| /* |
| * Copyright 2011 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/capability.h> |
| #include <linux/sched.h> |
| #include <linux/errno.h> |
| #include <linux/bootmem.h> |
| #include <linux/irq.h> |
| #include <linux/io.h> |
| #include <linux/uaccess.h> |
| #include <linux/export.h> |
| |
| #include <asm/processor.h> |
| #include <asm/sections.h> |
| #include <asm/byteorder.h> |
| #include <asm/hv_driver.h> |
| #include <hv/drv_pcie_rc_intf.h> |
| |
| |
| /* |
| * Initialization flow and process |
| * ------------------------------- |
| * |
| * This files contains the routines to search for PCI buses, |
| * enumerate the buses, and configure any attached devices. |
| * |
| * There are two entry points here: |
| * 1) tile_pci_init |
| * This sets up the pci_controller structs, and opens the |
| * FDs to the hypervisor. This is called from setup_arch() early |
| * in the boot process. |
| * 2) pcibios_init |
| * This probes the PCI bus(es) for any attached hardware. It's |
| * called by subsys_initcall. All of the real work is done by the |
| * generic Linux PCI layer. |
| * |
| */ |
| |
| /* |
| * This flag tells if the platform is TILEmpower that needs |
| * special configuration for the PLX switch chip. |
| */ |
| int __write_once tile_plx_gen1; |
| |
| static struct pci_controller controllers[TILE_NUM_PCIE]; |
| static int num_controllers; |
| static int pci_scan_flags[TILE_NUM_PCIE]; |
| |
| static struct pci_ops tile_cfg_ops; |
| |
| |
| /* |
| * We don't need to worry about the alignment of resources. |
| */ |
| resource_size_t pcibios_align_resource(void *data, const struct resource *res, |
| resource_size_t size, resource_size_t align) |
| { |
| return res->start; |
| } |
| EXPORT_SYMBOL(pcibios_align_resource); |
| |
| /* |
| * Open a FD to the hypervisor PCI device. |
| * |
| * controller_id is the controller number, config type is 0 or 1 for |
| * config0 or config1 operations. |
| */ |
| static int __devinit tile_pcie_open(int controller_id, int config_type) |
| { |
| char filename[32]; |
| int fd; |
| |
| sprintf(filename, "pcie/%d/config%d", controller_id, config_type); |
| |
| fd = hv_dev_open((HV_VirtAddr)filename, 0); |
| |
| return fd; |
| } |
| |
| |
| /* |
| * Get the IRQ numbers from the HV and set up the handlers for them. |
| */ |
| static int __devinit tile_init_irqs(int controller_id, |
| struct pci_controller *controller) |
| { |
| char filename[32]; |
| int fd; |
| int ret; |
| int x; |
| struct pcie_rc_config rc_config; |
| |
| sprintf(filename, "pcie/%d/ctl", controller_id); |
| fd = hv_dev_open((HV_VirtAddr)filename, 0); |
| if (fd < 0) { |
| pr_err("PCI: hv_dev_open(%s) failed\n", filename); |
| return -1; |
| } |
| ret = hv_dev_pread(fd, 0, (HV_VirtAddr)(&rc_config), |
| sizeof(rc_config), PCIE_RC_CONFIG_MASK_OFF); |
| hv_dev_close(fd); |
| if (ret != sizeof(rc_config)) { |
| pr_err("PCI: wanted %zd bytes, got %d\n", |
| sizeof(rc_config), ret); |
| return -1; |
| } |
| /* Record irq_base so that we can map INTx to IRQ # later. */ |
| controller->irq_base = rc_config.intr; |
| |
| for (x = 0; x < 4; x++) |
| tile_irq_activate(rc_config.intr + x, |
| TILE_IRQ_HW_CLEAR); |
| |
| if (rc_config.plx_gen1) |
| controller->plx_gen1 = 1; |
| |
| return 0; |
| } |
| |
| /* |
| * First initialization entry point, called from setup_arch(). |
| * |
| * Find valid controllers and fill in pci_controller structs for each |
| * of them. |
| * |
| * Returns the number of controllers discovered. |
| */ |
| int __init tile_pci_init(void) |
| { |
| int i; |
| |
| pr_info("PCI: Searching for controllers...\n"); |
| |
| /* Re-init number of PCIe controllers to support hot-plug feature. */ |
| num_controllers = 0; |
| |
| /* Do any configuration we need before using the PCIe */ |
| |
| for (i = 0; i < TILE_NUM_PCIE; i++) { |
| /* |
| * To see whether we need a real config op based on |
| * the results of pcibios_init(), to support PCIe hot-plug. |
| */ |
| if (pci_scan_flags[i] == 0) { |
| int hv_cfg_fd0 = -1; |
| int hv_cfg_fd1 = -1; |
| int hv_mem_fd = -1; |
| char name[32]; |
| struct pci_controller *controller; |
| |
| /* |
| * Open the fd to the HV. If it fails then this |
| * device doesn't exist. |
| */ |
| hv_cfg_fd0 = tile_pcie_open(i, 0); |
| if (hv_cfg_fd0 < 0) |
| continue; |
| hv_cfg_fd1 = tile_pcie_open(i, 1); |
| if (hv_cfg_fd1 < 0) { |
| pr_err("PCI: Couldn't open config fd to HV " |
| "for controller %d\n", i); |
| goto err_cont; |
| } |
| |
| sprintf(name, "pcie/%d/mem", i); |
| hv_mem_fd = hv_dev_open((HV_VirtAddr)name, 0); |
| if (hv_mem_fd < 0) { |
| pr_err("PCI: Could not open mem fd to HV!\n"); |
| goto err_cont; |
| } |
| |
| pr_info("PCI: Found PCI controller #%d\n", i); |
| |
| controller = &controllers[i]; |
| |
| controller->index = i; |
| controller->hv_cfg_fd[0] = hv_cfg_fd0; |
| controller->hv_cfg_fd[1] = hv_cfg_fd1; |
| controller->hv_mem_fd = hv_mem_fd; |
| controller->first_busno = 0; |
| controller->last_busno = 0xff; |
| controller->ops = &tile_cfg_ops; |
| |
| num_controllers++; |
| continue; |
| |
| err_cont: |
| if (hv_cfg_fd0 >= 0) |
| hv_dev_close(hv_cfg_fd0); |
| if (hv_cfg_fd1 >= 0) |
| hv_dev_close(hv_cfg_fd1); |
| if (hv_mem_fd >= 0) |
| hv_dev_close(hv_mem_fd); |
| continue; |
| } |
| } |
| |
| /* |
| * Before using the PCIe, see if we need to do any platform-specific |
| * configuration, such as the PLX switch Gen 1 issue on TILEmpower. |
| */ |
| for (i = 0; i < num_controllers; i++) { |
| struct pci_controller *controller = &controllers[i]; |
| |
| if (controller->plx_gen1) |
| tile_plx_gen1 = 1; |
| } |
| |
| return num_controllers; |
| } |
| |
| /* |
| * (pin - 1) converts from the PCI standard's [1:4] convention to |
| * a normal [0:3] range. |
| */ |
| static int tile_map_irq(const struct pci_dev *dev, u8 slot, u8 pin) |
| { |
| struct pci_controller *controller = |
| (struct pci_controller *)dev->sysdata; |
| return (pin - 1) + controller->irq_base; |
| } |
| |
| |
| static void __devinit fixup_read_and_payload_sizes(void) |
| { |
| struct pci_dev *dev = NULL; |
| int smallest_max_payload = 0x1; /* Tile maxes out at 256 bytes. */ |
| int max_read_size = 0x2; /* Limit to 512 byte reads. */ |
| u16 new_values; |
| |
| /* Scan for the smallest maximum payload size. */ |
| while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| int pcie_caps_offset; |
| u32 devcap; |
| int max_payload; |
| |
| pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); |
| if (pcie_caps_offset == 0) |
| continue; |
| |
| pci_read_config_dword(dev, pcie_caps_offset + PCI_EXP_DEVCAP, |
| &devcap); |
| max_payload = devcap & PCI_EXP_DEVCAP_PAYLOAD; |
| if (max_payload < smallest_max_payload) |
| smallest_max_payload = max_payload; |
| } |
| |
| /* Now, set the max_payload_size for all devices to that value. */ |
| new_values = (max_read_size << 12) | (smallest_max_payload << 5); |
| while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) { |
| int pcie_caps_offset; |
| u16 devctl; |
| |
| pcie_caps_offset = pci_find_capability(dev, PCI_CAP_ID_EXP); |
| if (pcie_caps_offset == 0) |
| continue; |
| |
| pci_read_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, |
| &devctl); |
| devctl &= ~(PCI_EXP_DEVCTL_PAYLOAD | PCI_EXP_DEVCTL_READRQ); |
| devctl |= new_values; |
| pci_write_config_word(dev, pcie_caps_offset + PCI_EXP_DEVCTL, |
| devctl); |
| } |
| } |
| |
| |
| /* |
| * Second PCI initialization entry point, called by subsys_initcall. |
| * |
| * The controllers have been set up by the time we get here, by a call to |
| * tile_pci_init. |
| */ |
| int __init pcibios_init(void) |
| { |
| int i; |
| |
| pr_info("PCI: Probing PCI hardware\n"); |
| |
| /* |
| * Delay a bit in case devices aren't ready. Some devices are |
| * known to require at least 20ms here, but we use a more |
| * conservative value. |
| */ |
| mdelay(250); |
| |
| /* Scan all of the recorded PCI controllers. */ |
| for (i = 0; i < TILE_NUM_PCIE; i++) { |
| /* |
| * Do real pcibios init ops if the controller is initialized |
| * by tile_pci_init() successfully and not initialized by |
| * pcibios_init() yet to support PCIe hot-plug. |
| */ |
| if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) { |
| struct pci_controller *controller = &controllers[i]; |
| struct pci_bus *bus; |
| |
| if (tile_init_irqs(i, controller)) { |
| pr_err("PCI: Could not initialize IRQs\n"); |
| continue; |
| } |
| |
| pr_info("PCI: initializing controller #%d\n", i); |
| |
| /* |
| * This comes from the generic Linux PCI driver. |
| * |
| * It reads the PCI tree for this bus into the Linux |
| * data structures. |
| * |
| * This is inlined in linux/pci.h and calls into |
| * pci_scan_bus_parented() in probe.c. |
| */ |
| bus = pci_scan_bus(0, controller->ops, controller); |
| controller->root_bus = bus; |
| controller->last_busno = bus->subordinate; |
| } |
| } |
| |
| /* Do machine dependent PCI interrupt routing */ |
| pci_fixup_irqs(pci_common_swizzle, tile_map_irq); |
| |
| /* |
| * This comes from the generic Linux PCI driver. |
| * |
| * It allocates all of the resources (I/O memory, etc) |
| * associated with the devices read in above. |
| */ |
| pci_assign_unassigned_resources(); |
| |
| /* Configure the max_read_size and max_payload_size values. */ |
| fixup_read_and_payload_sizes(); |
| |
| /* Record the I/O resources in the PCI controller structure. */ |
| for (i = 0; i < TILE_NUM_PCIE; i++) { |
| /* |
| * Do real pcibios init ops if the controller is initialized |
| * by tile_pci_init() successfully and not initialized by |
| * pcibios_init() yet to support PCIe hot-plug. |
| */ |
| if (pci_scan_flags[i] == 0 && controllers[i].ops != NULL) { |
| struct pci_bus *root_bus = controllers[i].root_bus; |
| struct pci_bus *next_bus; |
| struct pci_dev *dev; |
| |
| list_for_each_entry(dev, &root_bus->devices, bus_list) { |
| /* |
| * Find the PCI host controller, ie. the 1st |
| * bridge. |
| */ |
| if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI && |
| (PCI_SLOT(dev->devfn) == 0)) { |
| next_bus = dev->subordinate; |
| controllers[i].mem_resources[0] = |
| *next_bus->resource[0]; |
| controllers[i].mem_resources[1] = |
| *next_bus->resource[1]; |
| controllers[i].mem_resources[2] = |
| *next_bus->resource[2]; |
| |
| /* Setup flags. */ |
| pci_scan_flags[i] = 1; |
| |
| break; |
| } |
| } |
| } |
| } |
| |
| return 0; |
| } |
| subsys_initcall(pcibios_init); |
| |
| /* |
| * No bus fixups needed. |
| */ |
| void __devinit pcibios_fixup_bus(struct pci_bus *bus) |
| { |
| /* Nothing needs to be done. */ |
| } |
| |
| void pcibios_set_master(struct pci_dev *dev) |
| { |
| /* No special bus mastering setup handling. */ |
| } |
| |
| /* |
| * This can be called from the generic PCI layer, but doesn't need to |
| * do anything. |
| */ |
| char __devinit *pcibios_setup(char *str) |
| { |
| /* Nothing needs to be done. */ |
| return str; |
| } |
| |
| /* |
| * This is called from the generic Linux layer. |
| */ |
| void __devinit pcibios_update_irq(struct pci_dev *dev, int irq) |
| { |
| pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq); |
| } |
| |
| /* |
| * Enable memory and/or address decoding, as appropriate, for the |
| * device described by the 'dev' struct. |
| * |
| * This is called from the generic PCI layer, and can be called |
| * for bridges or endpoints. |
| */ |
| int pcibios_enable_device(struct pci_dev *dev, int mask) |
| { |
| u16 cmd, old_cmd; |
| u8 header_type; |
| int i; |
| struct resource *r; |
| |
| pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type); |
| |
| pci_read_config_word(dev, PCI_COMMAND, &cmd); |
| old_cmd = cmd; |
| if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { |
| /* |
| * For bridges, we enable both memory and I/O decoding |
| * in call cases. |
| */ |
| cmd |= PCI_COMMAND_IO; |
| cmd |= PCI_COMMAND_MEMORY; |
| } else { |
| /* |
| * For endpoints, we enable memory and/or I/O decoding |
| * only if they have a memory resource of that type. |
| */ |
| for (i = 0; i < 6; i++) { |
| r = &dev->resource[i]; |
| if (r->flags & IORESOURCE_UNSET) { |
| pr_err("PCI: Device %s not available " |
| "because of resource collisions\n", |
| pci_name(dev)); |
| return -EINVAL; |
| } |
| if (r->flags & IORESOURCE_IO) |
| cmd |= PCI_COMMAND_IO; |
| if (r->flags & IORESOURCE_MEM) |
| cmd |= PCI_COMMAND_MEMORY; |
| } |
| } |
| |
| /* |
| * We only write the command if it changed. |
| */ |
| if (cmd != old_cmd) |
| pci_write_config_word(dev, PCI_COMMAND, cmd); |
| return 0; |
| } |
| |
| /**************************************************************** |
| * |
| * Tile PCI config space read/write routines |
| * |
| ****************************************************************/ |
| |
| /* |
| * These are the normal read and write ops |
| * These are expanded with macros from pci_bus_read_config_byte() etc. |
| * |
| * devfn is the combined PCI slot & function. |
| * |
| * offset is in bytes, from the start of config space for the |
| * specified bus & slot. |
| */ |
| |
| static int __devinit tile_cfg_read(struct pci_bus *bus, |
| unsigned int devfn, |
| int offset, |
| int size, |
| u32 *val) |
| { |
| struct pci_controller *controller = bus->sysdata; |
| int busnum = bus->number & 0xff; |
| int slot = (devfn >> 3) & 0x1f; |
| int function = devfn & 0x7; |
| u32 addr; |
| int config_mode = 1; |
| |
| /* |
| * There is no bridge between the Tile and bus 0, so we |
| * use config0 to talk to bus 0. |
| * |
| * If we're talking to a bus other than zero then we |
| * must have found a bridge. |
| */ |
| if (busnum == 0) { |
| /* |
| * We fake an empty slot for (busnum == 0) && (slot > 0), |
| * since there is only one slot on bus 0. |
| */ |
| if (slot) { |
| *val = 0xFFFFFFFF; |
| return 0; |
| } |
| config_mode = 0; |
| } |
| |
| addr = busnum << 20; /* Bus in 27:20 */ |
| addr |= slot << 15; /* Slot (device) in 19:15 */ |
| addr |= function << 12; /* Function is in 14:12 */ |
| addr |= (offset & 0xFFF); /* byte address in 0:11 */ |
| |
| return hv_dev_pread(controller->hv_cfg_fd[config_mode], 0, |
| (HV_VirtAddr)(val), size, addr); |
| } |
| |
| |
| /* |
| * See tile_cfg_read() for relevant comments. |
| * Note that "val" is the value to write, not a pointer to that value. |
| */ |
| static int __devinit tile_cfg_write(struct pci_bus *bus, |
| unsigned int devfn, |
| int offset, |
| int size, |
| u32 val) |
| { |
| struct pci_controller *controller = bus->sysdata; |
| int busnum = bus->number & 0xff; |
| int slot = (devfn >> 3) & 0x1f; |
| int function = devfn & 0x7; |
| u32 addr; |
| int config_mode = 1; |
| HV_VirtAddr valp = (HV_VirtAddr)&val; |
| |
| /* |
| * For bus 0 slot 0 we use config 0 accesses. |
| */ |
| if (busnum == 0) { |
| /* |
| * We fake an empty slot for (busnum == 0) && (slot > 0), |
| * since there is only one slot on bus 0. |
| */ |
| if (slot) |
| return 0; |
| config_mode = 0; |
| } |
| |
| addr = busnum << 20; /* Bus in 27:20 */ |
| addr |= slot << 15; /* Slot (device) in 19:15 */ |
| addr |= function << 12; /* Function is in 14:12 */ |
| addr |= (offset & 0xFFF); /* byte address in 0:11 */ |
| |
| #ifdef __BIG_ENDIAN |
| /* Point to the correct part of the 32-bit "val". */ |
| valp += 4 - size; |
| #endif |
| |
| return hv_dev_pwrite(controller->hv_cfg_fd[config_mode], 0, |
| valp, size, addr); |
| } |
| |
| |
| static struct pci_ops tile_cfg_ops = { |
| .read = tile_cfg_read, |
| .write = tile_cfg_write, |
| }; |
| |
| |
| /* |
| * In the following, each PCI controller's mem_resources[1] |
| * represents its (non-prefetchable) PCI memory resource. |
| * mem_resources[0] and mem_resources[2] refer to its PCI I/O and |
| * prefetchable PCI memory resources, respectively. |
| * For more details, see pci_setup_bridge() in setup-bus.c. |
| * By comparing the target PCI memory address against the |
| * end address of controller 0, we can determine the controller |
| * that should accept the PCI memory access. |
| */ |
| #define TILE_READ(size, type) \ |
| type _tile_read##size(unsigned long addr) \ |
| { \ |
| type val; \ |
| int idx = 0; \ |
| if (addr > controllers[0].mem_resources[1].end && \ |
| addr > controllers[0].mem_resources[2].end) \ |
| idx = 1; \ |
| if (hv_dev_pread(controllers[idx].hv_mem_fd, 0, \ |
| (HV_VirtAddr)(&val), sizeof(type), addr)) \ |
| pr_err("PCI: read %zd bytes at 0x%lX failed\n", \ |
| sizeof(type), addr); \ |
| return val; \ |
| } \ |
| EXPORT_SYMBOL(_tile_read##size) |
| |
| TILE_READ(b, u8); |
| TILE_READ(w, u16); |
| TILE_READ(l, u32); |
| TILE_READ(q, u64); |
| |
| #define TILE_WRITE(size, type) \ |
| void _tile_write##size(type val, unsigned long addr) \ |
| { \ |
| int idx = 0; \ |
| if (addr > controllers[0].mem_resources[1].end && \ |
| addr > controllers[0].mem_resources[2].end) \ |
| idx = 1; \ |
| if (hv_dev_pwrite(controllers[idx].hv_mem_fd, 0, \ |
| (HV_VirtAddr)(&val), sizeof(type), addr)) \ |
| pr_err("PCI: write %zd bytes at 0x%lX failed\n", \ |
| sizeof(type), addr); \ |
| } \ |
| EXPORT_SYMBOL(_tile_write##size) |
| |
| TILE_WRITE(b, u8); |
| TILE_WRITE(w, u16); |
| TILE_WRITE(l, u32); |
| TILE_WRITE(q, u64); |