blob: ed55b02f9f891c0e9783aa6e8ccf2f2d3721768f [file] [log] [blame]
/*
* raid5.c : Multiple Devices driver for Linux
* Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
* Copyright (C) 1999, 2000 Ingo Molnar
* Copyright (C) 2002, 2003 H. Peter Anvin
*
* RAID-4/5/6 management functions.
* Thanks to Penguin Computing for making the RAID-6 development possible
* by donating a test server!
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* You should have received a copy of the GNU General Public License
* (for example /usr/src/linux/COPYING); if not, write to the Free
* Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
/*
* BITMAP UNPLUGGING:
*
* The sequencing for updating the bitmap reliably is a little
* subtle (and I got it wrong the first time) so it deserves some
* explanation.
*
* We group bitmap updates into batches. Each batch has a number.
* We may write out several batches at once, but that isn't very important.
* conf->seq_write is the number of the last batch successfully written.
* conf->seq_flush is the number of the last batch that was closed to
* new additions.
* When we discover that we will need to write to any block in a stripe
* (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
* the number of the batch it will be in. This is seq_flush+1.
* When we are ready to do a write, if that batch hasn't been written yet,
* we plug the array and queue the stripe for later.
* When an unplug happens, we increment bm_flush, thus closing the current
* batch.
* When we notice that bm_flush > bm_write, we write out all pending updates
* to the bitmap, and advance bm_write to where bm_flush was.
* This may occasionally write a bit out twice, but is sure never to
* miss any bits.
*/
#include <linux/blkdev.h>
#include <linux/kthread.h>
#include <linux/raid/pq.h>
#include <linux/async_tx.h>
#include <linux/module.h>
#include <linux/async.h>
#include <linux/seq_file.h>
#include <linux/cpu.h>
#include <linux/slab.h>
#include <linux/ratelimit.h>
#include <linux/nodemask.h>
#include <linux/flex_array.h>
#include <linux/sched/signal.h>
#include <trace/events/block.h>
#include <linux/list_sort.h>
#include "md.h"
#include "raid5.h"
#include "raid0.h"
#include "bitmap.h"
#include "raid5-log.h"
#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
#define cpu_to_group(cpu) cpu_to_node(cpu)
#define ANY_GROUP NUMA_NO_NODE
static bool devices_handle_discard_safely = false;
module_param(devices_handle_discard_safely, bool, 0644);
MODULE_PARM_DESC(devices_handle_discard_safely,
"Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
static struct workqueue_struct *raid5_wq;
static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
{
int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
return &conf->stripe_hashtbl[hash];
}
static inline int stripe_hash_locks_hash(sector_t sect)
{
return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
}
static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
{
spin_lock_irq(conf->hash_locks + hash);
spin_lock(&conf->device_lock);
}
static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
{
spin_unlock(&conf->device_lock);
spin_unlock_irq(conf->hash_locks + hash);
}
static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
{
int i;
spin_lock_irq(conf->hash_locks);
for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
spin_lock(&conf->device_lock);
}
static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
{
int i;
spin_unlock(&conf->device_lock);
for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
spin_unlock(conf->hash_locks + i);
spin_unlock_irq(conf->hash_locks);
}
/* Find first data disk in a raid6 stripe */
static inline int raid6_d0(struct stripe_head *sh)
{
if (sh->ddf_layout)
/* ddf always start from first device */
return 0;
/* md starts just after Q block */
if (sh->qd_idx == sh->disks - 1)
return 0;
else
return sh->qd_idx + 1;
}
static inline int raid6_next_disk(int disk, int raid_disks)
{
disk++;
return (disk < raid_disks) ? disk : 0;
}
/* When walking through the disks in a raid5, starting at raid6_d0,
* We need to map each disk to a 'slot', where the data disks are slot
* 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
* is raid_disks-1. This help does that mapping.
*/
static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
int *count, int syndrome_disks)
{
int slot = *count;
if (sh->ddf_layout)
(*count)++;
if (idx == sh->pd_idx)
return syndrome_disks;
if (idx == sh->qd_idx)
return syndrome_disks + 1;
if (!sh->ddf_layout)
(*count)++;
return slot;
}
static void print_raid5_conf (struct r5conf *conf);
static int stripe_operations_active(struct stripe_head *sh)
{
return sh->check_state || sh->reconstruct_state ||
test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
test_bit(STRIPE_COMPUTE_RUN, &sh->state);
}
static bool stripe_is_lowprio(struct stripe_head *sh)
{
return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
!test_bit(STRIPE_R5C_CACHING, &sh->state);
}
static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
{
struct r5conf *conf = sh->raid_conf;
struct r5worker_group *group;
int thread_cnt;
int i, cpu = sh->cpu;
if (!cpu_online(cpu)) {
cpu = cpumask_any(cpu_online_mask);
sh->cpu = cpu;
}
if (list_empty(&sh->lru)) {
struct r5worker_group *group;
group = conf->worker_groups + cpu_to_group(cpu);
if (stripe_is_lowprio(sh))
list_add_tail(&sh->lru, &group->loprio_list);
else
list_add_tail(&sh->lru, &group->handle_list);
group->stripes_cnt++;
sh->group = group;
}
if (conf->worker_cnt_per_group == 0) {
md_wakeup_thread(conf->mddev->thread);
return;
}
group = conf->worker_groups + cpu_to_group(sh->cpu);
group->workers[0].working = true;
/* at least one worker should run to avoid race */
queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
/* wakeup more workers */
for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
if (group->workers[i].working == false) {
group->workers[i].working = true;
queue_work_on(sh->cpu, raid5_wq,
&group->workers[i].work);
thread_cnt--;
}
}
}
static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
struct list_head *temp_inactive_list)
{
int i;
int injournal = 0; /* number of date pages with R5_InJournal */
BUG_ON(!list_empty(&sh->lru));
BUG_ON(atomic_read(&conf->active_stripes)==0);
if (r5c_is_writeback(conf->log))
for (i = sh->disks; i--; )
if (test_bit(R5_InJournal, &sh->dev[i].flags))
injournal++;
/*
* In the following cases, the stripe cannot be released to cached
* lists. Therefore, we make the stripe write out and set
* STRIPE_HANDLE:
* 1. when quiesce in r5c write back;
* 2. when resync is requested fot the stripe.
*/
if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
(conf->quiesce && r5c_is_writeback(conf->log) &&
!test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
if (test_bit(STRIPE_R5C_CACHING, &sh->state))
r5c_make_stripe_write_out(sh);
set_bit(STRIPE_HANDLE, &sh->state);
}
if (test_bit(STRIPE_HANDLE, &sh->state)) {
if (test_bit(STRIPE_DELAYED, &sh->state) &&
!test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
list_add_tail(&sh->lru, &conf->delayed_list);
else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
sh->bm_seq - conf->seq_write > 0)
list_add_tail(&sh->lru, &conf->bitmap_list);
else {
clear_bit(STRIPE_DELAYED, &sh->state);
clear_bit(STRIPE_BIT_DELAY, &sh->state);
if (conf->worker_cnt_per_group == 0) {
if (stripe_is_lowprio(sh))
list_add_tail(&sh->lru,
&conf->loprio_list);
else
list_add_tail(&sh->lru,
&conf->handle_list);
} else {
raid5_wakeup_stripe_thread(sh);
return;
}
}
md_wakeup_thread(conf->mddev->thread);
} else {
BUG_ON(stripe_operations_active(sh));
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
if (atomic_dec_return(&conf->preread_active_stripes)
< IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
atomic_dec(&conf->active_stripes);
if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
if (!r5c_is_writeback(conf->log))
list_add_tail(&sh->lru, temp_inactive_list);
else {
WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
if (injournal == 0)
list_add_tail(&sh->lru, temp_inactive_list);
else if (injournal == conf->raid_disks - conf->max_degraded) {
/* full stripe */
if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
atomic_inc(&conf->r5c_cached_full_stripes);
if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
atomic_dec(&conf->r5c_cached_partial_stripes);
list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
r5c_check_cached_full_stripe(conf);
} else
/*
* STRIPE_R5C_PARTIAL_STRIPE is set in
* r5c_try_caching_write(). No need to
* set it again.
*/
list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
}
}
}
}
static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
struct list_head *temp_inactive_list)
{
if (atomic_dec_and_test(&sh->count))
do_release_stripe(conf, sh, temp_inactive_list);
}
/*
* @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
*
* Be careful: Only one task can add/delete stripes from temp_inactive_list at
* given time. Adding stripes only takes device lock, while deleting stripes
* only takes hash lock.
*/
static void release_inactive_stripe_list(struct r5conf *conf,
struct list_head *temp_inactive_list,
int hash)
{
int size;
bool do_wakeup = false;
unsigned long flags;
if (hash == NR_STRIPE_HASH_LOCKS) {
size = NR_STRIPE_HASH_LOCKS;
hash = NR_STRIPE_HASH_LOCKS - 1;
} else
size = 1;
while (size) {
struct list_head *list = &temp_inactive_list[size - 1];
/*
* We don't hold any lock here yet, raid5_get_active_stripe() might
* remove stripes from the list
*/
if (!list_empty_careful(list)) {
spin_lock_irqsave(conf->hash_locks + hash, flags);
if (list_empty(conf->inactive_list + hash) &&
!list_empty(list))
atomic_dec(&conf->empty_inactive_list_nr);
list_splice_tail_init(list, conf->inactive_list + hash);
do_wakeup = true;
spin_unlock_irqrestore(conf->hash_locks + hash, flags);
}
size--;
hash--;
}
if (do_wakeup) {
wake_up(&conf->wait_for_stripe);
if (atomic_read(&conf->active_stripes) == 0)
wake_up(&conf->wait_for_quiescent);
if (conf->retry_read_aligned)
md_wakeup_thread(conf->mddev->thread);
}
}
/* should hold conf->device_lock already */
static int release_stripe_list(struct r5conf *conf,
struct list_head *temp_inactive_list)
{
struct stripe_head *sh, *t;
int count = 0;
struct llist_node *head;
head = llist_del_all(&conf->released_stripes);
head = llist_reverse_order(head);
llist_for_each_entry_safe(sh, t, head, release_list) {
int hash;
/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
smp_mb();
clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
/*
* Don't worry the bit is set here, because if the bit is set
* again, the count is always > 1. This is true for
* STRIPE_ON_UNPLUG_LIST bit too.
*/
hash = sh->hash_lock_index;
__release_stripe(conf, sh, &temp_inactive_list[hash]);
count++;
}
return count;
}
void raid5_release_stripe(struct stripe_head *sh)
{
struct r5conf *conf = sh->raid_conf;
unsigned long flags;
struct list_head list;
int hash;
bool wakeup;
/* Avoid release_list until the last reference.
*/
if (atomic_add_unless(&sh->count, -1, 1))
return;
if (unlikely(!conf->mddev->thread) ||
test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
goto slow_path;
wakeup = llist_add(&sh->release_list, &conf->released_stripes);
if (wakeup)
md_wakeup_thread(conf->mddev->thread);
return;
slow_path:
local_irq_save(flags);
/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
INIT_LIST_HEAD(&list);
hash = sh->hash_lock_index;
do_release_stripe(conf, sh, &list);
spin_unlock(&conf->device_lock);
release_inactive_stripe_list(conf, &list, hash);
}
local_irq_restore(flags);
}
static inline void remove_hash(struct stripe_head *sh)
{
pr_debug("remove_hash(), stripe %llu\n",
(unsigned long long)sh->sector);
hlist_del_init(&sh->hash);
}
static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
{
struct hlist_head *hp = stripe_hash(conf, sh->sector);
pr_debug("insert_hash(), stripe %llu\n",
(unsigned long long)sh->sector);
hlist_add_head(&sh->hash, hp);
}
/* find an idle stripe, make sure it is unhashed, and return it. */
static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
{
struct stripe_head *sh = NULL;
struct list_head *first;
if (list_empty(conf->inactive_list + hash))
goto out;
first = (conf->inactive_list + hash)->next;
sh = list_entry(first, struct stripe_head, lru);
list_del_init(first);
remove_hash(sh);
atomic_inc(&conf->active_stripes);
BUG_ON(hash != sh->hash_lock_index);
if (list_empty(conf->inactive_list + hash))
atomic_inc(&conf->empty_inactive_list_nr);
out:
return sh;
}
static void shrink_buffers(struct stripe_head *sh)
{
struct page *p;
int i;
int num = sh->raid_conf->pool_size;
for (i = 0; i < num ; i++) {
WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
p = sh->dev[i].page;
if (!p)
continue;
sh->dev[i].page = NULL;
put_page(p);
}
}
static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
{
int i;
int num = sh->raid_conf->pool_size;
for (i = 0; i < num; i++) {
struct page *page;
if (!(page = alloc_page(gfp))) {
return 1;
}
sh->dev[i].page = page;
sh->dev[i].orig_page = page;
}
return 0;
}
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
struct stripe_head *sh);
static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
{
struct r5conf *conf = sh->raid_conf;
int i, seq;
BUG_ON(atomic_read(&sh->count) != 0);
BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
BUG_ON(stripe_operations_active(sh));
BUG_ON(sh->batch_head);
pr_debug("init_stripe called, stripe %llu\n",
(unsigned long long)sector);
retry:
seq = read_seqcount_begin(&conf->gen_lock);
sh->generation = conf->generation - previous;
sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
sh->sector = sector;
stripe_set_idx(sector, conf, previous, sh);
sh->state = 0;
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->toread || dev->read || dev->towrite || dev->written ||
test_bit(R5_LOCKED, &dev->flags)) {
pr_err("sector=%llx i=%d %p %p %p %p %d\n",
(unsigned long long)sh->sector, i, dev->toread,
dev->read, dev->towrite, dev->written,
test_bit(R5_LOCKED, &dev->flags));
WARN_ON(1);
}
dev->flags = 0;
dev->sector = raid5_compute_blocknr(sh, i, previous);
}
if (read_seqcount_retry(&conf->gen_lock, seq))
goto retry;
sh->overwrite_disks = 0;
insert_hash(conf, sh);
sh->cpu = smp_processor_id();
set_bit(STRIPE_BATCH_READY, &sh->state);
}
static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
short generation)
{
struct stripe_head *sh;
pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
if (sh->sector == sector && sh->generation == generation)
return sh;
pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
return NULL;
}
/*
* Need to check if array has failed when deciding whether to:
* - start an array
* - remove non-faulty devices
* - add a spare
* - allow a reshape
* This determination is simple when no reshape is happening.
* However if there is a reshape, we need to carefully check
* both the before and after sections.
* This is because some failed devices may only affect one
* of the two sections, and some non-in_sync devices may
* be insync in the section most affected by failed devices.
*/
int raid5_calc_degraded(struct r5conf *conf)
{
int degraded, degraded2;
int i;
rcu_read_lock();
degraded = 0;
for (i = 0; i < conf->previous_raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = rcu_dereference(conf->disks[i].replacement);
if (!rdev || test_bit(Faulty, &rdev->flags))
degraded++;
else if (test_bit(In_sync, &rdev->flags))
;
else
/* not in-sync or faulty.
* If the reshape increases the number of devices,
* this is being recovered by the reshape, so
* this 'previous' section is not in_sync.
* If the number of devices is being reduced however,
* the device can only be part of the array if
* we are reverting a reshape, so this section will
* be in-sync.
*/
if (conf->raid_disks >= conf->previous_raid_disks)
degraded++;
}
rcu_read_unlock();
if (conf->raid_disks == conf->previous_raid_disks)
return degraded;
rcu_read_lock();
degraded2 = 0;
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = rcu_dereference(conf->disks[i].replacement);
if (!rdev || test_bit(Faulty, &rdev->flags))
degraded2++;
else if (test_bit(In_sync, &rdev->flags))
;
else
/* not in-sync or faulty.
* If reshape increases the number of devices, this
* section has already been recovered, else it
* almost certainly hasn't.
*/
if (conf->raid_disks <= conf->previous_raid_disks)
degraded2++;
}
rcu_read_unlock();
if (degraded2 > degraded)
return degraded2;
return degraded;
}
static int has_failed(struct r5conf *conf)
{
int degraded;
if (conf->mddev->reshape_position == MaxSector)
return conf->mddev->degraded > conf->max_degraded;
degraded = raid5_calc_degraded(conf);
if (degraded > conf->max_degraded)
return 1;
return 0;
}
struct stripe_head *
raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
int previous, int noblock, int noquiesce)
{
struct stripe_head *sh;
int hash = stripe_hash_locks_hash(sector);
int inc_empty_inactive_list_flag;
pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
spin_lock_irq(conf->hash_locks + hash);
do {
wait_event_lock_irq(conf->wait_for_quiescent,
conf->quiesce == 0 || noquiesce,
*(conf->hash_locks + hash));
sh = __find_stripe(conf, sector, conf->generation - previous);
if (!sh) {
if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
sh = get_free_stripe(conf, hash);
if (!sh && !test_bit(R5_DID_ALLOC,
&conf->cache_state))
set_bit(R5_ALLOC_MORE,
&conf->cache_state);
}
if (noblock && sh == NULL)
break;
r5c_check_stripe_cache_usage(conf);
if (!sh) {
set_bit(R5_INACTIVE_BLOCKED,
&conf->cache_state);
r5l_wake_reclaim(conf->log, 0);
wait_event_lock_irq(
conf->wait_for_stripe,
!list_empty(conf->inactive_list + hash) &&
(atomic_read(&conf->active_stripes)
< (conf->max_nr_stripes * 3 / 4)
|| !test_bit(R5_INACTIVE_BLOCKED,
&conf->cache_state)),
*(conf->hash_locks + hash));
clear_bit(R5_INACTIVE_BLOCKED,
&conf->cache_state);
} else {
init_stripe(sh, sector, previous);
atomic_inc(&sh->count);
}
} else if (!atomic_inc_not_zero(&sh->count)) {
spin_lock(&conf->device_lock);
if (!atomic_read(&sh->count)) {
if (!test_bit(STRIPE_HANDLE, &sh->state))
atomic_inc(&conf->active_stripes);
BUG_ON(list_empty(&sh->lru) &&
!test_bit(STRIPE_EXPANDING, &sh->state));
inc_empty_inactive_list_flag = 0;
if (!list_empty(conf->inactive_list + hash))
inc_empty_inactive_list_flag = 1;
list_del_init(&sh->lru);
if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
atomic_inc(&conf->empty_inactive_list_nr);
if (sh->group) {
sh->group->stripes_cnt--;
sh->group = NULL;
}
}
atomic_inc(&sh->count);
spin_unlock(&conf->device_lock);
}
} while (sh == NULL);
spin_unlock_irq(conf->hash_locks + hash);
return sh;
}
static bool is_full_stripe_write(struct stripe_head *sh)
{
BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
}
static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
if (sh1 > sh2) {
spin_lock_irq(&sh2->stripe_lock);
spin_lock_nested(&sh1->stripe_lock, 1);
} else {
spin_lock_irq(&sh1->stripe_lock);
spin_lock_nested(&sh2->stripe_lock, 1);
}
}
static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
{
spin_unlock(&sh1->stripe_lock);
spin_unlock_irq(&sh2->stripe_lock);
}
/* Only freshly new full stripe normal write stripe can be added to a batch list */
static bool stripe_can_batch(struct stripe_head *sh)
{
struct r5conf *conf = sh->raid_conf;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return false;
return test_bit(STRIPE_BATCH_READY, &sh->state) &&
!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
is_full_stripe_write(sh);
}
/* we only do back search */
static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
{
struct stripe_head *head;
sector_t head_sector, tmp_sec;
int hash;
int dd_idx;
int inc_empty_inactive_list_flag;
/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
tmp_sec = sh->sector;
if (!sector_div(tmp_sec, conf->chunk_sectors))
return;
head_sector = sh->sector - STRIPE_SECTORS;
hash = stripe_hash_locks_hash(head_sector);
spin_lock_irq(conf->hash_locks + hash);
head = __find_stripe(conf, head_sector, conf->generation);
if (head && !atomic_inc_not_zero(&head->count)) {
spin_lock(&conf->device_lock);
if (!atomic_read(&head->count)) {
if (!test_bit(STRIPE_HANDLE, &head->state))
atomic_inc(&conf->active_stripes);
BUG_ON(list_empty(&head->lru) &&
!test_bit(STRIPE_EXPANDING, &head->state));
inc_empty_inactive_list_flag = 0;
if (!list_empty(conf->inactive_list + hash))
inc_empty_inactive_list_flag = 1;
list_del_init(&head->lru);
if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
atomic_inc(&conf->empty_inactive_list_nr);
if (head->group) {
head->group->stripes_cnt--;
head->group = NULL;
}
}
atomic_inc(&head->count);
spin_unlock(&conf->device_lock);
}
spin_unlock_irq(conf->hash_locks + hash);
if (!head)
return;
if (!stripe_can_batch(head))
goto out;
lock_two_stripes(head, sh);
/* clear_batch_ready clear the flag */
if (!stripe_can_batch(head) || !stripe_can_batch(sh))
goto unlock_out;
if (sh->batch_head)
goto unlock_out;
dd_idx = 0;
while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
dd_idx++;
if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
goto unlock_out;
if (head->batch_head) {
spin_lock(&head->batch_head->batch_lock);
/* This batch list is already running */
if (!stripe_can_batch(head)) {
spin_unlock(&head->batch_head->batch_lock);
goto unlock_out;
}
/*
* We must assign batch_head of this stripe within the
* batch_lock, otherwise clear_batch_ready of batch head
* stripe could clear BATCH_READY bit of this stripe and
* this stripe->batch_head doesn't get assigned, which
* could confuse clear_batch_ready for this stripe
*/
sh->batch_head = head->batch_head;
/*
* at this point, head's BATCH_READY could be cleared, but we
* can still add the stripe to batch list
*/
list_add(&sh->batch_list, &head->batch_list);
spin_unlock(&head->batch_head->batch_lock);
} else {
head->batch_head = head;
sh->batch_head = head->batch_head;
spin_lock(&head->batch_lock);
list_add_tail(&sh->batch_list, &head->batch_list);
spin_unlock(&head->batch_lock);
}
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
if (atomic_dec_return(&conf->preread_active_stripes)
< IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
int seq = sh->bm_seq;
if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
sh->batch_head->bm_seq > seq)
seq = sh->batch_head->bm_seq;
set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
sh->batch_head->bm_seq = seq;
}
atomic_inc(&sh->count);
unlock_out:
unlock_two_stripes(head, sh);
out:
raid5_release_stripe(head);
}
/* Determine if 'data_offset' or 'new_data_offset' should be used
* in this stripe_head.
*/
static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
{
sector_t progress = conf->reshape_progress;
/* Need a memory barrier to make sure we see the value
* of conf->generation, or ->data_offset that was set before
* reshape_progress was updated.
*/
smp_rmb();
if (progress == MaxSector)
return 0;
if (sh->generation == conf->generation - 1)
return 0;
/* We are in a reshape, and this is a new-generation stripe,
* so use new_data_offset.
*/
return 1;
}
static void dispatch_bio_list(struct bio_list *tmp)
{
struct bio *bio;
while ((bio = bio_list_pop(tmp)))
generic_make_request(bio);
}
static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
{
const struct r5pending_data *da = list_entry(a,
struct r5pending_data, sibling);
const struct r5pending_data *db = list_entry(b,
struct r5pending_data, sibling);
if (da->sector > db->sector)
return 1;
if (da->sector < db->sector)
return -1;
return 0;
}
static void dispatch_defer_bios(struct r5conf *conf, int target,
struct bio_list *list)
{
struct r5pending_data *data;
struct list_head *first, *next = NULL;
int cnt = 0;
if (conf->pending_data_cnt == 0)
return;
list_sort(NULL, &conf->pending_list, cmp_stripe);
first = conf->pending_list.next;
/* temporarily move the head */
if (conf->next_pending_data)
list_move_tail(&conf->pending_list,
&conf->next_pending_data->sibling);
while (!list_empty(&conf->pending_list)) {
data = list_first_entry(&conf->pending_list,
struct r5pending_data, sibling);
if (&data->sibling == first)
first = data->sibling.next;
next = data->sibling.next;
bio_list_merge(list, &data->bios);
list_move(&data->sibling, &conf->free_list);
cnt++;
if (cnt >= target)
break;
}
conf->pending_data_cnt -= cnt;
BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
if (next != &conf->pending_list)
conf->next_pending_data = list_entry(next,
struct r5pending_data, sibling);
else
conf->next_pending_data = NULL;
/* list isn't empty */
if (first != &conf->pending_list)
list_move_tail(&conf->pending_list, first);
}
static void flush_deferred_bios(struct r5conf *conf)
{
struct bio_list tmp = BIO_EMPTY_LIST;
if (conf->pending_data_cnt == 0)
return;
spin_lock(&conf->pending_bios_lock);
dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
BUG_ON(conf->pending_data_cnt != 0);
spin_unlock(&conf->pending_bios_lock);
dispatch_bio_list(&tmp);
}
static void defer_issue_bios(struct r5conf *conf, sector_t sector,
struct bio_list *bios)
{
struct bio_list tmp = BIO_EMPTY_LIST;
struct r5pending_data *ent;
spin_lock(&conf->pending_bios_lock);
ent = list_first_entry(&conf->free_list, struct r5pending_data,
sibling);
list_move_tail(&ent->sibling, &conf->pending_list);
ent->sector = sector;
bio_list_init(&ent->bios);
bio_list_merge(&ent->bios, bios);
conf->pending_data_cnt++;
if (conf->pending_data_cnt >= PENDING_IO_MAX)
dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
spin_unlock(&conf->pending_bios_lock);
dispatch_bio_list(&tmp);
}
static void
raid5_end_read_request(struct bio *bi);
static void
raid5_end_write_request(struct bio *bi);
static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
{
struct r5conf *conf = sh->raid_conf;
int i, disks = sh->disks;
struct stripe_head *head_sh = sh;
struct bio_list pending_bios = BIO_EMPTY_LIST;
bool should_defer;
might_sleep();
if (log_stripe(sh, s) == 0)
return;
should_defer = conf->batch_bio_dispatch && conf->group_cnt;
for (i = disks; i--; ) {
int op, op_flags = 0;
int replace_only = 0;
struct bio *bi, *rbi;
struct md_rdev *rdev, *rrdev = NULL;
sh = head_sh;
if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
op = REQ_OP_WRITE;
if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
op_flags = REQ_FUA;
if (test_bit(R5_Discard, &sh->dev[i].flags))
op = REQ_OP_DISCARD;
} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
op = REQ_OP_READ;
else if (test_and_clear_bit(R5_WantReplace,
&sh->dev[i].flags)) {
op = REQ_OP_WRITE;
replace_only = 1;
} else
continue;
if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
op_flags |= REQ_SYNC;
again:
bi = &sh->dev[i].req;
rbi = &sh->dev[i].rreq; /* For writing to replacement */
rcu_read_lock();
rrdev = rcu_dereference(conf->disks[i].replacement);
smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
rdev = rcu_dereference(conf->disks[i].rdev);
if (!rdev) {
rdev = rrdev;
rrdev = NULL;
}
if (op_is_write(op)) {
if (replace_only)
rdev = NULL;
if (rdev == rrdev)
/* We raced and saw duplicates */
rrdev = NULL;
} else {
if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
rdev = rrdev;
rrdev = NULL;
}
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev)
atomic_inc(&rdev->nr_pending);
if (rrdev && test_bit(Faulty, &rrdev->flags))
rrdev = NULL;
if (rrdev)
atomic_inc(&rrdev->nr_pending);
rcu_read_unlock();
/* We have already checked bad blocks for reads. Now
* need to check for writes. We never accept write errors
* on the replacement, so we don't to check rrdev.
*/
while (op_is_write(op) && rdev &&
test_bit(WriteErrorSeen, &rdev->flags)) {
sector_t first_bad;
int bad_sectors;
int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
&first_bad, &bad_sectors);
if (!bad)
break;
if (bad < 0) {
set_bit(BlockedBadBlocks, &rdev->flags);
if (!conf->mddev->external &&
conf->mddev->sb_flags) {
/* It is very unlikely, but we might
* still need to write out the
* bad block log - better give it
* a chance*/
md_check_recovery(conf->mddev);
}
/*
* Because md_wait_for_blocked_rdev
* will dec nr_pending, we must
* increment it first.
*/
atomic_inc(&rdev->nr_pending);
md_wait_for_blocked_rdev(rdev, conf->mddev);
} else {
/* Acknowledged bad block - skip the write */
rdev_dec_pending(rdev, conf->mddev);
rdev = NULL;
}
}
if (rdev) {
if (s->syncing || s->expanding || s->expanded
|| s->replacing)
md_sync_acct(rdev->bdev, STRIPE_SECTORS);
set_bit(STRIPE_IO_STARTED, &sh->state);
bio_set_dev(bi, rdev->bdev);
bio_set_op_attrs(bi, op, op_flags);
bi->bi_end_io = op_is_write(op)
? raid5_end_write_request
: raid5_end_read_request;
bi->bi_private = sh;
pr_debug("%s: for %llu schedule op %d on disc %d\n",
__func__, (unsigned long long)sh->sector,
bi->bi_opf, i);
atomic_inc(&sh->count);
if (sh != head_sh)
atomic_inc(&head_sh->count);
if (use_new_offset(conf, sh))
bi->bi_iter.bi_sector = (sh->sector
+ rdev->new_data_offset);
else
bi->bi_iter.bi_sector = (sh->sector
+ rdev->data_offset);
if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
bi->bi_opf |= REQ_NOMERGE;
if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
if (!op_is_write(op) &&
test_bit(R5_InJournal, &sh->dev[i].flags))
/*
* issuing read for a page in journal, this
* must be preparing for prexor in rmw; read
* the data into orig_page
*/
sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
else
sh->dev[i].vec.bv_page = sh->dev[i].page;
bi->bi_vcnt = 1;
bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
bi->bi_io_vec[0].bv_offset = 0;
bi->bi_iter.bi_size = STRIPE_SIZE;
/*
* If this is discard request, set bi_vcnt 0. We don't
* want to confuse SCSI because SCSI will replace payload
*/
if (op == REQ_OP_DISCARD)
bi->bi_vcnt = 0;
if (rrdev)
set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
if (conf->mddev->gendisk)
trace_block_bio_remap(bi->bi_disk->queue,
bi, disk_devt(conf->mddev->gendisk),
sh->dev[i].sector);
if (should_defer && op_is_write(op))
bio_list_add(&pending_bios, bi);
else
generic_make_request(bi);
}
if (rrdev) {
if (s->syncing || s->expanding || s->expanded
|| s->replacing)
md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
set_bit(STRIPE_IO_STARTED, &sh->state);
bio_set_dev(rbi, rrdev->bdev);
bio_set_op_attrs(rbi, op, op_flags);
BUG_ON(!op_is_write(op));
rbi->bi_end_io = raid5_end_write_request;
rbi->bi_private = sh;
pr_debug("%s: for %llu schedule op %d on "
"replacement disc %d\n",
__func__, (unsigned long long)sh->sector,
rbi->bi_opf, i);
atomic_inc(&sh->count);
if (sh != head_sh)
atomic_inc(&head_sh->count);
if (use_new_offset(conf, sh))
rbi->bi_iter.bi_sector = (sh->sector
+ rrdev->new_data_offset);
else
rbi->bi_iter.bi_sector = (sh->sector
+ rrdev->data_offset);
if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
sh->dev[i].rvec.bv_page = sh->dev[i].page;
rbi->bi_vcnt = 1;
rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
rbi->bi_io_vec[0].bv_offset = 0;
rbi->bi_iter.bi_size = STRIPE_SIZE;
/*
* If this is discard request, set bi_vcnt 0. We don't
* want to confuse SCSI because SCSI will replace payload
*/
if (op == REQ_OP_DISCARD)
rbi->bi_vcnt = 0;
if (conf->mddev->gendisk)
trace_block_bio_remap(rbi->bi_disk->queue,
rbi, disk_devt(conf->mddev->gendisk),
sh->dev[i].sector);
if (should_defer && op_is_write(op))
bio_list_add(&pending_bios, rbi);
else
generic_make_request(rbi);
}
if (!rdev && !rrdev) {
if (op_is_write(op))
set_bit(STRIPE_DEGRADED, &sh->state);
pr_debug("skip op %d on disc %d for sector %llu\n",
bi->bi_opf, i, (unsigned long long)sh->sector);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
}
if (!head_sh->batch_head)
continue;
sh = list_first_entry(&sh->batch_list, struct stripe_head,
batch_list);
if (sh != head_sh)
goto again;
}
if (should_defer && !bio_list_empty(&pending_bios))
defer_issue_bios(conf, head_sh->sector, &pending_bios);
}
static struct dma_async_tx_descriptor *
async_copy_data(int frombio, struct bio *bio, struct page **page,
sector_t sector, struct dma_async_tx_descriptor *tx,
struct stripe_head *sh, int no_skipcopy)
{
struct bio_vec bvl;
struct bvec_iter iter;
struct page *bio_page;
int page_offset;
struct async_submit_ctl submit;
enum async_tx_flags flags = 0;
if (bio->bi_iter.bi_sector >= sector)
page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
else
page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
if (frombio)
flags |= ASYNC_TX_FENCE;
init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
bio_for_each_segment(bvl, bio, iter) {
int len = bvl.bv_len;
int clen;
int b_offset = 0;
if (page_offset < 0) {
b_offset = -page_offset;
page_offset += b_offset;
len -= b_offset;
}
if (len > 0 && page_offset + len > STRIPE_SIZE)
clen = STRIPE_SIZE - page_offset;
else
clen = len;
if (clen > 0) {
b_offset += bvl.bv_offset;
bio_page = bvl.bv_page;
if (frombio) {
if (sh->raid_conf->skip_copy &&
b_offset == 0 && page_offset == 0 &&
clen == STRIPE_SIZE &&
!no_skipcopy)
*page = bio_page;
else
tx = async_memcpy(*page, bio_page, page_offset,
b_offset, clen, &submit);
} else
tx = async_memcpy(bio_page, *page, b_offset,
page_offset, clen, &submit);
}
/* chain the operations */
submit.depend_tx = tx;
if (clen < len) /* hit end of page */
break;
page_offset += len;
}
return tx;
}
static void ops_complete_biofill(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
/* clear completed biofills */
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* acknowledge completion of a biofill operation */
/* and check if we need to reply to a read request,
* new R5_Wantfill requests are held off until
* !STRIPE_BIOFILL_RUN
*/
if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi, *rbi2;
BUG_ON(!dev->read);
rbi = dev->read;
dev->read = NULL;
while (rbi && rbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
rbi2 = r5_next_bio(rbi, dev->sector);
bio_endio(rbi);
rbi = rbi2;
}
}
}
clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void ops_run_biofill(struct stripe_head *sh)
{
struct dma_async_tx_descriptor *tx = NULL;
struct async_submit_ctl submit;
int i;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = sh->disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_Wantfill, &dev->flags)) {
struct bio *rbi;
spin_lock_irq(&sh->stripe_lock);
dev->read = rbi = dev->toread;
dev->toread = NULL;
spin_unlock_irq(&sh->stripe_lock);
while (rbi && rbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
tx = async_copy_data(0, rbi, &dev->page,
dev->sector, tx, sh, 0);
rbi = r5_next_bio(rbi, dev->sector);
}
}
}
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
async_trigger_callback(&submit);
}
static void mark_target_uptodate(struct stripe_head *sh, int target)
{
struct r5dev *tgt;
if (target < 0)
return;
tgt = &sh->dev[target];
set_bit(R5_UPTODATE, &tgt->flags);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
clear_bit(R5_Wantcompute, &tgt->flags);
}
static void ops_complete_compute(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
/* mark the computed target(s) as uptodate */
mark_target_uptodate(sh, sh->ops.target);
mark_target_uptodate(sh, sh->ops.target2);
clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
if (sh->check_state == check_state_compute_run)
sh->check_state = check_state_compute_result;
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
/* return a pointer to the address conversion region of the scribble buffer */
static addr_conv_t *to_addr_conv(struct stripe_head *sh,
struct raid5_percpu *percpu, int i)
{
void *addr;
addr = flex_array_get(percpu->scribble, i);
return addr + sizeof(struct page *) * (sh->disks + 2);
}
/* return a pointer to the address conversion region of the scribble buffer */
static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
{
void *addr;
addr = flex_array_get(percpu->scribble, i);
return addr;
}
static struct dma_async_tx_descriptor *
ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int disks = sh->disks;
struct page **xor_srcs = to_addr_page(percpu, 0);
int target = sh->ops.target;
struct r5dev *tgt = &sh->dev[target];
struct page *xor_dest = tgt->page;
int count = 0;
struct dma_async_tx_descriptor *tx;
struct async_submit_ctl submit;
int i;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu block: %d\n",
__func__, (unsigned long long)sh->sector, target);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
for (i = disks; i--; )
if (i != target)
xor_srcs[count++] = sh->dev[i].page;
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
if (unlikely(count == 1))
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
return tx;
}
/* set_syndrome_sources - populate source buffers for gen_syndrome
* @srcs - (struct page *) array of size sh->disks
* @sh - stripe_head to parse
*
* Populates srcs in proper layout order for the stripe and returns the
* 'count' of sources to be used in a call to async_gen_syndrome. The P
* destination buffer is recorded in srcs[count] and the Q destination
* is recorded in srcs[count+1]].
*/
static int set_syndrome_sources(struct page **srcs,
struct stripe_head *sh,
int srctype)
{
int disks = sh->disks;
int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
int d0_idx = raid6_d0(sh);
int count;
int i;
for (i = 0; i < disks; i++)
srcs[i] = NULL;
count = 0;
i = d0_idx;
do {
int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
struct r5dev *dev = &sh->dev[i];
if (i == sh->qd_idx || i == sh->pd_idx ||
(srctype == SYNDROME_SRC_ALL) ||
(srctype == SYNDROME_SRC_WANT_DRAIN &&
(test_bit(R5_Wantdrain, &dev->flags) ||
test_bit(R5_InJournal, &dev->flags))) ||
(srctype == SYNDROME_SRC_WRITTEN &&
(dev->written ||
test_bit(R5_InJournal, &dev->flags)))) {
if (test_bit(R5_InJournal, &dev->flags))
srcs[slot] = sh->dev[i].orig_page;
else
srcs[slot] = sh->dev[i].page;
}
i = raid6_next_disk(i, disks);
} while (i != d0_idx);
return syndrome_disks;
}
static struct dma_async_tx_descriptor *
ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int disks = sh->disks;
struct page **blocks = to_addr_page(percpu, 0);
int target;
int qd_idx = sh->qd_idx;
struct dma_async_tx_descriptor *tx;
struct async_submit_ctl submit;
struct r5dev *tgt;
struct page *dest;
int i;
int count;
BUG_ON(sh->batch_head);
if (sh->ops.target < 0)
target = sh->ops.target2;
else if (sh->ops.target2 < 0)
target = sh->ops.target;
else
/* we should only have one valid target */
BUG();
BUG_ON(target < 0);
pr_debug("%s: stripe %llu block: %d\n",
__func__, (unsigned long long)sh->sector, target);
tgt = &sh->dev[target];
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
dest = tgt->page;
atomic_inc(&sh->count);
if (target == qd_idx) {
count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
blocks[count] = NULL; /* regenerating p is not necessary */
BUG_ON(blocks[count+1] != dest); /* q should already be set */
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
} else {
/* Compute any data- or p-drive using XOR */
count = 0;
for (i = disks; i-- ; ) {
if (i == target || i == qd_idx)
continue;
blocks[count++] = sh->dev[i].page;
}
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
NULL, ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
}
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int i, count, disks = sh->disks;
int syndrome_disks = sh->ddf_layout ? disks : disks-2;
int d0_idx = raid6_d0(sh);
int faila = -1, failb = -1;
int target = sh->ops.target;
int target2 = sh->ops.target2;
struct r5dev *tgt = &sh->dev[target];
struct r5dev *tgt2 = &sh->dev[target2];
struct dma_async_tx_descriptor *tx;
struct page **blocks = to_addr_page(percpu, 0);
struct async_submit_ctl submit;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu block1: %d block2: %d\n",
__func__, (unsigned long long)sh->sector, target, target2);
BUG_ON(target < 0 || target2 < 0);
BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
/* we need to open-code set_syndrome_sources to handle the
* slot number conversion for 'faila' and 'failb'
*/
for (i = 0; i < disks ; i++)
blocks[i] = NULL;
count = 0;
i = d0_idx;
do {
int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
blocks[slot] = sh->dev[i].page;
if (i == target)
faila = slot;
if (i == target2)
failb = slot;
i = raid6_next_disk(i, disks);
} while (i != d0_idx);
BUG_ON(faila == failb);
if (failb < faila)
swap(faila, failb);
pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
__func__, (unsigned long long)sh->sector, faila, failb);
atomic_inc(&sh->count);
if (failb == syndrome_disks+1) {
/* Q disk is one of the missing disks */
if (faila == syndrome_disks) {
/* Missing P+Q, just recompute */
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
return async_gen_syndrome(blocks, 0, syndrome_disks+2,
STRIPE_SIZE, &submit);
} else {
struct page *dest;
int data_target;
int qd_idx = sh->qd_idx;
/* Missing D+Q: recompute D from P, then recompute Q */
if (target == qd_idx)
data_target = target2;
else
data_target = target;
count = 0;
for (i = disks; i-- ; ) {
if (i == data_target || i == qd_idx)
continue;
blocks[count++] = sh->dev[i].page;
}
dest = sh->dev[data_target].page;
init_async_submit(&submit,
ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
NULL, NULL, NULL,
to_addr_conv(sh, percpu, 0));
tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
&submit);
count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
init_async_submit(&submit, ASYNC_TX_FENCE, tx,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
return async_gen_syndrome(blocks, 0, count+2,
STRIPE_SIZE, &submit);
}
} else {
init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
ops_complete_compute, sh,
to_addr_conv(sh, percpu, 0));
if (failb == syndrome_disks) {
/* We're missing D+P. */
return async_raid6_datap_recov(syndrome_disks+2,
STRIPE_SIZE, faila,
blocks, &submit);
} else {
/* We're missing D+D. */
return async_raid6_2data_recov(syndrome_disks+2,
STRIPE_SIZE, faila, failb,
blocks, &submit);
}
}
}
static void ops_complete_prexor(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
if (r5c_is_writeback(sh->raid_conf->log))
/*
* raid5-cache write back uses orig_page during prexor.
* After prexor, it is time to free orig_page
*/
r5c_release_extra_page(sh);
}
static struct dma_async_tx_descriptor *
ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
int disks = sh->disks;
struct page **xor_srcs = to_addr_page(percpu, 0);
int count = 0, pd_idx = sh->pd_idx, i;
struct async_submit_ctl submit;
/* existing parity data subtracted */
struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
BUG_ON(sh->batch_head);
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
/* Only process blocks that are known to be uptodate */
if (test_bit(R5_InJournal, &dev->flags))
xor_srcs[count++] = dev->orig_page;
else if (test_bit(R5_Wantdrain, &dev->flags))
xor_srcs[count++] = dev->page;
}
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
struct page **blocks = to_addr_page(percpu, 0);
int count;
struct async_submit_ctl submit;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
return tx;
}
static struct dma_async_tx_descriptor *
ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
{
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks;
int i;
struct stripe_head *head_sh = sh;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
struct r5dev *dev;
struct bio *chosen;
sh = head_sh;
if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
struct bio *wbi;
again:
dev = &sh->dev[i];
/*
* clear R5_InJournal, so when rewriting a page in
* journal, it is not skipped by r5l_log_stripe()
*/
clear_bit(R5_InJournal, &dev->flags);
spin_lock_irq(&sh->stripe_lock);
chosen = dev->towrite;
dev->towrite = NULL;
sh->overwrite_disks = 0;
BUG_ON(dev->written);
wbi = dev->written = chosen;
spin_unlock_irq(&sh->stripe_lock);
WARN_ON(dev->page != dev->orig_page);
while (wbi && wbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
if (wbi->bi_opf & REQ_FUA)
set_bit(R5_WantFUA, &dev->flags);
if (wbi->bi_opf & REQ_SYNC)
set_bit(R5_SyncIO, &dev->flags);
if (bio_op(wbi) == REQ_OP_DISCARD)
set_bit(R5_Discard, &dev->flags);
else {
tx = async_copy_data(1, wbi, &dev->page,
dev->sector, tx, sh,
r5c_is_writeback(conf->log));
if (dev->page != dev->orig_page &&
!r5c_is_writeback(conf->log)) {
set_bit(R5_SkipCopy, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
clear_bit(R5_OVERWRITE, &dev->flags);
}
}
wbi = r5_next_bio(wbi, dev->sector);
}
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head,
batch_list);
if (sh == head_sh)
continue;
goto again;
}
}
}
return tx;
}
static void ops_complete_reconstruct(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
int disks = sh->disks;
int pd_idx = sh->pd_idx;
int qd_idx = sh->qd_idx;
int i;
bool fua = false, sync = false, discard = false;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = disks; i--; ) {
fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
discard |= test_bit(R5_Discard, &sh->dev[i].flags);
}
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->written || i == pd_idx || i == qd_idx) {
if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
set_bit(R5_UPTODATE, &dev->flags);
if (test_bit(STRIPE_EXPAND_READY, &sh->state))
set_bit(R5_Expanded, &dev->flags);
}
if (fua)
set_bit(R5_WantFUA, &dev->flags);
if (sync)
set_bit(R5_SyncIO, &dev->flags);
}
}
if (sh->reconstruct_state == reconstruct_state_drain_run)
sh->reconstruct_state = reconstruct_state_drain_result;
else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
sh->reconstruct_state = reconstruct_state_prexor_drain_result;
else {
BUG_ON(sh->reconstruct_state != reconstruct_state_run);
sh->reconstruct_state = reconstruct_state_result;
}
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void
ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
int disks = sh->disks;
struct page **xor_srcs;
struct async_submit_ctl submit;
int count, pd_idx = sh->pd_idx, i;
struct page *xor_dest;
int prexor = 0;
unsigned long flags;
int j = 0;
struct stripe_head *head_sh = sh;
int last_stripe;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
for (i = 0; i < sh->disks; i++) {
if (pd_idx == i)
continue;
if (!test_bit(R5_Discard, &sh->dev[i].flags))
break;
}
if (i >= sh->disks) {
atomic_inc(&sh->count);
set_bit(R5_Discard, &sh->dev[pd_idx].flags);
ops_complete_reconstruct(sh);
return;
}
again:
count = 0;
xor_srcs = to_addr_page(percpu, j);
/* check if prexor is active which means only process blocks
* that are part of a read-modify-write (written)
*/
if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
prexor = 1;
xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (head_sh->dev[i].written ||
test_bit(R5_InJournal, &head_sh->dev[i].flags))
xor_srcs[count++] = dev->page;
}
} else {
xor_dest = sh->dev[pd_idx].page;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i != pd_idx)
xor_srcs[count++] = dev->page;
}
}
/* 1/ if we prexor'd then the dest is reused as a source
* 2/ if we did not prexor then we are redoing the parity
* set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
* for the synchronous xor case
*/
last_stripe = !head_sh->batch_head ||
list_first_entry(&sh->batch_list,
struct stripe_head, batch_list) == head_sh;
if (last_stripe) {
flags = ASYNC_TX_ACK |
(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
atomic_inc(&head_sh->count);
init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
to_addr_conv(sh, percpu, j));
} else {
flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
init_async_submit(&submit, flags, tx, NULL, NULL,
to_addr_conv(sh, percpu, j));
}
if (unlikely(count == 1))
tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
else
tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
if (!last_stripe) {
j++;
sh = list_first_entry(&sh->batch_list, struct stripe_head,
batch_list);
goto again;
}
}
static void
ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
struct dma_async_tx_descriptor *tx)
{
struct async_submit_ctl submit;
struct page **blocks;
int count, i, j = 0;
struct stripe_head *head_sh = sh;
int last_stripe;
int synflags;
unsigned long txflags;
pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
for (i = 0; i < sh->disks; i++) {
if (sh->pd_idx == i || sh->qd_idx == i)
continue;
if (!test_bit(R5_Discard, &sh->dev[i].flags))
break;
}
if (i >= sh->disks) {
atomic_inc(&sh->count);
set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
ops_complete_reconstruct(sh);
return;
}
again:
blocks = to_addr_page(percpu, j);
if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
synflags = SYNDROME_SRC_WRITTEN;
txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
} else {
synflags = SYNDROME_SRC_ALL;
txflags = ASYNC_TX_ACK;
}
count = set_syndrome_sources(blocks, sh, synflags);
last_stripe = !head_sh->batch_head ||
list_first_entry(&sh->batch_list,
struct stripe_head, batch_list) == head_sh;
if (last_stripe) {
atomic_inc(&head_sh->count);
init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
head_sh, to_addr_conv(sh, percpu, j));
} else
init_async_submit(&submit, 0, tx, NULL, NULL,
to_addr_conv(sh, percpu, j));
tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
if (!last_stripe) {
j++;
sh = list_first_entry(&sh->batch_list, struct stripe_head,
batch_list);
goto again;
}
}
static void ops_complete_check(void *stripe_head_ref)
{
struct stripe_head *sh = stripe_head_ref;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
sh->check_state = check_state_check_result;
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
{
int disks = sh->disks;
int pd_idx = sh->pd_idx;
int qd_idx = sh->qd_idx;
struct page *xor_dest;
struct page **xor_srcs = to_addr_page(percpu, 0);
struct dma_async_tx_descriptor *tx;
struct async_submit_ctl submit;
int count;
int i;
pr_debug("%s: stripe %llu\n", __func__,
(unsigned long long)sh->sector);
BUG_ON(sh->batch_head);
count = 0;
xor_dest = sh->dev[pd_idx].page;
xor_srcs[count++] = xor_dest;
for (i = disks; i--; ) {
if (i == pd_idx || i == qd_idx)
continue;
xor_srcs[count++] = sh->dev[i].page;
}
init_async_submit(&submit, 0, NULL, NULL, NULL,
to_addr_conv(sh, percpu, 0));
tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
&sh->ops.zero_sum_result, &submit);
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
tx = async_trigger_callback(&submit);
}
static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
{
struct page **srcs = to_addr_page(percpu, 0);
struct async_submit_ctl submit;
int count;
pr_debug("%s: stripe %llu checkp: %d\n", __func__,
(unsigned long long)sh->sector, checkp);
BUG_ON(sh->batch_head);
count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
if (!checkp)
srcs[count] = NULL;
atomic_inc(&sh->count);
init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
sh, to_addr_conv(sh, percpu, 0));
async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
&sh->ops.zero_sum_result, percpu->spare_page, &submit);
}
static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
{
int overlap_clear = 0, i, disks = sh->disks;
struct dma_async_tx_descriptor *tx = NULL;
struct r5conf *conf = sh->raid_conf;
int level = conf->level;
struct raid5_percpu *percpu;
unsigned long cpu;
cpu = get_cpu();
percpu = per_cpu_ptr(conf->percpu, cpu);
if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
ops_run_biofill(sh);
overlap_clear++;
}
if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
if (level < 6)
tx = ops_run_compute5(sh, percpu);
else {
if (sh->ops.target2 < 0 || sh->ops.target < 0)
tx = ops_run_compute6_1(sh, percpu);
else
tx = ops_run_compute6_2(sh, percpu);
}
/* terminate the chain if reconstruct is not set to be run */
if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
async_tx_ack(tx);
}
if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
if (level < 6)
tx = ops_run_prexor5(sh, percpu, tx);
else
tx = ops_run_prexor6(sh, percpu, tx);
}
if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
tx = ops_run_partial_parity(sh, percpu, tx);
if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
tx = ops_run_biodrain(sh, tx);
overlap_clear++;
}
if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
if (level < 6)
ops_run_reconstruct5(sh, percpu, tx);
else
ops_run_reconstruct6(sh, percpu, tx);
}
if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
if (sh->check_state == check_state_run)
ops_run_check_p(sh, percpu);
else if (sh->check_state == check_state_run_q)
ops_run_check_pq(sh, percpu, 0);
else if (sh->check_state == check_state_run_pq)
ops_run_check_pq(sh, percpu, 1);
else
BUG();
}
if (overlap_clear && !sh->batch_head)
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_Overlap, &dev->flags))
wake_up(&sh->raid_conf->wait_for_overlap);
}
put_cpu();
}
static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
{
if (sh->ppl_page)
__free_page(sh->ppl_page);
kmem_cache_free(sc, sh);
}
static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
int disks, struct r5conf *conf)
{
struct stripe_head *sh;
int i;
sh = kmem_cache_zalloc(sc, gfp);
if (sh) {
spin_lock_init(&sh->stripe_lock);
spin_lock_init(&sh->batch_lock);
INIT_LIST_HEAD(&sh->batch_list);
INIT_LIST_HEAD(&sh->lru);
INIT_LIST_HEAD(&sh->r5c);
INIT_LIST_HEAD(&sh->log_list);
atomic_set(&sh->count, 1);
sh->raid_conf = conf;
sh->log_start = MaxSector;
for (i = 0; i < disks; i++) {
struct r5dev *dev = &sh->dev[i];
bio_init(&dev->req, &dev->vec, 1);
bio_init(&dev->rreq, &dev->rvec, 1);
}
if (raid5_has_ppl(conf)) {
sh->ppl_page = alloc_page(gfp);
if (!sh->ppl_page) {
free_stripe(sc, sh);
sh = NULL;
}
}
}
return sh;
}
static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
{
struct stripe_head *sh;
sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
if (!sh)
return 0;
if (grow_buffers(sh, gfp)) {
shrink_buffers(sh);
free_stripe(conf->slab_cache, sh);
return 0;
}
sh->hash_lock_index =
conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
/* we just created an active stripe so... */
atomic_inc(&conf->active_stripes);
raid5_release_stripe(sh);
conf->max_nr_stripes++;
return 1;
}
static int grow_stripes(struct r5conf *conf, int num)
{
struct kmem_cache *sc;
size_t namelen = sizeof(conf->cache_name[0]);
int devs = max(conf->raid_disks, conf->previous_raid_disks);
if (conf->mddev->gendisk)
snprintf(conf->cache_name[0], namelen,
"raid%d-%s", conf->level, mdname(conf->mddev));
else
snprintf(conf->cache_name[0], namelen,
"raid%d-%p", conf->level, conf->mddev);
snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
conf->active_name = 0;
sc = kmem_cache_create(conf->cache_name[conf->active_name],
sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
0, 0, NULL);
if (!sc)
return 1;
conf->slab_cache = sc;
conf->pool_size = devs;
while (num--)
if (!grow_one_stripe(conf, GFP_KERNEL))
return 1;
return 0;
}
/**
* scribble_len - return the required size of the scribble region
* @num - total number of disks in the array
*
* The size must be enough to contain:
* 1/ a struct page pointer for each device in the array +2
* 2/ room to convert each entry in (1) to its corresponding dma
* (dma_map_page()) or page (page_address()) address.
*
* Note: the +2 is for the destination buffers of the ddf/raid6 case where we
* calculate over all devices (not just the data blocks), using zeros in place
* of the P and Q blocks.
*/
static struct flex_array *scribble_alloc(int num, int cnt, gfp_t flags)
{
struct flex_array *ret;
size_t len;
len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
ret = flex_array_alloc(len, cnt, flags);
if (!ret)
return NULL;
/* always prealloc all elements, so no locking is required */
if (flex_array_prealloc(ret, 0, cnt, flags)) {
flex_array_free(ret);
return NULL;
}
return ret;
}
static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
{
unsigned long cpu;
int err = 0;
/*
* Never shrink. And mddev_suspend() could deadlock if this is called
* from raid5d. In that case, scribble_disks and scribble_sectors
* should equal to new_disks and new_sectors
*/
if (conf->scribble_disks >= new_disks &&
conf->scribble_sectors >= new_sectors)
return 0;
mddev_suspend(conf->mddev);
get_online_cpus();
for_each_present_cpu(cpu) {
struct raid5_percpu *percpu;
struct flex_array *scribble;
percpu = per_cpu_ptr(conf->percpu, cpu);
scribble = scribble_alloc(new_disks,
new_sectors / STRIPE_SECTORS,
GFP_NOIO);
if (scribble) {
flex_array_free(percpu->scribble);
percpu->scribble = scribble;
} else {
err = -ENOMEM;
break;
}
}
put_online_cpus();
mddev_resume(conf->mddev);
if (!err) {
conf->scribble_disks = new_disks;
conf->scribble_sectors = new_sectors;
}
return err;
}
static int resize_stripes(struct r5conf *conf, int newsize)
{
/* Make all the stripes able to hold 'newsize' devices.
* New slots in each stripe get 'page' set to a new page.
*
* This happens in stages:
* 1/ create a new kmem_cache and allocate the required number of
* stripe_heads.
* 2/ gather all the old stripe_heads and transfer the pages across
* to the new stripe_heads. This will have the side effect of
* freezing the array as once all stripe_heads have been collected,
* no IO will be possible. Old stripe heads are freed once their
* pages have been transferred over, and the old kmem_cache is
* freed when all stripes are done.
* 3/ reallocate conf->disks to be suitable bigger. If this fails,
* we simple return a failure status - no need to clean anything up.
* 4/ allocate new pages for the new slots in the new stripe_heads.
* If this fails, we don't bother trying the shrink the
* stripe_heads down again, we just leave them as they are.
* As each stripe_head is processed the new one is released into
* active service.
*
* Once step2 is started, we cannot afford to wait for a write,
* so we use GFP_NOIO allocations.
*/
struct stripe_head *osh, *nsh;
LIST_HEAD(newstripes);
struct disk_info *ndisks;
int err = 0;
struct kmem_cache *sc;
int i;
int hash, cnt;
md_allow_write(conf->mddev);
/* Step 1 */
sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
0, 0, NULL);
if (!sc)
return -ENOMEM;
/* Need to ensure auto-resizing doesn't interfere */
mutex_lock(&conf->cache_size_mutex);
for (i = conf->max_nr_stripes; i; i--) {
nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
if (!nsh)
break;
list_add(&nsh->lru, &newstripes);
}
if (i) {
/* didn't get enough, give up */
while (!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del(&nsh->lru);
free_stripe(sc, nsh);
}
kmem_cache_destroy(sc);
mutex_unlock(&conf->cache_size_mutex);
return -ENOMEM;
}
/* Step 2 - Must use GFP_NOIO now.
* OK, we have enough stripes, start collecting inactive
* stripes and copying them over
*/
hash = 0;
cnt = 0;
list_for_each_entry(nsh, &newstripes, lru) {
lock_device_hash_lock(conf, hash);
wait_event_cmd(conf->wait_for_stripe,
!list_empty(conf->inactive_list + hash),
unlock_device_hash_lock(conf, hash),
lock_device_hash_lock(conf, hash));
osh = get_free_stripe(conf, hash);
unlock_device_hash_lock(conf, hash);
for(i=0; i<conf->pool_size; i++) {
nsh->dev[i].page = osh->dev[i].page;
nsh->dev[i].orig_page = osh->dev[i].page;
}
nsh->hash_lock_index = hash;
free_stripe(conf->slab_cache, osh);
cnt++;
if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
!!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
hash++;
cnt = 0;
}
}
kmem_cache_destroy(conf->slab_cache);
/* Step 3.
* At this point, we are holding all the stripes so the array
* is completely stalled, so now is a good time to resize
* conf->disks and the scribble region
*/
ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
if (ndisks) {
for (i = 0; i < conf->pool_size; i++)
ndisks[i] = conf->disks[i];
for (i = conf->pool_size; i < newsize; i++) {
ndisks[i].extra_page = alloc_page(GFP_NOIO);
if (!ndisks[i].extra_page)
err = -ENOMEM;
}
if (err) {
for (i = conf->pool_size; i < newsize; i++)
if (ndisks[i].extra_page)
put_page(ndisks[i].extra_page);
kfree(ndisks);
} else {
kfree(conf->disks);
conf->disks = ndisks;
}
} else
err = -ENOMEM;
conf->slab_cache = sc;
conf->active_name = 1-conf->active_name;
/* Step 4, return new stripes to service */
while(!list_empty(&newstripes)) {
nsh = list_entry(newstripes.next, struct stripe_head, lru);
list_del_init(&nsh->lru);
for (i=conf->raid_disks; i < newsize; i++)
if (nsh->dev[i].page == NULL) {
struct page *p = alloc_page(GFP_NOIO);
nsh->dev[i].page = p;
nsh->dev[i].orig_page = p;
if (!p)
err = -ENOMEM;
}
raid5_release_stripe(nsh);
}
/* critical section pass, GFP_NOIO no longer needed */
if (!err)
conf->pool_size = newsize;
mutex_unlock(&conf->cache_size_mutex);
return err;
}
static int drop_one_stripe(struct r5conf *conf)
{
struct stripe_head *sh;
int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
spin_lock_irq(conf->hash_locks + hash);
sh = get_free_stripe(conf, hash);
spin_unlock_irq(conf->hash_locks + hash);
if (!sh)
return 0;
BUG_ON(atomic_read(&sh->count));
shrink_buffers(sh);
free_stripe(conf->slab_cache, sh);
atomic_dec(&conf->active_stripes);
conf->max_nr_stripes--;
return 1;
}
static void shrink_stripes(struct r5conf *conf)
{
while (conf->max_nr_stripes &&
drop_one_stripe(conf))
;
kmem_cache_destroy(conf->slab_cache);
conf->slab_cache = NULL;
}
static void raid5_end_read_request(struct bio * bi)
{
struct stripe_head *sh = bi->bi_private;
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks, i;
char b[BDEVNAME_SIZE];
struct md_rdev *rdev = NULL;
sector_t s;
for (i=0 ; i<disks; i++)
if (bi == &sh->dev[i].req)
break;
pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
bi->bi_status);
if (i == disks) {
bio_reset(bi);
BUG();
return;
}
if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
/* If replacement finished while this request was outstanding,
* 'replacement' might be NULL already.
* In that case it moved down to 'rdev'.
* rdev is not removed until all requests are finished.
*/
rdev = conf->disks[i].replacement;
if (!rdev)
rdev = conf->disks[i].rdev;
if (use_new_offset(conf, sh))
s = sh->sector + rdev->new_data_offset;
else
s = sh->sector + rdev->data_offset;
if (!bi->bi_status) {
set_bit(R5_UPTODATE, &sh->dev[i].flags);
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
/* Note that this cannot happen on a
* replacement device. We just fail those on
* any error
*/
pr_info_ratelimited(
"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
mdname(conf->mddev), STRIPE_SECTORS,
(unsigned long long)s,
bdevname(rdev->bdev, b));
atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
if (test_bit(R5_InJournal, &sh->dev[i].flags))
/*
* end read for a page in journal, this
* must be preparing for prexor in rmw
*/
set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
if (atomic_read(&rdev->read_errors))
atomic_set(&rdev->read_errors, 0);
} else {
const char *bdn = bdevname(rdev->bdev, b);
int retry = 0;
int set_bad = 0;
clear_bit(R5_UPTODATE, &sh->dev[i].flags);
if (!(bi->bi_status == BLK_STS_PROTECTION))
atomic_inc(&rdev->read_errors);
if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
pr_warn_ratelimited(
"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)s,
bdn);
else if (conf->mddev->degraded >= conf->max_degraded) {
set_bad = 1;
pr_warn_ratelimited(
"md/raid:%s: read error not correctable (sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)s,
bdn);
} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
/* Oh, no!!! */
set_bad = 1;
pr_warn_ratelimited(
"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
mdname(conf->mddev),
(unsigned long long)s,
bdn);
} else if (atomic_read(&rdev->read_errors)
> conf->max_nr_stripes)
pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
mdname(conf->mddev), bdn);
else
retry = 1;
if (set_bad && test_bit(In_sync, &rdev->flags)
&& !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
retry = 1;
if (retry)
if (sh->qd_idx >= 0 && sh->pd_idx == i)
set_bit(R5_ReadError, &sh->dev[i].flags);
else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
set_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
} else
set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
else {
clear_bit(R5_ReadError, &sh->dev[i].flags);
clear_bit(R5_ReWrite, &sh->dev[i].flags);
if (!(set_bad
&& test_bit(In_sync, &rdev->flags)
&& rdev_set_badblocks(
rdev, sh->sector, STRIPE_SECTORS, 0)))
md_error(conf->mddev, rdev);
}
}
rdev_dec_pending(rdev, conf->mddev);
bio_reset(bi);
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
static void raid5_end_write_request(struct bio *bi)
{
struct stripe_head *sh = bi->bi_private;
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks, i;
struct md_rdev *uninitialized_var(rdev);
sector_t first_bad;
int bad_sectors;
int replacement = 0;
for (i = 0 ; i < disks; i++) {
if (bi == &sh->dev[i].req) {
rdev = conf->disks[i].rdev;
break;
}
if (bi == &sh->dev[i].rreq) {
rdev = conf->disks[i].replacement;
if (rdev)
replacement = 1;
else
/* rdev was removed and 'replacement'
* replaced it. rdev is not removed
* until all requests are finished.
*/
rdev = conf->disks[i].rdev;
break;
}
}
pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
(unsigned long long)sh->sector, i, atomic_read(&sh->count),
bi->bi_status);
if (i == disks) {
bio_reset(bi);
BUG();
return;
}
if (replacement) {
if (bi->bi_status)
md_error(conf->mddev, rdev);
else if (is_badblock(rdev, sh->sector,
STRIPE_SECTORS,
&first_bad, &bad_sectors))
set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
} else {
if (bi->bi_status) {
set_bit(STRIPE_DEGRADED, &sh->state);
set_bit(WriteErrorSeen, &rdev->flags);
set_bit(R5_WriteError, &sh->dev[i].flags);
if (!test_and_set_bit(WantReplacement, &rdev->flags))
set_bit(MD_RECOVERY_NEEDED,
&rdev->mddev->recovery);
} else if (is_badblock(rdev, sh->sector,
STRIPE_SECTORS,
&first_bad, &bad_sectors)) {
set_bit(R5_MadeGood, &sh->dev[i].flags);
if (test_bit(R5_ReadError, &sh->dev[i].flags))
/* That was a successful write so make
* sure it looks like we already did
* a re-write.
*/
set_bit(R5_ReWrite, &sh->dev[i].flags);
}
}
rdev_dec_pending(rdev, conf->mddev);
if (sh->batch_head && bi->bi_status && !replacement)
set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
bio_reset(bi);
if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
clear_bit(R5_LOCKED, &sh->dev[i].flags);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
if (sh->batch_head && sh != sh->batch_head)
raid5_release_stripe(sh->batch_head);
}
static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
{
char b[BDEVNAME_SIZE];
struct r5conf *conf = mddev->private;
unsigned long flags;
pr_debug("raid456: error called\n");
spin_lock_irqsave(&conf->device_lock, flags);
set_bit(Faulty, &rdev->flags);
clear_bit(In_sync, &rdev->flags);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irqrestore(&conf->device_lock, flags);
set_bit(MD_RECOVERY_INTR, &mddev->recovery);
set_bit(Blocked, &rdev->flags);
set_mask_bits(&mddev->sb_flags, 0,
BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
"md/raid:%s: Operation continuing on %d devices.\n",
mdname(mddev),
bdevname(rdev->bdev, b),
mdname(mddev),
conf->raid_disks - mddev->degraded);
r5c_update_on_rdev_error(mddev, rdev);
}
/*
* Input: a 'big' sector number,
* Output: index of the data and parity disk, and the sector # in them.
*/
sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
int previous, int *dd_idx,
struct stripe_head *sh)
{
sector_t stripe, stripe2;
sector_t chunk_number;
unsigned int chunk_offset;
int pd_idx, qd_idx;
int ddf_layout = 0;
sector_t new_sector;
int algorithm = previous ? conf->prev_algo
: conf->algorithm;
int sectors_per_chunk = previous ? conf->prev_chunk_sectors
: conf->chunk_sectors;
int raid_disks = previous ? conf->previous_raid_disks
: conf->raid_disks;
int data_disks = raid_disks - conf->max_degraded;
/* First compute the information on this sector */
/*
* Compute the chunk number and the sector offset inside the chunk
*/
chunk_offset = sector_div(r_sector, sectors_per_chunk);
chunk_number = r_sector;
/*
* Compute the stripe number
*/
stripe = chunk_number;
*dd_idx = sector_div(stripe, data_disks);
stripe2 = stripe;
/*
* Select the parity disk based on the user selected algorithm.
*/
pd_idx = qd_idx = -1;
switch(conf->level) {
case 4:
pd_idx = data_disks;
break;
case 5:
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
pd_idx = data_disks - sector_div(stripe2, raid_disks);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
break;
case ALGORITHM_LEFT_SYMMETRIC:
pd_idx = data_disks - sector_div(stripe2, raid_disks);
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
break;
case ALGORITHM_PARITY_0:
pd_idx = 0;
(*dd_idx)++;
break;
case ALGORITHM_PARITY_N:
pd_idx = data_disks;
break;
default:
BUG();
}
break;
case 6:
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
break;
case ALGORITHM_LEFT_SYMMETRIC:
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = (pd_idx + 1) % raid_disks;
*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
pd_idx = sector_div(stripe2, raid_disks);
qd_idx = (pd_idx + 1) % raid_disks;
*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
break;
case ALGORITHM_PARITY_0:
pd_idx = 0;
qd_idx = 1;
(*dd_idx) += 2;
break;
case ALGORITHM_PARITY_N:
pd_idx = data_disks;
qd_idx = data_disks + 1;
break;
case ALGORITHM_ROTATING_ZERO_RESTART:
/* Exactly the same as RIGHT_ASYMMETRIC, but or
* of blocks for computing Q is different.
*/
pd_idx = sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
ddf_layout = 1;
break;
case ALGORITHM_ROTATING_N_RESTART:
/* Same a left_asymmetric, by first stripe is
* D D D P Q rather than
* Q D D D P
*/
stripe2 += 1;
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = pd_idx + 1;
if (pd_idx == raid_disks-1) {
(*dd_idx)++; /* Q D D D P */
qd_idx = 0;
} else if (*dd_idx >= pd_idx)
(*dd_idx) += 2; /* D D P Q D */
ddf_layout = 1;
break;
case ALGORITHM_ROTATING_N_CONTINUE:
/* Same as left_symmetric but Q is before P */
pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
ddf_layout = 1;
break;
case ALGORITHM_LEFT_ASYMMETRIC_6:
/* RAID5 left_asymmetric, with Q on last device */
pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
qd_idx = raid_disks - 1;
break;
case ALGORITHM_RIGHT_ASYMMETRIC_6:
pd_idx = sector_div(stripe2, raid_disks-1);
if (*dd_idx >= pd_idx)
(*dd_idx)++;
qd_idx = raid_disks - 1;
break;
case ALGORITHM_LEFT_SYMMETRIC_6:
pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
qd_idx = raid_disks - 1;
break;
case ALGORITHM_RIGHT_SYMMETRIC_6:
pd_idx = sector_div(stripe2, raid_disks-1);
*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
qd_idx = raid_disks - 1;
break;
case ALGORITHM_PARITY_0_6:
pd_idx = 0;
(*dd_idx)++;
qd_idx = raid_disks - 1;
break;
default:
BUG();
}
break;
}
if (sh) {
sh->pd_idx = pd_idx;
sh->qd_idx = qd_idx;
sh->ddf_layout = ddf_layout;
}
/*
* Finally, compute the new sector number
*/
new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
return new_sector;
}
sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
{
struct r5conf *conf = sh->raid_conf;
int raid_disks = sh->disks;
int data_disks = raid_disks - conf->max_degraded;
sector_t new_sector = sh->sector, check;
int sectors_per_chunk = previous ? conf->prev_chunk_sectors
: conf->chunk_sectors;
int algorithm = previous ? conf->prev_algo
: conf->algorithm;
sector_t stripe;
int chunk_offset;
sector_t chunk_number;
int dummy1, dd_idx = i;
sector_t r_sector;
struct stripe_head sh2;
chunk_offset = sector_div(new_sector, sectors_per_chunk);
stripe = new_sector;
if (i == sh->pd_idx)
return 0;
switch(conf->level) {
case 4: break;
case 5:
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
if (i > sh->pd_idx)
i--;
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 1);
break;
case ALGORITHM_PARITY_0:
i -= 1;
break;
case ALGORITHM_PARITY_N:
break;
default:
BUG();
}
break;
case 6:
if (i == sh->qd_idx)
return 0; /* It is the Q disk */
switch (algorithm) {
case ALGORITHM_LEFT_ASYMMETRIC:
case ALGORITHM_RIGHT_ASYMMETRIC:
case ALGORITHM_ROTATING_ZERO_RESTART:
case ALGORITHM_ROTATING_N_RESTART:
if (sh->pd_idx == raid_disks-1)
i--; /* Q D D D P */
else if (i > sh->pd_idx)
i -= 2; /* D D P Q D */
break;
case ALGORITHM_LEFT_SYMMETRIC:
case ALGORITHM_RIGHT_SYMMETRIC:
if (sh->pd_idx == raid_disks-1)
i--; /* Q D D D P */
else {
/* D D P Q D */
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 2);
}
break;
case ALGORITHM_PARITY_0:
i -= 2;
break;
case ALGORITHM_PARITY_N:
break;
case ALGORITHM_ROTATING_N_CONTINUE:
/* Like left_symmetric, but P is before Q */
if (sh->pd_idx == 0)
i--; /* P D D D Q */
else {
/* D D Q P D */
if (i < sh->pd_idx)
i += raid_disks;
i -= (sh->pd_idx + 1);
}
break;
case ALGORITHM_LEFT_ASYMMETRIC_6:
case ALGORITHM_RIGHT_ASYMMETRIC_6:
if (i > sh->pd_idx)
i--;
break;
case ALGORITHM_LEFT_SYMMETRIC_6:
case ALGORITHM_RIGHT_SYMMETRIC_6:
if (i < sh->pd_idx)
i += data_disks + 1;
i -= (sh->pd_idx + 1);
break;
case ALGORITHM_PARITY_0_6:
i -= 1;
break;
default:
BUG();
}
break;
}
chunk_number = stripe * data_disks + i;
r_sector = chunk_number * sectors_per_chunk + chunk_offset;
check = raid5_compute_sector(conf, r_sector,
previous, &dummy1, &sh2);
if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
|| sh2.qd_idx != sh->qd_idx) {
pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
mdname(conf->mddev));
return 0;
}
return r_sector;
}
/*
* There are cases where we want handle_stripe_dirtying() and
* schedule_reconstruction() to delay towrite to some dev of a stripe.
*
* This function checks whether we want to delay the towrite. Specifically,
* we delay the towrite when:
*
* 1. degraded stripe has a non-overwrite to the missing dev, AND this
* stripe has data in journal (for other devices).
*
* In this case, when reading data for the non-overwrite dev, it is
* necessary to handle complex rmw of write back cache (prexor with
* orig_page, and xor with page). To keep read path simple, we would
* like to flush data in journal to RAID disks first, so complex rmw
* is handled in the write patch (handle_stripe_dirtying).
*
* 2. when journal space is critical (R5C_LOG_CRITICAL=1)
*
* It is important to be able to flush all stripes in raid5-cache.
* Therefore, we need reserve some space on the journal device for
* these flushes. If flush operation includes pending writes to the
* stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
* for the flush out. If we exclude these pending writes from flush
* operation, we only need (conf->max_degraded + 1) pages per stripe.
* Therefore, excluding pending writes in these cases enables more
* efficient use of the journal device.
*
* Note: To make sure the stripe makes progress, we only delay
* towrite for stripes with data already in journal (injournal > 0).
* When LOG_CRITICAL, stripes with injournal == 0 will be sent to
* no_space_stripes list.
*
* 3. during journal failure
* In journal failure, we try to flush all cached data to raid disks
* based on data in stripe cache. The array is read-only to upper
* layers, so we would skip all pending writes.
*
*/
static inline bool delay_towrite(struct r5conf *conf,
struct r5dev *dev,
struct stripe_head_state *s)
{
/* case 1 above */
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
!test_bit(R5_Insync, &dev->flags) && s->injournal)
return true;
/* case 2 above */
if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
s->injournal > 0)
return true;
/* case 3 above */
if (s->log_failed && s->injournal)
return true;
return false;
}
static void
schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
int rcw, int expand)
{
int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
struct r5conf *conf = sh->raid_conf;
int level = conf->level;
if (rcw) {
/*
* In some cases, handle_stripe_dirtying initially decided to
* run rmw and allocates extra page for prexor. However, rcw is
* cheaper later on. We need to free the extra page now,
* because we won't be able to do that in ops_complete_prexor().
*/
r5c_release_extra_page(sh);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (dev->towrite && !delay_towrite(conf, dev, s)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantdrain, &dev->flags);
if (!expand)
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
} else if (test_bit(R5_InJournal, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
}
}
/* if we are not expanding this is a proper write request, and
* there will be bios with new data to be drained into the
* stripe cache
*/
if (!expand) {
if (!s->locked)
/* False alarm, nothing to do */
return;
sh->reconstruct_state = reconstruct_state_drain_run;
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
} else
sh->reconstruct_state = reconstruct_state_run;
set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
if (s->locked + conf->max_degraded == disks)
if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
atomic_inc(&conf->pending_full_writes);
} else {
BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
BUG_ON(level == 6 &&
(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (i == pd_idx || i == qd_idx)
continue;
if (dev->towrite &&
(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
set_bit(R5_Wantdrain, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
} else if (test_bit(R5_InJournal, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
}
}
if (!s->locked)
/* False alarm - nothing to do */
return;
sh->reconstruct_state = reconstruct_state_prexor_drain_run;
set_bit(STRIPE_OP_PREXOR, &s->ops_request);
set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
}
/* keep the parity disk(s) locked while asynchronous operations
* are in flight
*/
set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
s->locked++;
if (level == 6) {
int qd_idx = sh->qd_idx;
struct r5dev *dev = &sh->dev[qd_idx];
set_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_UPTODATE, &dev->flags);
s->locked++;
}
if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
!test_bit(STRIPE_FULL_WRITE, &sh->state) &&
test_bit(R5_Insync, &sh->dev[pd_idx].flags))
set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
__func__, (unsigned long long)sh->sector,
s->locked, s->ops_request);
}
/*
* Each stripe/dev can have one or more bion attached.
* toread/towrite point to the first in a chain.
* The bi_next chain must be in order.
*/
static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
int forwrite, int previous)
{
struct bio **bip;
struct r5conf *conf = sh->raid_conf;
int firstwrite=0;
pr_debug("adding bi b#%llu to stripe s#%llu\n",
(unsigned long long)bi->bi_iter.bi_sector,
(unsigned long long)sh->sector);
spin_lock_irq(&sh->stripe_lock);
/* Don't allow new IO added to stripes in batch list */
if (sh->batch_head)
goto overlap;
if (forwrite) {
bip = &sh->dev[dd_idx].towrite;
if (*bip == NULL)
firstwrite = 1;
} else
bip = &sh->dev[dd_idx].toread;
while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
goto overlap;
bip = & (*bip)->bi_next;
}
if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
goto overlap;
if (forwrite && raid5_has_ppl(conf)) {
/*
* With PPL only writes to consecutive data chunks within a
* stripe are allowed because for a single stripe_head we can
* only have one PPL entry at a time, which describes one data
* range. Not really an overlap, but wait_for_overlap can be
* used to handle this.
*/
sector_t sector;
sector_t first = 0;
sector_t last = 0;
int count = 0;
int i;
for (i = 0; i < sh->disks; i++) {
if (i != sh->pd_idx &&
(i == dd_idx || sh->dev[i].towrite)) {
sector = sh->dev[i].sector;
if (count == 0 || sector < first)
first = sector;
if (sector > last)
last = sector;
count++;
}
}
if (first + conf->chunk_sectors * (count - 1) != last)
goto overlap;
}
if (!forwrite || previous)
clear_bit(STRIPE_BATCH_READY, &sh->state);
BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
if (*bip)
bi->bi_next = *bip;
*bip = bi;
bio_inc_remaining(bi);
md_write_inc(conf->mddev, bi);
if (forwrite) {
/* check if page is covered */
sector_t sector = sh->dev[dd_idx].sector;
for (bi=sh->dev[dd_idx].towrite;
sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
bi && bi->bi_iter.bi_sector <= sector;
bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
if (bio_end_sector(bi) >= sector)
sector = bio_end_sector(bi);
}
if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
sh->overwrite_disks++;
}
pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
(unsigned long long)(*bip)->bi_iter.bi_sector,
(unsigned long long)sh->sector, dd_idx);
if (conf->mddev->bitmap && firstwrite) {
/* Cannot hold spinlock over bitmap_startwrite,
* but must ensure this isn't added to a batch until
* we have added to the bitmap and set bm_seq.
* So set STRIPE_BITMAP_PENDING to prevent
* batching.
* If multiple add_stripe_bio() calls race here they
* much all set STRIPE_BITMAP_PENDING. So only the first one
* to complete "bitmap_startwrite" gets to set
* STRIPE_BIT_DELAY. This is important as once a stripe
* is added to a batch, STRIPE_BIT_DELAY cannot be changed
* any more.
*/
set_bit(STRIPE_BITMAP_PENDING, &sh->state);
spin_unlock_irq(&sh->stripe_lock);
bitmap_startwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0);
spin_lock_irq(&sh->stripe_lock);
clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
if (!sh->batch_head) {
sh->bm_seq = conf->seq_flush+1;
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
}
spin_unlock_irq(&sh->stripe_lock);
if (stripe_can_batch(sh))
stripe_add_to_batch_list(conf, sh);
return 1;
overlap:
set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
spin_unlock_irq(&sh->stripe_lock);
return 0;
}
static void end_reshape(struct r5conf *conf);
static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
struct stripe_head *sh)
{
int sectors_per_chunk =
previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
int dd_idx;
int chunk_offset = sector_div(stripe, sectors_per_chunk);
int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
raid5_compute_sector(conf,
stripe * (disks - conf->max_degraded)
*sectors_per_chunk + chunk_offset,
previous,
&dd_idx, sh);
}
static void
handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s, int disks)
{
int i;
BUG_ON(sh->batch_head);
for (i = disks; i--; ) {
struct bio *bi;
int bitmap_end = 0;
if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
struct md_rdev *rdev;
rcu_read_lock();
rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev && test_bit(In_sync, &rdev->flags) &&
!test_bit(Faulty, &rdev->flags))
atomic_inc(&rdev->nr_pending);
else
rdev = NULL;
rcu_read_unlock();
if (rdev) {
if (!rdev_set_badblocks(
rdev,
sh->sector,
STRIPE_SECTORS, 0))
md_error(conf->mddev, rdev);
rdev_dec_pending(rdev, conf->mddev);
}
}
spin_lock_irq(&sh->stripe_lock);
/* fail all writes first */
bi = sh->dev[i].towrite;
sh->dev[i].towrite = NULL;
sh->overwrite_disks = 0;
spin_unlock_irq(&sh->stripe_lock);
if (bi)
bitmap_end = 1;
log_stripe_write_finished(sh);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
md_write_end(conf->mddev);
bio_io_error(bi);
bi = nextbi;
}
if (bitmap_end)
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0, 0);
bitmap_end = 0;
/* and fail all 'written' */
bi = sh->dev[i].written;
sh->dev[i].written = NULL;
if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
sh->dev[i].page = sh->dev[i].orig_page;
}
if (bi) bitmap_end = 1;
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
md_write_end(conf->mddev);
bio_io_error(bi);
bi = bi2;
}
/* fail any reads if this device is non-operational and
* the data has not reached the cache yet.
*/
if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
s->failed > conf->max_degraded &&
(!test_bit(R5_Insync, &sh->dev[i].flags) ||
test_bit(R5_ReadError, &sh->dev[i].flags))) {
spin_lock_irq(&sh->stripe_lock);
bi = sh->dev[i].toread;
sh->dev[i].toread = NULL;
spin_unlock_irq(&sh->stripe_lock);
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
wake_up(&conf->wait_for_overlap);
if (bi)
s->to_read--;
while (bi && bi->bi_iter.bi_sector <
sh->dev[i].sector + STRIPE_SECTORS) {
struct bio *nextbi =
r5_next_bio(bi, sh->dev[i].sector);
bio_io_error(bi);
bi = nextbi;
}
}
if (bitmap_end)
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS, 0, 0);
/* If we were in the middle of a write the parity block might
* still be locked - so just clear all R5_LOCKED flags
*/
clear_bit(R5_LOCKED, &sh->dev[i].flags);
}
s->to_write = 0;
s->written = 0;
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
}
static void
handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s)
{
int abort = 0;
int i;
BUG_ON(sh->batch_head);
clear_bit(STRIPE_SYNCING, &sh->state);
if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
wake_up(&conf->wait_for_overlap);
s->syncing = 0;
s->replacing = 0;
/* There is nothing more to do for sync/check/repair.
* Don't even need to abort as that is handled elsewhere
* if needed, and not always wanted e.g. if there is a known
* bad block here.
* For recover/replace we need to record a bad block on all
* non-sync devices, or abort the recovery
*/
if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
/* During recovery devices cannot be removed, so
* locking and refcounting of rdevs is not needed
*/
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_bit(In_sync, &rdev->flags)
&& !rdev_set_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0))
abort = 1;
rdev = rcu_dereference(conf->disks[i].replacement);
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_bit(In_sync, &rdev->flags)
&& !rdev_set_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0))
abort = 1;
}
rcu_read_unlock();
if (abort)
conf->recovery_disabled =
conf->mddev->recovery_disabled;
}
md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
}
static int want_replace(struct stripe_head *sh, int disk_idx)
{
struct md_rdev *rdev;
int rv = 0;
rcu_read_lock();
rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
if (rdev
&& !test_bit(Faulty, &rdev->flags)
&& !test_bit(In_sync, &rdev->flags)
&& (rdev->recovery_offset <= sh->sector
|| rdev->mddev->recovery_cp <= sh->sector))
rv = 1;
rcu_read_unlock();
return rv;
}
static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
int disk_idx, int disks)
{
struct r5dev *dev = &sh->dev[disk_idx];
struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
&sh->dev[s->failed_num[1]] };
int i;
if (test_bit(R5_LOCKED, &dev->flags) ||
test_bit(R5_UPTODATE, &dev->flags))
/* No point reading this as we already have it or have
* decided to get it.
*/
return 0;
if (dev->toread ||
(dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
/* We need this block to directly satisfy a request */
return 1;
if (s->syncing || s->expanding ||
(s->replacing && want_replace(sh, disk_idx)))
/* When syncing, or expanding we read everything.
* When replacing, we need the replaced block.
*/
return 1;
if ((s->failed >= 1 && fdev[0]->toread) ||
(s->failed >= 2 && fdev[1]->toread))
/* If we want to read from a failed device, then
* we need to actually read every other device.
*/
return 1;
/* Sometimes neither read-modify-write nor reconstruct-write
* cycles can work. In those cases we read every block we
* can. Then the parity-update is certain to have enough to
* work with.
* This can only be a problem when we need to write something,
* and some device has failed. If either of those tests
* fail we need look no further.
*/
if (!s->failed || !s->to_write)
return 0;
if (test_bit(R5_Insync, &dev->flags) &&
!test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
/* Pre-reads at not permitted until after short delay
* to gather multiple requests. However if this
* device is no Insync, the block could only be computed
* and there is no need to delay that.
*/
return 0;
for (i = 0; i < s->failed && i < 2; i++) {
if (fdev[i]->towrite &&
!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
!test_bit(R5_OVERWRITE, &fdev[i]->flags))
/* If we have a partial write to a failed
* device, then we will need to reconstruct
* the content of that device, so all other
* devices must be read.
*/
return 1;
}
/* If we are forced to do a reconstruct-write, either because
* the current RAID6 implementation only supports that, or
* because parity cannot be trusted and we are currently
* recovering it, there is extra need to be careful.
* If one of the devices that we would need to read, because
* it is not being overwritten (and maybe not written at all)
* is missing/faulty, then we need to read everything we can.
*/
if (sh->raid_conf->level != 6 &&
sh->raid_conf->rmw_level != PARITY_DISABLE_RMW &&
sh->sector < sh->raid_conf->mddev->recovery_cp)
/* reconstruct-write isn't being forced */
return 0;
for (i = 0; i < s->failed && i < 2; i++) {
if (s->failed_num[i] != sh->pd_idx &&
s->failed_num[i] != sh->qd_idx &&
!test_bit(R5_UPTODATE, &fdev[i]->flags) &&
!test_bit(R5_OVERWRITE, &fdev[i]->flags))
return 1;
}
return 0;
}
/* fetch_block - checks the given member device to see if its data needs
* to be read or computed to satisfy a request.
*
* Returns 1 when no more member devices need to be checked, otherwise returns
* 0 to tell the loop in handle_stripe_fill to continue
*/
static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
int disk_idx, int disks)
{
struct r5dev *dev = &sh->dev[disk_idx];
/* is the data in this block needed, and can we get it? */
if (need_this_block(sh, s, disk_idx, disks)) {
/* we would like to get this block, possibly by computing it,
* otherwise read it if the backing disk is insync
*/
BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
BUG_ON(test_bit(R5_Wantread, &dev->flags));
BUG_ON(sh->batch_head);
/*
* In the raid6 case if the only non-uptodate disk is P
* then we already trusted P to compute the other failed
* drives. It is safe to compute rather than re-read P.
* In other cases we only compute blocks from failed
* devices, otherwise check/repair might fail to detect
* a real inconsistency.
*/
if ((s->uptodate == disks - 1) &&
((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
(s->failed && (disk_idx == s->failed_num[0] ||
disk_idx == s->failed_num[1])))) {
/* have disk failed, and we're requested to fetch it;
* do compute it
*/
pr_debug("Computing stripe %llu block %d\n",
(unsigned long long)sh->sector, disk_idx);
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute, &dev->flags);
sh->ops.target = disk_idx;
sh->ops.target2 = -1; /* no 2nd target */
s->req_compute = 1;
/* Careful: from this point on 'uptodate' is in the eye
* of raid_run_ops which services 'compute' operations
* before writes. R5_Wantcompute flags a block that will
* be R5_UPTODATE by the time it is needed for a
* subsequent operation.
*/
s->uptodate++;
return 1;
} else if (s->uptodate == disks-2 && s->failed >= 2) {
/* Computing 2-failure is *very* expensive; only
* do it if failed >= 2
*/
int other;
for (other = disks; other--; ) {
if (other == disk_idx)
continue;
if (!test_bit(R5_UPTODATE,
&sh->dev[other].flags))
break;
}
BUG_ON(other < 0);
pr_debug("Computing stripe %llu blocks %d,%d\n",
(unsigned long long)sh->sector,
disk_idx, other);
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
set_bit(R5_Wantcompute, &sh->dev[other].flags);
sh->ops.target = disk_idx;
sh->ops.target2 = other;
s->uptodate += 2;
s->req_compute = 1;
return 1;
} else if (test_bit(R5_Insync, &dev->flags)) {
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
pr_debug("Reading block %d (sync=%d)\n",
disk_idx, s->syncing);
}
}
return 0;
}
/**
* handle_stripe_fill - read or compute data to satisfy pending requests.
*/
static void handle_stripe_fill(struct stripe_head *sh,
struct stripe_head_state *s,
int disks)
{
int i;
/* look for blocks to read/compute, skip this if a compute
* is already in flight, or if the stripe contents are in the
* midst of changing due to a write
*/
if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
!sh->reconstruct_state) {
/*
* For degraded stripe with data in journal, do not handle
* read requests yet, instead, flush the stripe to raid
* disks first, this avoids handling complex rmw of write
* back cache (prexor with orig_page, and then xor with
* page) in the read path
*/
if (s->injournal && s->failed) {
if (test_bit(STRIPE_R5C_CACHING, &sh->state))
r5c_make_stripe_write_out(sh);
goto out;
}
for (i = disks; i--; )
if (fetch_block(sh, s, i, disks))
break;
}
out:
set_bit(STRIPE_HANDLE, &sh->state);
}
static void break_stripe_batch_list(struct stripe_head *head_sh,
unsigned long handle_flags);
/* handle_stripe_clean_event
* any written block on an uptodate or failed drive can be returned.
* Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
* never LOCKED, so we don't need to test 'failed' directly.
*/
static void handle_stripe_clean_event(struct r5conf *conf,
struct stripe_head *sh, int disks)
{
int i;
struct r5dev *dev;
int discard_pending = 0;
struct stripe_head *head_sh = sh;
bool do_endio = false;
for (i = disks; i--; )
if (sh->dev[i].written) {
dev = &sh->dev[i];
if (!test_bit(R5_LOCKED, &dev->flags) &&
(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Discard, &dev->flags) ||
test_bit(R5_SkipCopy, &dev->flags))) {
/* We can return any write requests */
struct bio *wbi, *wbi2;
pr_debug("Return write for disc %d\n", i);
if (test_and_clear_bit(R5_Discard, &dev->flags))
clear_bit(R5_UPTODATE, &dev->flags);
if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
}
do_endio = true;
returnbi:
dev->page = dev->orig_page;
wbi = dev->written;
dev->written = NULL;
while (wbi && wbi->bi_iter.bi_sector <
dev->sector + STRIPE_SECTORS) {
wbi2 = r5_next_bio(wbi, dev->sector);
md_write_end(conf->mddev);
bio_endio(wbi);
wbi = wbi2;
}
bitmap_endwrite(conf->mddev->bitmap, sh->sector,
STRIPE_SECTORS,
!test_bit(STRIPE_DEGRADED, &sh->state),
0);
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head,
batch_list);
if (sh != head_sh) {
dev = &sh->dev[i];
goto returnbi;
}
}
sh = head_sh;
dev = &sh->dev[i];
} else if (test_bit(R5_Discard, &dev->flags))
discard_pending = 1;
}
log_stripe_write_finished(sh);
if (!discard_pending &&
test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
int hash;
clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
if (sh->qd_idx >= 0) {
clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
}
/* now that discard is done we can proceed with any sync */
clear_bit(STRIPE_DISCARD, &sh->state);
/*
* SCSI discard will change some bio fields and the stripe has
* no updated data, so remove it from hash list and the stripe
* will be reinitialized
*/
unhash:
hash = sh->hash_lock_index;
spin_lock_irq(conf->hash_locks + hash);
remove_hash(sh);
spin_unlock_irq(conf->hash_locks + hash);
if (head_sh->batch_head) {
sh = list_first_entry(&sh->batch_list,
struct stripe_head, batch_list);
if (sh != head_sh)
goto unhash;
}
sh = head_sh;
if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
set_bit(STRIPE_HANDLE, &sh->state);
}
if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
if (atomic_dec_and_test(&conf->pending_full_writes))
md_wakeup_thread(conf->mddev->thread);
if (head_sh->batch_head && do_endio)
break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
}
/*
* For RMW in write back cache, we need extra page in prexor to store the
* old data. This page is stored in dev->orig_page.
*
* This function checks whether we have data for prexor. The exact logic
* is:
* R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
*/
static inline bool uptodate_for_rmw(struct r5dev *dev)
{
return (test_bit(R5_UPTODATE, &dev->flags)) &&
(!test_bit(R5_InJournal, &dev->flags) ||
test_bit(R5_OrigPageUPTDODATE, &dev->flags));
}
static int handle_stripe_dirtying(struct r5conf *conf,
struct stripe_head *sh,
struct stripe_head_state *s,
int disks)
{
int rmw = 0, rcw = 0, i;
sector_t recovery_cp = conf->mddev->recovery_cp;
/* Check whether resync is now happening or should start.
* If yes, then the array is dirty (after unclean shutdown or
* initial creation), so parity in some stripes might be inconsistent.
* In this case, we need to always do reconstruct-write, to ensure
* that in case of drive failure or read-error correction, we
* generate correct data from the parity.
*/
if (conf->rmw_level == PARITY_DISABLE_RMW ||
(recovery_cp < MaxSector && sh->sector >= recovery_cp &&
s->failed == 0)) {
/* Calculate the real rcw later - for now make it
* look like rcw is cheaper
*/
rcw = 1; rmw = 2;
pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
conf->rmw_level, (unsigned long long)recovery_cp,
(unsigned long long)sh->sector);
} else for (i = disks; i--; ) {
/* would I have to read this buffer for read_modify_write */
struct r5dev *dev = &sh->dev[i];
if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
i == sh->pd_idx || i == sh->qd_idx ||
test_bit(R5_InJournal, &dev->flags)) &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(uptodate_for_rmw(dev) ||
test_bit(R5_Wantcompute, &dev->flags))) {
if (test_bit(R5_Insync, &dev->flags))
rmw++;
else
rmw += 2*disks; /* cannot read it */
}
/* Would I have to read this buffer for reconstruct_write */
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
i != sh->pd_idx && i != sh->qd_idx &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
if (test_bit(R5_Insync, &dev->flags))
rcw++;
else
rcw += 2*disks;
}
}
pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
(unsigned long long)sh->sector, sh->state, rmw, rcw);
set_bit(STRIPE_HANDLE, &sh->state);
if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
/* prefer read-modify-write, but need to get some data */
if (conf->mddev->queue)
blk_add_trace_msg(conf->mddev->queue,
"raid5 rmw %llu %d",
(unsigned long long)sh->sector, rmw);
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_InJournal, &dev->flags) &&
dev->page == dev->orig_page &&
!test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
/* alloc page for prexor */
struct page *p = alloc_page(GFP_NOIO);
if (p) {
dev->orig_page = p;
continue;
}
/*
* alloc_page() failed, try use
* disk_info->extra_page
*/
if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
&conf->cache_state)) {
r5c_use_extra_page(sh);
break;
}
/* extra_page in use, add to delayed_list */
set_bit(STRIPE_DELAYED, &sh->state);
s->waiting_extra_page = 1;
return -EAGAIN;
}
}
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
i == sh->pd_idx || i == sh->qd_idx ||
test_bit(R5_InJournal, &dev->flags)) &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(uptodate_for_rmw(dev) ||
test_bit(R5_Wantcompute, &dev->flags)) &&
test_bit(R5_Insync, &dev->flags)) {
if (test_bit(STRIPE_PREREAD_ACTIVE,
&sh->state)) {
pr_debug("Read_old block %d for r-m-w\n",
i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
}
if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
/* want reconstruct write, but need to get some data */
int qread =0;
rcw = 0;
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (!test_bit(R5_OVERWRITE, &dev->flags) &&
i != sh->pd_idx && i != sh->qd_idx &&
!test_bit(R5_LOCKED, &dev->flags) &&
!(test_bit(R5_UPTODATE, &dev->flags) ||
test_bit(R5_Wantcompute, &dev->flags))) {
rcw++;
if (test_bit(R5_Insync, &dev->flags) &&
test_bit(STRIPE_PREREAD_ACTIVE,
&sh->state)) {
pr_debug("Read_old block "
"%d for Reconstruct\n", i);
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantread, &dev->flags);
s->locked++;
qread++;
} else {
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
}
}
if (rcw && conf->mddev->queue)
blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
(unsigned long long)sh->sector,
rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
}
if (rcw > disks && rmw > disks &&
!test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
set_bit(STRIPE_DELAYED, &sh->state);
/* now if nothing is locked, and if we have enough data,
* we can start a write request
*/
/* since handle_stripe can be called at any time we need to handle the
* case where a compute block operation has been submitted and then a
* subsequent call wants to start a write request. raid_run_ops only
* handles the case where compute block and reconstruct are requested
* simultaneously. If this is not the case then new writes need to be
* held off until the compute completes.
*/
if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
(s->locked == 0 && (rcw == 0 || rmw == 0) &&
!test_bit(STRIPE_BIT_DELAY, &sh->state)))
schedule_reconstruction(sh, s, rcw == 0, 0);
return 0;
}
static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s, int disks)
{
struct r5dev *dev = NULL;
BUG_ON(sh->batch_head);
set_bit(STRIPE_HANDLE, &sh->state);
switch (sh->check_state) {
case check_state_idle:
/* start a new check operation if there are no failures */
if (s->failed == 0) {
BUG_ON(s->uptodate != disks);
sh->check_state = check_state_run;
set_bit(STRIPE_OP_CHECK, &s->ops_request);
clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
s->uptodate--;
break;
}
dev = &sh->dev[s->failed_num[0]];
/* fall through */
case check_state_compute_result:
sh->check_state = check_state_idle;
if (!dev)
dev = &sh->dev[sh->pd_idx];
/* check that a write has not made the stripe insync */
if (test_bit(STRIPE_INSYNC, &sh->state))
break;
/* either failed parity check, or recovery is happening */
BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
BUG_ON(s->uptodate != disks);
set_bit(R5_LOCKED, &dev->flags);
s->locked++;
set_bit(R5_Wantwrite, &dev->flags);
clear_bit(STRIPE_DEGRADED, &sh->state);
set_bit(STRIPE_INSYNC, &sh->state);
break;
case check_state_run:
break; /* we will be called again upon completion */
case check_state_check_result:
sh->check_state = check_state_idle;
/* if a failure occurred during the check operation, leave
* STRIPE_INSYNC not set and let the stripe be handled again
*/
if (s->failed)
break;
/* handle a successful check operation, if parity is correct
* we are done. Otherwise update the mismatch count and repair
* parity if !MD_RECOVERY_CHECK
*/
if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
/* parity is correct (on disc,
* not in buffer any more)
*/
set_bit(STRIPE_INSYNC, &sh->state);
else {
atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
/* don't try to repair!! */
set_bit(STRIPE_INSYNC, &sh->state);
pr_warn_ratelimited("%s: mismatch sector in range "
"%llu-%llu\n", mdname(conf->mddev),
(unsigned long long) sh->sector,
(unsigned long long) sh->sector +
STRIPE_SECTORS);
} else {
sh->check_state = check_state_compute_run;
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
set_bit(R5_Wantcompute,
&sh->dev[sh->pd_idx].flags);
sh->ops.target = sh->pd_idx;
sh->ops.target2 = -1;
s->uptodate++;
}
}
break;
case check_state_compute_run:
break;
default:
pr_err("%s: unknown check_state: %d sector: %llu\n",
__func__, sh->check_state,
(unsigned long long) sh->sector);
BUG();
}
}
static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
struct stripe_head_state *s,
int disks)
{
int pd_idx = sh->pd_idx;
int qd_idx = sh->qd_idx;
struct r5dev *dev;
BUG_ON(sh->batch_head);
set_bit(STRIPE_HANDLE, &sh->state);
BUG_ON(s->failed > 2);
/* Want to check and possibly repair P and Q.
* However there could be one 'failed' device, in which
* case we can only check one of them, possibly using the
* other to generate missing data
*/
switch (sh->check_state) {
case check_state_idle:
/* start a new check operation if there are < 2 failures */
if (s->failed == s->q_failed) {
/* The only possible failed device holds Q, so it
* makes sense to check P (If anything else were failed,
* we would have used P to recreate it).
*/
sh->check_state = check_state_run;
}
if (!s->q_failed && s->failed < 2) {
/* Q is not failed, and we didn't use it to generate
* anything, so it makes sense to check it
*/
if (sh->check_state == check_state_run)
sh->check_state = check_state_run_pq;
else
sh->check_state = check_state_run_q;
}
/* discard potentially stale zero_sum_result */
sh->ops.zero_sum_result = 0;
if (sh->check_state == check_state_run) {
/* async_xor_zero_sum destroys the contents of P */
clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
s->uptodate--;
}
if (sh->check_state >= check_state_run &&
sh->check_state <= check_state_run_pq) {
/* async_syndrome_zero_sum preserves P and Q, so
* no need to mark them !uptodate here
*/
set_bit(STRIPE_OP_CHECK, &s->ops_request);
break;
}
/* we have 2-disk failure */
BUG_ON(s->failed != 2);
/* fall through */
case check_state_compute_result:
sh->check_state = check_state_idle;
/* check that a write has not made the stripe insync */
if (test_bit(STRIPE_INSYNC, &sh->state))
break;
/* now write out any block on a failed drive,
* or P or Q if they were recomputed
*/
dev = NULL;
if (s->failed == 2) {
dev = &sh->dev[s->failed_num[1]];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (s->failed >= 1) {
dev = &sh->dev[s->failed_num[0]];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
dev = &sh->dev[pd_idx];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
dev = &sh->dev[qd_idx];
s->locked++;
set_bit(R5_LOCKED, &dev->flags);
set_bit(R5_Wantwrite, &dev->flags);
}
if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
"%s: disk%td not up to date\n",
mdname(conf->mddev),
dev - (struct r5dev *) &sh->dev)) {
clear_bit(R5_LOCKED, &dev->flags);
clear_bit(R5_Wantwrite, &dev->flags);
s->locked--;
}
clear_bit(STRIPE_DEGRADED, &sh->state);
set_bit(STRIPE_INSYNC, &sh->state);
break;
case check_state_run:
case check_state_run_q:
case check_state_run_pq:
break; /* we will be called again upon completion */
case check_state_check_result:
sh->check_state = check_state_idle;
/* handle a successful check operation, if parity is correct
* we are done. Otherwise update the mismatch count and repair
* parity if !MD_RECOVERY_CHECK
*/
if (sh->ops.zero_sum_result == 0) {
/* both parities are correct */
if (!s->failed)
set_bit(STRIPE_INSYNC, &sh->state);
else {
/* in contrast to the raid5 case we can validate
* parity, but still have a failure to write
* back
*/
sh->check_state = check_state_compute_result;
/* Returning at this point means that we may go
* off and bring p and/or q uptodate again so
* we make sure to check zero_sum_result again
* to verify if p or q need writeback
*/
}
} else {
atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
/* don't try to repair!! */
set_bit(STRIPE_INSYNC, &sh->state);
pr_warn_ratelimited("%s: mismatch sector in range "
"%llu-%llu\n", mdname(conf->mddev),
(unsigned long long) sh->sector,
(unsigned long long) sh->sector +
STRIPE_SECTORS);
} else {
int *target = &sh->ops.target;
sh->ops.target = -1;
sh->ops.target2 = -1;
sh->check_state = check_state_compute_run;
set_bit(STRIPE_COMPUTE_RUN, &sh->state);
set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
set_bit(R5_Wantcompute,
&sh->dev[pd_idx].flags);
*target = pd_idx;
target = &sh->ops.target2;
s->uptodate++;
}
if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
set_bit(R5_Wantcompute,
&sh->dev[qd_idx].flags);
*target = qd_idx;
s->uptodate++;
}
}
}
break;
case check_state_compute_run:
break;
default:
pr_warn("%s: unknown check_state: %d sector: %llu\n",
__func__, sh->check_state,
(unsigned long long) sh->sector);
BUG();
}
}
static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
{
int i;
/* We have read all the blocks in this stripe and now we need to
* copy some of them into a target stripe for expand.
*/
struct dma_async_tx_descriptor *tx = NULL;
BUG_ON(sh->batch_head);
clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
for (i = 0; i < sh->disks; i++)
if (i != sh->pd_idx && i != sh->qd_idx) {
int dd_idx, j;
struct stripe_head *sh2;
struct async_submit_ctl submit;
sector_t bn = raid5_compute_blocknr(sh, i, 1);
sector_t s = raid5_compute_sector(conf, bn, 0,
&dd_idx, NULL);
sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
if (sh2 == NULL)
/* so far only the early blocks of this stripe
* have been requested. When later blocks
* get requested, we will try again
*/
continue;
if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
/* must have already done this block */
raid5_release_stripe(sh2);
continue;
}
/* place all the copies on one channel */
init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
tx = async_memcpy(sh2->dev[dd_idx].page,
sh->dev[i].page, 0, 0, STRIPE_SIZE,
&submit);
set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
for (j = 0; j < conf->raid_disks; j++)
if (j != sh2->pd_idx &&
j != sh2->qd_idx &&
!test_bit(R5_Expanded, &sh2->dev[j].flags))
break;
if (j == conf->raid_disks) {
set_bit(STRIPE_EXPAND_READY, &sh2->state);
set_bit(STRIPE_HANDLE, &sh2->state);
}
raid5_release_stripe(sh2);
}
/* done submitting copies, wait for them to complete */
async_tx_quiesce(&tx);
}
/*
* handle_stripe - do things to a stripe.
*
* We lock the stripe by setting STRIPE_ACTIVE and then examine the
* state of various bits to see what needs to be done.
* Possible results:
* return some read requests which now have data
* return some write requests which are safely on storage
* schedule a read on some buffers
* schedule a write of some buffers
* return confirmation of parity correctness
*
*/
static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
{
struct r5conf *conf = sh->raid_conf;
int disks = sh->disks;
struct r5dev *dev;
int i;
int do_recovery = 0;
memset(s, 0, sizeof(*s));
s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
s->failed_num[0] = -1;
s->failed_num[1] = -1;
s->log_failed = r5l_log_disk_error(conf);
/* Now to look around and see what can be done */
rcu_read_lock();
for (i=disks; i--; ) {
struct md_rdev *rdev;
sector_t first_bad;
int bad_sectors;
int is_bad = 0;
dev = &sh->dev[i];
pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
i, dev->flags,
dev->toread, dev->towrite, dev->written);
/* maybe we can reply to a read
*
* new wantfill requests are only permitted while
* ops_complete_biofill is guaranteed to be inactive
*/
if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
!test_bit(STRIPE_BIOFILL_RUN, &sh->state))
set_bit(R5_Wantfill, &dev->flags);
/* now count some things */
if (test_bit(R5_LOCKED, &dev->flags))
s->locked++;
if (test_bit(R5_UPTODATE, &dev->flags))
s->uptodate++;
if (test_bit(R5_Wantcompute, &dev->flags)) {
s->compute++;
BUG_ON(s->compute > 2);
}
if (test_bit(R5_Wantfill, &dev->flags))
s->to_fill++;
else if (dev->toread)
s->to_read++;
if (dev->towrite) {
s->to_write++;
if (!test_bit(R5_OVERWRITE, &dev->flags))
s->non_overwrite++;
}
if (dev->written)
s->written++;
/* Prefer to use the replacement for reads, but only
* if it is recovered enough and has no bad blocks.
*/
rdev = rcu_dereference(conf->disks[i].replacement);
if (rdev && !test_bit(Faulty, &rdev->flags) &&
rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
!is_badblock(rdev, sh->sector, STRIPE_SECTORS,
&first_bad, &bad_sectors))
set_bit(R5_ReadRepl, &dev->flags);
else {
if (rdev && !test_bit(Faulty, &rdev->flags))
set_bit(R5_NeedReplace, &dev->flags);
else
clear_bit(R5_NeedReplace, &dev->flags);
rdev = rcu_dereference(conf->disks[i].rdev);
clear_bit(R5_ReadRepl, &dev->flags);
}
if (rdev && test_bit(Faulty, &rdev->flags))
rdev = NULL;
if (rdev) {
is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
&first_bad, &bad_sectors);
if (s->blocked_rdev == NULL
&& (test_bit(Blocked, &rdev->flags)
|| is_bad < 0)) {
if (is_bad < 0)
set_bit(BlockedBadBlocks,
&rdev->flags);
s->blocked_rdev = rdev;
atomic_inc(&rdev->nr_pending);
}
}
clear_bit(R5_Insync, &dev->flags);
if (!rdev)
/* Not in-sync */;
else if (is_bad) {
/* also not in-sync */
if (!test_bit(WriteErrorSeen, &rdev->flags) &&
test_bit(R5_UPTODATE, &dev->flags)) {
/* treat as in-sync, but with a read error
* which we can now try to correct
*/
set_bit(R5_Insync, &dev->flags);
set_bit(R5_ReadError, &dev->flags);
}
} else if (test_bit(In_sync, &rdev->flags))
set_bit(R5_Insync, &dev->flags);
else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
/* in sync if before recovery_offset */
set_bit(R5_Insync, &dev->flags);
else if (test_bit(R5_UPTODATE, &dev->flags) &&
test_bit(R5_Expanded, &dev->flags))
/* If we've reshaped into here, we assume it is Insync.
* We will shortly update recovery_offset to make
* it official.
*/
set_bit(R5_Insync, &dev->flags);
if (test_bit(R5_WriteError, &dev->flags)) {
/* This flag does not apply to '.replacement'
* only to .rdev, so make sure to check that*/
struct md_rdev *rdev2 = rcu_dereference(
conf->disks[i].rdev);
if (rdev2 == rdev)
clear_bit(R5_Insync, &dev->flags);
if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
s->handle_bad_blocks = 1;
atomic_inc(&rdev2->nr_pending);
} else
clear_bit(R5_WriteError, &dev->flags);
}
if (test_bit(R5_MadeGood, &dev->flags)) {
/* This flag does not apply to '.replacement'
* only to .rdev, so make sure to check that*/
struct md_rdev *rdev2 = rcu_dereference(
conf->disks[i].rdev);
if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
s->handle_bad_blocks = 1;
atomic_inc(&rdev2->nr_pending);
} else
clear_bit(R5_MadeGood, &dev->flags);
}
if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
struct md_rdev *rdev2 = rcu_dereference(
conf->disks[i].replacement);
if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
s->handle_bad_blocks = 1;
atomic_inc(&rdev2->nr_pending);
} else
clear_bit(R5_MadeGoodRepl, &dev->flags);
}
if (!test_bit(R5_Insync, &dev->flags)) {
/* The ReadError flag will just be confusing now */
clear_bit(R5_ReadError, &dev->flags);
clear_bit(R5_ReWrite, &dev->flags);
}
if (test_bit(R5_ReadError, &dev->flags))
clear_bit(R5_Insync, &dev->flags);
if (!test_bit(R5_Insync, &dev->flags)) {
if (s->failed < 2)
s->failed_num[s->failed] = i;
s->failed++;
if (rdev && !test_bit(Faulty, &rdev->flags))
do_recovery = 1;
else if (!rdev) {
rdev = rcu_dereference(
conf->disks[i].replacement);
if (rdev && !test_bit(Faulty, &rdev->flags))
do_recovery = 1;
}
}
if (test_bit(R5_InJournal, &dev->flags))
s->injournal++;
if (test_bit(R5_InJournal, &dev->flags) && dev->written)
s->just_cached++;
}
if (test_bit(STRIPE_SYNCING, &sh->state)) {
/* If there is a failed device being replaced,
* we must be recovering.
* else if we are after recovery_cp, we must be syncing
* else if MD_RECOVERY_REQUESTED is set, we also are syncing.
* else we can only be replacing
* sync and recovery both need to read all devices, and so
* use the same flag.
*/
if (do_recovery ||
sh->sector >= conf->mddev->recovery_cp ||
test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
s->syncing = 1;
else
s->replacing = 1;
}
rcu_read_unlock();
}
static int clear_batch_ready(struct stripe_head *sh)
{
/* Return '1' if this is a member of batch, or
* '0' if it is a lone stripe or a head which can now be
* handled.
*/
struct stripe_head *tmp;
if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
return (sh->batch_head && sh->batch_head != sh);
spin_lock(&sh->stripe_lock);
if (!sh->batch_head) {
spin_unlock(&sh->stripe_lock);
return 0;
}
/*
* this stripe could be added to a batch list before we check
* BATCH_READY, skips it
*/
if (sh->batch_head != sh) {
spin_unlock(&sh->stripe_lock);
return 1;
}
spin_lock(&sh->batch_lock);
list_for_each_entry(tmp, &sh->batch_list, batch_list)
clear_bit(STRIPE_BATCH_READY, &tmp->state);
spin_unlock(&sh->batch_lock);
spin_unlock(&sh->stripe_lock);
/*
* BATCH_READY is cleared, no new stripes can be added.
* batch_list can be accessed without lock
*/
return 0;
}
static void break_stripe_batch_list(struct stripe_head *head_sh,
unsigned long handle_flags)
{
struct stripe_head *sh, *next;
int i;
int do_wakeup = 0;
list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
list_del_init(&sh->batch_list);
WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
(1 << STRIPE_SYNCING) |
(1 << STRIPE_REPLACED) |
(1 << STRIPE_DELAYED) |
(1 << STRIPE_BIT_DELAY) |
(1 << STRIPE_FULL_WRITE) |
(1 << STRIPE_BIOFILL_RUN) |
(1 << STRIPE_COMPUTE_RUN) |
(1 << STRIPE_OPS_REQ_PENDING) |
(1 << STRIPE_DISCARD) |
(1 << STRIPE_BATCH_READY) |
(1 << STRIPE_BATCH_ERR) |
(1 << STRIPE_BITMAP_PENDING)),
"stripe state: %lx\n", sh->state);
WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
(1 << STRIPE_REPLACED)),
"head stripe state: %lx\n", head_sh->state);
set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
(1 << STRIPE_PREREAD_ACTIVE) |
(1 << STRIPE_DEGRADED) |
(1 << STRIPE_ON_UNPLUG_LIST)),
head_sh->state & (1 << STRIPE_INSYNC));
sh->check_state = head_sh->check_state;
sh->reconstruct_state = head_sh->reconstruct_state;
for (i = 0; i < sh->disks; i++) {
if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
do_wakeup = 1;
sh->dev[i].flags = head_sh->dev[i].flags &
(~((1 << R5_WriteError) | (1 << R5_Overlap)));
}
spin_lock_irq(&sh->stripe_lock);
sh->batch_head = NULL;
spin_unlock_irq(&sh->stripe_lock);
if (handle_flags == 0 ||
sh->state & handle_flags)
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
}
spin_lock_irq(&head_sh->stripe_lock);
head_sh->batch_head = NULL;
spin_unlock_irq(&head_sh->stripe_lock);
for (i = 0; i < head_sh->disks; i++)
if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
do_wakeup = 1;
if (head_sh->state & handle_flags)
set_bit(STRIPE_HANDLE, &head_sh->state);
if (do_wakeup)
wake_up(&head_sh->raid_conf->wait_for_overlap);
}
static void handle_stripe(struct stripe_head *sh)
{
struct stripe_head_state s;
struct r5conf *conf = sh->raid_conf;
int i;
int prexor;
int disks = sh->disks;
struct r5dev *pdev, *qdev;
clear_bit(STRIPE_HANDLE, &sh->state);
if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
/* already being handled, ensure it gets handled
* again when current action finishes */
set_bit(STRIPE_HANDLE, &sh->state);
return;
}
if (clear_batch_ready(sh) ) {
clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
return;
}
if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
break_stripe_batch_list(sh, 0);
if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
spin_lock(&sh->stripe_lock);
/*
* Cannot process 'sync' concurrently with 'discard'.
* Flush data in r5cache before 'sync'.
*/
if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
!test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
!test_bit(STRIPE_DISCARD, &sh->state) &&
test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
set_bit(STRIPE_SYNCING, &sh->state);
clear_bit(STRIPE_INSYNC, &sh->state);
clear_bit(STRIPE_REPLACED, &sh->state);
}
spin_unlock(&sh->stripe_lock);
}
clear_bit(STRIPE_DELAYED, &sh->state);
pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
(unsigned long long)sh->sector, sh->state,
atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
sh->check_state, sh->reconstruct_state);
analyse_stripe(sh, &s);
if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
goto finish;
if (s.handle_bad_blocks ||
test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
set_bit(STRIPE_HANDLE, &sh->state);
goto finish;
}
if (unlikely(s.blocked_rdev)) {
if (s.syncing || s.expanding || s.expanded ||
s.replacing || s.to_write || s.written) {
set_bit(STRIPE_HANDLE, &sh->state);
goto finish;
}
/* There is nothing for the blocked_rdev to block */
rdev_dec_pending(s.blocked_rdev, conf->mddev);
s.blocked_rdev = NULL;
}
if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
set_bit(STRIPE_BIOFILL_RUN, &sh->state);
}
pr_debug("locked=%d uptodate=%d to_read=%d"
" to_write=%d failed=%d failed_num=%d,%d\n",
s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
s.failed_num[0], s.failed_num[1]);
/*
* check if the array has lost more than max_degraded devices and,
* if so, some requests might need to be failed.
*
* When journal device failed (log_failed), we will only process
* the stripe if there is data need write to raid disks
*/
if (s.failed > conf->max_degraded ||
(s.log_failed && s.injournal == 0)) {
sh->check_state = 0;
sh->reconstruct_state = 0;
break_stripe_batch_list(sh, 0);
if (s.to_read+s.to_write+s.written)
handle_failed_stripe(conf, sh, &s, disks);
if (s.syncing + s.replacing)
handle_failed_sync(conf, sh, &s);
}
/* Now we check to see if any write operations have recently
* completed
*/
prexor = 0;
if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
prexor = 1;
if (sh->reconstruct_state == reconstruct_state_drain_result ||
sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
sh->reconstruct_state = reconstruct_state_idle;
/* All the 'written' buffers and the parity block are ready to
* be written back to disk
*/
BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
!test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
BUG_ON(sh->qd_idx >= 0 &&
!test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
!test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
for (i = disks; i--; ) {
struct r5dev *dev = &sh->dev[i];
if (test_bit(R5_LOCKED, &dev->flags) &&
(i == sh->pd_idx || i == sh->qd_idx ||
dev->written || test_bit(R5_InJournal,
&dev->flags))) {
pr_debug("Writing block %d\n", i);
set_bit(R5_Wantwrite, &dev->flags);
if (prexor)
continue;
if (s.failed > 1)
continue;
if (!test_bit(R5_Insync, &dev->flags) ||
((i == sh->pd_idx || i == sh->qd_idx) &&
s.failed == 0))
set_bit(STRIPE_INSYNC, &sh->state);
}
}
if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
s.dec_preread_active = 1;
}
/*
* might be able to return some write requests if the parity blocks
* are safe, or on a failed drive
*/
pdev = &sh->dev[sh->pd_idx];
s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
qdev = &sh->dev[sh->qd_idx];
s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
|| conf->level < 6;
if (s.written &&
(s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
&& !test_bit(R5_LOCKED, &pdev->flags)
&& (test_bit(R5_UPTODATE, &pdev->flags) ||
test_bit(R5_Discard, &pdev->flags))))) &&
(s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
&& !test_bit(R5_LOCKED, &qdev->flags)
&& (test_bit(R5_UPTODATE, &qdev->flags) ||
test_bit(R5_Discard, &qdev->flags))))))
handle_stripe_clean_event(conf, sh, disks);
if (s.just_cached)
r5c_handle_cached_data_endio(conf, sh, disks);
log_stripe_write_finished(sh);
/* Now we might consider reading some blocks, either to check/generate
* parity, or to satisfy requests
* or to load a block that is being partially written.
*/
if (s.to_read || s.non_overwrite
|| (s.to_write && s.failed)
|| (s.syncing && (s.uptodate + s.compute < disks))
|| s.replacing
|| s.expanding)
handle_stripe_fill(sh, &s, disks);
/*
* When the stripe finishes full journal write cycle (write to journal
* and raid disk), this is the clean up procedure so it is ready for
* next operation.
*/
r5c_finish_stripe_write_out(conf, sh, &s);
/*
* Now to consider new write requests, cache write back and what else,
* if anything should be read. We do not handle new writes when:
* 1/ A 'write' operation (copy+xor) is already in flight.
* 2/ A 'check' operation is in flight, as it may clobber the parity
* block.
* 3/ A r5c cache log write is in flight.
*/
if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
if (!r5c_is_writeback(conf->log)) {
if (s.to_write)
handle_stripe_dirtying(conf, sh, &s, disks);
} else { /* write back cache */
int ret = 0;
/* First, try handle writes in caching phase */
if (s.to_write)
ret = r5c_try_caching_write(conf, sh, &s,
disks);
/*
* If caching phase failed: ret == -EAGAIN
* OR
* stripe under reclaim: !caching && injournal
*
* fall back to handle_stripe_dirtying()
*/
if (ret == -EAGAIN ||
/* stripe under reclaim: !caching && injournal */
(!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
s.injournal > 0)) {
ret = handle_stripe_dirtying(conf, sh, &s,
disks);
if (ret == -EAGAIN)
goto finish;
}
}
}
/* maybe we need to check and possibly fix the parity for this stripe
* Any reads will already have been scheduled, so we just see if enough
* data is available. The parity check is held off while parity
* dependent operations are in flight.
*/
if (sh->check_state ||
(s.syncing && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
!test_bit(STRIPE_INSYNC, &sh->state))) {
if (conf->level == 6)
handle_parity_checks6(conf, sh, &s, disks);
else
handle_parity_checks5(conf, sh, &s, disks);
}
if ((s.replacing || s.syncing) && s.locked == 0
&& !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
&& !test_bit(STRIPE_REPLACED, &sh->state)) {
/* Write out to replacement devices where possible */
for (i = 0; i < conf->raid_disks; i++)
if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
set_bit(R5_WantReplace, &sh->dev[i].flags);
set_bit(R5_LOCKED, &sh->dev[i].flags);
s.locked++;
}
if (s.replacing)
set_bit(STRIPE_INSYNC, &sh->state);
set_bit(STRIPE_REPLACED, &sh->state);
}
if ((s.syncing || s.replacing) && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
test_bit(STRIPE_INSYNC, &sh->state)) {
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
clear_bit(STRIPE_SYNCING, &sh->state);
if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
wake_up(&conf->wait_for_overlap);
}
/* If the failed drives are just a ReadError, then we might need
* to progress the repair/check process
*/
if (s.failed <= conf->max_degraded && !conf->mddev->ro)
for (i = 0; i < s.failed; i++) {
struct r5dev *dev = &sh->dev[s.failed_num[i]];
if (test_bit(R5_ReadError, &dev->flags)
&& !test_bit(R5_LOCKED, &dev->flags)
&& test_bit(R5_UPTODATE, &dev->flags)
) {
if (!test_bit(R5_ReWrite, &dev->flags)) {
set_bit(R5_Wantwrite, &dev->flags);
set_bit(R5_ReWrite, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
s.locked++;
} else {
/* let's read it back */
set_bit(R5_Wantread, &dev->flags);
set_bit(R5_LOCKED, &dev->flags);
s.locked++;
}
}
}
/* Finish reconstruct operations initiated by the expansion process */
if (sh->reconstruct_state == reconstruct_state_result) {
struct stripe_head *sh_src
= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
/* sh cannot be written until sh_src has been read.
* so arrange for sh to be delayed a little
*/
set_bit(STRIPE_DELAYED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
&sh_src->state))
atomic_inc(&conf->preread_active_stripes);
raid5_release_stripe(sh_src);
goto finish;
}
if (sh_src)
raid5_release_stripe(sh_src);
sh->reconstruct_state = reconstruct_state_idle;
clear_bit(STRIPE_EXPANDING, &sh->state);
for (i = conf->raid_disks; i--; ) {
set_bit(R5_Wantwrite, &sh->dev[i].flags);
set_bit(R5_LOCKED, &sh->dev[i].flags);
s.locked++;
}
}
if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
!sh->reconstruct_state) {
/* Need to write out all blocks after computing parity */
sh->disks = conf->raid_disks;
stripe_set_idx(sh->sector, conf, 0, sh);
schedule_reconstruction(sh, &s, 1, 1);
} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
clear_bit(STRIPE_EXPAND_READY, &sh->state);
atomic_dec(&conf->reshape_stripes);
wake_up(&conf->wait_for_overlap);
md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
}
if (s.expanding && s.locked == 0 &&
!test_bit(STRIPE_COMPUTE_RUN, &sh->state))
handle_stripe_expansion(conf, sh);
finish:
/* wait for this device to become unblocked */
if (unlikely(s.blocked_rdev)) {
if (conf->mddev->external)
md_wait_for_blocked_rdev(s.blocked_rdev,
conf->mddev);
else
/* Internal metadata will immediately
* be written by raid5d, so we don't
* need to wait here.
*/
rdev_dec_pending(s.blocked_rdev,
conf->mddev);
}
if (s.handle_bad_blocks)
for (i = disks; i--; ) {
struct md_rdev *rdev;
struct r5dev *dev = &sh->dev[i];
if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
/* We own a safe reference to the rdev */
rdev = conf->disks[i].rdev;
if (!rdev_set_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0))
md_error(conf->mddev, rdev);
rdev_dec_pending(rdev, conf->mddev);
}
if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
rdev = conf->disks[i].rdev;
rdev_clear_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0);
rdev_dec_pending(rdev, conf->mddev);
}
if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
rdev = conf->disks[i].replacement;
if (!rdev)
/* rdev have been moved down */
rdev = conf->disks[i].rdev;
rdev_clear_badblocks(rdev, sh->sector,
STRIPE_SECTORS, 0);
rdev_dec_pending(rdev, conf->mddev);
}
}
if (s.ops_request)
raid_run_ops(sh, s.ops_request);
ops_run_io(sh, &s);
if (s.dec_preread_active) {
/* We delay this until after ops_run_io so that if make_request
* is waiting on a flush, it won't continue until the writes
* have actually been submitted.
*/
atomic_dec(&conf->preread_active_stripes);
if (atomic_read(&conf->preread_active_stripes) <
IO_THRESHOLD)
md_wakeup_thread(conf->mddev->thread);
}
clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
}
static void raid5_activate_delayed(struct r5conf *conf)
{
if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
while (!list_empty(&conf->delayed_list)) {
struct list_head *l = conf->delayed_list.next;
struct stripe_head *sh;
sh = list_entry(l, struct stripe_head, lru);
list_del_init(l);
clear_bit(STRIPE_DELAYED, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
list_add_tail(&sh->lru, &conf->hold_list);
raid5_wakeup_stripe_thread(sh);
}
}
}
static void activate_bit_delay(struct r5conf *conf,
struct list_head *temp_inactive_list)
{
/* device_lock is held */
struct list_head head;
list_add(&head, &conf->bitmap_list);
list_del_init(&conf->bitmap_list);
while (!list_empty(&head)) {
struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
int hash;
list_del_init(&sh->lru);
atomic_inc(&sh->count);
hash = sh->hash_lock_index;
__release_stripe(conf, sh, &temp_inactive_list[hash]);
}
}
static int raid5_congested(struct mddev *mddev, int bits)
{
struct r5conf *conf = mddev->private;
/* No difference between reads and writes. Just check
* how busy the stripe_cache is
*/
if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
return 1;
/* Also checks whether there is pressure on r5cache log space */
if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
return 1;
if (conf->quiesce)
return 1;
if (atomic_read(&conf->empty_inactive_list_nr))
return 1;
return 0;
}
static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
{
struct r5conf *conf = mddev->private;
sector_t sector = bio->bi_iter.bi_sector;
unsigned int chunk_sectors;
unsigned int bio_sectors = bio_sectors(bio);
WARN_ON_ONCE(bio->bi_partno);
chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
return chunk_sectors >=
((sector & (chunk_sectors - 1)) + bio_sectors);
}
/*
* add bio to the retry LIFO ( in O(1) ... we are in interrupt )
* later sampled by raid5d.
*/
static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
{
unsigned long flags;
spin_lock_irqsave(&conf->device_lock, flags);
bi->bi_next = conf->retry_read_aligned_list;
conf->retry_read_aligned_list = bi;
spin_unlock_irqrestore(&conf->device_lock, flags);
md_wakeup_thread(conf->mddev->thread);
}
static struct bio *remove_bio_from_retry(struct r5conf *conf,
unsigned int *offset)
{
struct bio *bi;
bi = conf->retry_read_aligned;
if (bi) {
*offset = conf->retry_read_offset;
conf->retry_read_aligned = NULL;
return bi;
}
bi = conf->retry_read_aligned_list;
if(bi) {
conf->retry_read_aligned_list = bi->bi_next;
bi->bi_next = NULL;
*offset = 0;
}
return bi;
}
/*
* The "raid5_align_endio" should check if the read succeeded and if it
* did, call bio_endio on the original bio (having bio_put the new bio
* first).
* If the read failed..
*/
static void raid5_align_endio(struct bio *bi)
{
struct bio* raid_bi = bi->bi_private;
struct mddev *mddev;
struct r5conf *conf;
struct md_rdev *rdev;
blk_status_t error = bi->bi_status;
bio_put(bi);
rdev = (void*)raid_bi->bi_next;
raid_bi->bi_next = NULL;
mddev = rdev->mddev;
conf = mddev->private;
rdev_dec_pending(rdev, conf->mddev);
if (!error) {
bio_endio(raid_bi);
if (atomic_dec_and_test(&conf->active_aligned_reads))
wake_up(&conf->wait_for_quiescent);
return;
}
pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
add_bio_to_retry(raid_bi, conf);
}
static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
{
struct r5conf *conf = mddev->private;
int dd_idx;
struct bio* align_bi;
struct md_rdev *rdev;
sector_t end_sector;
if (!in_chunk_boundary(mddev, raid_bio)) {
pr_debug("%s: non aligned\n", __func__);
return 0;
}
/*
* use bio_clone_fast to make a copy of the bio
*/
align_bi = bio_clone_fast(raid_bio, GFP_NOIO, mddev->bio_set);
if (!align_bi)
return 0;
/*
* set bi_end_io to a new function, and set bi_private to the
* original bio.
*/
align_bi->bi_end_io = raid5_align_endio;
align_bi->bi_private = raid_bio;
/*
* compute position
*/
align_bi->bi_iter.bi_sector =
raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
0, &dd_idx, NULL);
end_sector = bio_end_sector(align_bi);
rcu_read_lock();
rdev = rcu_dereference(conf->disks[dd_idx].replacement);
if (!rdev || test_bit(Faulty, &rdev->flags) ||
rdev->recovery_offset < end_sector) {
rdev = rcu_dereference(conf->disks[dd_idx].rdev);
if (rdev &&
(test_bit(Faulty, &rdev->flags) ||
!(test_bit(In_sync, &rdev->flags) ||
rdev->recovery_offset >= end_sector)))
rdev = NULL;
}
if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
rcu_read_unlock();
bio_put(align_bi);
return 0;
}
if (rdev) {
sector_t first_bad;
int bad_sectors;
atomic_inc(&rdev->nr_pending);
rcu_read_unlock();
raid_bio->bi_next = (void*)rdev;
bio_set_dev(align_bi, rdev->bdev);
bio_clear_flag(align_bi, BIO_SEG_VALID);
if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
bio_sectors(align_bi),
&first_bad, &bad_sectors)) {
bio_put(align_bi);
rdev_dec_pending(rdev, mddev);
return 0;
}
/* No reshape active, so we can trust rdev->data_offset */
align_bi->bi_iter.bi_sector += rdev->data_offset;
spin_lock_irq(&conf->device_lock);
wait_event_lock_irq(conf->wait_for_quiescent,
conf->quiesce == 0,
conf->device_lock);
atomic_inc(&conf->active_aligned_reads);
spin_unlock_irq(&conf->device_lock);
if (mddev->gendisk)
trace_block_bio_remap(align_bi->bi_disk->queue,
align_bi, disk_devt(mddev->gendisk),
raid_bio->bi_iter.bi_sector);
generic_make_request(align_bi);
return 1;
} else {
rcu_read_unlock();
bio_put(align_bi);
return 0;
}
}
static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
{
struct bio *split;
sector_t sector = raid_bio->bi_iter.bi_sector;
unsigned chunk_sects = mddev->chunk_sectors;
unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
if (sectors < bio_sectors(raid_bio)) {
struct r5conf *conf = mddev->private;
split = bio_split(raid_bio, sectors, GFP_NOIO, conf->bio_split);
bio_chain(split, raid_bio);
generic_make_request(raid_bio);
raid_bio = split;
}
if (!raid5_read_one_chunk(mddev, raid_bio))
return raid_bio;
return NULL;
}
/* __get_priority_stripe - get the next stripe to process
*
* Full stripe writes are allowed to pass preread active stripes up until
* the bypass_threshold is exceeded. In general the bypass_count
* increments when the handle_list is handled before the hold_list; however, it
* will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
* stripe with in flight i/o. The bypass_count will be reset when the
* head of the hold_list has changed, i.e. the head was promoted to the
* handle_list.
*/
static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
{
struct stripe_head *sh, *tmp;
struct list_head *handle_list = NULL;
struct r5worker_group *wg;
bool second_try = !r5c_is_writeback(conf->log) &&
!r5l_log_disk_error(conf);
bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
r5l_log_disk_error(conf);
again:
wg = NULL;
sh = NULL;
if (conf->worker_cnt_per_group == 0) {
handle_list = try_loprio ? &conf->loprio_list :
&conf->handle_list;
} else if (group != ANY_GROUP) {
handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
&conf->worker_groups[group].handle_list;
wg = &conf->worker_groups[group];
} else {
int i;
for (i = 0; i < conf->group_cnt; i++) {
handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
&conf->worker_groups[i].handle_list;
wg = &conf->worker_groups[i];
if (!list_empty(handle_list))
break;
}
}
pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
__func__,
list_empty(handle_list) ? "empty" : "busy",
list_empty(&conf->hold_list) ? "empty" : "busy",
atomic_read(&conf->pending_full_writes), conf->bypass_count);
if (!list_empty(handle_list)) {
sh = list_entry(handle_list->next, typeof(*sh), lru);
if (list_empty(&conf->hold_list))
conf->bypass_count = 0;
else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
if (conf->hold_list.next == conf->last_hold)
conf->bypass_count++;
else {
conf->last_hold = conf->hold_list.next;
conf->bypass_count -= conf->bypass_threshold;
if (conf->bypass_count < 0)
conf->bypass_count = 0;
}
}
} else if (!list_empty(&conf->hold_list) &&
((conf->bypass_threshold &&
conf->bypass_count > conf->bypass_threshold) ||
atomic_read(&conf->pending_full_writes) == 0)) {
list_for_each_entry(tmp, &conf->hold_list, lru) {
if (conf->worker_cnt_per_group == 0 ||
group == ANY_GROUP ||
!cpu_online(tmp->cpu) ||
cpu_to_group(tmp->cpu) == group) {
sh = tmp;
break;
}
}
if (sh) {
conf->bypass_count -= conf->bypass_threshold;
if (conf->bypass_count < 0)
conf->bypass_count = 0;
}
wg = NULL;
}
if (!sh) {
if (second_try)
return NULL;
second_try = true;
try_loprio = !try_loprio;
goto again;
}
if (wg) {
wg->stripes_cnt--;
sh->group = NULL;
}
list_del_init(&sh->lru);
BUG_ON(atomic_inc_return(&sh->count) != 1);
return sh;
}
struct raid5_plug_cb {
struct blk_plug_cb cb;
struct list_head list;
struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
};
static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
{
struct raid5_plug_cb *cb = container_of(
blk_cb, struct raid5_plug_cb, cb);
struct stripe_head *sh;
struct mddev *mddev = cb->cb.data;
struct r5conf *conf = mddev->private;
int cnt = 0;
int hash;
if (cb->list.next && !list_empty(&cb->list)) {
spin_lock_irq(&conf->device_lock);
while (!list_empty(&cb->list)) {
sh = list_first_entry(&cb->list, struct stripe_head, lru);
list_del_init(&sh->lru);
/*
* avoid race release_stripe_plug() sees
* STRIPE_ON_UNPLUG_LIST clear but the stripe
* is still in our list
*/
smp_mb__before_atomic();
clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
/*
* STRIPE_ON_RELEASE_LIST could be set here. In that
* case, the count is always > 1 here
*/
hash = sh->hash_lock_index;
__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
cnt++;
}
spin_unlock_irq(&conf->device_lock);
}
release_inactive_stripe_list(conf, cb->temp_inactive_list,
NR_STRIPE_HASH_LOCKS);
if (mddev->queue)
trace_block_unplug(mddev->queue, cnt, !from_schedule);
kfree(cb);
}
static void release_stripe_plug(struct mddev *mddev,
struct stripe_head *sh)
{
struct blk_plug_cb *blk_cb = blk_check_plugged(
raid5_unplug, mddev,
sizeof(struct raid5_plug_cb));
struct raid5_plug_cb *cb;
if (!blk_cb) {
raid5_release_stripe(sh);
return;
}
cb = container_of(blk_cb, struct raid5_plug_cb, cb);
if (cb->list.next == NULL) {
int i;
INIT_LIST_HEAD(&cb->list);
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
INIT_LIST_HEAD(cb->temp_inactive_list + i);
}
if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
list_add_tail(&sh->lru, &cb->list);
else
raid5_release_stripe(sh);
}
static void make_discard_request(struct mddev *mddev, struct bio *bi)
{
struct r5conf *conf = mddev->private;
sector_t logical_sector, last_sector;
struct stripe_head *sh;
int stripe_sectors;
if (mddev->reshape_position != MaxSector)
/* Skip discard while reshape is happening */
return;
logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
bi->bi_next = NULL;
stripe_sectors = conf->chunk_sectors *
(conf->raid_disks - conf->max_degraded);
logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
stripe_sectors);
sector_div(last_sector, stripe_sectors);
logical_sector *= conf->chunk_sectors;
last_sector *= conf->chunk_sectors;
for (; logical_sector < last_sector;
logical_sector += STRIPE_SECTORS) {
DEFINE_WAIT(w);
int d;
again:
sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
prepare_to_wait(&conf->wait_for_overlap, &w,
TASK_UNINTERRUPTIBLE);
set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
if (test_bit(STRIPE_SYNCING, &sh->state)) {
raid5_release_stripe(sh);
schedule();
goto again;
}
clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
spin_lock_irq(&sh->stripe_lock);
for (d = 0; d < conf->raid_disks; d++) {
if (d == sh->pd_idx || d == sh->qd_idx)
continue;
if (sh->dev[d].towrite || sh->dev[d].toread) {
set_bit(R5_Overlap, &sh->dev[d].flags);
spin_unlock_irq(&sh->stripe_lock);
raid5_release_stripe(sh);
schedule();
goto again;
}
}
set_bit(STRIPE_DISCARD, &sh->state);
finish_wait(&conf->wait_for_overlap, &w);
sh->overwrite_disks = 0;
for (d = 0; d < conf->raid_disks; d++) {
if (d == sh->pd_idx || d == sh->qd_idx)
continue;
sh->dev[d].towrite = bi;
set_bit(R5_OVERWRITE, &sh->dev[d].flags);
bio_inc_remaining(bi);
md_write_inc(mddev, bi);
sh->overwrite_disks++;
}
spin_unlock_irq(&sh->stripe_lock);
if (conf->mddev->bitmap) {
for (d = 0;
d < conf->raid_disks - conf->max_degraded;
d++)
bitmap_startwrite(mddev->bitmap,
sh->sector,
STRIPE_SECTORS,
0);
sh->bm_seq = conf->seq_flush + 1;
set_bit(STRIPE_BIT_DELAY, &sh->state);
}
set_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
release_stripe_plug(mddev, sh);
}
bio_endio(bi);
}
static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
{
struct r5conf *conf = mddev->private;
int dd_idx;
sector_t new_sector;
sector_t logical_sector, last_sector;
struct stripe_head *sh;
const int rw = bio_data_dir(bi);
DEFINE_WAIT(w);
bool do_prepare;
bool do_flush = false;
if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
int ret = r5l_handle_flush_request(conf->log, bi);
if (ret == 0)
return true;
if (ret == -ENODEV) {
md_flush_request(mddev, bi);
return true;
}
/* ret == -EAGAIN, fallback */
/*
* if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
* we need to flush journal device
*/
do_flush = bi->bi_opf & REQ_PREFLUSH;
}
if (!md_write_start(mddev, bi))
return false;
/*
* If array is degraded, better not do chunk aligned read because
* later we might have to read it again in order to reconstruct
* data on failed drives.
*/
if (rw == READ && mddev->degraded == 0 &&
mddev->reshape_position == MaxSector) {
bi = chunk_aligned_read(mddev, bi);
if (!bi)
return true;
}
if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
make_discard_request(mddev, bi);
md_write_end(mddev);
return true;
}
logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
last_sector = bio_end_sector(bi);
bi->bi_next = NULL;
prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
int previous;
int seq;
do_prepare = false;
retry:
seq = read_seqcount_begin(&conf->gen_lock);
previous = 0;
if (do_prepare)
prepare_to_wait(&conf->wait_for_overlap, &w,
TASK_UNINTERRUPTIBLE);
if (unlikely(conf->reshape_progress != MaxSector)) {
/* spinlock is needed as reshape_progress may be
* 64bit on a 32bit platform, and so it might be
* possible to see a half-updated value
* Of course reshape_progress could change after
* the lock is dropped, so once we get a reference
* to the stripe that we think it is, we will have
* to check again.
*/
spin_lock_irq(&conf->device_lock);
if (mddev->reshape_backwards
? logical_sector < conf->reshape_progress
: logical_sector >= conf->reshape_progress) {
previous = 1;
} else {
if (mddev->reshape_backwards
? logical_sector < conf->reshape_safe
: logical_sector >= conf->reshape_safe) {
spin_unlock_irq(&conf->device_lock);
schedule();
do_prepare = true;
goto retry;
}
}
spin_unlock_irq(&conf->device_lock);
}
new_sector = raid5_compute_sector(conf, logical_sector,
previous,
&dd_idx, NULL);
pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
(unsigned long long)new_sector,
(unsigned long long)logical_sector);
sh = raid5_get_active_stripe(conf, new_sector, previous,
(bi->bi_opf & REQ_RAHEAD), 0);
if (sh) {
if (unlikely(previous)) {
/* expansion might have moved on while waiting for a
* stripe, so we must do the range check again.
* Expansion could still move past after this
* test, but as we are holding a reference to
* 'sh', we know that if that happens,
* STRIPE_EXPANDING will get set and the expansion
* won't proceed until we finish with the stripe.
*/
int must_retry = 0;
spin_lock_irq(&conf->device_lock);
if (mddev->reshape_backwards
? logical_sector >= conf->reshape_progress
: logical_sector < conf->reshape_progress)
/* mismatch, need to try again */
must_retry = 1;
spin_unlock_irq(&conf->device_lock);
if (must_retry) {
raid5_release_stripe(sh);
schedule();
do_prepare = true;
goto retry;
}
}
if (read_seqcount_retry(&conf->gen_lock, seq)) {
/* Might have got the wrong stripe_head
* by accident
*/
raid5_release_stripe(sh);
goto retry;
}
if (test_bit(STRIPE_EXPANDING, &sh->state) ||
!add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
/* Stripe is busy expanding or
* add failed due to overlap. Flush everything
* and wait a while
*/
md_wakeup_thread(mddev->thread);
raid5_release_stripe(sh);
schedule();
do_prepare = true;
goto retry;
}
if (do_flush) {
set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
/* we only need flush for one stripe */
do_flush = false;
}
if (!sh->batch_head || sh == sh->batch_head)
set_bit(STRIPE_HANDLE, &sh->state);
clear_bit(STRIPE_DELAYED, &sh->state);
if ((!sh->batch_head || sh == sh->batch_head) &&
(bi->bi_opf & REQ_SYNC) &&
!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
atomic_inc(&conf->preread_active_stripes);
release_stripe_plug(mddev, sh);
} else {
/* cannot get stripe for read-ahead, just give-up */
bi->bi_status = BLK_STS_IOERR;
break;
}
}
finish_wait(&conf->wait_for_overlap, &w);
if (rw == WRITE)
md_write_end(mddev);
bio_endio(bi);
return true;
}
static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
{
/* reshaping is quite different to recovery/resync so it is
* handled quite separately ... here.
*
* On each call to sync_request, we gather one chunk worth of
* destination stripes and flag them as expanding.
* Then we find all the source stripes and request reads.
* As the reads complete, handle_stripe will copy the data
* into the destination stripe and release that stripe.
*/
struct r5conf *conf = mddev->private;
struct stripe_head *sh;
sector_t first_sector, last_sector;
int raid_disks = conf->previous_raid_disks;
int data_disks = raid_disks - conf->max_degraded;
int new_data_disks = conf->raid_disks - conf->max_degraded;
int i;
int dd_idx;
sector_t writepos, readpos, safepos;
sector_t stripe_addr;
int reshape_sectors;
struct list_head stripes;
sector_t retn;
if (sector_nr == 0) {
/* If restarting in the middle, skip the initial sectors */
if (mddev->reshape_backwards &&
conf->reshape_progress < raid5_size(mddev, 0, 0)) {
sector_nr = raid5_size(mddev, 0, 0)
- conf->reshape_progress;
} else if (mddev->reshape_backwards &&
conf->reshape_progress == MaxSector) {
/* shouldn't happen, but just in case, finish up.*/
sector_nr = MaxSector;
} else if (!mddev->reshape_backwards &&
conf->reshape_progress > 0)
sector_nr = conf->reshape_progress;
sector_div(sector_nr, new_data_disks);
if (sector_nr) {
mddev->curr_resync_completed = sector_nr;
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
*skipped = 1;
retn = sector_nr;
goto finish;
}
}
/* We need to process a full chunk at a time.
* If old and new chunk sizes differ, we need to process the
* largest of these
*/
reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
/* We update the metadata at least every 10 seconds, or when
* the data about to be copied would over-write the source of
* the data at the front of the range. i.e. one new_stripe
* along from reshape_progress new_maps to after where
* reshape_safe old_maps to
*/
writepos = conf->reshape_progress;
sector_div(writepos, new_data_disks);
readpos = conf->reshape_progress;
sector_div(readpos, data_disks);
safepos = conf->reshape_safe;
sector_div(safepos, data_disks);
if (mddev->reshape_backwards) {
BUG_ON(writepos < reshape_sectors);
writepos -= reshape_sectors;
readpos += reshape_sectors;
safepos += reshape_sectors;
} else {
writepos += reshape_sectors;
/* readpos and safepos are worst-case calculations.
* A negative number is overly pessimistic, and causes
* obvious problems for unsigned storage. So clip to 0.
*/
readpos -= min_t(sector_t, reshape_sectors, readpos);
safepos -= min_t(sector_t, reshape_sectors, safepos);
}
/* Having calculated the 'writepos' possibly use it
* to set 'stripe_addr' which is where we will write to.
*/
if (mddev->reshape_backwards) {
BUG_ON(conf->reshape_progress == 0);
stripe_addr = writepos;
BUG_ON((mddev->dev_sectors &
~((sector_t)reshape_sectors - 1))
- reshape_sectors - stripe_addr
!= sector_nr);
} else {
BUG_ON(writepos != sector_nr + reshape_sectors);
stripe_addr = sector_nr;
}
/* 'writepos' is the most advanced device address we might write.
* 'readpos' is the least advanced device address we might read.
* 'safepos' is the least address recorded in the metadata as having
* been reshaped.
* If there is a min_offset_diff, these are adjusted either by
* increasing the safepos/readpos if diff is negative, or
* increasing writepos if diff is positive.
* If 'readpos' is then behind 'writepos', there is no way that we can
* ensure safety in the face of a crash - that must be done by userspace
* making a backup of the data. So in that case there is no particular
* rush to update metadata.
* Otherwise if 'safepos' is behind 'writepos', then we really need to
* update the metadata to advance 'safepos' to match 'readpos' so that
* we can be safe in the event of a crash.
* So we insist on updating metadata if safepos is behind writepos and
* readpos is beyond writepos.
* In any case, update the metadata every 10 seconds.
* Maybe that number should be configurable, but I'm not sure it is
* worth it.... maybe it could be a multiple of safemode_delay???
*/
if (conf->min_offset_diff < 0) {
safepos += -conf->min_offset_diff;
readpos += -conf->min_offset_diff;
} else
writepos += conf->min_offset_diff;
if ((mddev->reshape_backwards
? (safepos > writepos && readpos < writepos)
: (safepos < writepos && readpos > writepos)) ||
time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes)==0
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (atomic_read(&conf->reshape_stripes) != 0)
return 0;
mddev->reshape_position = conf->reshape_progress;
mddev->curr_resync_completed = sector_nr;
conf->reshape_checkpoint = jiffies;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
return 0;
spin_lock_irq(&conf->device_lock);
conf->reshape_safe = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
INIT_LIST_HEAD(&stripes);
for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
int j;
int skipped_disk = 0;
sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
set_bit(STRIPE_EXPANDING, &sh->state);
atomic_inc(&conf->reshape_stripes);
/* If any of this stripe is beyond the end of the old
* array, then we need to zero those blocks
*/
for (j=sh->disks; j--;) {
sector_t s;
if (j == sh->pd_idx)
continue;
if (conf->level == 6 &&
j == sh->qd_idx)
continue;
s = raid5_compute_blocknr(sh, j, 0);
if (s < raid5_size(mddev, 0, 0)) {
skipped_disk = 1;
continue;
}
memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
set_bit(R5_Expanded, &sh->dev[j].flags);
set_bit(R5_UPTODATE, &sh->dev[j].flags);
}
if (!skipped_disk) {
set_bit(STRIPE_EXPAND_READY, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
}
list_add(&sh->lru, &stripes);
}
spin_lock_irq(&conf->device_lock);
if (mddev->reshape_backwards)
conf->reshape_progress -= reshape_sectors * new_data_disks;
else
conf->reshape_progress += reshape_sectors * new_data_disks;
spin_unlock_irq(&conf->device_lock);
/* Ok, those stripe are ready. We can start scheduling
* reads on the source stripes.
* The source stripes are determined by mapping the first and last
* block on the destination stripes.
*/
first_sector =
raid5_compute_sector(conf, stripe_addr*(new_data_disks),
1, &dd_idx, NULL);
last_sector =
raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
* new_data_disks - 1),
1, &dd_idx, NULL);
if (last_sector >= mddev->dev_sectors)
last_sector = mddev->dev_sectors - 1;
while (first_sector <= last_sector) {
sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
first_sector += STRIPE_SECTORS;
}
/* Now that the sources are clearly marked, we can release
* the destination stripes
*/
while (!list_empty(&stripes)) {
sh = list_entry(stripes.next, struct stripe_head, lru);
list_del_init(&sh->lru);
raid5_release_stripe(sh);
}
/* If this takes us to the resync_max point where we have to pause,
* then we need to write out the superblock.
*/
sector_nr += reshape_sectors;
retn = reshape_sectors;
finish:
if (mddev->curr_resync_completed > mddev->resync_max ||
(sector_nr - mddev->curr_resync_completed) * 2
>= mddev->resync_max - mddev->curr_resync_completed) {
/* Cannot proceed until we've updated the superblock... */
wait_event(conf->wait_for_overlap,
atomic_read(&conf->reshape_stripes) == 0
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (atomic_read(&conf->reshape_stripes) != 0)
goto ret;
mddev->reshape_position = conf->reshape_progress;
mddev->curr_resync_completed = sector_nr;
conf->reshape_checkpoint = jiffies;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
wait_event(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
|| test_bit(MD_RECOVERY_INTR, &mddev->recovery));
if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
goto ret;
spin_lock_irq(&conf->device_lock);
conf->reshape_safe = mddev->reshape_position;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
sysfs_notify(&mddev->kobj, NULL, "sync_completed");
}
ret:
return retn;
}
static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
int *skipped)
{
struct r5conf *conf = mddev->private;
struct stripe_head *sh;
sector_t max_sector = mddev->dev_sectors;
sector_t sync_blocks;
int still_degraded = 0;
int i;
if (sector_nr >= max_sector) {
/* just being told to finish up .. nothing much to do */
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
end_reshape(conf);
return 0;
}
if (mddev->curr_resync < max_sector) /* aborted */
bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
&sync_blocks, 1);
else /* completed sync */
conf->fullsync = 0;
bitmap_close_sync(mddev->bitmap);
return 0;
}
/* Allow raid5_quiesce to complete */
wait_event(conf->wait_for_overlap, conf->quiesce != 2);
if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
return reshape_request(mddev, sector_nr, skipped);
/* No need to check resync_max as we never do more than one
* stripe, and as resync_max will always be on a chunk boundary,
* if the check in md_do_sync didn't fire, there is no chance
* of overstepping resync_max here
*/
/* if there is too many failed drives and we are trying
* to resync, then assert that we are finished, because there is
* nothing we can do.
*/
if (mddev->degraded >= conf->max_degraded &&
test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
sector_t rv = mddev->dev_sectors - sector_nr;
*skipped = 1;
return rv;
}
if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
!conf->fullsync &&
!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
sync_blocks >= STRIPE_SECTORS) {
/* we can skip this block, and probably more */
sync_blocks /= STRIPE_SECTORS;
*skipped = 1;
return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
}
bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
if (sh == NULL) {
sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
/* make sure we don't swamp the stripe cache if someone else
* is trying to get access
*/
schedule_timeout_uninterruptible(1);
}
/* Need to check if array will still be degraded after recovery/resync
* Note in case of > 1 drive failures it's possible we're rebuilding
* one drive while leaving another faulty drive in array.
*/
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = ACCESS_ONCE(conf->disks[i].rdev);
if (rdev == NULL || test_bit(Faulty, &rdev->flags))
still_degraded = 1;
}
rcu_read_unlock();
bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
set_bit(STRIPE_HANDLE, &sh->state);
raid5_release_stripe(sh);
return STRIPE_SECTORS;
}
static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
unsigned int offset)
{
/* We may not be able to submit a whole bio at once as there
* may not be enough stripe_heads available.
* We cannot pre-allocate enough stripe_heads as we may need
* more than exist in the cache (if we allow ever large chunks).
* So we do one stripe head at a time and record in
* ->bi_hw_segments how many have been done.
*
* We *know* that this entire raid_bio is in one chunk, so
* it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
*/
struct stripe_head *sh;
int dd_idx;
sector_t sector, logical_sector, last_sector;
int scnt = 0;
int handled = 0;
logical_sector = raid_bio->bi_iter.bi_sector &
~((sector_t)STRIPE_SECTORS-1);
sector = raid5_compute_sector(conf, logical_sector,
0, &dd_idx, NULL);
last_sector = bio_end_sector(raid_bio);
for (; logical_sector < last_sector;
logical_sector += STRIPE_SECTORS,
sector += STRIPE_SECTORS,
scnt++) {
if (scnt < offset)
/* already done this stripe */
continue;
sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
if (!sh) {
/* failed to get a stripe - must wait */
conf->retry_read_aligned = raid_bio;
conf->retry_read_offset = scnt;
return handled;
}
if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
raid5_release_stripe(sh);
conf->retry_read_aligned = raid_bio;
conf->retry_read_offset = scnt;
return handled;
}
set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
handle_stripe(sh);
raid5_release_stripe(sh);
handled++;
}
bio_endio(raid_bio);
if (atomic_dec_and_test(&conf->active_aligned_reads))
wake_up(&conf->wait_for_quiescent);
return handled;
}
static int handle_active_stripes(struct r5conf *conf, int group,
struct r5worker *worker,
struct list_head *temp_inactive_list)
{
struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
int i, batch_size = 0, hash;
bool release_inactive = false;
while (batch_size < MAX_STRIPE_BATCH &&
(sh = __get_priority_stripe(conf, group)) != NULL)
batch[batch_size++] = sh;
if (batch_size == 0) {
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
if (!list_empty(temp_inactive_list + i))
break;
if (i == NR_STRIPE_HASH_LOCKS) {
spin_unlock_irq(&conf->device_lock);
r5l_flush_stripe_to_raid(conf->log);
spin_lock_irq(&conf->device_lock);
return batch_size;
}
release_inactive = true;
}
spin_unlock_irq(&conf->device_lock);
release_inactive_stripe_list(conf, temp_inactive_list,
NR_STRIPE_HASH_LOCKS);
r5l_flush_stripe_to_raid(conf->log);
if (release_inactive) {
spin_lock_irq(&conf->device_lock);
return 0;
}
for (i = 0; i < batch_size; i++)
handle_stripe(batch[i]);
log_write_stripe_run(conf);
cond_resched();
spin_lock_irq(&conf->device_lock);
for (i = 0; i < batch_size; i++) {
hash = batch[i]->hash_lock_index;
__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
}
return batch_size;
}
static void raid5_do_work(struct work_struct *work)
{
struct r5worker *worker = container_of(work, struct r5worker, work);
struct r5worker_group *group = worker->group;
struct r5conf *conf = group->conf;
struct mddev *mddev = conf->mddev;
int group_id = group - conf->worker_groups;
int handled;
struct blk_plug plug;
pr_debug("+++ raid5worker active\n");
blk_start_plug(&plug);
handled = 0;
spin_lock_irq(&conf->device_lock);
while (1) {
int batch_size, released;
released = release_stripe_list(conf, worker->temp_inactive_list);
batch_size = handle_active_stripes(conf, group_id, worker,
worker->temp_inactive_list);
worker->working = false;
if (!batch_size && !released)
break;
handled += batch_size;
wait_event_lock_irq(mddev->sb_wait,
!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
conf->device_lock);
}
pr_debug("%d stripes handled\n", handled);
spin_unlock_irq(&conf->device_lock);
flush_deferred_bios(conf);
r5l_flush_stripe_to_raid(conf->log);
async_tx_issue_pending_all();
blk_finish_plug(&plug);
pr_debug("--- raid5worker inactive\n");
}
/*
* This is our raid5 kernel thread.
*
* We scan the hash table for stripes which can be handled now.
* During the scan, completed stripes are saved for us by the interrupt
* handler, so that they will not have to wait for our next wakeup.
*/
static void raid5d(struct md_thread *thread)
{
struct mddev *mddev = thread->mddev;
struct r5conf *conf = mddev->private;
int handled;
struct blk_plug plug;
pr_debug("+++ raid5d active\n");
md_check_recovery(mddev);
blk_start_plug(&plug);
handled = 0;
spin_lock_irq(&conf->device_lock);
while (1) {
struct bio *bio;
int batch_size, released;
unsigned int offset;
released = release_stripe_list(conf, conf->temp_inactive_list);
if (released)
clear_bit(R5_DID_ALLOC, &conf->cache_state);
if (
!list_empty(&conf->bitmap_list)) {
/* Now is a good time to flush some bitmap updates */
conf->seq_flush++;
spin_unlock_irq(&conf->device_lock);
bitmap_unplug(mddev->bitmap);
spin_lock_irq(&conf->device_lock);
conf->seq_write = conf->seq_flush;
activate_bit_delay(conf, conf->temp_inactive_list);
}
raid5_activate_delayed(conf);
while ((bio = remove_bio_from_retry(conf, &offset))) {
int ok;
spin_unlock_irq(&conf->device_lock);
ok = retry_aligned_read(conf, bio, offset);
spin_lock_irq(&conf->device_lock);
if (!ok)
break;
handled++;
}
batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
conf->temp_inactive_list);
if (!batch_size && !released)
break;
handled += batch_size;
if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
spin_unlock_irq(&conf->device_lock);
md_check_recovery(mddev);
spin_lock_irq(&conf->device_lock);
}
}
pr_debug("%d stripes handled\n", handled);
spin_unlock_irq(&conf->device_lock);
if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
mutex_trylock(&conf->cache_size_mutex)) {
grow_one_stripe(conf, __GFP_NOWARN);
/* Set flag even if allocation failed. This helps
* slow down allocation requests when mem is short
*/
set_bit(R5_DID_ALLOC, &conf->cache_state);
mutex_unlock(&conf->cache_size_mutex);
}
flush_deferred_bios(conf);
r5l_flush_stripe_to_raid(conf->log);
async_tx_issue_pending_all();
blk_finish_plug(&plug);
pr_debug("--- raid5d inactive\n");
}
static ssize_t
raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->min_nr_stripes);
spin_unlock(&mddev->lock);
return ret;
}
int
raid5_set_cache_size(struct mddev *mddev, int size)
{
int result = 0;
struct r5conf *conf = mddev->private;
if (size <= 16 || size > 32768)
return -EINVAL;
conf->min_nr_stripes = size;
mutex_lock(&conf->cache_size_mutex);
while (size < conf->max_nr_stripes &&
drop_one_stripe(conf))
;
mutex_unlock(&conf->cache_size_mutex);
md_allow_write(mddev);
mutex_lock(&conf->cache_size_mutex);
while (size > conf->max_nr_stripes)
if (!grow_one_stripe(conf, GFP_KERNEL)) {
conf->min_nr_stripes = conf->max_nr_stripes;
result = -ENOMEM;
break;
}
mutex_unlock(&conf->cache_size_mutex);
return result;
}
EXPORT_SYMBOL(raid5_set_cache_size);
static ssize_t
raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else
err = raid5_set_cache_size(mddev, new);
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
raid5_show_stripe_cache_size,
raid5_store_stripe_cache_size);
static ssize_t
raid5_show_rmw_level(struct mddev *mddev, char *page)
{
struct r5conf *conf = mddev->private;
if (conf)
return sprintf(page, "%d\n", conf->rmw_level);
else
return 0;
}
static ssize_t
raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf = mddev->private;
unsigned long new;
if (!conf)
return -ENODEV;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
return -EINVAL;
if (new != PARITY_DISABLE_RMW &&
new != PARITY_ENABLE_RMW &&
new != PARITY_PREFER_RMW)
return -EINVAL;
conf->rmw_level = new;
return len;
}
static struct md_sysfs_entry
raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
raid5_show_rmw_level,
raid5_store_rmw_level);
static ssize_t
raid5_show_preread_threshold(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->bypass_threshold);
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else if (new > conf->min_nr_stripes)
err = -EINVAL;
else
conf->bypass_threshold = new;
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
S_IRUGO | S_IWUSR,
raid5_show_preread_threshold,
raid5_store_preread_threshold);
static ssize_t
raid5_show_skip_copy(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->skip_copy);
spin_unlock(&mddev->lock);
return ret;
}
static ssize_t
raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned long new;
int err;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtoul(page, 10, &new))
return -EINVAL;
new = !!new;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else if (new != conf->skip_copy) {
mddev_suspend(mddev);
conf->skip_copy = new;
if (new)
mddev->queue->backing_dev_info->capabilities |=
BDI_CAP_STABLE_WRITES;
else
mddev->queue->backing_dev_info->capabilities &=
~BDI_CAP_STABLE_WRITES;
mddev_resume(mddev);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
raid5_show_skip_copy,
raid5_store_skip_copy);
static ssize_t
stripe_cache_active_show(struct mddev *mddev, char *page)
{
struct r5conf *conf = mddev->private;
if (conf)
return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
else
return 0;
}
static struct md_sysfs_entry
raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
static ssize_t
raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
{
struct r5conf *conf;
int ret = 0;
spin_lock(&mddev->lock);
conf = mddev->private;
if (conf)
ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
spin_unlock(&mddev->lock);
return ret;
}
static int alloc_thread_groups(struct r5conf *conf, int cnt,
int *group_cnt,
int *worker_cnt_per_group,
struct r5worker_group **worker_groups);
static ssize_t
raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
{
struct r5conf *conf;
unsigned int new;
int err;
struct r5worker_group *new_groups, *old_groups;
int group_cnt, worker_cnt_per_group;
if (len >= PAGE_SIZE)
return -EINVAL;
if (kstrtouint(page, 10, &new))
return -EINVAL;
/* 8192 should be big enough */
if (new > 8192)
return -EINVAL;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf)
err = -ENODEV;
else if (new != conf->worker_cnt_per_group) {
mddev_suspend(mddev);
old_groups = conf->worker_groups;
if (old_groups)
flush_workqueue(raid5_wq);
err = alloc_thread_groups(conf, new,
&group_cnt, &worker_cnt_per_group,
&new_groups);
if (!err) {
spin_lock_irq(&conf->device_lock);
conf->group_cnt = group_cnt;
conf->worker_cnt_per_group = worker_cnt_per_group;
conf->worker_groups = new_groups;
spin_unlock_irq(&conf->device_lock);
if (old_groups)
kfree(old_groups[0].workers);
kfree(old_groups);
}
mddev_resume(mddev);
}
mddev_unlock(mddev);
return err ?: len;
}
static struct md_sysfs_entry
raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
raid5_show_group_thread_cnt,
raid5_store_group_thread_cnt);
static struct attribute *raid5_attrs[] = {
&raid5_stripecache_size.attr,
&raid5_stripecache_active.attr,
&raid5_preread_bypass_threshold.attr,
&raid5_group_thread_cnt.attr,
&raid5_skip_copy.attr,
&raid5_rmw_level.attr,
&r5c_journal_mode.attr,
NULL,
};
static struct attribute_group raid5_attrs_group = {
.name = NULL,
.attrs = raid5_attrs,
};
static int alloc_thread_groups(struct r5conf *conf, int cnt,
int *group_cnt,
int *worker_cnt_per_group,
struct r5worker_group **worker_groups)
{
int i, j, k;
ssize_t size;
struct r5worker *workers;
*worker_cnt_per_group = cnt;
if (cnt == 0) {
*group_cnt = 0;
*worker_groups = NULL;
return 0;
}
*group_cnt = num_possible_nodes();
size = sizeof(struct r5worker) * cnt;
workers = kzalloc(size * *group_cnt, GFP_NOIO);
*worker_groups = kzalloc(sizeof(struct r5worker_group) *
*group_cnt, GFP_NOIO);
if (!*worker_groups || !workers) {
kfree(workers);
kfree(*worker_groups);
return -ENOMEM;
}
for (i = 0; i < *group_cnt; i++) {
struct r5worker_group *group;
group = &(*worker_groups)[i];
INIT_LIST_HEAD(&group->handle_list);
INIT_LIST_HEAD(&group->loprio_list);
group->conf = conf;
group->workers = workers + i * cnt;
for (j = 0; j < cnt; j++) {
struct r5worker *worker = group->workers + j;
worker->group = group;
INIT_WORK(&worker->work, raid5_do_work);
for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
INIT_LIST_HEAD(worker->temp_inactive_list + k);
}
}
return 0;
}
static void free_thread_groups(struct r5conf *conf)
{
if (conf->worker_groups)
kfree(conf->worker_groups[0].workers);
kfree(conf->worker_groups);
conf->worker_groups = NULL;
}
static sector_t
raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
{
struct r5conf *conf = mddev->private;
if (!sectors)
sectors = mddev->dev_sectors;
if (!raid_disks)
/* size is defined by the smallest of previous and new size */
raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
sectors &= ~((sector_t)conf->chunk_sectors - 1);
sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
return sectors * (raid_disks - conf->max_degraded);
}
static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
safe_put_page(percpu->spare_page);
if (percpu->scribble)
flex_array_free(percpu->scribble);
percpu->spare_page = NULL;
percpu->scribble = NULL;
}
static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
{
if (conf->level == 6 && !percpu->spare_page)
percpu->spare_page = alloc_page(GFP_KERNEL);
if (!percpu->scribble)
percpu->scribble = scribble_alloc(max(conf->raid_disks,
conf->previous_raid_disks),
max(conf->chunk_sectors,
conf->prev_chunk_sectors)
/ STRIPE_SECTORS,
GFP_KERNEL);
if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
free_scratch_buffer(conf, percpu);
return -ENOMEM;
}
return 0;
}
static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
{
struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
return 0;
}
static void raid5_free_percpu(struct r5conf *conf)
{
if (!conf->percpu)
return;
cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
free_percpu(conf->percpu);
}
static void free_conf(struct r5conf *conf)
{
int i;
log_exit(conf);
if (conf->shrinker.nr_deferred)
unregister_shrinker(&conf->shrinker);
free_thread_groups(conf);
shrink_stripes(conf);
raid5_free_percpu(conf);
for (i = 0; i < conf->pool_size; i++)
if (conf->disks[i].extra_page)
put_page(conf->disks[i].extra_page);
kfree(conf->disks);
if (conf->bio_split)
bioset_free(conf->bio_split);
kfree(conf->stripe_hashtbl);
kfree(conf->pending_data);
kfree(conf);
}
static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
{
struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
if (alloc_scratch_buffer(conf, percpu)) {
pr_warn("%s: failed memory allocation for cpu%u\n",
__func__, cpu);
return -ENOMEM;
}
return 0;
}
static int raid5_alloc_percpu(struct r5conf *conf)
{
int err = 0;
conf->percpu = alloc_percpu(struct raid5_percpu);
if (!conf->percpu)
return -ENOMEM;
err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
if (!err) {
conf->scribble_disks = max(conf->raid_disks,
conf->previous_raid_disks);
conf->scribble_sectors = max(conf->chunk_sectors,
conf->prev_chunk_sectors);
}
return err;
}
static unsigned long raid5_cache_scan(struct shrinker *shrink,
struct shrink_control *sc)
{
struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
unsigned long ret = SHRINK_STOP;
if (mutex_trylock(&conf->cache_size_mutex)) {
ret= 0;
while (ret < sc->nr_to_scan &&
conf->max_nr_stripes > conf->min_nr_stripes) {
if (drop_one_stripe(conf) == 0) {
ret = SHRINK_STOP;
break;
}
ret++;
}
mutex_unlock(&conf->cache_size_mutex);
}
return ret;
}
static unsigned long raid5_cache_count(struct shrinker *shrink,
struct shrink_control *sc)
{
struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
if (conf->max_nr_stripes < conf->min_nr_stripes)
/* unlikely, but not impossible */
return 0;
return conf->max_nr_stripes - conf->min_nr_stripes;
}
static struct r5conf *setup_conf(struct mddev *mddev)
{
struct r5conf *conf;
int raid_disk, memory, max_disks;
struct md_rdev *rdev;
struct disk_info *disk;
char pers_name[6];
int i;
int group_cnt, worker_cnt_per_group;
struct r5worker_group *new_group;
if (mddev->new_level != 5
&& mddev->new_level != 4
&& mddev->new_level != 6) {
pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
mdname(mddev), mddev->new_level);
return ERR_PTR(-EIO);
}
if ((mddev->new_level == 5
&& !algorithm_valid_raid5(mddev->new_layout)) ||
(mddev->new_level == 6
&& !algorithm_valid_raid6(mddev->new_layout))) {
pr_warn("md/raid:%s: layout %d not supported\n",
mdname(mddev), mddev->new_layout);
return ERR_PTR(-EIO);
}
if (mddev->new_level == 6 && mddev->raid_disks < 4) {
pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
mdname(mddev), mddev->raid_disks);
return ERR_PTR(-EINVAL);
}
if (!mddev->new_chunk_sectors ||
(mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
!is_power_of_2(mddev->new_chunk_sectors)) {
pr_warn("md/raid:%s: invalid chunk size %d\n",
mdname(mddev), mddev->new_chunk_sectors << 9);
return ERR_PTR(-EINVAL);
}
conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
if (conf == NULL)
goto abort;
INIT_LIST_HEAD(&conf->free_list);
INIT_LIST_HEAD(&conf->pending_list);
conf->pending_data = kzalloc(sizeof(struct r5pending_data) *
PENDING_IO_MAX, GFP_KERNEL);
if (!conf->pending_data)
goto abort;
for (i = 0; i < PENDING_IO_MAX; i++)
list_add(&conf->pending_data[i].sibling, &conf->free_list);
/* Don't enable multi-threading by default*/
if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
&new_group)) {
conf->group_cnt = group_cnt;
conf->worker_cnt_per_group = worker_cnt_per_group;
conf->worker_groups = new_group;
} else
goto abort;
spin_lock_init(&conf->device_lock);
seqcount_init(&conf->gen_lock);
mutex_init(&conf->cache_size_mutex);
init_waitqueue_head(&conf->wait_for_quiescent);
init_waitqueue_head(&conf->wait_for_stripe);
init_waitqueue_head(&conf->wait_for_overlap);
INIT_LIST_HEAD(&conf->handle_list);
INIT_LIST_HEAD(&conf->loprio_list);
INIT_LIST_HEAD(&conf->hold_list);
INIT_LIST_HEAD(&conf->delayed_list);
INIT_LIST_HEAD(&conf->bitmap_list);
init_llist_head(&conf->released_stripes);
atomic_set(&conf->active_stripes, 0);
atomic_set(&conf->preread_active_stripes, 0);
atomic_set(&conf->active_aligned_reads, 0);
spin_lock_init(&conf->pending_bios_lock);
conf->batch_bio_dispatch = true;
rdev_for_each(rdev, mddev) {
if (test_bit(Journal, &rdev->flags))
continue;
if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
conf->batch_bio_dispatch = false;
break;
}
}
conf->bypass_threshold = BYPASS_THRESHOLD;
conf->recovery_disabled = mddev->recovery_disabled - 1;
conf->raid_disks = mddev->raid_disks;
if (mddev->reshape_position == MaxSector)
conf->previous_raid_disks = mddev->raid_disks;
else
conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
max_disks = max(conf->raid_disks, conf->previous_raid_disks);
conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
GFP_KERNEL);
if (!conf->disks)
goto abort;
for (i = 0; i < max_disks; i++) {
conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
if (!conf->disks[i].extra_page)
goto abort;
}
conf->bio_split = bioset_create(BIO_POOL_SIZE, 0, 0);
if (!conf->bio_split)
goto abort;
conf->mddev = mddev;
if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
goto abort;
/* We init hash_locks[0] separately to that it can be used
* as the reference lock in the spin_lock_nest_lock() call
* in lock_all_device_hash_locks_irq in order to convince
* lockdep that we know what we are doing.
*/
spin_lock_init(conf->hash_locks);
for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
spin_lock_init(conf->hash_locks + i);
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
INIT_LIST_HEAD(conf->inactive_list + i);
for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
INIT_LIST_HEAD(conf->temp_inactive_list + i);
atomic_set(&conf->r5c_cached_full_stripes, 0);
INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
atomic_set(&conf->r5c_cached_partial_stripes, 0);
INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
atomic_set(&conf->r5c_flushing_full_stripes, 0);
atomic_set(&conf->r5c_flushing_partial_stripes, 0);
conf->level = mddev->new_level;
conf->chunk_sectors = mddev->new_chunk_sectors;
if (raid5_alloc_percpu(conf) != 0)
goto abort;
pr_debug("raid456: run(%s) called.\n", mdname(mddev));
rdev_for_each(rdev, mddev) {
raid_disk = rdev->raid_disk;
if (raid_disk >= max_disks
|| raid_disk < 0 || test_bit(Journal, &rdev->flags))
continue;
disk = conf->disks + raid_disk;
if (test_bit(Replacement, &rdev->flags)) {
if (disk->replacement)
goto abort;
disk->replacement = rdev;
} else {
if (disk->rdev)
goto abort;
disk->rdev = rdev;
}
if (test_bit(In_sync, &rdev->flags)) {
char b[BDEVNAME_SIZE];
pr_info("md/raid:%s: device %s operational as raid disk %d\n",
mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
} else if (rdev->saved_raid_disk != raid_disk)
/* Cannot rely on bitmap to complete recovery */
conf->fullsync = 1;
}
conf->level = mddev->new_level;
if (conf->level == 6) {
conf->max_degraded = 2;
if (raid6_call.xor_syndrome)
conf->rmw_level = PARITY_ENABLE_RMW;
else
conf->rmw_level = PARITY_DISABLE_RMW;
} else {
conf->max_degraded = 1;
conf->rmw_level = PARITY_ENABLE_RMW;
}
conf->algorithm = mddev->new_layout;
conf->reshape_progress = mddev->reshape_position;
if (conf->reshape_progress != MaxSector) {
conf->prev_chunk_sectors = mddev->chunk_sectors;
conf->prev_algo = mddev->layout;
} else {
conf->prev_chunk_sectors = conf->chunk_sectors;
conf->prev_algo = conf->algorithm;
}
conf->min_nr_stripes = NR_STRIPES;
if (mddev->reshape_position != MaxSector) {
int stripes = max_t(int,
((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
conf->min_nr_stripes = max(NR_STRIPES, stripes);
if (conf->min_nr_stripes != NR_STRIPES)
pr_info("md/raid:%s: force stripe size %d for reshape\n",
mdname(mddev), conf->min_nr_stripes);
}
memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
if (grow_stripes(conf, conf->min_nr_stripes)) {
pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
mdname(mddev), memory);
goto abort;
} else
pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
/*
* Losing a stripe head costs more than the time to refill it,
* it reduces the queue depth and so can hurt throughput.
* So set it rather large, scaled by number of devices.
*/
conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
conf->shrinker.scan_objects = raid5_cache_scan;
conf->shrinker.count_objects = raid5_cache_count;
conf->shrinker.batch = 128;
conf->shrinker.flags = 0;
if (register_shrinker(&conf->shrinker)) {
pr_warn("md/raid:%s: couldn't register shrinker.\n",
mdname(mddev));
goto abort;
}
sprintf(pers_name, "raid%d", mddev->new_level);
conf->thread = md_register_thread(raid5d, mddev, pers_name);
if (!conf->thread) {
pr_warn("md/raid:%s: couldn't allocate thread.\n",
mdname(mddev));
goto abort;
}
return conf;
abort:
if (conf) {
free_conf(conf);
return ERR_PTR(-EIO);
} else
return ERR_PTR(-ENOMEM);
}
static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
{
switch (algo) {
case ALGORITHM_PARITY_0:
if (raid_disk < max_degraded)
return 1;
break;
case ALGORITHM_PARITY_N:
if (raid_disk >= raid_disks - max_degraded)
return 1;
break;
case ALGORITHM_PARITY_0_6:
if (raid_disk == 0 ||
raid_disk == raid_disks - 1)
return 1;
break;
case ALGORITHM_LEFT_ASYMMETRIC_6:
case ALGORITHM_RIGHT_ASYMMETRIC_6:
case ALGORITHM_LEFT_SYMMETRIC_6:
case ALGORITHM_RIGHT_SYMMETRIC_6:
if (raid_disk == raid_disks - 1)
return 1;
}
return 0;
}
static int raid5_run(struct mddev *mddev)
{
struct r5conf *conf;
int working_disks = 0;
int dirty_parity_disks = 0;
struct md_rdev *rdev;
struct md_rdev *journal_dev = NULL;
sector_t reshape_offset = 0;
int i;
long long min_offset_diff = 0;
int first = 1;
if (mddev_init_writes_pending(mddev) < 0)
return -ENOMEM;
if (mddev->recovery_cp != MaxSector)
pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
mdname(mddev));
rdev_for_each(rdev, mddev) {
long long diff;
if (test_bit(Journal, &rdev->flags)) {
journal_dev = rdev;
continue;
}
if (rdev->raid_disk < 0)
continue;
diff = (rdev->new_data_offset - rdev->data_offset);
if (first) {
min_offset_diff = diff;
first = 0;
} else if (mddev->reshape_backwards &&
diff < min_offset_diff)
min_offset_diff = diff;
else if (!mddev->reshape_backwards &&
diff > min_offset_diff)
min_offset_diff = diff;
}
if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
(mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->reshape_position != MaxSector) {
/* Check that we can continue the reshape.
* Difficulties arise if the stripe we would write to
* next is at or after the stripe we would read from next.
* For a reshape that changes the number of devices, this
* is only possible for a very short time, and mdadm makes
* sure that time appears to have past before assembling
* the array. So we fail if that time hasn't passed.
* For a reshape that keeps the number of devices the same
* mdadm must be monitoring the reshape can keeping the
* critical areas read-only and backed up. It will start
* the array in read-only mode, so we check for that.
*/
sector_t here_new, here_old;
int old_disks;
int max_degraded = (mddev->level == 6 ? 2 : 1);
int chunk_sectors;
int new_data_disks;
if (journal_dev) {
pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
mdname(mddev));
return -EINVAL;
}
if (mddev->new_level != mddev->level) {
pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
mdname(mddev));
return -EINVAL;
}
old_disks = mddev->raid_disks - mddev->delta_disks;
/* reshape_position must be on a new-stripe boundary, and one
* further up in new geometry must map after here in old
* geometry.
* If the chunk sizes are different, then as we perform reshape
* in units of the largest of the two, reshape_position needs
* be a multiple of the largest chunk size times new data disks.
*/
here_new = mddev->reshape_position;
chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
new_data_disks = mddev->raid_disks - max_degraded;
if (sector_div(here_new, chunk_sectors * new_data_disks)) {
pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
mdname(mddev));
return -EINVAL;
}
reshape_offset = here_new * chunk_sectors;
/* here_new is the stripe we will write to */
here_old = mddev->reshape_position;
sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
/* here_old is the first stripe that we might need to read
* from */
if (mddev->delta_disks == 0) {
/* We cannot be sure it is safe to start an in-place
* reshape. It is only safe if user-space is monitoring
* and taking constant backups.
* mdadm always starts a situation like this in
* readonly mode so it can take control before
* allowing any writes. So just check for that.
*/
if (abs(min_offset_diff) >= mddev->chunk_sectors &&
abs(min_offset_diff) >= mddev->new_chunk_sectors)
/* not really in-place - so OK */;
else if (mddev->ro == 0) {
pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
mdname(mddev));
return -EINVAL;
}
} else if (mddev->reshape_backwards
? (here_new * chunk_sectors + min_offset_diff <=
here_old * chunk_sectors)
: (here_new * chunk_sectors >=
here_old * chunk_sectors + (-min_offset_diff))) {
/* Reading from the same stripe as writing to - bad */
pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
mdname(mddev));
return -EINVAL;
}
pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
/* OK, we should be able to continue; */
} else {
BUG_ON(mddev->level != mddev->new_level);
BUG_ON(mddev->layout != mddev->new_layout);
BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
BUG_ON(mddev->delta_disks != 0);
}
if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
test_bit(MD_HAS_PPL, &mddev->flags)) {
pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
mdname(mddev));
clear_bit(MD_HAS_PPL, &mddev->flags);
clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
}
if (mddev->private == NULL)
conf = setup_conf(mddev);
else
conf = mddev->private;
if (IS_ERR(conf))
return PTR_ERR(conf);
if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
if (!journal_dev) {
pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
mdname(mddev));
mddev->ro = 1;
set_disk_ro(mddev->gendisk, 1);
} else if (mddev->recovery_cp == MaxSector)
set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
}
conf->min_offset_diff = min_offset_diff;
mddev->thread = conf->thread;
conf->thread = NULL;
mddev->private = conf;
for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
i++) {
rdev = conf->disks[i].rdev;
if (!rdev && conf->disks[i].replacement) {
/* The replacement is all we have yet */
rdev = conf->disks[i].replacement;
conf->disks[i].replacement = NULL;
clear_bit(Replacement, &rdev->flags);
conf->disks[i].rdev = rdev;
}
if (!rdev)
continue;
if (conf->disks[i].replacement &&
conf->reshape_progress != MaxSector) {
/* replacements and reshape simply do not mix. */
pr_warn("md: cannot handle concurrent replacement and reshape.\n");
goto abort;
}
if (test_bit(In_sync, &rdev->flags)) {
working_disks++;
continue;
}
/* This disc is not fully in-sync. However if it
* just stored parity (beyond the recovery_offset),
* when we don't need to be concerned about the
* array being dirty.
* When reshape goes 'backwards', we never have
* partially completed devices, so we only need
* to worry about reshape going forwards.
*/
/* Hack because v0.91 doesn't store recovery_offset properly. */
if (mddev->major_version == 0 &&
mddev->minor_version > 90)
rdev->recovery_offset = reshape_offset;
if (rdev->recovery_offset < reshape_offset) {
/* We need to check old and new layout */
if (!only_parity(rdev->raid_disk,
conf->algorithm,
conf->raid_disks,
conf->max_degraded))
continue;
}
if (!only_parity(rdev->raid_disk,
conf->prev_algo,
conf->previous_raid_disks,
conf->max_degraded))
continue;
dirty_parity_disks++;
}
/*
* 0 for a fully functional array, 1 or 2 for a degraded array.
*/
mddev->degraded = raid5_calc_degraded(conf);
if (has_failed(conf)) {
pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
mdname(mddev), mddev->degraded, conf->raid_disks);
goto abort;
}
/* device size must be a multiple of chunk size */
mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
mddev->resync_max_sectors = mddev->dev_sectors;
if (mddev->degraded > dirty_parity_disks &&
mddev->recovery_cp != MaxSector) {
if (test_bit(MD_HAS_PPL, &mddev->flags))
pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
mdname(mddev));
else if (mddev->ok_start_degraded)
pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
mdname(mddev));
else {
pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
mdname(mddev));
goto abort;
}
}
pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
mdname(mddev), conf->level,
mddev->raid_disks-mddev->degraded, mddev->raid_disks,
mddev->new_layout);
print_raid5_conf(conf);
if (conf->reshape_progress != MaxSector) {
conf->reshape_safe = conf->reshape_progress;
atomic_set(&conf->reshape_stripes, 0);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"reshape");
if (!mddev->sync_thread)
goto abort;
}
/* Ok, everything is just fine now */
if (mddev->to_remove == &raid5_attrs_group)
mddev->to_remove = NULL;
else if (mddev->kobj.sd &&
sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
pr_warn("raid5: failed to create sysfs attributes for %s\n",
mdname(mddev));
md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
if (mddev->queue) {
int chunk_size;
/* read-ahead size must cover two whole stripes, which
* is 2 * (datadisks) * chunksize where 'n' is the
* number of raid devices
*/
int data_disks = conf->previous_raid_disks - conf->max_degraded;
int stripe = data_disks *
((mddev->chunk_sectors << 9) / PAGE_SIZE);
if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
chunk_size = mddev->chunk_sectors << 9;
blk_queue_io_min(mddev->queue, chunk_size);
blk_queue_io_opt(mddev->queue, chunk_size *
(conf->raid_disks - conf->max_degraded));
mddev->queue->limits.raid_partial_stripes_expensive = 1;
/*
* We can only discard a whole stripe. It doesn't make sense to
* discard data disk but write parity disk
*/
stripe = stripe * PAGE_SIZE;
/* Round up to power of 2, as discard handling
* currently assumes that */
while ((stripe-1) & stripe)
stripe = (stripe | (stripe-1)) + 1;
mddev->queue->limits.discard_alignment = stripe;
mddev->queue->limits.discard_granularity = stripe;
blk_queue_max_write_same_sectors(mddev->queue, 0);
blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
rdev_for_each(rdev, mddev) {
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->data_offset << 9);
disk_stack_limits(mddev->gendisk, rdev->bdev,
rdev->new_data_offset << 9);
}
/*
* zeroing is required, otherwise data
* could be lost. Consider a scenario: discard a stripe
* (the stripe could be inconsistent if
* discard_zeroes_data is 0); write one disk of the
* stripe (the stripe could be inconsistent again
* depending on which disks are used to calculate
* parity); the disk is broken; The stripe data of this
* disk is lost.
*
* We only allow DISCARD if the sysadmin has confirmed that
* only safe devices are in use by setting a module parameter.
* A better idea might be to turn DISCARD into WRITE_ZEROES
* requests, as that is required to be safe.
*/
if (devices_handle_discard_safely &&
mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
mddev->queue->limits.discard_granularity >= stripe)
queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
mddev->queue);
else
queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
mddev->queue);
blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
}
if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
goto abort;
return 0;
abort:
md_unregister_thread(&mddev->thread);
print_raid5_conf(conf);
free_conf(conf);
mddev->private = NULL;
pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
return -EIO;
}
static void raid5_free(struct mddev *mddev, void *priv)
{
struct r5conf *conf = priv;
free_conf(conf);
mddev->to_remove = &raid5_attrs_group;
}
static void raid5_status(struct seq_file *seq, struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
int i;
seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
conf->chunk_sectors / 2, mddev->layout);
seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
rcu_read_lock();
for (i = 0; i < conf->raid_disks; i++) {
struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
}
rcu_read_unlock();
seq_printf (seq, "]");
}
static void print_raid5_conf (struct r5conf *conf)
{
int i;
struct disk_info *tmp;
pr_debug("RAID conf printout:\n");
if (!conf) {
pr_debug("(conf==NULL)\n");
return;
}
pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
conf->raid_disks,
conf->raid_disks - conf->mddev->degraded);
for (i = 0; i < conf->raid_disks; i++) {
char b[BDEVNAME_SIZE];
tmp = conf->disks + i;
if (tmp->rdev)
pr_debug(" disk %d, o:%d, dev:%s\n",
i, !test_bit(Faulty, &tmp->rdev->flags),
bdevname(tmp->rdev->bdev, b));
}
}
static int raid5_spare_active(struct mddev *mddev)
{
int i;
struct r5conf *conf = mddev->private;
struct disk_info *tmp;
int count = 0;
unsigned long flags;
for (i = 0; i < conf->raid_disks; i++) {
tmp = conf->disks + i;
if (tmp->replacement
&& tmp->replacement->recovery_offset == MaxSector
&& !test_bit(Faulty, &tmp->replacement->flags)
&& !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
/* Replacement has just become active. */
if (!tmp->rdev
|| !test_and_clear_bit(In_sync, &tmp->rdev->flags))
count++;
if (tmp->rdev) {
/* Replaced device not technically faulty,
* but we need to be sure it gets removed
* and never re-added.
*/
set_bit(Faulty, &tmp->rdev->flags);
sysfs_notify_dirent_safe(
tmp->rdev->sysfs_state);
}
sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
} else if (tmp->rdev
&& tmp->rdev->recovery_offset == MaxSector
&& !test_bit(Faulty, &tmp->rdev->flags)
&& !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
count++;
sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
}
}
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irqrestore(&conf->device_lock, flags);
print_raid5_conf(conf);
return count;
}
static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r5conf *conf = mddev->private;
int err = 0;
int number = rdev->raid_disk;
struct md_rdev **rdevp;
struct disk_info *p = conf->disks + number;
print_raid5_conf(conf);
if (test_bit(Journal, &rdev->flags) && conf->log) {
/*
* we can't wait pending write here, as this is called in
* raid5d, wait will deadlock.
* neilb: there is no locking about new writes here,
* so this cannot be safe.
*/
if (atomic_read(&conf->active_stripes) ||
atomic_read(&conf->r5c_cached_full_stripes) ||
atomic_read(&conf->r5c_cached_partial_stripes)) {
return -EBUSY;
}
log_exit(conf);
return 0;
}
if (rdev == p->rdev)
rdevp = &p->rdev;
else if (rdev == p->replacement)
rdevp = &p->replacement;
else
return 0;
if (number >= conf->raid_disks &&
conf->reshape_progress == MaxSector)
clear_bit(In_sync, &rdev->flags);
if (test_bit(In_sync, &rdev->flags) ||
atomic_read(&rdev->nr_pending)) {
err = -EBUSY;
goto abort;
}
/* Only remove non-faulty devices if recovery
* isn't possible.
*/
if (!test_bit(Faulty, &rdev->flags) &&
mddev->recovery_disabled != conf->recovery_disabled &&
!has_failed(conf) &&
(!p->replacement || p->replacement == rdev) &&
number < conf->raid_disks) {
err = -EBUSY;
goto abort;
}
*rdevp = NULL;
if (!test_bit(RemoveSynchronized, &rdev->flags)) {
synchronize_rcu();
if (atomic_read(&rdev->nr_pending)) {
/* lost the race, try later */
err = -EBUSY;
*rdevp = rdev;
}
}
if (!err) {
err = log_modify(conf, rdev, false);
if (err)
goto abort;
}
if (p->replacement) {
/* We must have just cleared 'rdev' */
p->rdev = p->replacement;
clear_bit(Replacement, &p->replacement->flags);
smp_mb(); /* Make sure other CPUs may see both as identical
* but will never see neither - if they are careful
*/
p->replacement = NULL;
if (!err)
err = log_modify(conf, p->rdev, true);
}
clear_bit(WantReplacement, &rdev->flags);
abort:
print_raid5_conf(conf);
return err;
}
static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
{
struct r5conf *conf = mddev->private;
int err = -EEXIST;
int disk;
struct disk_info *p;
int first = 0;
int last = conf->raid_disks - 1;
if (test_bit(Journal, &rdev->flags)) {
if (conf->log)
return -EBUSY;
rdev->raid_disk = 0;
/*
* The array is in readonly mode if journal is missing, so no
* write requests running. We should be safe
*/
log_init(conf, rdev, false);
return 0;
}
if (mddev->recovery_disabled == conf->recovery_disabled)
return -EBUSY;
if (rdev->saved_raid_disk < 0 && has_failed(conf))
/* no point adding a device */
return -EINVAL;
if (rdev->raid_disk >= 0)
first = last = rdev->raid_disk;
/*
* find the disk ... but prefer rdev->saved_raid_disk
* if possible.
*/
if (rdev->saved_raid_disk >= 0 &&
rdev->saved_raid_disk >= first &&
conf->disks[rdev->saved_raid_disk].rdev == NULL)
first = rdev->saved_raid_disk;
for (disk = first; disk <= last; disk++) {
p = conf->disks + disk;
if (p->rdev == NULL) {
clear_bit(In_sync, &rdev->flags);
rdev->raid_disk = disk;
if (rdev->saved_raid_disk != disk)
conf->fullsync = 1;
rcu_assign_pointer(p->rdev, rdev);
err = log_modify(conf, rdev, true);
goto out;
}
}
for (disk = first; disk <= last; disk++) {
p = conf->disks + disk;
if (test_bit(WantReplacement, &p->rdev->flags) &&
p->replacement == NULL) {
clear_bit(In_sync, &rdev->flags);
set_bit(Replacement, &rdev->flags);
rdev->raid_disk = disk;
err = 0;
conf->fullsync = 1;
rcu_assign_pointer(p->replacement, rdev);
break;
}
}
out:
print_raid5_conf(conf);
return err;
}
static int raid5_resize(struct mddev *mddev, sector_t sectors)
{
/* no resync is happening, and there is enough space
* on all devices, so we can resize.
* We need to make sure resync covers any new space.
* If the array is shrinking we should possibly wait until
* any io in the removed space completes, but it hardly seems
* worth it.
*/
sector_t newsize;
struct r5conf *conf = mddev->private;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return -EINVAL;
sectors &= ~((sector_t)conf->chunk_sectors - 1);
newsize = raid5_size(mddev, sectors, mddev->raid_disks);
if (mddev->external_size &&
mddev->array_sectors > newsize)
return -EINVAL;
if (mddev->bitmap) {
int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
if (ret)
return ret;
}
md_set_array_sectors(mddev, newsize);
if (sectors > mddev->dev_sectors &&
mddev->recovery_cp > mddev->dev_sectors) {
mddev->recovery_cp = mddev->dev_sectors;
set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
}
mddev->dev_sectors = sectors;
mddev->resync_max_sectors = sectors;
return 0;
}
static int check_stripe_cache(struct mddev *mddev)
{
/* Can only proceed if there are plenty of stripe_heads.
* We need a minimum of one full stripe,, and for sensible progress
* it is best to have about 4 times that.
* If we require 4 times, then the default 256 4K stripe_heads will
* allow for chunk sizes up to 256K, which is probably OK.
* If the chunk size is greater, user-space should request more
* stripe_heads first.
*/
struct r5conf *conf = mddev->private;
if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
> conf->min_nr_stripes ||
((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
> conf->min_nr_stripes) {
pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
mdname(mddev),
((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
/ STRIPE_SIZE)*4);
return 0;
}
return 1;
}
static int check_reshape(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
if (raid5_has_log(conf) || raid5_has_ppl(conf))
return -EINVAL;
if (mddev->delta_disks == 0 &&
mddev->new_layout == mddev->layout &&
mddev->new_chunk_sectors == mddev->chunk_sectors)
return 0; /* nothing to do */
if (has_failed(conf))
return -EINVAL;
if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
/* We might be able to shrink, but the devices must
* be made bigger first.
* For raid6, 4 is the minimum size.
* Otherwise 2 is the minimum
*/
int min = 2;
if (mddev->level == 6)
min = 4;
if (mddev->raid_disks + mddev->delta_disks < min)
return -EINVAL;
}
if (!check_stripe_cache(mddev))
return -ENOSPC;
if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
mddev->delta_disks > 0)
if (resize_chunks(conf,
conf->previous_raid_disks
+ max(0, mddev->delta_disks),
max(mddev->new_chunk_sectors,
mddev->chunk_sectors)
) < 0)
return -ENOMEM;
if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
return 0; /* never bother to shrink */
return resize_stripes(conf, (conf->previous_raid_disks
+ mddev->delta_disks));
}
static int raid5_start_reshape(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
struct md_rdev *rdev;
int spares = 0;
unsigned long flags;
if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
return -EBUSY;
if (!check_stripe_cache(mddev))
return -ENOSPC;
if (has_failed(conf))
return -EINVAL;
rdev_for_each(rdev, mddev) {
if (!test_bit(In_sync, &rdev->flags)
&& !test_bit(Faulty, &rdev->flags))
spares++;
}
if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
/* Not enough devices even to make a degraded array
* of that size
*/
return -EINVAL;
/* Refuse to reduce size of the array. Any reductions in
* array size must be through explicit setting of array_size
* attribute.
*/
if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
< mddev->array_sectors) {
pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
mdname(mddev));
return -EINVAL;
}
atomic_set(&conf->reshape_stripes, 0);
spin_lock_irq(&conf->device_lock);
write_seqcount_begin(&conf->gen_lock);
conf->previous_raid_disks = conf->raid_disks;
conf->raid_disks += mddev->delta_disks;
conf->prev_chunk_sectors = conf->chunk_sectors;
conf->chunk_sectors = mddev->new_chunk_sectors;
conf->prev_algo = conf->algorithm;
conf->algorithm = mddev->new_layout;
conf->generation++;
/* Code that selects data_offset needs to see the generation update
* if reshape_progress has been set - so a memory barrier needed.
*/
smp_mb();
if (mddev->reshape_backwards)
conf->reshape_progress = raid5_size(mddev, 0, 0);
else
conf->reshape_progress = 0;
conf->reshape_safe = conf->reshape_progress;
write_seqcount_end(&conf->gen_lock);
spin_unlock_irq(&conf->device_lock);
/* Now make sure any requests that proceeded on the assumption
* the reshape wasn't running - like Discard or Read - have
* completed.
*/
mddev_suspend(mddev);
mddev_resume(mddev);
/* Add some new drives, as many as will fit.
* We know there are enough to make the newly sized array work.
* Don't add devices if we are reducing the number of
* devices in the array. This is because it is not possible
* to correctly record the "partially reconstructed" state of
* such devices during the reshape and confusion could result.
*/
if (mddev->delta_disks >= 0) {
rdev_for_each(rdev, mddev)
if (rdev->raid_disk < 0 &&
!test_bit(Faulty, &rdev->flags)) {
if (raid5_add_disk(mddev, rdev) == 0) {
if (rdev->raid_disk
>= conf->previous_raid_disks)
set_bit(In_sync, &rdev->flags);
else
rdev->recovery_offset = 0;
if (sysfs_link_rdev(mddev, rdev))
/* Failure here is OK */;
}
} else if (rdev->raid_disk >= conf->previous_raid_disks
&& !test_bit(Faulty, &rdev->flags)) {
/* This is a spare that was manually added */
set_bit(In_sync, &rdev->flags);
}
/* When a reshape changes the number of devices,
* ->degraded is measured against the larger of the
* pre and post number of devices.
*/
spin_lock_irqsave(&conf->device_lock, flags);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irqrestore(&conf->device_lock, flags);
}
mddev->raid_disks = conf->raid_disks;
mddev->reshape_position = conf->reshape_progress;
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
mddev->sync_thread = md_register_thread(md_do_sync, mddev,
"reshape");
if (!mddev->sync_thread) {
mddev->recovery = 0;
spin_lock_irq(&conf->device_lock);
write_seqcount_begin(&conf->gen_lock);
mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
mddev->new_chunk_sectors =
conf->chunk_sectors = conf->prev_chunk_sectors;
mddev->new_layout = conf->algorithm = conf->prev_algo;
rdev_for_each(rdev, mddev)
rdev->new_data_offset = rdev->data_offset;
smp_wmb();
conf->generation --;
conf->reshape_progress = MaxSector;
mddev->reshape_position = MaxSector;
write_seqcount_end(&conf->gen_lock);
spin_unlock_irq(&conf->device_lock);
return -EAGAIN;
}
conf->reshape_checkpoint = jiffies;
md_wakeup_thread(mddev->sync_thread);
md_new_event(mddev);
return 0;
}
/* This is called from the reshape thread and should make any
* changes needed in 'conf'
*/
static void end_reshape(struct r5conf *conf)
{
if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
spin_lock_irq(&conf->device_lock);
conf->previous_raid_disks = conf->raid_disks;
md_finish_reshape(conf->mddev);
smp_wmb();
conf->reshape_progress = MaxSector;
conf->mddev->reshape_position = MaxSector;
spin_unlock_irq(&conf->device_lock);
wake_up(&conf->wait_for_overlap);
/* read-ahead size must cover two whole stripes, which is
* 2 * (datadisks) * chunksize where 'n' is the number of raid devices
*/
if (conf->mddev->queue) {
int data_disks = conf->raid_disks - conf->max_degraded;
int stripe = data_disks * ((conf->chunk_sectors << 9)
/ PAGE_SIZE);
if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
}
}
}
/* This is called from the raid5d thread with mddev_lock held.
* It makes config changes to the device.
*/
static void raid5_finish_reshape(struct mddev *mddev)
{
struct r5conf *conf = mddev->private;
if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
if (mddev->delta_disks <= 0) {
int d;
spin_lock_irq(&conf->device_lock);
mddev->degraded = raid5_calc_degraded(conf);
spin_unlock_irq(&conf->device_lock);
for (d = conf->raid_disks ;
d < conf->raid_disks - mddev->delta_disks;
d++) {
struct md_rdev *rdev = conf->disks[d].rdev;
if (rdev)
clear_bit(In_sync, &rdev->flags);
rdev = conf->disks[d].replacement;
if (rdev)
clear_bit(In_sync, &rdev->flags);
}
}
mddev->layout = conf->algorithm;
mddev->chunk_sectors = conf->chunk_sectors;
mddev->reshape_position = MaxSector;
mddev->delta_disks = 0;
mddev->reshape_backwards = 0;
}
}
static void raid5_quiesce(struct mddev *mddev, int quiesce)
{
struct r5conf *conf = mddev->private;
if (quiesce) {
/* stop all writes */
lock_all_device_hash_locks_irq(conf);
/* '2' tells resync/reshape to pause so that all
* active stripes can drain
*/
r5c_flush_cache(conf, INT_MAX);
conf->quiesce = 2;
wait_event_cmd(conf->wait_for_quiescent,
atomic_read(&conf->active_stripes) == 0 &&
atomic_read(&conf->active_aligned_reads) == 0,
unlock_all_device_hash_locks_irq(conf),
lock_all_device_hash_locks_irq(conf));
conf->quiesce = 1;
unlock_all_device_hash_locks_irq(conf);
/* allow reshape to continue */
wake_up(&conf->wait_for_overlap);
} else {
/* re-enable writes */
lock_all_device_hash_locks_irq(conf);
conf->quiesce = 0;
wake_up(&conf->wait_for_quiescent);
wake_up(&conf->wait_for_overlap);
unlock_all_device_hash_locks_irq(conf);
}
r5l_quiesce(conf->log, quiesce);
}
static void *raid45_takeover_raid0(struct mddev *mddev, int level)
{
struct r0conf *raid0_conf = mddev->private;
sector_t sectors;
/* for raid0 takeover only one zone is supported */
if (raid0_conf->nr_strip_zones > 1) {
pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
mdname(mddev));
return ERR_PTR(-EINVAL);
}
sectors = raid0_conf->strip_zone[0].zone_end;
sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
mddev->dev_sectors = sectors;
mddev->new_level = level;
mddev->new_layout = ALGORITHM_PARITY_N;
mddev->new_chunk_sectors = mddev->chunk_sectors;
mddev->raid_disks += 1;
mddev->delta_disks = 1;
/* make sure it will be not marked as dirty */
mddev->recovery_cp = MaxSector;
return setup_conf(mddev);
}
static void *raid5_takeover_raid1(struct mddev *mddev)
{
int chunksect;
void *ret;
if (mddev->raid_disks != 2 ||
mddev->degraded > 1)
return ERR_PTR(-EINVAL);
/* Should check if there are write-behind devices? */
chunksect = 64*2; /* 64K by default */
/* The array must be an exact multiple of chunksize */
while (chunksect && (mddev->array_sectors & (chunksect-1)))
chunksect >>= 1;
if ((chunksect<<9) < STRIPE_SIZE)
/* array size does not allow a suitable chunk size */
return ERR_PTR(-EINVAL);
mddev->new_level = 5;
mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
mddev->new_chunk_sectors = chunksect;
ret = setup_conf(mddev);
if (!IS_ERR(ret))
mddev_clear_unsupported_flags(mddev,
UNSUPPORTED_MDDEV_FLAGS);
return ret;
}
static void *raid5_takeover_raid6(struct mddev *mddev)
{
int new_layout;
switch (mddev->layout) {
case ALGORITHM_LEFT_ASYMMETRIC_6:
new_layout = ALGORITHM_LEFT_ASYMMETRIC;
break;
case ALGORITHM_RIGHT_ASYMMETRIC_6:
new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
break;
case ALGORITHM_LEFT_SYMMETRIC_6:
new_layout = ALGORITHM_LEFT_SYMMETRIC;
break;
case ALGORITHM_RIGHT_SYMMETRIC_6:
new_layout = ALGORITHM_RIGHT_SYMMETRIC;
break;
case ALGORITHM_PARITY_0_6:
new_layout = ALGORITHM_PARITY_0;
break;
case ALGORITHM_PARITY_N:
new_layout = ALGORITHM_PARITY_N;
break;
default:
return ERR_PTR(-EINVAL);
}
mddev->new_level = 5;
mddev->new_layout = new_layout;
mddev->delta_disks = -1;
mddev->raid_disks -= 1;
return setup_conf(mddev);
}
static int raid5_check_reshape(struct mddev *mddev)
{
/* For a 2-drive array, the layout and chunk size can be changed
* immediately as not restriping is needed.
* For larger arrays we record the new value - after validation
* to be used by a reshape pass.
*/
struct r5conf *conf = mddev->private;
int new_chunk = mddev->new_chunk_sectors;
if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
return -EINVAL;
if (new_chunk > 0) {
if (!is_power_of_2(new_chunk))
return -EINVAL;
if (new_chunk < (PAGE_SIZE>>9))
return -EINVAL;
if (mddev->array_sectors & (new_chunk-1))
/* not factor of array size */
return -EINVAL;
}
/* They look valid */
if (mddev->raid_disks == 2) {
/* can make the change immediately */
if (mddev->new_layout >= 0) {
conf->algorithm = mddev->new_layout;
mddev->layout = mddev->new_layout;
}
if (new_chunk > 0) {
conf->chunk_sectors = new_chunk ;
mddev->chunk_sectors = new_chunk;
}
set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
md_wakeup_thread(mddev->thread);
}
return check_reshape(mddev);
}
static int raid6_check_reshape(struct mddev *mddev)
{
int new_chunk = mddev->new_chunk_sectors;
if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
return -EINVAL;
if (new_chunk > 0) {
if (!is_power_of_2(new_chunk))
return -EINVAL;
if (new_chunk < (PAGE_SIZE >> 9))
return -EINVAL;
if (mddev->array_sectors & (new_chunk-1))
/* not factor of array size */
return -EINVAL;
}
/* They look valid */
return check_reshape(mddev);
}
static void *raid5_takeover(struct mddev *mddev)
{
/* raid5 can take over:
* raid0 - if there is only one strip zone - make it a raid4 layout
* raid1 - if there are two drives. We need to know the chunk size
* raid4 - trivial - just use a raid4 layout.
* raid6 - Providing it is a *_6 layout
*/
if (mddev->level == 0)
return raid45_takeover_raid0(mddev, 5);
if (mddev->level == 1)
return raid5_takeover_raid1(mddev);
if (mddev->level == 4) {
mddev->new_layout = ALGORITHM_PARITY_N;
mddev->new_level = 5;
return setup_conf(mddev);
}
if (mddev->level == 6)
return raid5_takeover_raid6(mddev);
return ERR_PTR(-EINVAL);
}
static void *raid4_takeover(struct mddev *mddev)
{
/* raid4 can take over:
* raid0 - if there is only one strip zone
* raid5 - if layout is right
*/
if (mddev->level == 0)
return raid45_takeover_raid0(mddev, 4);
if (mddev->level == 5 &&
mddev->layout == ALGORITHM_PARITY_N) {
mddev->new_layout = 0;
mddev->new_level = 4;
return setup_conf(mddev);
}
return ERR_PTR(-EINVAL);
}
static struct md_personality raid5_personality;
static void *raid6_takeover(struct mddev *mddev)
{
/* Currently can only take over a raid5. We map the
* personality to an equivalent raid6 personality
* with the Q block at the end.
*/
int new_layout;
if (mddev->pers != &raid5_personality)
return ERR_PTR(-EINVAL);
if (mddev->degraded > 1)
return ERR_PTR(-EINVAL);
if (mddev->raid_disks > 253)
return ERR_PTR(-EINVAL);
if (mddev->raid_disks < 3)
return ERR_PTR(-EINVAL);
switch (mddev->layout) {
case ALGORITHM_LEFT_ASYMMETRIC:
new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
break;
case ALGORITHM_RIGHT_ASYMMETRIC:
new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
break;
case ALGORITHM_LEFT_SYMMETRIC:
new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
break;
case ALGORITHM_RIGHT_SYMMETRIC:
new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
break;
case ALGORITHM_PARITY_0:
new_layout = ALGORITHM_PARITY_0_6;
break;
case ALGORITHM_PARITY_N:
new_layout = ALGORITHM_PARITY_N;
break;
default:
return ERR_PTR(-EINVAL);
}
mddev->new_level = 6;
mddev->new_layout = new_layout;
mddev->delta_disks = 1;
mddev->raid_disks += 1;
return setup_conf(mddev);
}
static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
{
struct r5conf *conf;
int err;
err = mddev_lock(mddev);
if (err)
return err;
conf = mddev->private;
if (!conf) {
mddev_unlock(mddev);
return -ENODEV;
}
if (strncmp(buf, "ppl", 3) == 0) {
/* ppl only works with RAID 5 */
if (!raid5_has_ppl(conf) && conf->level == 5) {
err = log_init(conf, NULL, true);
if (!err) {
err = resize_stripes(conf, conf->pool_size);
if (err)
log_exit(conf);
}
} else
err = -EINVAL;
} else if (strncmp(buf, "resync", 6) == 0) {
if (raid5_has_ppl(conf)) {
mddev_suspend(mddev);
log_exit(conf);
mddev_resume(mddev);
err = resize_stripes(conf, conf->pool_size);
} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
r5l_log_disk_error(conf)) {
bool journal_dev_exists = false;
struct md_rdev *rdev;
rdev_for_each(rdev, mddev)
if (test_bit(Journal, &rdev->flags)) {
journal_dev_exists = true;
break;
}
if (!journal_dev_exists) {
mddev_suspend(mddev);
clear_bit(MD_HAS_JOURNAL, &mddev->flags);
mddev_resume(mddev);
} else /* need remove journal device first */
err = -EBUSY;
} else
err = -EINVAL;
} else {
err = -EINVAL;
}
if (!err)
md_update_sb(mddev, 1);
mddev_unlock(mddev);
return err;
}
static struct md_personality raid6_personality =
{
.name = "raid6",
.level = 6,
.owner = THIS_MODULE,
.make_request = raid5_make_request,
.run = raid5_run,
.free = raid5_free,
.status = raid5_status,
.error_handler = raid5_error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = raid5_sync_request,
.resize = raid5_resize,
.size = raid5_size,
.check_reshape = raid6_check_reshape,
.start_reshape = raid5_start_reshape,
.finish_reshape = raid5_finish_reshape,
.quiesce = raid5_quiesce,
.takeover = raid6_takeover,
.congested = raid5_congested,
.change_consistency_policy = raid5_change_consistency_policy,
};
static struct md_personality raid5_personality =
{
.name = "raid5",
.level = 5,
.owner = THIS_MODULE,
.make_request = raid5_make_request,
.run = raid5_run,
.free = raid5_free,
.status = raid5_status,
.error_handler = raid5_error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = raid5_sync_request,
.resize = raid5_resize,
.size = raid5_size,
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
.finish_reshape = raid5_finish_reshape,
.quiesce = raid5_quiesce,
.takeover = raid5_takeover,
.congested = raid5_congested,
.change_consistency_policy = raid5_change_consistency_policy,
};
static struct md_personality raid4_personality =
{
.name = "raid4",
.level = 4,
.owner = THIS_MODULE,
.make_request = raid5_make_request,
.run = raid5_run,
.free = raid5_free,
.status = raid5_status,
.error_handler = raid5_error,
.hot_add_disk = raid5_add_disk,
.hot_remove_disk= raid5_remove_disk,
.spare_active = raid5_spare_active,
.sync_request = raid5_sync_request,
.resize = raid5_resize,
.size = raid5_size,
.check_reshape = raid5_check_reshape,
.start_reshape = raid5_start_reshape,
.finish_reshape = raid5_finish_reshape,
.quiesce = raid5_quiesce,
.takeover = raid4_takeover,
.congested = raid5_congested,
.change_consistency_policy = raid5_change_consistency_policy,
};
static int __init raid5_init(void)
{
int ret;
raid5_wq = alloc_workqueue("raid5wq",
WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
if (!raid5_wq)
return -ENOMEM;
ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
"md/raid5:prepare",
raid456_cpu_up_prepare,
raid456_cpu_dead);
if (ret) {
destroy_workqueue(raid5_wq);
return ret;
}
register_md_personality(&raid6_personality);
register_md_personality(&raid5_personality);
register_md_personality(&raid4_personality);
return 0;
}
static void raid5_exit(void)
{
unregister_md_personality(&raid6_personality);
unregister_md_personality(&raid5_personality);
unregister_md_personality(&raid4_personality);
cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
destroy_workqueue(raid5_wq);
}
module_init(raid5_init);
module_exit(raid5_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
MODULE_ALIAS("md-personality-4"); /* RAID5 */
MODULE_ALIAS("md-raid5");
MODULE_ALIAS("md-raid4");
MODULE_ALIAS("md-level-5");
MODULE_ALIAS("md-level-4");
MODULE_ALIAS("md-personality-8"); /* RAID6 */
MODULE_ALIAS("md-raid6");
MODULE_ALIAS("md-level-6");
/* This used to be two separate modules, they were: */
MODULE_ALIAS("raid5");
MODULE_ALIAS("raid6");