = handle->h_transaction->t_journal->j_private;
err = handle->h_err;
rc = jbd2_journal_stop(handle);
if (!err)
err = rc;
if (err)
__ext4_std_error(sb, where, err);
return err;
}
void ext4_journal_abort_handle(const char *caller, const char *err_fn,
struct buffer_head *bh, handle_t *handle, int err)
{
char nbuf[16];
const char *errstr = ext4_decode_error(NULL, err, nbuf);
BUG_ON(!ext4_handle_valid(handle));
if (bh)
BUFFER_TRACE(bh, "abort");
if (!handle->h_err)
handle->h_err = err;
if (is_handle_aborted(handle))
return;
printk(KERN_ERR "%s: aborting transaction: %s in %s\n",
caller, errstr, err_fn);
jbd2_journal_abort_handle(handle);
}
/* Deal with the reporting of failure conditions on a filesystem such as
* inconsistencies detected or read IO failures.
*
* On ext2, we can store the error state of the filesystem in the
* superblock. That is not possible on ext4, because we may have other
* write ordering constraints on the superblock which prevent us from
* writing it out straight away; and given that the journal is about to
* be aborted, we can't rely on the current, or future, transactions to
* write out the superblock safely.
*
* We'll just use the jbd2_journal_abort() error code to record an error in
* the journal instead. On recovery, the journal will compain about
* that error until we've noted it down and cleared it.
*/
static void ext4_handle_error(struct super_block *sb)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
if (sb->s_flags & MS_RDONLY)
return;
if (!test_opt(sb, ERRORS_CONT)) {
journal_t *journal = EXT4_SB(sb)->s_journal;
EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
if (journal)
jbd2_journal_abort(journal, -EIO);
}
if (test_opt(sb, ERRORS_RO)) {
ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
sb->s_flags |= MS_RDONLY;
}
ext4_commit_super(sb, 1);
if (test_opt(sb, ERRORS_PANIC))
panic("EXT4-fs (device %s): panic forced after error\n",
sb->s_id);
}
void ext4_error(struct super_block *sb, const char *function,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
vprintk(fmt, args);
printk("\n");
va_end(args);
ext4_handle_error(sb);
}
static const char *ext4_decode_error(struct super_block *sb, int errno,
char nbuf[16])
{
char *errstr = NULL;
switch (errno) {
case -EIO:
errstr = "IO failure";
break;
case -ENOMEM:
errstr = "Out of memory";
break;
case -EROFS:
if (!sb || (EXT4_SB(sb)->s_journal &&
EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
errstr = "Journal has aborted";
else
errstr = "Readonly filesystem";
break;
default:
/* If the caller passed in an extra buffer for unknown
* errors, textualise them now. Else we just return
* NULL. */
if (nbuf) {
/* Check for truncated error codes... */
if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
errstr = nbuf;
}
break;
}
return errstr;
}
/* __ext4_std_error decodes expected errors from journaling functions
* automatically and invokes the appropriate error response. */
void __ext4_std_error(struct super_block *sb, const char *function, int errno)
{
char nbuf[16];
const char *errstr;
/* Special case: if the error is EROFS, and we're not already
* inside a transaction, then there's really no point in logging
* an error. */
if (errno == -EROFS && journal_current_handle() == NULL &&
(sb->s_flags & MS_RDONLY))
return;
errstr = ext4_decode_error(sb, errno, nbuf);
printk(KERN_CRIT "EXT4-fs error (device %s) in %s: %s\n",
sb->s_id, function, errstr);
ext4_handle_error(sb);
}
/*
* ext4_abort is a much stronger failure handler than ext4_error. The
* abort function may be used to deal with unrecoverable failures such
* as journal IO errors or ENOMEM at a critical moment in log management.
*
* We unconditionally force the filesystem into an ABORT|READONLY state,
* unless the error response on the fs has been set to panic in which
* case we take the easy way out and panic immediately.
*/
void ext4_abort(struct super_block *sb, const char *function,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
vprintk(fmt, args);
printk("\n");
va_end(args);
if (test_opt(sb, ERRORS_PANIC))
panic("EXT4-fs panic from previous error\n");
if (sb->s_flags & MS_RDONLY)
return;
ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
sb->s_flags |= MS_RDONLY;
EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
if (EXT4_SB(sb)->s_journal)
jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
}
void ext4_msg (struct super_block * sb, const char *prefix,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
printk("%sEXT4-fs (%s): ", prefix, sb->s_id);
vprintk(fmt, args);
printk("\n");
va_end(args);
}
void ext4_warning(struct super_block *sb, const char *function,
const char *fmt, ...)
{
va_list args;
va_start(args, fmt);
printk(KERN_WARNING "EXT4-fs warning (device %s): %s: ",
sb->s_id, function);
vprintk(fmt, args);
printk("\n");
va_end(args);
}
void ext4_grp_locked_error(struct super_block *sb, ext4_group_t grp,
const char *function, const char *fmt, ...)
__releases(bitlock)
__acquires(bitlock)
{
va_list args;
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
va_start(args, fmt);
printk(KERN_CRIT "EXT4-fs error (device %s): %s: ", sb->s_id, function);
vprintk(fmt, args);
printk("\n");
va_end(args);
if (test_opt(sb, ERRORS_CONT)) {
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
ext4_commit_super(sb, 0);
return;
}
ext4_unlock_group(sb, grp);
ext4_handle_error(sb);
/*
* We only get here in the ERRORS_RO case; relocking the group
* may be dangerous, but nothing bad will happen since the
* filesystem will have already been marked read/only and the
* journal has been aborted. We return 1 as a hint to callers
* who might what to use the return value from
* ext4_grp_locked_error() to distinguish beween the
* ERRORS_CONT and ERRORS_RO case, and perhaps return more
* aggressively from the ext4 function in question, with a
* more appropriate error code.
*/
ext4_lock_group(sb, grp);
return;
}
void ext4_update_dynamic_rev(struct super_block *sb)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
return;
ext4_warning(sb, __func__,
"updating to rev %d because of new feature flag, "
"running e2fsck is recommended",
EXT4_DYNAMIC_REV);
es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
/* leave es->s_feature_*compat flags alone */
/* es->s_uuid will be set by e2fsck if empty */
/*
* The rest of the superblock fields should be zero, and if not it
* means they are likely already in use, so leave them alone. We
* can leave it up to e2fsck to clean up any inconsistencies there.
*/
}
/*
* Open the external journal device
*/
static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
{
struct block_device *bdev;
char b[BDEVNAME_SIZE];
bdev = open_by_devnum(dev, FMODE_READ|FMODE_WRITE);
if (IS_ERR(bdev))
goto fail;
return bdev;
fail:
ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
__bdevname(dev, b), PTR_ERR(bdev));
return NULL;
}
/*
* Release the journal device
*/
static int ext4_blkdev_put(struct block_device *bdev)
{
bd_release(bdev);
return blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
}
static int ext4_blkdev_remove(struct ext4_sb_info *sbi)
{
struct block_device *bdev;
int ret = -ENODEV;
bdev = sbi->journal_bdev;
if (bdev) {
ret = ext4_blkdev_put(bdev);
sbi->journal_bdev = NULL;
}
return ret;
}
static inline struct inode *orphan_list_entry(struct list_head *l)
{
return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
}
static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
{
struct list_head *l;
ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
le32_to_cpu(sbi->s_es->s_last_orphan));
printk(KERN_ERR "sb_info orphan list:\n");
list_for_each(l, &sbi->s_orphan) {
struct inode *inode = orphan_list_entry(l);
printk(KERN_ERR " "
"inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
inode->i_sb->s_id, inode->i_ino, inode,
inode->i_mode, inode->i_nlink,
NEXT_ORPHAN(inode));
}
}
static void ext4_put_super(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
int i, err;
lock_super(sb);
lock_kernel();
if (sb->s_dirt)
ext4_commit_super(sb, 1);
ext4_release_system_zone(sb);
ext4_mb_release(sb);
ext4_ext_release(sb);
ext4_xattr_put_super(sb);
if (sbi->s_journal) {
err = jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
if (err < 0)
ext4_abort(sb, __func__,
"Couldn't clean up the journal");
}
if (!(sb->s_flags & MS_RDONLY)) {
EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
es->s_state = cpu_to_le16(sbi->s_mount_state);
ext4_commit_super(sb, 1);
}
if (sbi->s_proc) {
remove_proc_entry(sb->s_id, ext4_proc_root);
}
kobject_del(&sbi->s_kobj);
for (i = 0; i < sbi->s_gdb_count; i++)
brelse(sbi->s_group_desc[i]);
kfree(sbi->s_group_desc);
if (is_vmalloc_addr(sbi->s_flex_groups))
vfree(sbi->s_flex_groups);
else
kfree(sbi->s_flex_groups);
percpu_counter_destroy(&sbi->s_freeblocks_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
brelse(sbi->s_sbh);
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(sbi->s_qf_names[i]);
#endif
/* Debugging code just in case the in-memory inode orphan list
* isn't empty. The on-disk one can be non-empty if we've
* detected an error and taken the fs readonly, but the
* in-memory list had better be clean by this point. */
if (!list_empty(&sbi->s_orphan))
dump_orphan_list(sb, sbi);
J_ASSERT(list_empty(&sbi->s_orphan));
invalidate_bdev(sb->s_bdev);
if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
/*
* Invalidate the journal device's buffers. We don't want them
* floating about in memory - the physical journal device may
* hotswapped, and it breaks the `ro-after' testing code.
*/
sync_blockdev(sbi->journal_bdev);
invalidate_bdev(sbi->journal_bdev);
ext4_blkdev_remove(sbi);
}
sb->s_fs_info = NULL;
/*
* Now that we are completely done shutting down the
* superblock, we need to actually destroy the kobject.
*/
unlock_kernel();
unlock_super(sb);
kobject_put(&sbi->s_kobj);
wait_for_completion(&sbi->s_kobj_unregister);
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
}
static struct kmem_cache *ext4_inode_cachep;
/*
* Called inside transaction, so use GFP_NOFS
*/
static struct inode *ext4_alloc_inode(struct super_block *sb)
{
struct ext4_inode_info *ei;
ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
if (!ei)
return NULL;
ei->vfs_inode.i_version = 1;
ei->vfs_inode.i_data.writeback_index = 0;
memset(&ei->i_cached_extent, 0, sizeof(struct ext4_ext_cache));
INIT_LIST_HEAD(&ei->i_prealloc_list);
spin_lock_init(&ei->i_prealloc_lock);
/*
* Note: We can be called before EXT4_SB(sb)->s_journal is set,
* therefore it can be null here. Don't check it, just initialize
* jinode.
*/
jbd2_journal_init_jbd_inode(&ei->jinode, &ei->vfs_inode);
ei->i_reserved_data_blocks = 0;
ei->i_reserved_meta_blocks = 0;
ei->i_allocated_meta_blocks = 0;
ei->i_delalloc_reserved_flag = 0;
spin_lock_init(&(ei->i_block_reservation_lock));
return &ei->vfs_inode;
}
static void ext4_destroy_inode(struct inode *inode)
{
if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
ext4_msg(inode->i_sb, KERN_ERR,
"Inode %lu (%p): orphan list check failed!",
inode->i_ino, EXT4_I(inode));
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
EXT4_I(inode), sizeof(struct ext4_inode_info),
true);
dump_stack();
}
kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
}
static void init_once(void *foo)
{
struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
INIT_LIST_HEAD(&ei->i_orphan);
#ifdef CONFIG_EXT4_FS_XATTR
init_rwsem(&ei->xattr_sem);
#endif
init_rwsem(&ei->i_data_sem);
inode_init_once(&ei->vfs_inode);
}
static int init_inodecache(void)
{
ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
sizeof(struct ext4_inode_info),
0, (SLAB_RECLAIM_ACCOUNT|
SLAB_MEM_SPREAD),
init_once);
if (ext4_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
kmem_cache_destroy(ext4_inode_cachep);
}
static void ext4_clear_inode(struct inode *inode)
{
ext4_discard_preallocations(inode);
if (EXT4_JOURNAL(inode))
jbd2_journal_release_jbd_inode(EXT4_SB(inode->i_sb)->s_journal,
&EXT4_I(inode)->jinode);
}
static inline void ext4_show_quota_options(struct seq_file *seq,
struct super_block *sb)
{
#if defined(CONFIG_QUOTA)
struct ext4_sb_info *sbi = EXT4_SB(sb);
if (sbi->s_jquota_fmt)
seq_printf(seq, ",jqfmt=%s",
(sbi->s_jquota_fmt == QFMT_VFS_OLD) ? "vfsold" : "vfsv0");
if (sbi->s_qf_names[USRQUOTA])
seq_printf(seq, ",usrjquota=%s", sbi->s_qf_names[USRQUOTA]);
if (sbi->s_qf_names[GRPQUOTA])
seq_printf(seq, ",grpjquota=%s", sbi->s_qf_names[GRPQUOTA]);
if (sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA)
seq_puts(seq, ",usrquota");
if (sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)
seq_puts(seq, ",grpquota");
#endif
}
/*
* Show an option if
* - it's set to a non-default value OR
* - if the per-sb default is different from the global default
*/
static int ext4_show_options(struct seq_file *seq, struct vfsmount *vfs)
{
int def_errors;
unsigned long def_mount_opts;
struct super_block *sb = vfs->mnt_sb;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
def_errors = le16_to_cpu(es->s_errors);
if (sbi->s_sb_block != 1)
seq_printf(seq, ",sb=%llu", sbi->s_sb_block);
if (test_opt(sb, MINIX_DF))
seq_puts(seq, ",minixdf");
if (test_opt(sb, GRPID) && !(def_mount_opts & EXT4_DEFM_BSDGROUPS))
seq_puts(seq, ",grpid");
if (!test_opt(sb, GRPID) && (def_mount_opts & EXT4_DEFM_BSDGROUPS))
seq_puts(seq, ",nogrpid");
if (sbi->s_resuid != EXT4_DEF_RESUID ||
le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID) {
seq_printf(seq, ",resuid=%u", sbi->s_resuid);
}
if (sbi->s_resgid != EXT4_DEF_RESGID ||
le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID) {
seq_printf(seq, ",resgid=%u", sbi->s_resgid);
}
if (test_opt(sb, ERRORS_RO)) {
if (def_errors == EXT4_ERRORS_PANIC ||
def_errors == EXT4_ERRORS_CONTINUE) {
seq_puts(seq, ",errors=remount-ro");
}
}
if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
seq_puts(seq, ",errors=continue");
if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
seq_puts(seq, ",errors=panic");
if (test_opt(sb, NO_UID32) && !(def_mount_opts & EXT4_DEFM_UID16))
seq_puts(seq, ",nouid32");
if (test_opt(sb, DEBUG) && !(def_mount_opts & EXT4_DEFM_DEBUG))
seq_puts(seq, ",debug");
if (test_opt(sb, OLDALLOC))
seq_puts(seq, ",oldalloc");
#ifdef CONFIG_EXT4_FS_XATTR
if (test_opt(sb, XATTR_USER) &&
!(def_mount_opts & EXT4_DEFM_XATTR_USER))
seq_puts(seq, ",user_xattr");
if (!test_opt(sb, XATTR_USER) &&
(def_mount_opts & EXT4_DEFM_XATTR_USER)) {
seq_puts(seq, ",nouser_xattr");
}
#endif
#ifdef CONFIG_EXT4_FS_POSIX_ACL
if (test_opt(sb, POSIX_ACL) && !(def_mount_opts & EXT4_DEFM_ACL))
seq_puts(seq, ",acl");
if (!test_opt(sb, POSIX_ACL) && (def_mount_opts & EXT4_DEFM_ACL))
seq_puts(seq, ",noacl");
#endif
if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
seq_printf(seq, ",commit=%u",
(unsigned) (sbi->s_commit_interval / HZ));
}
if (sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME) {
seq_printf(seq, ",min_batch_time=%u",
(unsigned) sbi->s_min_batch_time);
}
if (sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME) {
seq_printf(seq, ",max_batch_time=%u",
(unsigned) sbi->s_min_batch_time);
}
/*
* We're changing the default of barrier mount option, so
* let's always display its mount state so it's clear what its
* status is.
*/
seq_puts(seq, ",barrier=");
seq_puts(seq, test_opt(sb, BARRIER) ? "1" : "0");
if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
seq_puts(seq, ",journal_async_commit");
if (test_opt(sb, NOBH))
seq_puts(seq, ",nobh");
if (test_opt(sb, I_VERSION))
seq_puts(seq, ",i_version");
if (!test_opt(sb, DELALLOC))
seq_puts(seq, ",nodelalloc");
if (sbi->s_stripe)
seq_printf(seq, ",stripe=%lu", sbi->s_stripe);
/*
* journal mode get enabled in different ways
* So just print the value even if we didn't specify it
*/
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
seq_puts(seq, ",data=journal");
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
seq_puts(seq, ",data=ordered");
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
seq_puts(seq, ",data=writeback");
if (sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
seq_printf(seq, ",inode_readahead_blks=%u",
sbi->s_inode_readahead_blks);
if (test_opt(sb, DATA_ERR_ABORT))
seq_puts(seq, ",data_err=abort");
if (test_opt(sb, NO_AUTO_DA_ALLOC))
seq_puts(seq, ",noauto_da_alloc");
ext4_show_quota_options(seq, sb);
return 0;
}
static struct inode *ext4_nfs_get_inode(struct super_block *sb,
u64 ino, u32 generation)
{
struct inode *inode;
if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
return ERR_PTR(-ESTALE);
if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
return ERR_PTR(-ESTALE);
/* iget isn't really right if the inode is currently unallocated!!
*
* ext4_read_inode will return a bad_inode if the inode had been
* deleted, so we should be safe.
*
* Currently we don't know the generation for parent directory, so
* a generation of 0 means "accept any"
*/
inode = ext4_iget(sb, ino);
if (IS_ERR(inode))
return ERR_CAST(inode);
if (generation && inode->i_generation != generation) {
iput(inode);
return ERR_PTR(-ESTALE);
}
return inode;
}
static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
ext4_nfs_get_inode);
}
static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
int fh_len, int fh_type)
{
return generic_fh_to_parent(sb, fid, fh_len, fh_type,
ext4_nfs_get_inode);
}
/*
* Try to release metadata pages (indirect blocks, directories) which are
* mapped via the block device. Since these pages could have journal heads
* which would prevent try_to_free_buffers() from freeing them, we must use
* jbd2 layer's try_to_free_buffers() function to release them.
*/
static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
gfp_t wait)
{
journal_t *journal = EXT4_SB(sb)->s_journal;
WARN_ON(PageChecked(page));
if (!page_has_buffers(page))
return 0;
if (journal)
return jbd2_journal_try_to_free_buffers(journal, page,
wait & ~__GFP_WAIT);
return try_to_free_buffers(page);
}
#ifdef CONFIG_QUOTA
#define QTYPE2NAME(t) ((t) == USRQUOTA ? "user" : "group")
#define QTYPE2MOPT(on, t) ((t) == USRQUOTA?((on)##USRJQUOTA):((on)##GRPJQUOTA))
static int ext4_write_dquot(struct dquot *dquot);
static int ext4_acquire_dquot(struct dquot *dquot);
static int ext4_release_dquot(struct dquot *dquot);
static int ext4_mark_dquot_dirty(struct dquot *dquot);
static int ext4_write_info(struct super_block *sb, int type);
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
char *path, int remount);
static int ext4_quota_on_mount(struct super_block *sb, int type);
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off);
static ssize_t ext4_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off);
static struct dquot_operations ext4_quota_operations = {
.initialize = dquot_initialize,
.drop = dquot_drop,
.alloc_space = dquot_alloc_space,
.reserve_space = dquot_reserve_space,
.claim_space = dquot_claim_space,
.release_rsv = dquot_release_reserved_space,
.get_reserved_space = ext4_get_reserved_space,
.alloc_inode = dquot_alloc_inode,
.free_space = dquot_free_space,
.free_inode = dquot_free_inode,
.transfer = dquot_transfer,
.write_dquot = ext4_write_dquot,
.acquire_dquot = ext4_acquire_dquot,
.release_dquot = ext4_release_dquot,
.mark_dirty = ext4_mark_dquot_dirty,
.write_info = ext4_write_info,
.alloc_dquot = dquot_alloc,
.destroy_dquot = dquot_destroy,
};
static struct quotactl_ops ext4_qctl_operations = {
.quota_on = ext4_quota_on,
.quota_off = vfs_quota_off,
.quota_sync = vfs_quota_sync,
.get_info = vfs_get_dqinfo,
.set_info = vfs_set_dqinfo,
.get_dqblk = vfs_get_dqblk,
.set_dqblk = vfs_set_dqblk
};
#endif
static const struct super_operations ext4_sops = {
.alloc_inode = ext4_alloc_inode,
.destroy_inode = ext4_destroy_inode,
.write_inode = ext4_write_inode,
.dirty_inode = ext4_dirty_inode,
.delete_inode = ext4_delete_inode,
.put_super = ext4_put_super,
.sync_fs = ext4_sync_fs,
.freeze_fs = ext4_freeze,
.unfreeze_fs = ext4_unfreeze,
.statfs = ext4_statfs,
.remount_fs = ext4_remount,
.clear_inode = ext4_clear_inode,
.show_options = ext4_show_options,
#ifdef CONFIG_QUOTA
.quota_read = ext4_quota_read,
.quota_write = ext4_quota_write,
#endif
.bdev_try_to_free_page = bdev_try_to_free_page,
};
static const struct super_operations ext4_nojournal_sops = {
.alloc_inode = ext4_alloc_inode,
.destroy_inode = ext4_destroy_inode,
.write_inode = ext4_write_inode,
.dirty_inode = ext4_dirty_inode,
.delete_inode = ext4_delete_inode,
.write_super = ext4_write_super,
.put_super = ext4_put_super,
.statfs = ext4_statfs,
.remount_fs = ext4_remount,
.clear_inode = ext4_clear_inode,
.show_options = ext4_show_options,
#ifdef CONFIG_QUOTA
.quota_read = ext4_quota_read,
.quota_write = ext4_quota_write,
#endif
.bdev_try_to_free_page = bdev_try_to_free_page,
};
static const struct export_operations ext4_export_ops = {
.fh_to_dentry = ext4_fh_to_dentry,
.fh_to_parent = ext4_fh_to_parent,
.get_parent = ext4_get_parent,
};
enum {
Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
Opt_nouid32, Opt_debug, Opt_oldalloc, Opt_orlov,
Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload, Opt_nobh, Opt_bh,
Opt_commit, Opt_min_batch_time, Opt_max_batch_time,
Opt_journal_update, Opt_journal_dev,
Opt_journal_checksum, Opt_journal_async_commit,
Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
Opt_data_err_abort, Opt_data_err_ignore, Opt_mb_history_length,
Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_quota, Opt_noquota,
Opt_ignore, Opt_barrier, Opt_nobarrier, Opt_err, Opt_resize,
Opt_usrquota, Opt_grpquota, Opt_i_version,
Opt_stripe, Opt_delalloc, Opt_nodelalloc,
Opt_block_validity, Opt_noblock_validity,
Opt_inode_readahead_blks, Opt_journal_ioprio
};
static const match_table_t tokens = {
{Opt_bsd_df, "bsddf"},
{Opt_minix_df, "minixdf"},
{Opt_grpid, "grpid"},
{Opt_grpid, "bsdgroups"},
{Opt_nogrpid, "nogrpid"},
{Opt_nogrpid, "sysvgroups"},
{Opt_resgid, "resgid=%u"},
{Opt_resuid, "resuid=%u"},
{Opt_sb, "sb=%u"},
{Opt_err_cont, "errors=continue"},
{Opt_err_panic, "errors=panic"},
{Opt_err_ro, "errors=remount-ro"},
{Opt_nouid32, "nouid32"},
{Opt_debug, "debug"},
{Opt_oldalloc, "oldalloc"},
{Opt_orlov, "orlov"},
{Opt_user_xattr, "user_xattr"},
{Opt_nouser_xattr, "nouser_xattr"},
{Opt_acl, "acl"},
{Opt_noacl, "noacl"},
{Opt_noload, "noload"},
{Opt_nobh, "nobh"},
{Opt_bh, "bh"},
{Opt_commit, "commit=%u"},
{Opt_min_batch_time, "min_batch_time=%u"},
{Opt_max_batch_time, "max_batch_time=%u"},
{Opt_journal_update, "journal=update"},
{Opt_journal_dev, "journal_dev=%u"},
{Opt_journal_checksum, "journal_checksum"},
{Opt_journal_async_commit, "journal_async_commit"},
{Opt_abort, "abort"},
{Opt_data_journal, "data=journal"},
{Opt_data_ordered, "data=ordered"},
{Opt_data_writeback, "data=writeback"},
{Opt_data_err_abort, "data_err=abort"},
{Opt_data_err_ignore, "data_err=ignore"},
{Opt_mb_history_length, "mb_history_length=%u"},
{Opt_offusrjquota, "usrjquota="},
{Opt_usrjquota, "usrjquota=%s"},
{Opt_offgrpjquota, "grpjquota="},
{Opt_grpjquota, "grpjquota=%s"},
{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
{Opt_grpquota, "grpquota"},
{Opt_noquota, "noquota"},
{Opt_quota, "quota"},
{Opt_usrquota, "usrquota"},
{Opt_barrier, "barrier=%u"},
{Opt_barrier, "barrier"},
{Opt_nobarrier, "nobarrier"},
{Opt_i_version, "i_version"},
{Opt_stripe, "stripe=%u"},
{Opt_resize, "resize"},
{Opt_delalloc, "delalloc"},
{Opt_nodelalloc, "nodelalloc"},
{Opt_block_validity, "block_validity"},
{Opt_noblock_validity, "noblock_validity"},
{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
{Opt_journal_ioprio, "journal_ioprio=%u"},
{Opt_auto_da_alloc, "auto_da_alloc=%u"},
{Opt_auto_da_alloc, "auto_da_alloc"},
{Opt_noauto_da_alloc, "noauto_da_alloc"},
{Opt_err, NULL},
};
static ext4_fsblk_t get_sb_block(void **data)
{
ext4_fsblk_t sb_block;
char *options = (char *) *data;
if (!options || strncmp(options, "sb=", 3) != 0)
return 1; /* Default location */
options += 3;
/* TODO: use simple_strtoll with >32bit ext4 */
sb_block = simple_strtoul(options, &options, 0);
if (*options && *options != ',') {
printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
(char *) *data);
return 1;
}
if (*options == ',')
options++;
*data = (void *) options;
return sb_block;
}
#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
static int parse_options(char *options, struct super_block *sb,
unsigned long *journal_devnum,
unsigned int *journal_ioprio,
ext4_fsblk_t *n_blocks_count, int is_remount)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
char *p;
substring_t args[MAX_OPT_ARGS];
int data_opt = 0;
int option;
#ifdef CONFIG_QUOTA
int qtype, qfmt;
char *qname;
#endif
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
int token;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_bsd_df:
clear_opt(sbi->s_mount_opt, MINIX_DF);
break;
case Opt_minix_df:
set_opt(sbi->s_mount_opt, MINIX_DF);
break;
case Opt_grpid:
set_opt(sbi->s_mount_opt, GRPID);
break;
case Opt_nogrpid:
clear_opt(sbi->s_mount_opt, GRPID);
break;
case Opt_resuid:
if (match_int(&args[0], &option))
return 0;
sbi->s_resuid = option;
break;
case Opt_resgid:
if (match_int(&args[0], &option))
return 0;
sbi->s_resgid = option;
break;
case Opt_sb:
/* handled by get_sb_block() instead of here */
/* *sb_block = match_int(&args[0]); */
break;
case Opt_err_panic:
clear_opt(sbi->s_mount_opt, ERRORS_CONT);
clear_opt(sbi->s_mount_opt, ERRORS_RO);
set_opt(sbi->s_mount_opt, ERRORS_PANIC);
break;
case Opt_err_ro:
clear_opt(sbi->s_mount_opt, ERRORS_CONT);
clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
set_opt(sbi->s_mount_opt, ERRORS_RO);
break;
case Opt_err_cont:
clear_opt(sbi->s_mount_opt, ERRORS_RO);
clear_opt(sbi->s_mount_opt, ERRORS_PANIC);
set_opt(sbi->s_mount_opt, ERRORS_CONT);
break;
case Opt_nouid32:
set_opt(sbi->s_mount_opt, NO_UID32);
break;
case Opt_debug:
set_opt(sbi->s_mount_opt, DEBUG);
break;
case Opt_oldalloc:
set_opt(sbi->s_mount_opt, OLDALLOC);
break;
case Opt_orlov:
clear_opt(sbi->s_mount_opt, OLDALLOC);
break;
#ifdef CONFIG_EXT4_FS_XATTR
case Opt_user_xattr:
set_opt(sbi->s_mount_opt, XATTR_USER);
break;
case Opt_nouser_xattr:
clear_opt(sbi->s_mount_opt, XATTR_USER);
break;
#else
case Opt_user_xattr:
case Opt_nouser_xattr:
ext4_msg(sb, KERN_ERR, "(no)user_xattr options not supported");
break;
#endif
#ifdef CONFIG_EXT4_FS_POSIX_ACL
case Opt_acl:
set_opt(sbi->s_mount_opt, POSIX_ACL);
break;
case Opt_noacl:
clear_opt(sbi->s_mount_opt, POSIX_ACL);
break;
#else
case Opt_acl:
case Opt_noacl:
ext4_msg(sb, KERN_ERR, "(no)acl options not supported");
break;
#endif
case Opt_journal_update:
/* @@@ FIXME */
/* Eventually we will want to be able to create
a journal file here. For now, only allow the
user to specify an existing inode to be the
journal file. */
if (is_remount) {
ext4_msg(sb, KERN_ERR,
"Cannot specify journal on remount");
return 0;
}
set_opt(sbi->s_mount_opt, UPDATE_JOURNAL);
break;
case Opt_journal_dev:
if (is_remount) {
ext4_msg(sb, KERN_ERR,
"Cannot specify journal on remount");
return 0;
}
if (match_int(&args[0], &option))
return 0;
*journal_devnum = option;
break;
case Opt_journal_checksum:
break; /* Kept for backwards compatibility */
case Opt_journal_async_commit:
set_opt(sbi->s_mount_opt, JOURNAL_ASYNC_COMMIT);
break;
case Opt_noload:
set_opt(sbi->s_mount_opt, NOLOAD);
break;
case Opt_commit:
if (match_int(&args[0], &option))
return 0;
if (option < 0)
return 0;
if (option == 0)
option = JBD2_DEFAULT_MAX_COMMIT_AGE;
sbi->s_commit_interval = HZ * option;
break;
case Opt_max_batch_time:
if (match_int(&args[0], &option))
return 0;
if (option < 0)
return 0;
if (option == 0)
option = EXT4_DEF_MAX_BATCH_TIME;
sbi->s_max_batch_time = option;
break;
case Opt_min_batch_time:
if (match_int(&args[0], &option))
return 0;
if (option < 0)
return 0;
sbi->s_min_batch_time = option;
break;
case Opt_data_journal:
data_opt = EXT4_MOUNT_JOURNAL_DATA;
goto datacheck;
case Opt_data_ordered:
data_opt = EXT4_MOUNT_ORDERED_DATA;
goto datacheck;
case Opt_data_writeback:
data_opt = EXT4_MOUNT_WRITEBACK_DATA;
datacheck:
if (is_remount) {
if ((sbi->s_mount_opt & EXT4_MOUNT_DATA_FLAGS)
!= data_opt) {
ext4_msg(sb, KERN_ERR,
"Cannot change data mode on remount");
return 0;
}
} else {
sbi->s_mount_opt &= ~EXT4_MOUNT_DATA_FLAGS;
sbi->s_mount_opt |= data_opt;
}
break;
case Opt_data_err_abort:
set_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
break;
case Opt_data_err_ignore:
clear_opt(sbi->s_mount_opt, DATA_ERR_ABORT);
break;
case Opt_mb_history_length:
if (match_int(&args[0], &option))
return 0;
if (option < 0)
return 0;
sbi->s_mb_history_max = option;
break;
#ifdef CONFIG_QUOTA
case Opt_usrjquota:
qtype = USRQUOTA;
goto set_qf_name;
case Opt_grpjquota:
qtype = GRPQUOTA;
set_qf_name:
if (sb_any_quota_loaded(sb) &&
!sbi->s_qf_names[qtype]) {
ext4_msg(sb, KERN_ERR,
"Cannot change journaled "
"quota options when quota turned on");
return 0;
}
qname = match_strdup(&args[0]);
if (!qname) {
ext4_msg(sb, KERN_ERR,
"Not enough memory for "
"storing quotafile name");
return 0;
}
if (sbi->s_qf_names[qtype] &&
strcmp(sbi->s_qf_names[qtype], qname)) {
ext4_msg(sb, KERN_ERR,
"%s quota file already "
"specified", QTYPE2NAME(qtype));
kfree(qname);
return 0;
}
sbi->s_qf_names[qtype] = qname;
if (strchr(sbi->s_qf_names[qtype], '/')) {
ext4_msg(sb, KERN_ERR,
"quotafile must be on "
"filesystem root");
kfree(sbi->s_qf_names[qtype]);
sbi->s_qf_names[qtype] = NULL;
return 0;
}
set_opt(sbi->s_mount_opt, QUOTA);
break;
case Opt_offusrjquota:
qtype = USRQUOTA;
goto clear_qf_name;
case Opt_offgrpjquota:
qtype = GRPQUOTA;
clear_qf_name:
if (sb_any_quota_loaded(sb) &&
sbi->s_qf_names[qtype]) {
ext4_msg(sb, KERN_ERR, "Cannot change "
"journaled quota options when "
"quota turned on");
return 0;
}
/*
* The space will be released later when all options
* are confirmed to be correct
*/
sbi->s_qf_names[qtype] = NULL;
break;
case Opt_jqfmt_vfsold:
qfmt = QFMT_VFS_OLD;
goto set_qf_format;
case Opt_jqfmt_vfsv0:
qfmt = QFMT_VFS_V0;
set_qf_format:
if (sb_any_quota_loaded(sb) &&
sbi->s_jquota_fmt != qfmt) {
ext4_msg(sb, KERN_ERR, "Cannot change "
"journaled quota options when "
"quota turned on");
return 0;
}
sbi->s_jquota_fmt = qfmt;
break;
case Opt_quota:
case Opt_usrquota:
set_opt(sbi->s_mount_opt, QUOTA);
set_opt(sbi->s_mount_opt, USRQUOTA);
break;
case Opt_grpquota:
set_opt(sbi->s_mount_opt, QUOTA);
set_opt(sbi->s_mount_opt, GRPQUOTA);
break;
case Opt_noquota:
if (sb_any_quota_loaded(sb)) {
ext4_msg(sb, KERN_ERR, "Cannot change quota "
"options when quota turned on");
return 0;
}
clear_opt(sbi->s_mount_opt, QUOTA);
clear_opt(sbi->s_mount_opt, USRQUOTA);
clear_opt(sbi->s_mount_opt, GRPQUOTA);
break;
#else
case Opt_quota:
case Opt_usrquota:
case Opt_grpquota:
ext4_msg(sb, KERN_ERR,
"quota options not supported");
break;
case Opt_usrjquota:
case Opt_grpjquota:
case Opt_offusrjquota:
case Opt_offgrpjquota:
case Opt_jqfmt_vfsold:
case Opt_jqfmt_vfsv0:
ext4_msg(sb, KERN_ERR,
"journaled quota options not supported");
break;
case Opt_noquota:
break;
#endif
case Opt_abort:
sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
break;
case Opt_nobarrier:
clear_opt(sbi->s_mount_opt, BARRIER);
break;
case Opt_barrier:
if (match_int(&args[0], &option)) {
set_opt(sbi->s_mount_opt, BARRIER);
break;
}
if (option)
set_opt(sbi->s_mount_opt, BARRIER);
else
clear_opt(sbi->s_mount_opt, BARRIER);
break;
case Opt_ignore:
break;
case Opt_resize:
if (!is_remount) {
ext4_msg(sb, KERN_ERR,
"resize option only available "
"for remount");
return 0;
}
if (match_int(&args[0], &option) != 0)
return 0;
*n_blocks_count = option;
break;
case Opt_nobh:
set_opt(sbi->s_mount_opt, NOBH);
break;
case Opt_bh:
clear_opt(sbi->s_mount_opt, NOBH);
break;
case Opt_i_version:
set_opt(sbi->s_mount_opt, I_VERSION);
sb->s_flags |= MS_I_VERSION;
break;
case Opt_nodelalloc:
clear_opt(sbi->s_mount_opt, DELALLOC);
break;
case Opt_stripe:
if (match_int(&args[0], &option))
return 0;
if (option < 0)
return 0;
sbi->s_stripe = option;
break;
case Opt_delalloc:
set_opt(sbi->s_mount_opt, DELALLOC);
break;
case Opt_block_validity:
set_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
break;
case Opt_noblock_validity:
clear_opt(sbi->s_mount_opt, BLOCK_VALIDITY);
break;
case Opt_inode_readahead_blks:
if (match_int(&args[0], &option))
return 0;
if (option < 0 || option > (1 << 30))
return 0;
if (!is_power_of_2(option)) {
ext4_msg(sb, KERN_ERR,
"EXT4-fs: inode_readahead_blks"
" must be a power of 2");
return 0;
}
sbi->s_inode_readahead_blks = option;
break;
case Opt_journal_ioprio:
if (match_int(&args[0], &option))
return 0;
if (option < 0 || option > 7)
break;
*journal_ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE,
option);
break;
case Opt_noauto_da_alloc:
set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
break;
case Opt_auto_da_alloc:
if (match_int(&args[0], &option)) {
clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
break;
}
if (option)
clear_opt(sbi->s_mount_opt, NO_AUTO_DA_ALLOC);
else
set_opt(sbi->s_mount_opt,NO_AUTO_DA_ALLOC);
break;
default:
ext4_msg(sb, KERN_ERR,
"Unrecognized mount option \"%s\" "
"or missing value", p);
return 0;
}
}
#ifdef CONFIG_QUOTA
if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
if ((sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA) &&
sbi->s_qf_names[USRQUOTA])
clear_opt(sbi->s_mount_opt, USRQUOTA);
if ((sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA) &&
sbi->s_qf_names[GRPQUOTA])
clear_opt(sbi->s_mount_opt, GRPQUOTA);
if ((sbi->s_qf_names[USRQUOTA] &&
(sbi->s_mount_opt & EXT4_MOUNT_GRPQUOTA)) ||
(sbi->s_qf_names[GRPQUOTA] &&
(sbi->s_mount_opt & EXT4_MOUNT_USRQUOTA))) {
ext4_msg(sb, KERN_ERR, "old and new quota "
"format mixing");
return 0;
}
if (!sbi->s_jquota_fmt) {
ext4_msg(sb, KERN_ERR, "journaled quota format "
"not specified");
return 0;
}
} else {
if (sbi->s_jquota_fmt) {
ext4_msg(sb, KERN_ERR, "journaled quota format "
"specified with no journaling "
"enabled");
return 0;
}
}
#endif
return 1;
}
static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
int read_only)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
int res = 0;
if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
ext4_msg(sb, KERN_ERR, "revision level too high, "
"forcing read-only mode");
res = MS_RDONLY;
}
if (read_only)
return res;
if (!(sbi->s_mount_state & EXT4_VALID_FS))
ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
"running e2fsck is recommended");
else if ((sbi->s_mount_state & EXT4_ERROR_FS))
ext4_msg(sb, KERN_WARNING,
"warning: mounting fs with errors, "
"running e2fsck is recommended");
else if ((__s16) le16_to_cpu(es->s_max_mnt_count) >= 0 &&
le16_to_cpu(es->s_mnt_count) >=
(unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
ext4_msg(sb, KERN_WARNING,
"warning: maximal mount count reached, "
"running e2fsck is recommended");
else if (le32_to_cpu(es->s_checkinterval) &&
(le32_to_cpu(es->s_lastcheck) +
le32_to_cpu(es->s_checkinterval) <= get_seconds()))
ext4_msg(sb, KERN_WARNING,
"warning: checktime reached, "
"running e2fsck is recommended");
if (!sbi->s_journal)
es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
le16_add_cpu(&es->s_mnt_count, 1);
es->s_mtime = cpu_to_le32(get_seconds());
ext4_update_dynamic_rev(sb);
if (sbi->s_journal)
EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
ext4_commit_super(sb, 1);
if (test_opt(sb, DEBUG))
printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
"bpg=%lu, ipg=%lu, mo=%04x]\n",
sb->s_blocksize,
sbi->s_groups_count,
EXT4_BLOCKS_PER_GROUP(sb),
EXT4_INODES_PER_GROUP(sb),
sbi->s_mount_opt);
if (EXT4_SB(sb)->s_journal) {
ext4_msg(sb, KERN_INFO, "%s journal on %s",
EXT4_SB(sb)->s_journal->j_inode ? "internal" :
"external", EXT4_SB(sb)->s_journal->j_devname);
} else {
ext4_msg(sb, KERN_INFO, "no journal");
}
return res;
}
static int ext4_fill_flex_info(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp = NULL;
ext4_group_t flex_group_count;
ext4_group_t flex_group;
int groups_per_flex = 0;
size_t size;
int i;
if (!sbi->s_es->s_log_groups_per_flex) {
sbi->s_log_groups_per_flex = 0;
return 1;
}
sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
groups_per_flex = 1 << sbi->s_log_groups_per_flex;
/* We allocate both existing and potentially added groups */
flex_group_count = ((sbi->s_groups_count + groups_per_flex - 1) +
((le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) + 1) <<
EXT4_DESC_PER_BLOCK_BITS(sb))) / groups_per_flex;
size = flex_group_count * sizeof(struct flex_groups);
sbi->s_flex_groups = kzalloc(size, GFP_KERNEL);
if (sbi->s_flex_groups == NULL) {
sbi->s_flex_groups = vmalloc(size);
if (sbi->s_flex_groups)
memset(sbi->s_flex_groups, 0, size);
}
if (sbi->s_flex_groups == NULL) {
ext4_msg(sb, KERN_ERR, "not enough memory for "
"%u flex groups", flex_group_count);
goto failed;
}
for (i = 0; i < sbi->s_groups_count; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
flex_group = ext4_flex_group(sbi, i);
atomic_add(ext4_free_inodes_count(sb, gdp),
&sbi->s_flex_groups[flex_group].free_inodes);
atomic_add(ext4_free_blks_count(sb, gdp),
&sbi->s_flex_groups[flex_group].free_blocks);
atomic_add(ext4_used_dirs_count(sb, gdp),
&sbi->s_flex_groups[flex_group].used_dirs);
}
return 1;
failed:
return 0;
}
__le16 ext4_group_desc_csum(struct ext4_sb_info *sbi, __u32 block_group,
struct ext4_group_desc *gdp)
{
__u16 crc = 0;
if (sbi->s_es->s_feature_ro_compat &
cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
int offset = offsetof(struct ext4_group_desc, bg_checksum);
__le32 le_group = cpu_to_le32(block_group);
crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
crc = crc16(crc, (__u8 *)gdp, offset);
offset += sizeof(gdp->bg_checksum); /* skip checksum */
/* for checksum of struct ext4_group_desc do the rest...*/
if ((sbi->s_es->s_feature_incompat &
cpu_to_le32(EXT4_FEATURE_INCOMPAT_64BIT)) &&
offset < le16_to_cpu(sbi->s_es->s_desc_size))
crc = crc16(crc, (__u8 *)gdp + offset,
le16_to_cpu(sbi->s_es->s_desc_size) -
offset);
}
return cpu_to_le16(crc);
}
int ext4_group_desc_csum_verify(struct ext4_sb_info *sbi, __u32 block_group,
struct ext4_group_desc *gdp)
{
if ((sbi->s_es->s_feature_ro_compat &
cpu_to_le32(EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) &&
(gdp->bg_checksum != ext4_group_desc_csum(sbi, block_group, gdp)))
return 0;
return 1;
}
/* Called at mount-time, super-block is locked */
static int ext4_check_descriptors(struct super_block *sb)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
ext4_fsblk_t last_block;
ext4_fsblk_t block_bitmap;
ext4_fsblk_t inode_bitmap;
ext4_fsblk_t inode_table;
int flexbg_flag = 0;
ext4_group_t i;
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
flexbg_flag = 1;
ext4_debug("Checking group descriptors");
for (i = 0; i < sbi->s_groups_count; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
if (i == sbi->s_groups_count - 1 || flexbg_flag)
last_block = ext4_blocks_count(sbi->s_es) - 1;
else
last_block = first_block +
(EXT4_BLOCKS_PER_GROUP(sb) - 1);
block_bitmap = ext4_block_bitmap(sb, gdp);
if (block_bitmap < first_block || block_bitmap > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Block bitmap for group %u not in group "
"(block %llu)!", i, block_bitmap);
return 0;
}
inode_bitmap = ext4_inode_bitmap(sb, gdp);
if (inode_bitmap < first_block || inode_bitmap > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode bitmap for group %u not in group "
"(block %llu)!", i, inode_bitmap);
return 0;
}
inode_table = ext4_inode_table(sb, gdp);
if (inode_table < first_block ||
inode_table + sbi->s_itb_per_group - 1 > last_block) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Inode table for group %u not in group "
"(block %llu)!", i, inode_table);
return 0;
}
ext4_lock_group(sb, i);
if (!ext4_group_desc_csum_verify(sbi, i, gdp)) {
ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
"Checksum for group %u failed (%u!=%u)",
i, le16_to_cpu(ext4_group_desc_csum(sbi, i,
gdp)), le16_to_cpu(gdp->bg_checksum));
if (!(sb->s_flags & MS_RDONLY)) {
ext4_unlock_group(sb, i);
return 0;
}
}
ext4_unlock_group(sb, i);
if (!flexbg_flag)
first_block += EXT4_BLOCKS_PER_GROUP(sb);
}
ext4_free_blocks_count_set(sbi->s_es, ext4_count_free_blocks(sb));
sbi->s_es->s_free_inodes_count =cpu_to_le32(ext4_count_free_inodes(sb));
return 1;
}
/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
* the superblock) which were deleted from all directories, but held open by
* a process at the time of a crash. We walk the list and try to delete these
* inodes at recovery time (only with a read-write filesystem).
*
* In order to keep the orphan inode chain consistent during traversal (in
* case of crash during recovery), we link each inode into the superblock
* orphan list_head and handle it the same way as an inode deletion during
* normal operation (which journals the operations for us).
*
* We only do an iget() and an iput() on each inode, which is very safe if we
* accidentally point at an in-use or already deleted inode. The worst that
* can happen in this case is that we get a "bit already cleared" message from
* ext4_free_inode(). The only reason we would point at a wrong inode is if
* e2fsck was run on this filesystem, and it must have already done the orphan
* inode cleanup for us, so we can safely abort without any further action.
*/
static void ext4_orphan_cleanup(struct super_block *sb,
struct ext4_super_block *es)
{
unsigned int s_flags = sb->s_flags;
int nr_orphans = 0, nr_truncates = 0;
#ifdef CONFIG_QUOTA
int i;
#endif
if (!es->s_last_orphan) {
jbd_debug(4, "no orphan inodes to clean up\n");
return;
}
if (bdev_read_only(sb->s_bdev)) {
ext4_msg(sb, KERN_ERR, "write access "
"unavailable, skipping orphan cleanup");
return;
}
if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
if (es->s_last_orphan)
jbd_debug(1, "Errors on filesystem, "
"clearing orphan list.\n");
es->s_last_orphan = 0;
jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
return;
}
if (s_flags & MS_RDONLY) {
ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
sb->s_flags &= ~MS_RDONLY;
}
#ifdef CONFIG_QUOTA
/* Needed for iput() to work correctly and not trash data */
sb->s_flags |= MS_ACTIVE;
/* Turn on quotas so that they are updated correctly */
for (i = 0; i < MAXQUOTAS; i++) {
if (EXT4_SB(sb)->s_qf_names[i]) {
int ret = ext4_quota_on_mount(sb, i);
if (ret < 0)
ext4_msg(sb, KERN_ERR,
"Cannot turn on journaled "
"quota: error %d", ret);
}
}
#endif
while (es->s_last_orphan) {
struct inode *inode;
inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
if (IS_ERR(inode)) {
es->s_last_orphan = 0;
break;
}
list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
vfs_dq_init(inode);
if (inode->i_nlink) {
ext4_msg(sb, KERN_DEBUG,
"%s: truncating inode %lu to %lld bytes",
__func__, inode->i_ino, inode->i_size);
jbd_debug(2, "truncating inode %lu to %lld bytes\n",
inode->i_ino, inode->i_size);
ext4_truncate(inode);
nr_truncates++;
} else {
ext4_msg(sb, KERN_DEBUG,
"%s: deleting unreferenced inode %lu",
__func__, inode->i_ino);
jbd_debug(2, "deleting unreferenced inode %lu\n",
inode->i_ino);
nr_orphans++;
}
iput(inode); /* The delete magic happens here! */
}
#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
if (nr_orphans)
ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
PLURAL(nr_orphans));
if (nr_truncates)
ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
PLURAL(nr_truncates));
#ifdef CONFIG_QUOTA
/* Turn quotas off */
for (i = 0; i < MAXQUOTAS; i++) {
if (sb_dqopt(sb)->files[i])
vfs_quota_off(sb, i, 0);
}
#endif
sb->s_flags = s_flags; /* Restore MS_RDONLY status */
}
/*
* Maximal extent format file size.
* Resulting logical blkno at s_maxbytes must fit in our on-disk
* extent format containers, within a sector_t, and within i_blocks
* in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
* so that won't be a limiting factor.
*
* Note, this does *not* consider any metadata overhead for vfs i_blocks.
*/
static loff_t ext4_max_size(int blkbits, int has_huge_files)
{
loff_t res;
loff_t upper_limit = MAX_LFS_FILESIZE;
/* small i_blocks in vfs inode? */
if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
/*
* CONFIG_LBDAF is not enabled implies the inode
* i_block represent total blocks in 512 bytes
* 32 == size of vfs inode i_blocks * 8
*/
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (blkbits - 9);
upper_limit <<= blkbits;
}
/* 32-bit extent-start container, ee_block */
res = 1LL << 32;
res <<= blkbits;
res -= 1;
/* Sanity check against vm- & vfs- imposed limits */
if (res > upper_limit)
res = upper_limit;
return res;
}
/*
* Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
* block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
* We need to be 1 filesystem block less than the 2^48 sector limit.
*/
static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
{
loff_t res = EXT4_NDIR_BLOCKS;
int meta_blocks;
loff_t upper_limit;
/* This is calculated to be the largest file size for a dense, block
* mapped file such that the file's total number of 512-byte sectors,
* including data and all indirect blocks, does not exceed (2^48 - 1).
*
* __u32 i_blocks_lo and _u16 i_blocks_high represent the total
* number of 512-byte sectors of the file.
*/
if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
/*
* !has_huge_files or CONFIG_LBDAF not enabled implies that
* the inode i_block field represents total file blocks in
* 2^32 512-byte sectors == size of vfs inode i_blocks * 8
*/
upper_limit = (1LL << 32) - 1;
/* total blocks in file system block size */
upper_limit >>= (bits - 9);
} else {
/*
* We use 48 bit ext4_inode i_blocks
* With EXT4_HUGE_FILE_FL set the i_blocks
* represent total number of blocks in
* file system block size
*/
upper_limit = (1LL << 48) - 1;
}
/* indirect blocks */
meta_blocks = 1;
/* double indirect blocks */
meta_blocks += 1 + (1LL << (bits-2));
/* tripple indirect blocks */
meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
upper_limit -= meta_blocks;
upper_limit <<= bits;
res += 1LL << (bits-2);
res += 1LL << (2*(bits-2));
res += 1LL << (3*(bits-2));
res <<= bits;
if (res > upper_limit)
res = upper_limit;
if (res > MAX_LFS_FILESIZE)
res = MAX_LFS_FILESIZE;
return res;
}
static ext4_fsblk_t descriptor_loc(struct super_block *sb,
ext4_fsblk_t logical_sb_block, int nr)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_group_t bg, first_meta_bg;
int has_super = 0;
first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
nr < first_meta_bg)
return logical_sb_block + nr + 1;
bg = sbi->s_desc_per_block * nr;
if (ext4_bg_has_super(sb, bg))
has_super = 1;
return (has_super + ext4_group_first_block_no(sb, bg));
}
/**
* ext4_get_stripe_size: Get the stripe size.
* @sbi: In memory super block info
*
* If we have specified it via mount option, then
* use the mount option value. If the value specified at mount time is
* greater than the blocks per group use the super block value.
* If the super block value is greater than blocks per group return 0.
* Allocator needs it be less than blocks per group.
*
*/
static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
{
unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
unsigned long stripe_width =
le32_to_cpu(sbi->s_es->s_raid_stripe_width);
if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
return sbi->s_stripe;
if (stripe_width <= sbi->s_blocks_per_group)
return stripe_width;
if (stride <= sbi->s_blocks_per_group)
return stride;
return 0;
}
/* sysfs supprt */
struct ext4_attr {
struct attribute attr;
ssize_t (*show)(struct ext4_attr *, struct ext4_sb_info *, char *);
ssize_t (*store)(struct ext4_attr *, struct ext4_sb_info *,
const char *, size_t);
int offset;
};
static int parse_strtoul(const char *buf,
unsigned long max, unsigned long *value)
{
char *endp;
while (*buf && isspace(*buf))
buf++;
*value = simple_strtoul(buf, &endp, 0);
while (*endp && isspace(*endp))
endp++;
if (*endp || *value > max)
return -EINVAL;
return 0;
}
static ssize_t delayed_allocation_blocks_show(struct ext4_attr *a,
struct ext4_sb_info *sbi,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%llu\n",
(s64) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
}
static ssize_t session_write_kbytes_show(struct ext4_attr *a,
struct ext4_sb_info *sbi, char *buf)
{
struct super_block *sb = sbi->s_buddy_cache->i_sb;
return snprintf(buf, PAGE_SIZE, "%lu\n",
(part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
sbi->s_sectors_written_start) >> 1);
}
static ssize_t lifetime_write_kbytes_show(struct ext4_attr *a,
struct ext4_sb_info *sbi, char *buf)
{
struct super_block *sb = sbi->s_buddy_cache->i_sb;
return snprintf(buf, PAGE_SIZE, "%llu\n",
sbi->s_kbytes_written +
((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
EXT4_SB(sb)->s_sectors_written_start) >> 1));
}
static ssize_t inode_readahead_blks_store(struct ext4_attr *a,
struct ext4_sb_info *sbi,
const char *buf, size_t count)
{
unsigned long t;
if (parse_strtoul(buf, 0x40000000, &t))
return -EINVAL;
if (!is_power_of_2(t))
return -EINVAL;
sbi->s_inode_readahead_blks = t;
return count;
}
static ssize_t sbi_ui_show(struct ext4_attr *a,
struct ext4_sb_info *sbi, char *buf)
{
unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
}
static ssize_t sbi_ui_store(struct ext4_attr *a,
struct ext4_sb_info *sbi,
const char *buf, size_t count)
{
unsigned int *ui = (unsigned int *) (((char *) sbi) + a->offset);
unsigned long t;
if (parse_strtoul(buf, 0xffffffff, &t))
return -EINVAL;
*ui = t;
return count;
}
#define EXT4_ATTR_OFFSET(_name,_mode,_show,_store,_elname) \
static struct ext4_attr ext4_attr_##_name = { \
.attr = {.name = __stringify(_name), .mode = _mode }, \
.show = _show, \
.store = _store, \
.offset = offsetof(struct ext4_sb_info, _elname), \
}
#define EXT4_ATTR(name, mode, show, store) \
static struct ext4_attr ext4_attr_##name = __ATTR(name, mode, show, store)
#define EXT4_RO_ATTR(name) EXT4_ATTR(name, 0444, name##_show, NULL)
#define EXT4_RW_ATTR(name) EXT4_ATTR(name, 0644, name##_show, name##_store)
#define EXT4_RW_ATTR_SBI_UI(name, elname) \
EXT4_ATTR_OFFSET(name, 0644, sbi_ui_show, sbi_ui_store, elname)
#define ATTR_LIST(name) &ext4_attr_##name.attr
EXT4_RO_ATTR(delayed_allocation_blocks);
EXT4_RO_ATTR(session_write_kbytes);
EXT4_RO_ATTR(lifetime_write_kbytes);
EXT4_ATTR_OFFSET(inode_readahead_blks, 0644, sbi_ui_show,
inode_readahead_blks_store, s_inode_readahead_blks);
EXT4_RW_ATTR_SBI_UI(inode_goal, s_inode_goal);
EXT4_RW_ATTR_SBI_UI(mb_stats, s_mb_stats);
EXT4_RW_ATTR_SBI_UI(mb_max_to_scan, s_mb_max_to_scan);
EXT4_RW_ATTR_SBI_UI(mb_min_to_scan, s_mb_min_to_scan);
EXT4_RW_ATTR_SBI_UI(mb_order2_req, s_mb_order2_reqs);
EXT4_RW_ATTR_SBI_UI(mb_stream_req, s_mb_stream_request);
EXT4_RW_ATTR_SBI_UI(mb_group_prealloc, s_mb_group_prealloc);
static struct attribute *ext4_attrs[] = {
ATTR_LIST(delayed_allocation_blocks),
ATTR_LIST(session_write_kbytes),
ATTR_LIST(lifetime_write_kbytes),
ATTR_LIST(inode_readahead_blks),
ATTR_LIST(inode_goal),
ATTR_LIST(mb_stats),
ATTR_LIST(mb_max_to_scan),
ATTR_LIST(mb_min_to_scan),
ATTR_LIST(mb_order2_req),
ATTR_LIST(mb_stream_req),
ATTR_LIST(mb_group_prealloc),
NULL,
};
static ssize_t ext4_attr_show(struct kobject *kobj,
struct attribute *attr, char *buf)
{
struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
s_kobj);
struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
return a->show ? a->show(a, sbi, buf) : 0;
}
static ssize_t ext4_attr_store(struct kobject *kobj,
struct attribute *attr,
const char *buf, size_t len)
{
struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
s_kobj);
struct ext4_attr *a = container_of(attr, struct ext4_attr, attr);
return a->store ? a->store(a, sbi, buf, len) : 0;
}
static void ext4_sb_release(struct kobject *kobj)
{
struct ext4_sb_info *sbi = container_of(kobj, struct ext4_sb_info,
s_kobj);
complete(&sbi->s_kobj_unregister);
}
static struct sysfs_ops ext4_attr_ops = {
.show = ext4_attr_show,
.store = ext4_attr_store,
};
static struct kobj_type ext4_ktype = {
.default_attrs = ext4_attrs,
.sysfs_ops = &ext4_attr_ops,
.release = ext4_sb_release,
};
/*
* Check whether this filesystem can be mounted based on
* the features present and the RDONLY/RDWR mount requested.
* Returns 1 if this filesystem can be mounted as requested,
* 0 if it cannot be.
*/
static int ext4_feature_set_ok(struct super_block *sb, int readonly)
{
if (EXT4_HAS_INCOMPAT_FEATURE(sb, ~EXT4_FEATURE_INCOMPAT_SUPP)) {
ext4_msg(sb, KERN_ERR,
"Couldn't mount because of "
"unsupported optional features (%x)",
(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
~EXT4_FEATURE_INCOMPAT_SUPP));
return 0;
}
if (readonly)
return 1;
/* Check that feature set is OK for a read-write mount */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, ~EXT4_FEATURE_RO_COMPAT_SUPP)) {
ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
"unsupported optional features (%x)",
(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
~EXT4_FEATURE_RO_COMPAT_SUPP));
return 0;
}
/*
* Large file size enabled file system can only be mounted
* read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
*/
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
if (sizeof(blkcnt_t) < sizeof(u64)) {
ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
"cannot be mounted RDWR without "
"CONFIG_LBDAF");
return 0;
}
}
return 1;
}
static int ext4_fill_super(struct super_block *sb, void *data, int silent)
__releases(kernel_lock)
__acquires(kernel_lock)
{
struct buffer_head *bh;
struct ext4_super_block *es = NULL;
struct ext4_sb_info *sbi;
ext4_fsblk_t block;
ext4_fsblk_t sb_block = get_sb_block(&data);
ext4_fsblk_t logical_sb_block;
unsigned long offset = 0;
unsigned long journal_devnum = 0;
unsigned long def_mount_opts;
struct inode *root;
char *cp;
const char *descr;
int ret = -EINVAL;
int blocksize;
unsigned int db_count;
unsigned int i;
int needs_recovery, has_huge_files;
__u64 blocks_count;
int err;
unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sbi->s_blockgroup_lock =
kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
if (!sbi->s_blockgroup_lock) {
kfree(sbi);
return -ENOMEM;
}
sb->s_fs_info = sbi;
sbi->s_mount_opt = 0;
sbi->s_resuid = EXT4_DEF_RESUID;
sbi->s_resgid = EXT4_DEF_RESGID;
sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
sbi->s_sb_block = sb_block;
sbi->s_sectors_written_start = part_stat_read(sb->s_bdev->bd_part,
sectors[1]);
unlock_kernel();
/* Cleanup superblock name */
for (cp = sb->s_id; (cp = strchr(cp, '/'));)
*cp = '!';
blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
if (!blocksize) {
ext4_msg(sb, KERN_ERR, "unable to set blocksize");
goto out_fail;
}
/*
* The ext4 superblock will not be buffer aligned for other than 1kB
* block sizes. We need to calculate the offset from buffer start.
*/
if (blocksize != EXT4_MIN_BLOCK_SIZE) {
logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
offset = do_div(logical_sb_block, blocksize);
} else {
logical_sb_block = sb_block;
}
if (!(bh = sb_bread(sb, logical_sb_block))) {
ext4_msg(sb, KERN_ERR, "unable to read superblock");
goto out_fail;
}
/*
* Note: s_es must be initialized as soon as possible because
* some ext4 macro-instructions depend on its value
*/
es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
sbi->s_es = es;
sb->s_magic = le16_to_cpu(es->s_magic);
if (sb->s_magic != EXT4_SUPER_MAGIC)
goto cantfind_ext4;
sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
/* Set defaults before we parse the mount options */
def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
if (def_mount_opts & EXT4_DEFM_DEBUG)
set_opt(sbi->s_mount_opt, DEBUG);
if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
set_opt(sbi->s_mount_opt, GRPID);
if (def_mount_opts & EXT4_DEFM_UID16)
set_opt(sbi->s_mount_opt, NO_UID32);
#ifdef CONFIG_EXT4_FS_XATTR
if (def_mount_opts & EXT4_DEFM_XATTR_USER)
set_opt(sbi->s_mount_opt, XATTR_USER);
#endif
#ifdef CONFIG_EXT4_FS_POSIX_ACL
if (def_mount_opts & EXT4_DEFM_ACL)
set_opt(sbi->s_mount_opt, POSIX_ACL);
#endif
if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
sbi->s_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
sbi->s_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
sbi->s_mount_opt |= EXT4_MOUNT_WRITEBACK_DATA;
if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
set_opt(sbi->s_mount_opt, ERRORS_PANIC);
else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
set_opt(sbi->s_mount_opt, ERRORS_CONT);
else
set_opt(sbi->s_mount_opt, ERRORS_RO);
sbi->s_resuid = le16_to_cpu(es->s_def_resuid);
sbi->s_resgid = le16_to_cpu(es->s_def_resgid);
sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
sbi->s_mb_history_max = default_mb_history_length;
set_opt(sbi->s_mount_opt, BARRIER);
/*
* enable delayed allocation by default
* Use -o nodelalloc to turn it off
*/
set_opt(sbi->s_mount_opt, DELALLOC);
if (!parse_options((char *) data, sb, &journal_devnum,
&journal_ioprio, NULL, 0))
goto failed_mount;
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
(EXT4_HAS_COMPAT_FEATURE(sb, ~0U) ||
EXT4_HAS_RO_COMPAT_FEATURE(sb, ~0U) ||
EXT4_HAS_INCOMPAT_FEATURE(sb, ~0U)))
ext4_msg(sb, KERN_WARNING,
"feature flags set on rev 0 fs, "
"running e2fsck is recommended");
/*
* Check feature flags regardless of the revision level, since we
* previously didn't change the revision level when setting the flags,
* so there is a chance incompat flags are set on a rev 0 filesystem.
*/
if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
goto failed_mount;
blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
if (blocksize < EXT4_MIN_BLOCK_SIZE ||
blocksize > EXT4_MAX_BLOCK_SIZE) {
ext4_msg(sb, KERN_ERR,
"Unsupported filesystem blocksize %d", blocksize);
goto failed_mount;
}
if (sb->s_blocksize != blocksize) {
/* Validate the filesystem blocksize */
if (!sb_set_blocksize(sb, blocksize)) {
ext4_msg(sb, KERN_ERR, "bad block size %d",
blocksize);
goto failed_mount;
}
brelse(bh);
logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
offset = do_div(logical_sb_block, blocksize);
bh = sb_bread(sb, logical_sb_block);
if (!bh) {
ext4_msg(sb, KERN_ERR,
"Can't read superblock on 2nd try");
goto failed_mount;
}
es = (struct ext4_super_block *)(((char *)bh->b_data) + offset);
sbi->s_es = es;
if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
ext4_msg(sb, KERN_ERR,
"Magic mismatch, very weird!");
goto failed_mount;
}
}
has_huge_files = EXT4_HAS_RO_COMPAT_FEATURE(sb,
EXT4_FEATURE_RO_COMPAT_HUGE_FILE);
sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
has_huge_files);
sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
} else {
sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
(!is_power_of_2(sbi->s_inode_size)) ||
(sbi->s_inode_size > blocksize)) {
ext4_msg(sb, KERN_ERR,
"unsupported inode size: %d",
sbi->s_inode_size);
goto failed_mount;
}
if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
}
sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) {
if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
!is_power_of_2(sbi->s_desc_size)) {
ext4_msg(sb, KERN_ERR,
"unsupported descriptor size %lu",
sbi->s_desc_size);
goto failed_mount;
}
} else
sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
if (EXT4_INODE_SIZE(sb) == 0 || EXT4_INODES_PER_GROUP(sb) == 0)
goto cantfind_ext4;
sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
if (sbi->s_inodes_per_block == 0)
goto cantfind_ext4;
sbi->s_itb_per_group = sbi->s_inodes_per_group /
sbi->s_inodes_per_block;
sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
sbi->s_sbh = bh;
sbi->s_mount_state = le16_to_cpu(es->s_state);
sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
for (i = 0; i < 4; i++)
sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
sbi->s_def_hash_version = es->s_def_hash_version;
i = le32_to_cpu(es->s_flags);
if (i & EXT2_FLAGS_UNSIGNED_HASH)
sbi->s_hash_unsigned = 3;
else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
#ifdef __CHAR_UNSIGNED__
es->s_flags |= cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
sbi->s_hash_unsigned = 3;
#else
es->s_flags |= cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
#endif
sb->s_dirt = 1;
}
if (sbi->s_blocks_per_group > blocksize * 8) {
ext4_msg(sb, KERN_ERR,
"#blocks per group too big: %lu",
sbi->s_blocks_per_group);
goto failed_mount;
}
if (sbi->s_inodes_per_group > blocksize * 8) {
ext4_msg(sb, KERN_ERR,
"#inodes per group too big: %lu",
sbi->s_inodes_per_group);
goto failed_mount;
}
/*
* Test whether we have more sectors than will fit in sector_t,
* and whether the max offset is addressable by the page cache.
*/
if ((ext4_blocks_count(es) >
(sector_t)(~0ULL) >> (sb->s_blocksize_bits - 9)) ||
(ext4_blocks_count(es) >
(pgoff_t)(~0ULL) >> (PAGE_CACHE_SHIFT - sb->s_blocksize_bits))) {
ext4_msg(sb, KERN_ERR, "filesystem"
" too large to mount safely on this system");
if (sizeof(sector_t) < 8)
ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
ret = -EFBIG;
goto failed_mount;
}
if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
goto cantfind_ext4;
/* check blocks count against device size */
blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
if (blocks_count && ext4_blocks_count(es) > blocks_count) {
ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
"exceeds size of device (%llu blocks)",
ext4_blocks_count(es), blocks_count);
goto failed_mount;
}
/*
* It makes no sense for the first data block to be beyond the end
* of the filesystem.
*/
if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
ext4_msg(sb, KERN_WARNING, "bad geometry: first data"
"block %u is beyond end of filesystem (%llu)",
le32_to_cpu(es->s_first_data_block),
ext4_blocks_count(es));
goto failed_mount;
}
blocks_count = (ext4_blocks_count(es) -
le32_to_cpu(es->s_first_data_block) +
EXT4_BLOCKS_PER_GROUP(sb) - 1);
do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
"(block count %llu, first data block %u, "
"blocks per group %lu)", sbi->s_groups_count,
ext4_blocks_count(es),
le32_to_cpu(es->s_first_data_block),
EXT4_BLOCKS_PER_GROUP(sb));
goto failed_mount;
}
sbi->s_groups_count = blocks_count;
db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
EXT4_DESC_PER_BLOCK(sb);
sbi->s_group_desc = kmalloc(db_count * sizeof(struct buffer_head *),
GFP_KERNEL);
if (sbi->s_group_desc == NULL) {
ext4_msg(sb, KERN_ERR, "not enough memory");
goto failed_mount;
}
#ifdef CONFIG_PROC_FS
if (ext4_proc_root)
sbi->s_proc = proc_mkdir(sb->s_id, ext4_proc_root);
#endif
bgl_lock_init(sbi->s_blockgroup_lock);
for (i = 0; i < db_count; i++) {
block = descriptor_loc(sb, logical_sb_block, i);
sbi->s_group_desc[i] = sb_bread(sb, block);
if (!sbi->s_group_desc[i]) {
ext4_msg(sb, KERN_ERR,
"can't read group descriptor %d", i);
db_count = i;
goto failed_mount2;
}
}
if (!ext4_check_descriptors(sb)) {
ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
goto failed_mount2;
}
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG))
if (!ext4_fill_flex_info(sb)) {
ext4_msg(sb, KERN_ERR,
"unable to initialize "
"flex_bg meta info!");
goto failed_mount2;
}
sbi->s_gdb_count = db_count;
get_random_bytes(&sbi->s_next_generation, sizeof(u32));
spin_lock_init(&sbi->s_next_gen_lock);
err = percpu_counter_init(&sbi->s_freeblocks_counter,
ext4_count_free_blocks(sb));
if (!err) {
err = percpu_counter_init(&sbi->s_freeinodes_counter,
ext4_count_free_inodes(sb));
}
if (!err) {
err = percpu_counter_init(&sbi->s_dirs_counter,
ext4_count_dirs(sb));
}
if (!err) {
err = percpu_counter_init(&sbi->s_dirtyblocks_counter, 0);
}
if (err) {
ext4_msg(sb, KERN_ERR, "insufficient memory");
goto failed_mount3;
}
sbi->s_stripe = ext4_get_stripe_size(sbi);
/*
* set up enough so that it can read an inode
*/
if (!test_opt(sb, NOLOAD) &&
EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL))
sb->s_op = &ext4_sops;
else
sb->s_op = &ext4_nojournal_sops;
sb->s_export_op = &ext4_export_ops;
sb->s_xattr = ext4_xattr_handlers;
#ifdef CONFIG_QUOTA
sb->s_qcop = &ext4_qctl_operations;
sb->dq_op = &ext4_quota_operations;
#endif
INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
mutex_init(&sbi->s_orphan_lock);
mutex_init(&sbi->s_resize_lock);
sb->s_root = NULL;
needs_recovery = (es->s_last_orphan != 0 ||
EXT4_HAS_INCOMPAT_FEATURE(sb,
EXT4_FEATURE_INCOMPAT_RECOVER));
/*
* The first inode we look at is the journal inode. Don't try
* root first: it may be modified in the journal!
*/
if (!test_opt(sb, NOLOAD) &&
EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
if (ext4_load_journal(sb, es, journal_devnum))
goto failed_mount3;
if (!(sb->s_flags & MS_RDONLY) &&
EXT4_SB(sb)->s_journal->j_failed_commit) {
ext4_msg(sb, KERN_CRIT, "error: "
"ext4_fill_super: Journal transaction "
"%u is corrupt",
EXT4_SB(sb)->s_journal->j_failed_commit);
if (test_opt(sb, ERRORS_RO)) {
ext4_msg(sb, KERN_CRIT,
"Mounting filesystem read-only");
sb->s_flags |= MS_RDONLY;
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
}
if (test_opt(sb, ERRORS_PANIC)) {
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
ext4_commit_super(sb, 1);
goto failed_mount4;
}
}
} else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
ext4_msg(sb, KERN_ERR, "required journal recovery "
"suppressed and not mounted read-only");
goto failed_mount4;
} else {
clear_opt(sbi->s_mount_opt, DATA_FLAGS);
set_opt(sbi->s_mount_opt, WRITEBACK_DATA);
sbi->s_journal = NULL;
needs_recovery = 0;
goto no_journal;
}
if (ext4_blocks_count(es) > 0xffffffffULL &&
!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_64BIT)) {
ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
goto failed_mount4;
}
jbd2_journal_set_features(sbi->s_journal,
JBD2_FEATURE_COMPAT_CHECKSUM, 0, 0);
if (test_opt(sb, JOURNAL_ASYNC_COMMIT))
jbd2_journal_set_features(sbi->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
else
jbd2_journal_clear_features(sbi->s_journal, 0, 0,
JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
/* We have now updated the journal if required, so we can
* validate the data journaling mode. */
switch (test_opt(sb, DATA_FLAGS)) {
case 0:
/* No mode set, assume a default based on the journal
* capabilities: ORDERED_DATA if the journal can
* cope, else JOURNAL_DATA
*/
if (jbd2_journal_check_available_features
(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
set_opt(sbi->s_mount_opt, ORDERED_DATA);
else
set_opt(sbi->s_mount_opt, JOURNAL_DATA);
break;
case EXT4_MOUNT_ORDERED_DATA:
case EXT4_MOUNT_WRITEBACK_DATA:
if (!jbd2_journal_check_available_features
(sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
ext4_msg(sb, KERN_ERR, "Journal does not support "
"requested data journaling mode");
goto failed_mount4;
}
default:
break;
}
set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
no_journal:
if (test_opt(sb, NOBH)) {
if (!(test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)) {
ext4_msg(sb, KERN_WARNING, "Ignoring nobh option - "
"its supported only with writeback mode");
clear_opt(sbi->s_mount_opt, NOBH);
}
}
/*
* The jbd2_journal_load will have done any necessary log recovery,
* so we can safely mount the rest of the filesystem now.
*/
root = ext4_iget(sb, EXT4_ROOT_INO);
if (IS_ERR(root)) {
ext4_msg(sb, KERN_ERR, "get root inode failed");
ret = PTR_ERR(root);
goto failed_mount4;
}
if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
iput(root);
ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
goto failed_mount4;
}
sb->s_root = d_alloc_root(root);
if (!sb->s_root) {
ext4_msg(sb, KERN_ERR, "get root dentry failed");
iput(root);
ret = -ENOMEM;
goto failed_mount4;
}
ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY);
/* determine the minimum size of new large inodes, if present */
if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
EXT4_GOOD_OLD_INODE_SIZE;
if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
EXT4_FEATURE_RO_COMPAT_EXTRA_ISIZE)) {
if (sbi->s_want_extra_isize <
le16_to_cpu(es->s_want_extra_isize))
sbi->s_want_extra_isize =
le16_to_cpu(es->s_want_extra_isize);
if (sbi->s_want_extra_isize <
le16_to_cpu(es->s_min_extra_isize))
sbi->s_want_extra_isize =
le16_to_cpu(es->s_min_extra_isize);
}
}
/* Check if enough inode space is available */
if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
sbi->s_inode_size) {
sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
EXT4_GOOD_OLD_INODE_SIZE;
ext4_msg(sb, KERN_INFO, "required extra inode space not"
"available");
}
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
ext4_msg(sb, KERN_WARNING, "Ignoring delalloc option - "
"requested data journaling mode");
clear_opt(sbi->s_mount_opt, DELALLOC);
} else if (test_opt(sb, DELALLOC))
ext4_msg(sb, KERN_INFO, "delayed allocation enabled");
err = ext4_setup_system_zone(sb);
if (err) {
ext4_msg(sb, KERN_ERR, "failed to initialize system "
"zone (%d)\n", err);
goto failed_mount4;
}
ext4_ext_init(sb);
err = ext4_mb_init(sb, needs_recovery);
if (err) {
ext4_msg(sb, KERN_ERR, "failed to initalize mballoc (%d)",
err);
goto failed_mount4;
}
sbi->s_kobj.kset = ext4_kset;
init_completion(&sbi->s_kobj_unregister);
err = kobject_init_and_add(&sbi->s_kobj, &ext4_ktype, NULL,
"%s", sb->s_id);
if (err) {
ext4_mb_release(sb);
ext4_ext_release(sb);
goto failed_mount4;
};
EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
ext4_orphan_cleanup(sb, es);
EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
if (needs_recovery) {
ext4_msg(sb, KERN_INFO, "recovery complete");
ext4_mark_recovery_complete(sb, es);
}
if (EXT4_SB(sb)->s_journal) {
if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
descr = " journalled data mode";
else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
descr = " ordered data mode";
else
descr = " writeback data mode";
} else
descr = "out journal";
ext4_msg(sb, KERN_INFO, "mounted filesystem with%s", descr);
lock_kernel();
return 0;
cantfind_ext4:
if (!silent)
ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
goto failed_mount;
failed_mount4:
ext4_msg(sb, KERN_ERR, "mount failed");
ext4_release_system_zone(sb);
if (sbi->s_journal) {
jbd2_journal_destroy(sbi->s_journal);
sbi->s_journal = NULL;
}
failed_mount3:
if (sbi->s_flex_groups) {
if (is_vmalloc_addr(sbi->s_flex_groups))
vfree(sbi->s_flex_groups);
else
kfree(sbi->s_flex_groups);
}
percpu_counter_destroy(&sbi->s_freeblocks_counter);
percpu_counter_destroy(&sbi->s_freeinodes_counter);
percpu_counter_destroy(&sbi->s_dirs_counter);
percpu_counter_destroy(&sbi->s_dirtyblocks_counter);
failed_mount2:
for (i = 0; i < db_count; i++)
brelse(sbi->s_group_desc[i]);
kfree(sbi->s_group_desc);
failed_mount:
if (sbi->s_proc) {
remove_proc_entry(sb->s_id, ext4_proc_root);
}
#ifdef CONFIG_QUOTA
for (i = 0; i < MAXQUOTAS; i++)
kfree(sbi->s_qf_names[i]);
#endif
ext4_blkdev_remove(sbi);
brelse(bh);
out_fail:
sb->s_fs_info = NULL;
kfree(sbi->s_blockgroup_lock);
kfree(sbi);
lock_kernel();
return ret;
}
/*
* Setup any per-fs journal parameters now. We'll do this both on
* initial mount, once the journal has been initialised but before we've
* done any recovery; and again on any subsequent remount.
*/
static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
journal->j_commit_interval = sbi->s_commit_interval;
journal->j_min_batch_time = sbi->s_min_batch_time;
journal->j_max_batch_time = sbi->s_max_batch_time;
spin_lock(&journal->j_state_lock);
if (test_opt(sb, BARRIER))
journal->j_flags |= JBD2_BARRIER;
else
journal->j_flags &= ~JBD2_BARRIER;
if (test_opt(sb, DATA_ERR_ABORT))
journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
else
journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
spin_unlock(&journal->j_state_lock);
}
static journal_t *ext4_get_journal(struct super_block *sb,
unsigned int journal_inum)
{
struct inode *journal_inode;
journal_t *journal;
BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
/* First, test for the existence of a valid inode on disk. Bad
* things happen if we iget() an unused inode, as the subsequent
* iput() will try to delete it. */
journal_inode = ext4_iget(sb, journal_inum);
if (IS_ERR(journal_inode)) {
ext4_msg(sb, KERN_ERR, "no journal found");
return NULL;
}
if (!journal_inode->i_nlink) {
make_bad_inode(journal_inode);
iput(journal_inode);
ext4_msg(sb, KERN_ERR, "journal inode is deleted");
return NULL;
}
jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
journal_inode, journal_inode->i_size);
if (!S_ISREG(journal_inode->i_mode)) {
ext4_msg(sb, KERN_ERR, "invalid journal inode");
iput(journal_inode);
return NULL;
}
journal = jbd2_journal_init_inode(journal_inode);
if (!journal) {
ext4_msg(sb, KERN_ERR, "Could not load journal inode");
iput(journal_inode);
return NULL;
}
journal->j_private = sb;
ext4_init_journal_params(sb, journal);
return journal;
}
static journal_t *ext4_get_dev_journal(struct super_block *sb,
dev_t j_dev)
{
struct buffer_head *bh;
journal_t *journal;
ext4_fsblk_t start;
ext4_fsblk_t len;
int hblock, blocksize;
ext4_fsblk_t sb_block;
unsigned long offset;
struct ext4_super_block *es;
struct block_device *bdev;
BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
bdev = ext4_blkdev_get(j_dev, sb);
if (bdev == NULL)
return NULL;
if (bd_claim(bdev, sb)) {
ext4_msg(sb, KERN_ERR,
"failed to claim external journal device");
blkdev_put(bdev, FMODE_READ|FMODE_WRITE);
return NULL;
}
blocksize = sb->s_blocksize;
hblock = bdev_logical_block_size(bdev);
if (blocksize < hblock) {
ext4_msg(sb, KERN_ERR,
"blocksize too small for journal device");
goto out_bdev;
}
sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
offset = EXT4_MIN_BLOCK_SIZE % blocksize;
set_blocksize(bdev, blocksize);
if (!(bh = __bread(bdev, sb_block, blocksize))) {
ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
"external journal");
goto out_bdev;
}
es = (struct ext4_super_block *) (((char *)bh->b_data) + offset);
if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
!(le32_to_cpu(es->s_feature_incompat) &
EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
ext4_msg(sb, KERN_ERR, "external journal has "
"bad superblock");
brelse(bh);
goto out_bdev;
}
if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
ext4_msg(sb, KERN_ERR, "journal UUID does not match");
brelse(bh);
goto out_bdev;
}
len = ext4_blocks_count(es);
start = sb_block + 1;
brelse(bh); /* we're done with the superblock */
journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
start, len, blocksize);
if (!journal) {
ext4_msg(sb, KERN_ERR, "failed to create device journal");
goto out_bdev;
}
journal->j_private = sb;
ll_rw_block(READ, 1, &journal->j_sb_buffer);
wait_on_buffer(journal->j_sb_buffer);
if (!buffer_uptodate(journal->j_sb_buffer)) {
ext4_msg(sb, KERN_ERR, "I/O error on journal device");
goto out_journal;
}
if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
ext4_msg(sb, KERN_ERR, "External journal has more than one "
"user (unsupported) - %d",
be32_to_cpu(journal->j_superblock->s_nr_users));
goto out_journal;
}
EXT4_SB(sb)->journal_bdev = bdev;
ext4_init_journal_params(sb, journal);
return journal;
out_journal:
jbd2_journal_destroy(journal);
out_bdev:
ext4_blkdev_put(bdev);
return NULL;
}
static int ext4_load_journal(struct super_block *sb,
struct ext4_super_block *es,
unsigned long journal_devnum)
{
journal_t *journal;
unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
dev_t journal_dev;
int err = 0;
int really_read_only;
BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
if (journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
ext4_msg(sb, KERN_INFO, "external journal device major/minor "
"numbers have changed");
journal_dev = new_decode_dev(journal_devnum);
} else
journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
really_read_only = bdev_read_only(sb->s_bdev);
/*
* Are we loading a blank journal or performing recovery after a
* crash? For recovery, we need to check in advance whether we
* can get read-write access to the device.
*/
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER)) {
if (sb->s_flags & MS_RDONLY) {
ext4_msg(sb, KERN_INFO, "INFO: recovery "
"required on readonly filesystem");
if (really_read_only) {
ext4_msg(sb, KERN_ERR, "write access "
"unavailable, cannot proceed");
return -EROFS;
}
ext4_msg(sb, KERN_INFO, "write access will "
"be enabled during recovery");
}
}
if (journal_inum && journal_dev) {
ext4_msg(sb, KERN_ERR, "filesystem has both journal "
"and inode journals!");
return -EINVAL;
}
if (journal_inum) {
if (!(journal = ext4_get_journal(sb, journal_inum)))
return -EINVAL;
} else {
if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
return -EINVAL;
}
if (journal->j_flags & JBD2_BARRIER)
ext4_msg(sb, KERN_INFO, "barriers enabled");
else
ext4_msg(sb, KERN_INFO, "barriers disabled");
if (!really_read_only && test_opt(sb, UPDATE_JOURNAL)) {
err = jbd2_journal_update_format(journal);
if (err) {
ext4_msg(sb, KERN_ERR, "error updating journal");
jbd2_journal_destroy(journal);
return err;
}
}
if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER))
err = jbd2_journal_wipe(journal, !really_read_only);
if (!err)
err = jbd2_journal_load(journal);
if (err) {
ext4_msg(sb, KERN_ERR, "error loading journal");
jbd2_journal_destroy(journal);
return err;
}
EXT4_SB(sb)->s_journal = journal;
ext4_clear_journal_err(sb, es);
if (journal_devnum &&
journal_devnum != le32_to_cpu(es->s_journal_dev)) {
es->s_journal_dev = cpu_to_le32(journal_devnum);
/* Make sure we flush the recovery flag to disk. */
ext4_commit_super(sb, 1);
}
return 0;
}
static int ext4_commit_super(struct super_block *sb, int sync)
{
struct ext4_super_block *es = EXT4_SB(sb)->s_es;
struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
int error = 0;
if (!sbh)
return error;
if (buffer_write_io_error(sbh)) {
/*
* Oh, dear. A previous attempt to write the
* superblock failed. This could happen because the
* USB device was yanked out. Or it could happen to
* be a transient write error and maybe the block will
* be remapped. Nothing we can do but to retry the
* write and hope for the best.
*/
ext4_msg(sb, KERN_ERR, "previous I/O error to "
"superblock detected");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
/*
* If the file system is mounted read-only, don't update the
* superblock write time. This avoids updating the superblock
* write time when we are mounting the root file system
* read/only but we need to replay the journal; at that point,
* for people who are east of GMT and who make their clock
* tick in localtime for Windows bug-for-bug compatibility,
* the clock is set in the future, and this will cause e2fsck
* to complain and force a full file system check.
*/
if (!(sb->s_flags & MS_RDONLY))
es->s_wtime = cpu_to_le32(get_seconds());
es->s_kbytes_written =
cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
EXT4_SB(sb)->s_sectors_written_start) >> 1));
ext4_free_blocks_count_set(es, percpu_counter_sum_positive(
&EXT4_SB(sb)->s_freeblocks_counter));
es->s_free_inodes_count = cpu_to_le32(percpu_counter_sum_positive(
&EXT4_SB(sb)->s_freeinodes_counter));
sb->s_dirt = 0;
BUFFER_TRACE(sbh, "marking dirty");
mark_buffer_dirty(sbh);
if (sync) {
error = sync_dirty_buffer(sbh);
if (error)
return error;
error = buffer_write_io_error(sbh);
if (error) {
ext4_msg(sb, KERN_ERR, "I/O error while writing "
"superblock");
clear_buffer_write_io_error(sbh);
set_buffer_uptodate(sbh);
}
}
return error;
}
/*
* Have we just finished recovery? If so, and if we are mounting (or
* remounting) the filesystem readonly, then we will end up with a
* consistent fs on disk. Record that fact.
*/
static void ext4_mark_recovery_complete(struct super_block *sb,
struct ext4_super_block *es)
{
journal_t *journal = EXT4_SB(sb)->s_journal;
if (!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL)) {
BUG_ON(journal != NULL);
return;
}
jbd2_journal_lock_updates(journal);
if (jbd2_journal_flush(journal) < 0)
goto out;
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER) &&
sb->s_flags & MS_RDONLY) {
EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
ext4_commit_super(sb, 1);
}
out:
jbd2_journal_unlock_updates(journal);
}
/*
* If we are mounting (or read-write remounting) a filesystem whose journal
* has recorded an error from a previous lifetime, move that error to the
* main filesystem now.
*/
static void ext4_clear_journal_err(struct super_block *sb,
struct ext4_super_block *es)
{
journal_t *journal;
int j_errno;
const char *errstr;
BUG_ON(!EXT4_HAS_COMPAT_FEATURE(sb, EXT4_FEATURE_COMPAT_HAS_JOURNAL));
journal = EXT4_SB(sb)->s_journal;
/*
* Now check for any error status which may have been recorded in the
* journal by a prior ext4_error() or ext4_abort()
*/
j_errno = jbd2_journal_errno(journal);
if (j_errno) {
char nbuf[16];
errstr = ext4_decode_error(sb, j_errno, nbuf);
ext4_warning(sb, __func__, "Filesystem error recorded "
"from previous mount: %s", errstr);
ext4_warning(sb, __func__, "Marking fs in need of "
"filesystem check.");
EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
ext4_commit_super(sb, 1);
jbd2_journal_clear_err(journal);
}
}
/*
* Force the running and committing transactions to commit,
* and wait on the commit.
*/
int ext4_force_commit(struct super_block *sb)
{
journal_t *journal;
int ret = 0;
if (sb->s_flags & MS_RDONLY)
return 0;
journal = EXT4_SB(sb)->s_journal;
if (journal)
ret = ext4_journal_force_commit(journal);
return ret;
}
static void ext4_write_super(struct super_block *sb)
{
lock_super(sb);
ext4_commit_super(sb, 1);
unlock_super(sb);
}
static int ext4_sync_fs(struct super_block *sb, int wait)
{
int ret = 0;
tid_t target;
trace_ext4_sync_fs(sb, wait);
if (jbd2_journal_start_commit(EXT4_SB(sb)->s_journal, &target)) {
if (wait)
jbd2_log_wait_commit(EXT4_SB(sb)->s_journal, target);
}
return ret;
}
/*
* LVM calls this function before a (read-only) snapshot is created. This
* gives us a chance to flush the journal completely and mark the fs clean.
*/
static int ext4_freeze(struct super_block *sb)
{
int error = 0;
journal_t *journal;
if (sb->s_flags & MS_RDONLY)
return 0;
journal = EXT4_SB(sb)->s_journal;
/* Now we set up the journal barrier. */
jbd2_journal_lock_updates(journal);
/*
* Don't clear the needs_recovery flag if we failed to flush
* the journal.
*/
error = jbd2_journal_flush(journal);
if (error < 0) {
out:
jbd2_journal_unlock_updates(journal);
return error;
}
/* Journal blocked and flushed, clear needs_recovery flag. */
EXT4_CLEAR_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
error = ext4_commit_super(sb, 1);
if (error)
goto out;
return 0;
}
/*
* Called by LVM after the snapshot is done. We need to reset the RECOVER
* flag here, even though the filesystem is not technically dirty yet.
*/
static int ext4_unfreeze(struct super_block *sb)
{
if (sb->s_flags & MS_RDONLY)
return 0;
lock_super(sb);
/* Reset the needs_recovery flag before the fs is unlocked. */
EXT4_SET_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_RECOVER);
ext4_commit_super(sb, 1);
unlock_super(sb);
jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
return 0;
}
static int ext4_remount(struct super_block *sb, int *flags, char *data)
{
struct ext4_super_block *es;
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_fsblk_t n_blocks_count = 0;
unsigned long old_sb_flags;
struct ext4_mount_options old_opts;
ext4_group_t g;
unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
int err;
#ifdef CONFIG_QUOTA
int i;
#endif
lock_kernel();
/* Store the original options */
lock_super(sb);
old_sb_flags = sb->s_flags;
old_opts.s_mount_opt = sbi->s_mount_opt;
old_opts.s_resuid = sbi->s_resuid;
old_opts.s_resgid = sbi->s_resgid;
old_opts.s_commit_interval = sbi->s_commit_interval;
old_opts.s_min_batch_time = sbi->s_min_batch_time;
old_opts.s_max_batch_time = sbi->s_max_batch_time;
#ifdef CONFIG_QUOTA
old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++)
old_opts.s_qf_names[i] = sbi->s_qf_names[i];
#endif
if (sbi->s_journal && sbi->s_journal->j_task->io_context)
journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
/*
* Allow the "check" option to be passed as a remount option.
*/
if (!parse_options(data, sb, NULL, &journal_ioprio,
&n_blocks_count, 1)) {
err = -EINVAL;
goto restore_opts;
}
if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
ext4_abort(sb, __func__, "Abort forced by user");
sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
((sbi->s_mount_opt & EXT4_MOUNT_POSIX_ACL) ? MS_POSIXACL : 0);
es = sbi->s_es;
if (sbi->s_journal) {
ext4_init_journal_params(sb, sbi->s_journal);
set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
}
if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY) ||
n_blocks_count > ext4_blocks_count(es)) {
if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
err = -EROFS;
goto restore_opts;
}
if (*flags & MS_RDONLY) {
/*
* First of all, the unconditional stuff we have to do
* to disable replay of the journal when we next remount
*/
sb->s_flags |= MS_RDONLY;
/*
* OK, test if we are remounting a valid rw partition
* readonly, and if so set the rdonly flag and then
* mark the partition as valid again.
*/
if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
(sbi->s_mount_state & EXT4_VALID_FS))
es->s_state = cpu_to_le16(sbi->s_mount_state);
if (sbi->s_journal)
ext4_mark_recovery_complete(sb, es);
} else {
/* Make sure we can mount this feature set readwrite */
if (!ext4_feature_set_ok(sb, 0)) {
err = -EROFS;
goto restore_opts;
}
/*
* Make sure the group descriptor checksums
* are sane. If they aren't, refuse to remount r/w.
*/
for (g = 0; g < sbi->s_groups_count; g++) {
struct ext4_group_desc *gdp =
ext4_get_group_desc(sb, g, NULL);
if (!ext4_group_desc_csum_verify(sbi, g, gdp)) {
ext4_msg(sb, KERN_ERR,
"ext4_remount: Checksum for group %u failed (%u!=%u)",
g, le16_to_cpu(ext4_group_desc_csum(sbi, g, gdp)),
le16_to_cpu(gdp->bg_checksum));
err = -EINVAL;
goto restore_opts;
}
}
/*
* If we have an unprocessed orphan list hanging
* around from a previously readonly bdev mount,
* require a full umount/remount for now.
*/
if (es->s_last_orphan) {
ext4_msg(sb, KERN_WARNING, "Couldn't "
"remount RDWR because of unprocessed "
"orphan inode list. Please "
"umount/remount instead");
err = -EINVAL;
goto restore_opts;
}
/*
* Mounting a RDONLY partition read-write, so reread
* and store the current valid flag. (It may have
* been changed by e2fsck since we originally mounted
* the partition.)
*/
if (sbi->s_journal)
ext4_clear_journal_err(sb, es);
sbi->s_mount_state = le16_to_cpu(es->s_state);
if ((err = ext4_group_extend(sb, es, n_blocks_count)))
goto restore_opts;
if (!ext4_setup_super(sb, es, 0))
sb->s_flags &= ~MS_RDONLY;
}
}
ext4_setup_system_zone(sb);
if (sbi->s_journal == NULL)
ext4_commit_super(sb, 1);
#ifdef CONFIG_QUOTA
/* Release old quota file names */
for (i = 0; i < MAXQUOTAS; i++)
if (old_opts.s_qf_names[i] &&
old_opts.s_qf_names[i] != sbi->s_qf_names[i])
kfree(old_opts.s_qf_names[i]);
#endif
unlock_super(sb);
unlock_kernel();
return 0;
restore_opts:
sb->s_flags = old_sb_flags;
sbi->s_mount_opt = old_opts.s_mount_opt;
sbi->s_resuid = old_opts.s_resuid;
sbi->s_resgid = old_opts.s_resgid;
sbi->s_commit_interval = old_opts.s_commit_interval;
sbi->s_min_batch_time = old_opts.s_min_batch_time;
sbi->s_max_batch_time = old_opts.s_max_batch_time;
#ifdef CONFIG_QUOTA
sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
for (i = 0; i < MAXQUOTAS; i++) {
if (sbi->s_qf_names[i] &&
old_opts.s_qf_names[i] != sbi->s_qf_names[i])
kfree(sbi->s_qf_names[i]);
sbi->s_qf_names[i] = old_opts.s_qf_names[i];
}
#endif
unlock_super(sb);
unlock_kernel();
return err;
}
static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_super_block *es = sbi->s_es;
u64 fsid;
if (test_opt(sb, MINIX_DF)) {
sbi->s_overhead_last = 0;
} else if (sbi->s_blocks_last != ext4_blocks_count(es)) {
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
ext4_fsblk_t overhead = 0;
/*
* Compute the overhead (FS structures). This is constant
* for a given filesystem unless the number of block groups
* changes so we cache the previous value until it does.
*/
/*
* All of the blocks before first_data_block are
* overhead
*/
overhead = le32_to_cpu(es->s_first_data_block);
/*
* Add the overhead attributed to the superblock and
* block group descriptors. If the sparse superblocks
* feature is turned on, then not all groups have this.
*/
for (i = 0; i < ngroups; i++) {
overhead += ext4_bg_has_super(sb, i) +
ext4_bg_num_gdb(sb, i);
cond_resched();
}
/*
* Every block group has an inode bitmap, a block
* bitmap, and an inode table.
*/
overhead += ngroups * (2 + sbi->s_itb_per_group);
sbi->s_overhead_last = overhead;
smp_wmb();
sbi->s_blocks_last = ext4_blocks_count(es);
}
buf->f_type = EXT4_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = ext4_blocks_count(es) - sbi->s_overhead_last;
buf->f_bfree = percpu_counter_sum_positive(&sbi->s_freeblocks_counter) -
percpu_counter_sum_positive(&sbi->s_dirtyblocks_counter);
ext4_free_blocks_count_set(es, buf->f_bfree);
buf->f_bavail = buf->f_bfree - ext4_r_blocks_count(es);
if (buf->f_bfree < ext4_r_blocks_count(es))
buf->f_bavail = 0;
buf->f_files = le32_to_cpu(es->s_inodes_count);
buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
es->s_free_inodes_count = cpu_to_le32(buf->f_ffree);
buf->f_namelen = EXT4_NAME_LEN;
fsid = le64_to_cpup((void *)es->s_uuid) ^
le64_to_cpup((void *)es->s_uuid + sizeof(u64));
buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
return 0;
}
/* Helper function for writing quotas on sync - we need to start transaction
* before quota file is locked for write. Otherwise the are possible deadlocks:
* Process 1 Process 2
* ext4_create() quota_sync()
* jbd2_journal_start() write_dquot()
* vfs_dq_init() down(dqio_mutex)
* down(dqio_mutex) jbd2_journal_start()
*
*/
#ifdef CONFIG_QUOTA
static inline struct inode *dquot_to_inode(struct dquot *dquot)
{
return sb_dqopt(dquot->dq_sb)->files[dquot->dq_type];
}
static int ext4_write_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
struct inode *inode;
inode = dquot_to_inode(dquot);
handle = ext4_journal_start(inode,
EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit(dquot);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_acquire_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext4_journal_start(dquot_to_inode(dquot),
EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_acquire(dquot);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_release_dquot(struct dquot *dquot)
{
int ret, err;
handle_t *handle;
handle = ext4_journal_start(dquot_to_inode(dquot),
EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
if (IS_ERR(handle)) {
/* Release dquot anyway to avoid endless cycle in dqput() */
dquot_release(dquot);
return PTR_ERR(handle);
}
ret = dquot_release(dquot);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
static int ext4_mark_dquot_dirty(struct dquot *dquot)
{
/* Are we journaling quotas? */
if (EXT4_SB(dquot->dq_sb)->s_qf_names[USRQUOTA] ||
EXT4_SB(dquot->dq_sb)->s_qf_names[GRPQUOTA]) {
dquot_mark_dquot_dirty(dquot);
return ext4_write_dquot(dquot);
} else {
return dquot_mark_dquot_dirty(dquot);
}
}
static int ext4_write_info(struct super_block *sb, int type)
{
int ret, err;
handle_t *handle;
/* Data block + inode block */
handle = ext4_journal_start(sb->s_root->d_inode, 2);
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = dquot_commit_info(sb, type);
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
return ret;
}
/*
* Turn on quotas during mount time - we need to find
* the quota file and such...
*/
static int ext4_quota_on_mount(struct super_block *sb, int type)
{
return vfs_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
EXT4_SB(sb)->s_jquota_fmt, type);
}
/*
* Standard function to be called on quota_on
*/
static int ext4_quota_on(struct super_block *sb, int type, int format_id,
char *name, int remount)
{
int err;
struct path path;
if (!test_opt(sb, QUOTA))
return -EINVAL;
/* When remounting, no checks are needed and in fact, name is NULL */
if (remount)
return vfs_quota_on(sb, type, format_id, name, remount);
err = kern_path(name, LOOKUP_FOLLOW, &path);
if (err)
return err;
/* Quotafile not on the same filesystem? */
if (path.mnt->mnt_sb != sb) {
path_put(&path);
return -EXDEV;
}
/* Journaling quota? */
if (EXT4_SB(sb)->s_qf_names[type]) {
/* Quotafile not in fs root? */
if (path.dentry->d_parent != sb->s_root)
ext4_msg(sb, KERN_WARNING,
"Quota file not on filesystem root. "
"Journaled quota will not work");
}
/*
* When we journal data on quota file, we have to flush journal to see
* all updates to the file when we bypass pagecache...
*/
if (EXT4_SB(sb)->s_journal &&
ext4_should_journal_data(path.dentry->d_inode)) {
/*
* We don't need to lock updates but journal_flush() could
* otherwise be livelocked...
*/
jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
if (err) {
path_put(&path);
return err;
}
}
err = vfs_quota_on_path(sb, type, format_id, &path);
path_put(&path);
return err;
}
/* Read data from quotafile - avoid pagecache and such because we cannot afford
* acquiring the locks... As quota files are never truncated and quota code
* itself serializes the operations (and noone else should touch the files)
* we don't have to be afraid of races */
static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
int err = 0;
int offset = off & (sb->s_blocksize - 1);
int tocopy;
size_t toread;
struct buffer_head *bh;
loff_t i_size = i_size_read(inode);
if (off > i_size)
return 0;
if (off+len > i_size)
len = i_size-off;
toread = len;
while (toread > 0) {
tocopy = sb->s_blocksize - offset < toread ?
sb->s_blocksize - offset : toread;
bh = ext4_bread(NULL, inode, blk, 0, &err);
if (err)
return err;
if (!bh) /* A hole? */
memset(data, 0, tocopy);
else
memcpy(data, bh->b_data+offset, tocopy);
brelse(bh);
offset = 0;
toread -= tocopy;
data += tocopy;
blk++;
}
return len;
}
/* Write to quotafile (we know the transaction is already started and has
* enough credits) */
static ssize_t ext4_quota_write(struct super_block *sb, int type,
const char *data, size_t len, loff_t off)
{
struct inode *inode = sb_dqopt(sb)->files[type];
ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
int err = 0;
int offset = off & (sb->s_blocksize - 1);
int tocopy;
int journal_quota = EXT4_SB(sb)->s_qf_names[type] != NULL;
size_t towrite = len;
struct buffer_head *bh;
handle_t *handle = journal_current_handle();
if (EXT4_SB(sb)->s_journal && !handle) {
ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
" cancelled because transaction is not started",
(unsigned long long)off, (unsigned long long)len);
return -EIO;
}
mutex_lock_nested(&inode->i_mutex, I_MUTEX_QUOTA);
while (towrite > 0) {
tocopy = sb->s_blocksize - offset < towrite ?
sb->s_blocksize - offset : towrite;
bh = ext4_bread(handle, inode, blk, 1, &err);
if (!bh)
goto out;
if (journal_quota) {
err = ext4_journal_get_write_access(handle, bh);
if (err) {
brelse(bh);
goto out;
}
}
lock_buffer(bh);
memcpy(bh->b_data+offset, data, tocopy);
flush_dcache_page(bh->b_page);
unlock_buffer(bh);
if (journal_quota)
err = ext4_handle_dirty_metadata(handle, NULL, bh);
else {
/* Always do at least ordered writes for quotas */
err = ext4_jbd2_file_inode(handle, inode);
mark_buffer_dirty(bh);
}
brelse(bh);
if (err)
goto out;
offset = 0;
towrite -= tocopy;
data += tocopy;
blk++;
}
out:
if (len == towrite) {
mutex_unlock(&inode->i_mutex);
return err;
}
if (inode->i_size < off+len-towrite) {
i_size_write(inode, off+len-towrite);
EXT4_I(inode)->i_disksize = inode->i_size;
}
inode->i_mtime = inode->i_ctime = CURRENT_TIME;
ext4_mark_inode_dirty(handle, inode);
mutex_unlock(&inode->i_mutex);
return len - towrite;
}
#endif
static int ext4_get_sb(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data, struct vfsmount *mnt)
{
return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
}
static struct file_system_type ext4_fs_type = {
.owner = THIS_MODULE,
.name = "ext4",
.get_sb = ext4_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
#ifdef CONFIG_EXT4DEV_COMPAT
static int ext4dev_get_sb(struct file_system_type *fs_type, int flags,
const char *dev_name, void *data,struct vfsmount *mnt)
{
printk(KERN_WARNING "EXT4-fs (%s): Update your userspace programs "
"to mount using ext4\n", dev_name);
printk(KERN_WARNING "EXT4-fs (%s): ext4dev backwards compatibility "
"will go away by 2.6.31\n", dev_name);
return get_sb_bdev(fs_type, flags, dev_name, data, ext4_fill_super,mnt);
}
static struct file_system_type ext4dev_fs_type = {
.owner = THIS_MODULE,
.name = "ext4dev",
.get_sb = ext4dev_get_sb,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS("ext4dev");
#endif
static int __init init_ext4_fs(void)
{
int err;
err = init_ext4_system_zone();
if (err)
return err;
ext4_kset = kset_create_and_add("ext4", NULL, fs_kobj);
if (!ext4_kset)
goto out4;
ext4_proc_root = proc_mkdir("fs/ext4", NULL);
err = init_ext4_mballoc();
if (err)
goto out3;
err = init_ext4_xattr();
if (err)
goto out2;
err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&ext4_fs_type);
if (err)
goto out;
#ifdef CONFIG_EXT4DEV_COMPAT
err = register_filesystem(&ext4dev_fs_type);
if (err) {
unregister_filesystem(&ext4_fs_type);
goto out;
}
#endif
return 0;
out:
destroy_inodecache();
out1:
exit_ext4_xattr();
out2:
exit_ext4_mballoc();
out3:
remove_proc_entry("fs/ext4", NULL);
kset_unregister(ext4_kset);
out4:
exit_ext4_system_zone();
return err;
}
static void __exit exit_ext4_fs(void)
{
unregister_filesystem(&ext4_fs_type);
#ifdef CONFIG_EXT4DEV_COMPAT
unregister_filesystem(&ext4dev_fs_type);
#endif
destroy_inodecache();
exit_ext4_xattr();
exit_ext4_mballoc();
remove_proc_entry("fs/ext4", NULL);
kset_unregister(ext4_kset);
exit_ext4_system_zone();
}
MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
MODULE_DESCRIPTION("Fourth Extended Filesystem");
MODULE_LICENSE("GPL");
module_init(init_ext4_fs)
module_exit(exit_ext4_fs)