| /* |
| Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> |
| Copyright (C) 2010 Ivo van Doorn <IvDoorn@gmail.com> |
| Copyright (C) 2009 Bartlomiej Zolnierkiewicz <bzolnier@gmail.com> |
| Copyright (C) 2009 Gertjan van Wingerde <gwingerde@gmail.com> |
| |
| Based on the original rt2800pci.c and rt2800usb.c. |
| Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> |
| Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> |
| Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> |
| Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> |
| Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> |
| Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2800lib |
| Abstract: rt2800 generic device routines. |
| */ |
| |
| #include <linux/crc-ccitt.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include "rt2x00.h" |
| #include "rt2800lib.h" |
| #include "rt2800.h" |
| |
| /* |
| * Register access. |
| * All access to the CSR registers will go through the methods |
| * rt2800_register_read and rt2800_register_write. |
| * BBP and RF register require indirect register access, |
| * and use the CSR registers BBPCSR and RFCSR to achieve this. |
| * These indirect registers work with busy bits, |
| * and we will try maximal REGISTER_BUSY_COUNT times to access |
| * the register while taking a REGISTER_BUSY_DELAY us delay |
| * between each attampt. When the busy bit is still set at that time, |
| * the access attempt is considered to have failed, |
| * and we will print an error. |
| * The _lock versions must be used if you already hold the csr_mutex |
| */ |
| #define WAIT_FOR_BBP(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), BBP_CSR_CFG, BBP_CSR_CFG_BUSY, (__reg)) |
| #define WAIT_FOR_RFCSR(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), RF_CSR_CFG, RF_CSR_CFG_BUSY, (__reg)) |
| #define WAIT_FOR_RF(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), RF_CSR_CFG0, RF_CSR_CFG0_BUSY, (__reg)) |
| #define WAIT_FOR_MCU(__dev, __reg) \ |
| rt2800_regbusy_read((__dev), H2M_MAILBOX_CSR, \ |
| H2M_MAILBOX_CSR_OWNER, (__reg)) |
| |
| static inline bool rt2800_is_305x_soc(struct rt2x00_dev *rt2x00dev) |
| { |
| /* check for rt2872 on SoC */ |
| if (!rt2x00_is_soc(rt2x00dev) || |
| !rt2x00_rt(rt2x00dev, RT2872)) |
| return false; |
| |
| /* we know for sure that these rf chipsets are used on rt305x boards */ |
| if (rt2x00_rf(rt2x00dev, RF3020) || |
| rt2x00_rf(rt2x00dev, RF3021) || |
| rt2x00_rf(rt2x00dev, RF3022)) |
| return true; |
| |
| NOTICE(rt2x00dev, "Unknown RF chipset on rt305x\n"); |
| return false; |
| } |
| |
| static void rt2800_bbp_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, BBP_CSR_CFG_VALUE, value); |
| rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); |
| rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 0); |
| rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_bbp_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the BBP becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_BBP(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, BBP_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, BBP_CSR_CFG_BUSY, 1); |
| rt2x00_set_field32(®, BBP_CSR_CFG_READ_CONTROL, 1); |
| rt2x00_set_field32(®, BBP_CSR_CFG_BBP_RW_MODE, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, BBP_CSR_CFG, reg); |
| |
| WAIT_FOR_BBP(rt2x00dev, ®); |
| } |
| |
| *value = rt2x00_get_field32(reg, BBP_CSR_CFG_VALUE); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_rfcsr_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u8 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RFCSR becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RF_CSR_CFG_DATA, value); |
| rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 1); |
| rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_rfcsr_read(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, u8 *value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RFCSR becomes available, afterwards we |
| * can safely write the read request into the register. |
| * After the data has been written, we wait until hardware |
| * returns the correct value, if at any time the register |
| * doesn't become available in time, reg will be 0xffffffff |
| * which means we return 0xff to the caller. |
| */ |
| if (WAIT_FOR_RFCSR(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RF_CSR_CFG_REGNUM, word); |
| rt2x00_set_field32(®, RF_CSR_CFG_WRITE, 0); |
| rt2x00_set_field32(®, RF_CSR_CFG_BUSY, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG, reg); |
| |
| WAIT_FOR_RFCSR(rt2x00dev, ®); |
| } |
| |
| *value = rt2x00_get_field32(reg, RF_CSR_CFG_DATA); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| static void rt2800_rf_write(struct rt2x00_dev *rt2x00dev, |
| const unsigned int word, const u32 value) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the RF becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_RF(rt2x00dev, ®)) { |
| reg = 0; |
| rt2x00_set_field32(®, RF_CSR_CFG0_REG_VALUE_BW, value); |
| rt2x00_set_field32(®, RF_CSR_CFG0_STANDBYMODE, 0); |
| rt2x00_set_field32(®, RF_CSR_CFG0_SEL, 0); |
| rt2x00_set_field32(®, RF_CSR_CFG0_BUSY, 1); |
| |
| rt2800_register_write_lock(rt2x00dev, RF_CSR_CFG0, reg); |
| rt2x00_rf_write(rt2x00dev, word, value); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| void rt2800_mcu_request(struct rt2x00_dev *rt2x00dev, |
| const u8 command, const u8 token, |
| const u8 arg0, const u8 arg1) |
| { |
| u32 reg; |
| |
| /* |
| * SOC devices don't support MCU requests. |
| */ |
| if (rt2x00_is_soc(rt2x00dev)) |
| return; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| /* |
| * Wait until the MCU becomes available, afterwards we |
| * can safely write the new data into the register. |
| */ |
| if (WAIT_FOR_MCU(rt2x00dev, ®)) { |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); |
| rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); |
| rt2800_register_write_lock(rt2x00dev, H2M_MAILBOX_CSR, reg); |
| |
| reg = 0; |
| rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); |
| rt2800_register_write_lock(rt2x00dev, HOST_CMD_CSR, reg); |
| } |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_mcu_request); |
| |
| int rt2800_wait_csr_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i = 0; |
| u32 reg; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, MAC_CSR0, ®); |
| if (reg && reg != ~0) |
| return 0; |
| msleep(1); |
| } |
| |
| ERROR(rt2x00dev, "Unstable hardware.\n"); |
| return -EBUSY; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_wait_csr_ready); |
| |
| int rt2800_wait_wpdma_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| /* |
| * Some devices are really slow to respond here. Wait a whole second |
| * before timing out. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| if (!rt2x00_get_field32(reg, WPDMA_GLO_CFG_TX_DMA_BUSY) && |
| !rt2x00_get_field32(reg, WPDMA_GLO_CFG_RX_DMA_BUSY)) |
| return 0; |
| |
| msleep(10); |
| } |
| |
| ERROR(rt2x00dev, "WPDMA TX/RX busy, aborting.\n"); |
| return -EACCES; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_wait_wpdma_ready); |
| |
| static bool rt2800_check_firmware_crc(const u8 *data, const size_t len) |
| { |
| u16 fw_crc; |
| u16 crc; |
| |
| /* |
| * The last 2 bytes in the firmware array are the crc checksum itself, |
| * this means that we should never pass those 2 bytes to the crc |
| * algorithm. |
| */ |
| fw_crc = (data[len - 2] << 8 | data[len - 1]); |
| |
| /* |
| * Use the crc ccitt algorithm. |
| * This will return the same value as the legacy driver which |
| * used bit ordering reversion on the both the firmware bytes |
| * before input input as well as on the final output. |
| * Obviously using crc ccitt directly is much more efficient. |
| */ |
| crc = crc_ccitt(~0, data, len - 2); |
| |
| /* |
| * There is a small difference between the crc-itu-t + bitrev and |
| * the crc-ccitt crc calculation. In the latter method the 2 bytes |
| * will be swapped, use swab16 to convert the crc to the correct |
| * value. |
| */ |
| crc = swab16(crc); |
| |
| return fw_crc == crc; |
| } |
| |
| int rt2800_check_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| size_t offset = 0; |
| size_t fw_len; |
| bool multiple; |
| |
| /* |
| * PCI(e) & SOC devices require firmware with a length |
| * of 8kb. USB devices require firmware files with a length |
| * of 4kb. Certain USB chipsets however require different firmware, |
| * which Ralink only provides attached to the original firmware |
| * file. Thus for USB devices, firmware files have a length |
| * which is a multiple of 4kb. |
| */ |
| if (rt2x00_is_usb(rt2x00dev)) { |
| fw_len = 4096; |
| multiple = true; |
| } else { |
| fw_len = 8192; |
| multiple = true; |
| } |
| |
| /* |
| * Validate the firmware length |
| */ |
| if (len != fw_len && (!multiple || (len % fw_len) != 0)) |
| return FW_BAD_LENGTH; |
| |
| /* |
| * Check if the chipset requires one of the upper parts |
| * of the firmware. |
| */ |
| if (rt2x00_is_usb(rt2x00dev) && |
| !rt2x00_rt(rt2x00dev, RT2860) && |
| !rt2x00_rt(rt2x00dev, RT2872) && |
| !rt2x00_rt(rt2x00dev, RT3070) && |
| ((len / fw_len) == 1)) |
| return FW_BAD_VERSION; |
| |
| /* |
| * 8kb firmware files must be checked as if it were |
| * 2 separate firmware files. |
| */ |
| while (offset < len) { |
| if (!rt2800_check_firmware_crc(data + offset, fw_len)) |
| return FW_BAD_CRC; |
| |
| offset += fw_len; |
| } |
| |
| return FW_OK; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_check_firmware); |
| |
| int rt2800_load_firmware(struct rt2x00_dev *rt2x00dev, |
| const u8 *data, const size_t len) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| /* |
| * If driver doesn't wake up firmware here, |
| * rt2800_load_firmware will hang forever when interface is up again. |
| */ |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000); |
| |
| /* |
| * Wait for stable hardware. |
| */ |
| if (rt2800_wait_csr_ready(rt2x00dev)) |
| return -EBUSY; |
| |
| if (rt2x00_is_pci(rt2x00dev)) { |
| if (rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_register_read(rt2x00dev, AUX_CTRL, ®); |
| rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); |
| rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); |
| rt2800_register_write(rt2x00dev, AUX_CTRL, reg); |
| } |
| rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002); |
| } |
| |
| /* |
| * Disable DMA, will be reenabled later when enabling |
| * the radio. |
| */ |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| /* |
| * Write firmware to the device. |
| */ |
| rt2800_drv_write_firmware(rt2x00dev, data, len); |
| |
| /* |
| * Wait for device to stabilize. |
| */ |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, ®); |
| if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY)) |
| break; |
| msleep(1); |
| } |
| |
| if (i == REGISTER_BUSY_COUNT) { |
| ERROR(rt2x00dev, "PBF system register not ready.\n"); |
| return -EBUSY; |
| } |
| |
| /* |
| * Initialize firmware. |
| */ |
| rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); |
| rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); |
| msleep(1); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_load_firmware); |
| |
| void rt2800_write_tx_data(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| __le32 *txwi = rt2800_drv_get_txwi(entry); |
| u32 word; |
| |
| /* |
| * Initialize TX Info descriptor |
| */ |
| rt2x00_desc_read(txwi, 0, &word); |
| rt2x00_set_field32(&word, TXWI_W0_FRAG, |
| test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_MIMO_PS, |
| test_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_CF_ACK, 0); |
| rt2x00_set_field32(&word, TXWI_W0_TS, |
| test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_AMPDU, |
| test_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_MPDU_DENSITY, |
| txdesc->u.ht.mpdu_density); |
| rt2x00_set_field32(&word, TXWI_W0_TX_OP, txdesc->u.ht.txop); |
| rt2x00_set_field32(&word, TXWI_W0_MCS, txdesc->u.ht.mcs); |
| rt2x00_set_field32(&word, TXWI_W0_BW, |
| test_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_SHORT_GI, |
| test_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W0_STBC, txdesc->u.ht.stbc); |
| rt2x00_set_field32(&word, TXWI_W0_PHYMODE, txdesc->rate_mode); |
| rt2x00_desc_write(txwi, 0, word); |
| |
| rt2x00_desc_read(txwi, 1, &word); |
| rt2x00_set_field32(&word, TXWI_W1_ACK, |
| test_bit(ENTRY_TXD_ACK, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W1_NSEQ, |
| test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); |
| rt2x00_set_field32(&word, TXWI_W1_BW_WIN_SIZE, txdesc->u.ht.ba_size); |
| rt2x00_set_field32(&word, TXWI_W1_WIRELESS_CLI_ID, |
| test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags) ? |
| txdesc->key_idx : txdesc->u.ht.wcid); |
| rt2x00_set_field32(&word, TXWI_W1_MPDU_TOTAL_BYTE_COUNT, |
| txdesc->length); |
| rt2x00_set_field32(&word, TXWI_W1_PACKETID_QUEUE, entry->queue->qid); |
| rt2x00_set_field32(&word, TXWI_W1_PACKETID_ENTRY, (entry->entry_idx % 3) + 1); |
| rt2x00_desc_write(txwi, 1, word); |
| |
| /* |
| * Always write 0 to IV/EIV fields, hardware will insert the IV |
| * from the IVEIV register when TXD_W3_WIV is set to 0. |
| * When TXD_W3_WIV is set to 1 it will use the IV data |
| * from the descriptor. The TXWI_W1_WIRELESS_CLI_ID indicates which |
| * crypto entry in the registers should be used to encrypt the frame. |
| */ |
| _rt2x00_desc_write(txwi, 2, 0 /* skbdesc->iv[0] */); |
| _rt2x00_desc_write(txwi, 3, 0 /* skbdesc->iv[1] */); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_write_tx_data); |
| |
| static int rt2800_agc_to_rssi(struct rt2x00_dev *rt2x00dev, u32 rxwi_w2) |
| { |
| int rssi0 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI0); |
| int rssi1 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI1); |
| int rssi2 = rt2x00_get_field32(rxwi_w2, RXWI_W2_RSSI2); |
| u16 eeprom; |
| u8 offset0; |
| u8 offset1; |
| u8 offset2; |
| |
| if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &eeprom); |
| offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET0); |
| offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG_OFFSET1); |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); |
| offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_OFFSET2); |
| } else { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &eeprom); |
| offset0 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET0); |
| offset1 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A_OFFSET1); |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); |
| offset2 = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_OFFSET2); |
| } |
| |
| /* |
| * Convert the value from the descriptor into the RSSI value |
| * If the value in the descriptor is 0, it is considered invalid |
| * and the default (extremely low) rssi value is assumed |
| */ |
| rssi0 = (rssi0) ? (-12 - offset0 - rt2x00dev->lna_gain - rssi0) : -128; |
| rssi1 = (rssi1) ? (-12 - offset1 - rt2x00dev->lna_gain - rssi1) : -128; |
| rssi2 = (rssi2) ? (-12 - offset2 - rt2x00dev->lna_gain - rssi2) : -128; |
| |
| /* |
| * mac80211 only accepts a single RSSI value. Calculating the |
| * average doesn't deliver a fair answer either since -60:-60 would |
| * be considered equally good as -50:-70 while the second is the one |
| * which gives less energy... |
| */ |
| rssi0 = max(rssi0, rssi1); |
| return max(rssi0, rssi2); |
| } |
| |
| void rt2800_process_rxwi(struct queue_entry *entry, |
| struct rxdone_entry_desc *rxdesc) |
| { |
| __le32 *rxwi = (__le32 *) entry->skb->data; |
| u32 word; |
| |
| rt2x00_desc_read(rxwi, 0, &word); |
| |
| rxdesc->cipher = rt2x00_get_field32(word, RXWI_W0_UDF); |
| rxdesc->size = rt2x00_get_field32(word, RXWI_W0_MPDU_TOTAL_BYTE_COUNT); |
| |
| rt2x00_desc_read(rxwi, 1, &word); |
| |
| if (rt2x00_get_field32(word, RXWI_W1_SHORT_GI)) |
| rxdesc->flags |= RX_FLAG_SHORT_GI; |
| |
| if (rt2x00_get_field32(word, RXWI_W1_BW)) |
| rxdesc->flags |= RX_FLAG_40MHZ; |
| |
| /* |
| * Detect RX rate, always use MCS as signal type. |
| */ |
| rxdesc->dev_flags |= RXDONE_SIGNAL_MCS; |
| rxdesc->signal = rt2x00_get_field32(word, RXWI_W1_MCS); |
| rxdesc->rate_mode = rt2x00_get_field32(word, RXWI_W1_PHYMODE); |
| |
| /* |
| * Mask of 0x8 bit to remove the short preamble flag. |
| */ |
| if (rxdesc->rate_mode == RATE_MODE_CCK) |
| rxdesc->signal &= ~0x8; |
| |
| rt2x00_desc_read(rxwi, 2, &word); |
| |
| /* |
| * Convert descriptor AGC value to RSSI value. |
| */ |
| rxdesc->rssi = rt2800_agc_to_rssi(entry->queue->rt2x00dev, word); |
| |
| /* |
| * Remove RXWI descriptor from start of buffer. |
| */ |
| skb_pull(entry->skb, RXWI_DESC_SIZE); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_process_rxwi); |
| |
| void rt2800_txdone_entry(struct queue_entry *entry, u32 status, __le32 *txwi) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| struct txdone_entry_desc txdesc; |
| u32 word; |
| u16 mcs, real_mcs; |
| int aggr, ampdu; |
| |
| /* |
| * Obtain the status about this packet. |
| */ |
| txdesc.flags = 0; |
| rt2x00_desc_read(txwi, 0, &word); |
| |
| mcs = rt2x00_get_field32(word, TXWI_W0_MCS); |
| ampdu = rt2x00_get_field32(word, TXWI_W0_AMPDU); |
| |
| real_mcs = rt2x00_get_field32(status, TX_STA_FIFO_MCS); |
| aggr = rt2x00_get_field32(status, TX_STA_FIFO_TX_AGGRE); |
| |
| /* |
| * If a frame was meant to be sent as a single non-aggregated MPDU |
| * but ended up in an aggregate the used tx rate doesn't correlate |
| * with the one specified in the TXWI as the whole aggregate is sent |
| * with the same rate. |
| * |
| * For example: two frames are sent to rt2x00, the first one sets |
| * AMPDU=1 and requests MCS7 whereas the second frame sets AMDPU=0 |
| * and requests MCS15. If the hw aggregates both frames into one |
| * AMDPU the tx status for both frames will contain MCS7 although |
| * the frame was sent successfully. |
| * |
| * Hence, replace the requested rate with the real tx rate to not |
| * confuse the rate control algortihm by providing clearly wrong |
| * data. |
| */ |
| if (unlikely(aggr == 1 && ampdu == 0 && real_mcs != mcs)) { |
| skbdesc->tx_rate_idx = real_mcs; |
| mcs = real_mcs; |
| } |
| |
| if (aggr == 1 || ampdu == 1) |
| __set_bit(TXDONE_AMPDU, &txdesc.flags); |
| |
| /* |
| * Ralink has a retry mechanism using a global fallback |
| * table. We setup this fallback table to try the immediate |
| * lower rate for all rates. In the TX_STA_FIFO, the MCS field |
| * always contains the MCS used for the last transmission, be |
| * it successful or not. |
| */ |
| if (rt2x00_get_field32(status, TX_STA_FIFO_TX_SUCCESS)) { |
| /* |
| * Transmission succeeded. The number of retries is |
| * mcs - real_mcs |
| */ |
| __set_bit(TXDONE_SUCCESS, &txdesc.flags); |
| txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0); |
| } else { |
| /* |
| * Transmission failed. The number of retries is |
| * always 7 in this case (for a total number of 8 |
| * frames sent). |
| */ |
| __set_bit(TXDONE_FAILURE, &txdesc.flags); |
| txdesc.retry = rt2x00dev->long_retry; |
| } |
| |
| /* |
| * the frame was retried at least once |
| * -> hw used fallback rates |
| */ |
| if (txdesc.retry) |
| __set_bit(TXDONE_FALLBACK, &txdesc.flags); |
| |
| rt2x00lib_txdone(entry, &txdesc); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_txdone_entry); |
| |
| void rt2800_write_beacon(struct queue_entry *entry, struct txentry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| unsigned int beacon_base; |
| unsigned int padding_len; |
| u32 orig_reg, reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| orig_reg = reg; |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| /* |
| * Add space for the TXWI in front of the skb. |
| */ |
| memset(skb_push(entry->skb, TXWI_DESC_SIZE), 0, TXWI_DESC_SIZE); |
| |
| /* |
| * Register descriptor details in skb frame descriptor. |
| */ |
| skbdesc->flags |= SKBDESC_DESC_IN_SKB; |
| skbdesc->desc = entry->skb->data; |
| skbdesc->desc_len = TXWI_DESC_SIZE; |
| |
| /* |
| * Add the TXWI for the beacon to the skb. |
| */ |
| rt2800_write_tx_data(entry, txdesc); |
| |
| /* |
| * Dump beacon to userspace through debugfs. |
| */ |
| rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); |
| |
| /* |
| * Write entire beacon with TXWI and padding to register. |
| */ |
| padding_len = roundup(entry->skb->len, 4) - entry->skb->len; |
| if (padding_len && skb_pad(entry->skb, padding_len)) { |
| ERROR(rt2x00dev, "Failure padding beacon, aborting\n"); |
| /* skb freed by skb_pad() on failure */ |
| entry->skb = NULL; |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, orig_reg); |
| return; |
| } |
| |
| beacon_base = HW_BEACON_OFFSET(entry->entry_idx); |
| rt2800_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, |
| entry->skb->len + padding_len); |
| |
| /* |
| * Enable beaconing again. |
| */ |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| /* |
| * Clean up beacon skb. |
| */ |
| dev_kfree_skb_any(entry->skb); |
| entry->skb = NULL; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_write_beacon); |
| |
| static inline void rt2800_clear_beacon_register(struct rt2x00_dev *rt2x00dev, |
| unsigned int beacon_base) |
| { |
| int i; |
| |
| /* |
| * For the Beacon base registers we only need to clear |
| * the whole TXWI which (when set to 0) will invalidate |
| * the entire beacon. |
| */ |
| for (i = 0; i < TXWI_DESC_SIZE; i += sizeof(__le32)) |
| rt2800_register_write(rt2x00dev, beacon_base + i, 0); |
| } |
| |
| void rt2800_clear_beacon(struct queue_entry *entry) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| u32 reg; |
| |
| /* |
| * Disable beaconing while we are reloading the beacon data, |
| * otherwise we might be sending out invalid data. |
| */ |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| /* |
| * Clear beacon. |
| */ |
| rt2800_clear_beacon_register(rt2x00dev, |
| HW_BEACON_OFFSET(entry->entry_idx)); |
| |
| /* |
| * Enabled beaconing again. |
| */ |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_clear_beacon); |
| |
| #ifdef CONFIG_RT2X00_LIB_DEBUGFS |
| const struct rt2x00debug rt2800_rt2x00debug = { |
| .owner = THIS_MODULE, |
| .csr = { |
| .read = rt2800_register_read, |
| .write = rt2800_register_write, |
| .flags = RT2X00DEBUGFS_OFFSET, |
| .word_base = CSR_REG_BASE, |
| .word_size = sizeof(u32), |
| .word_count = CSR_REG_SIZE / sizeof(u32), |
| }, |
| .eeprom = { |
| .read = rt2x00_eeprom_read, |
| .write = rt2x00_eeprom_write, |
| .word_base = EEPROM_BASE, |
| .word_size = sizeof(u16), |
| .word_count = EEPROM_SIZE / sizeof(u16), |
| }, |
| .bbp = { |
| .read = rt2800_bbp_read, |
| .write = rt2800_bbp_write, |
| .word_base = BBP_BASE, |
| .word_size = sizeof(u8), |
| .word_count = BBP_SIZE / sizeof(u8), |
| }, |
| .rf = { |
| .read = rt2x00_rf_read, |
| .write = rt2800_rf_write, |
| .word_base = RF_BASE, |
| .word_size = sizeof(u32), |
| .word_count = RF_SIZE / sizeof(u32), |
| }, |
| }; |
| EXPORT_SYMBOL_GPL(rt2800_rt2x00debug); |
| #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ |
| |
| int rt2800_rfkill_poll(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); |
| return rt2x00_get_field32(reg, GPIO_CTRL_CFG_BIT2); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_rfkill_poll); |
| |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| static void rt2800_brightness_set(struct led_classdev *led_cdev, |
| enum led_brightness brightness) |
| { |
| struct rt2x00_led *led = |
| container_of(led_cdev, struct rt2x00_led, led_dev); |
| unsigned int enabled = brightness != LED_OFF; |
| unsigned int bg_mode = |
| (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); |
| unsigned int polarity = |
| rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, |
| EEPROM_FREQ_LED_POLARITY); |
| unsigned int ledmode = |
| rt2x00_get_field16(led->rt2x00dev->led_mcu_reg, |
| EEPROM_FREQ_LED_MODE); |
| u32 reg; |
| |
| /* Check for SoC (SOC devices don't support MCU requests) */ |
| if (rt2x00_is_soc(led->rt2x00dev)) { |
| rt2800_register_read(led->rt2x00dev, LED_CFG, ®); |
| |
| /* Set LED Polarity */ |
| rt2x00_set_field32(®, LED_CFG_LED_POLAR, polarity); |
| |
| /* Set LED Mode */ |
| if (led->type == LED_TYPE_RADIO) { |
| rt2x00_set_field32(®, LED_CFG_G_LED_MODE, |
| enabled ? 3 : 0); |
| } else if (led->type == LED_TYPE_ASSOC) { |
| rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, |
| enabled ? 3 : 0); |
| } else if (led->type == LED_TYPE_QUALITY) { |
| rt2x00_set_field32(®, LED_CFG_R_LED_MODE, |
| enabled ? 3 : 0); |
| } |
| |
| rt2800_register_write(led->rt2x00dev, LED_CFG, reg); |
| |
| } else { |
| if (led->type == LED_TYPE_RADIO) { |
| rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, |
| enabled ? 0x20 : 0); |
| } else if (led->type == LED_TYPE_ASSOC) { |
| rt2800_mcu_request(led->rt2x00dev, MCU_LED, 0xff, ledmode, |
| enabled ? (bg_mode ? 0x60 : 0xa0) : 0x20); |
| } else if (led->type == LED_TYPE_QUALITY) { |
| /* |
| * The brightness is divided into 6 levels (0 - 5), |
| * The specs tell us the following levels: |
| * 0, 1 ,3, 7, 15, 31 |
| * to determine the level in a simple way we can simply |
| * work with bitshifting: |
| * (1 << level) - 1 |
| */ |
| rt2800_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, |
| (1 << brightness / (LED_FULL / 6)) - 1, |
| polarity); |
| } |
| } |
| } |
| |
| static void rt2800_init_led(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00_led *led, enum led_type type) |
| { |
| led->rt2x00dev = rt2x00dev; |
| led->type = type; |
| led->led_dev.brightness_set = rt2800_brightness_set; |
| led->flags = LED_INITIALIZED; |
| } |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Configuration handlers. |
| */ |
| static void rt2800_config_wcid(struct rt2x00_dev *rt2x00dev, |
| const u8 *address, |
| int wcid) |
| { |
| struct mac_wcid_entry wcid_entry; |
| u32 offset; |
| |
| offset = MAC_WCID_ENTRY(wcid); |
| |
| memset(&wcid_entry, 0xff, sizeof(wcid_entry)); |
| if (address) |
| memcpy(wcid_entry.mac, address, ETH_ALEN); |
| |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &wcid_entry, sizeof(wcid_entry)); |
| } |
| |
| static void rt2800_delete_wcid_attr(struct rt2x00_dev *rt2x00dev, int wcid) |
| { |
| u32 offset; |
| offset = MAC_WCID_ATTR_ENTRY(wcid); |
| rt2800_register_write(rt2x00dev, offset, 0); |
| } |
| |
| static void rt2800_config_wcid_attr_bssidx(struct rt2x00_dev *rt2x00dev, |
| int wcid, u32 bssidx) |
| { |
| u32 offset = MAC_WCID_ATTR_ENTRY(wcid); |
| u32 reg; |
| |
| /* |
| * The BSS Idx numbers is split in a main value of 3 bits, |
| * and a extended field for adding one additional bit to the value. |
| */ |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX, (bssidx & 0x7)); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_BSS_IDX_EXT, |
| (bssidx & 0x8) >> 3); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| } |
| |
| static void rt2800_config_wcid_attr_cipher(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct mac_iveiv_entry iveiv_entry; |
| u32 offset; |
| u32 reg; |
| |
| offset = MAC_WCID_ATTR_ENTRY(key->hw_key_idx); |
| |
| if (crypto->cmd == SET_KEY) { |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, |
| !!(key->flags & IEEE80211_KEY_FLAG_PAIRWISE)); |
| /* |
| * Both the cipher as the BSS Idx numbers are split in a main |
| * value of 3 bits, and a extended field for adding one additional |
| * bit to the value. |
| */ |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, |
| (crypto->cipher & 0x7)); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT, |
| (crypto->cipher & 0x8) >> 3); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, crypto->cipher); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| } else { |
| /* Delete the cipher without touching the bssidx */ |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_KEYTAB, 0); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER, 0); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_CIPHER_EXT, 0); |
| rt2x00_set_field32(®, MAC_WCID_ATTRIBUTE_RX_WIUDF, 0); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| } |
| |
| offset = MAC_IVEIV_ENTRY(key->hw_key_idx); |
| |
| memset(&iveiv_entry, 0, sizeof(iveiv_entry)); |
| if ((crypto->cipher == CIPHER_TKIP) || |
| (crypto->cipher == CIPHER_TKIP_NO_MIC) || |
| (crypto->cipher == CIPHER_AES)) |
| iveiv_entry.iv[3] |= 0x20; |
| iveiv_entry.iv[3] |= key->keyidx << 6; |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &iveiv_entry, sizeof(iveiv_entry)); |
| } |
| |
| int rt2800_config_shared_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_key_entry key_entry; |
| struct rt2x00_field32 field; |
| u32 offset; |
| u32 reg; |
| |
| if (crypto->cmd == SET_KEY) { |
| key->hw_key_idx = (4 * crypto->bssidx) + key->keyidx; |
| |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| offset = SHARED_KEY_ENTRY(key->hw_key_idx); |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &key_entry, sizeof(key_entry)); |
| } |
| |
| /* |
| * The cipher types are stored over multiple registers |
| * starting with SHARED_KEY_MODE_BASE each word will have |
| * 32 bits and contains the cipher types for 2 bssidx each. |
| * Using the correct defines correctly will cause overhead, |
| * so just calculate the correct offset. |
| */ |
| field.bit_offset = 4 * (key->hw_key_idx % 8); |
| field.bit_mask = 0x7 << field.bit_offset; |
| |
| offset = SHARED_KEY_MODE_ENTRY(key->hw_key_idx / 8); |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, field, |
| (crypto->cmd == SET_KEY) * crypto->cipher); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| /* |
| * Update WCID information |
| */ |
| rt2800_config_wcid(rt2x00dev, crypto->address, key->hw_key_idx); |
| rt2800_config_wcid_attr_bssidx(rt2x00dev, key->hw_key_idx, |
| crypto->bssidx); |
| rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_shared_key); |
| |
| static inline int rt2800_find_wcid(struct rt2x00_dev *rt2x00dev) |
| { |
| struct mac_wcid_entry wcid_entry; |
| int idx; |
| u32 offset; |
| |
| /* |
| * Search for the first free WCID entry and return the corresponding |
| * index. |
| * |
| * Make sure the WCID starts _after_ the last possible shared key |
| * entry (>32). |
| * |
| * Since parts of the pairwise key table might be shared with |
| * the beacon frame buffers 6 & 7 we should only write into the |
| * first 222 entries. |
| */ |
| for (idx = 33; idx <= 222; idx++) { |
| offset = MAC_WCID_ENTRY(idx); |
| rt2800_register_multiread(rt2x00dev, offset, &wcid_entry, |
| sizeof(wcid_entry)); |
| if (is_broadcast_ether_addr(wcid_entry.mac)) |
| return idx; |
| } |
| |
| /* |
| * Use -1 to indicate that we don't have any more space in the WCID |
| * table. |
| */ |
| return -1; |
| } |
| |
| int rt2800_config_pairwise_key(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_crypto *crypto, |
| struct ieee80211_key_conf *key) |
| { |
| struct hw_key_entry key_entry; |
| u32 offset; |
| |
| if (crypto->cmd == SET_KEY) { |
| /* |
| * Allow key configuration only for STAs that are |
| * known by the hw. |
| */ |
| if (crypto->wcid < 0) |
| return -ENOSPC; |
| key->hw_key_idx = crypto->wcid; |
| |
| memcpy(key_entry.key, crypto->key, |
| sizeof(key_entry.key)); |
| memcpy(key_entry.tx_mic, crypto->tx_mic, |
| sizeof(key_entry.tx_mic)); |
| memcpy(key_entry.rx_mic, crypto->rx_mic, |
| sizeof(key_entry.rx_mic)); |
| |
| offset = PAIRWISE_KEY_ENTRY(key->hw_key_idx); |
| rt2800_register_multiwrite(rt2x00dev, offset, |
| &key_entry, sizeof(key_entry)); |
| } |
| |
| /* |
| * Update WCID information |
| */ |
| rt2800_config_wcid_attr_cipher(rt2x00dev, crypto, key); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_pairwise_key); |
| |
| int rt2800_sta_add(struct rt2x00_dev *rt2x00dev, struct ieee80211_vif *vif, |
| struct ieee80211_sta *sta) |
| { |
| int wcid; |
| struct rt2x00_sta *sta_priv = sta_to_rt2x00_sta(sta); |
| |
| /* |
| * Find next free WCID. |
| */ |
| wcid = rt2800_find_wcid(rt2x00dev); |
| |
| /* |
| * Store selected wcid even if it is invalid so that we can |
| * later decide if the STA is uploaded into the hw. |
| */ |
| sta_priv->wcid = wcid; |
| |
| /* |
| * No space left in the device, however, we can still communicate |
| * with the STA -> No error. |
| */ |
| if (wcid < 0) |
| return 0; |
| |
| /* |
| * Clean up WCID attributes and write STA address to the device. |
| */ |
| rt2800_delete_wcid_attr(rt2x00dev, wcid); |
| rt2800_config_wcid(rt2x00dev, sta->addr, wcid); |
| rt2800_config_wcid_attr_bssidx(rt2x00dev, wcid, |
| rt2x00lib_get_bssidx(rt2x00dev, vif)); |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_sta_add); |
| |
| int rt2800_sta_remove(struct rt2x00_dev *rt2x00dev, int wcid) |
| { |
| /* |
| * Remove WCID entry, no need to clean the attributes as they will |
| * get renewed when the WCID is reused. |
| */ |
| rt2800_config_wcid(rt2x00dev, NULL, wcid); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_sta_remove); |
| |
| void rt2800_config_filter(struct rt2x00_dev *rt2x00dev, |
| const unsigned int filter_flags) |
| { |
| u32 reg; |
| |
| /* |
| * Start configuration steps. |
| * Note that the version error will always be dropped |
| * and broadcast frames will always be accepted since |
| * there is no filter for it at this time. |
| */ |
| rt2800_register_read(rt2x00dev, RX_FILTER_CFG, ®); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CRC_ERROR, |
| !(filter_flags & FIF_FCSFAIL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PHY_ERROR, |
| !(filter_flags & FIF_PLCPFAIL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_TO_ME, |
| !(filter_flags & FIF_PROMISC_IN_BSS)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_NOT_MY_BSSD, 0); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_VER_ERROR, 1); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_MULTICAST, |
| !(filter_flags & FIF_ALLMULTI)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BROADCAST, 0); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_DUPLICATE, 1); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END_ACK, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CF_END, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_ACK, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CTS, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_RTS, |
| !(filter_flags & FIF_CONTROL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_PSPOLL, |
| !(filter_flags & FIF_PSPOLL)); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BA, 1); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_BAR, 0); |
| rt2x00_set_field32(®, RX_FILTER_CFG_DROP_CNTL, |
| !(filter_flags & FIF_CONTROL)); |
| rt2800_register_write(rt2x00dev, RX_FILTER_CFG, reg); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_filter); |
| |
| void rt2800_config_intf(struct rt2x00_dev *rt2x00dev, struct rt2x00_intf *intf, |
| struct rt2x00intf_conf *conf, const unsigned int flags) |
| { |
| u32 reg; |
| bool update_bssid = false; |
| |
| if (flags & CONFIG_UPDATE_TYPE) { |
| /* |
| * Enable synchronisation. |
| */ |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, conf->sync); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| if (conf->sync == TSF_SYNC_AP_NONE) { |
| /* |
| * Tune beacon queue transmit parameters for AP mode |
| */ |
| rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, ®); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_CWMIN, 0); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_AIFSN, 1); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_EXP_WIN, 32); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_TBTT_ADJUST, 0); |
| rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg); |
| } else { |
| rt2800_register_read(rt2x00dev, TBTT_SYNC_CFG, ®); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_CWMIN, 4); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_AIFSN, 2); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_BCN_EXP_WIN, 32); |
| rt2x00_set_field32(®, TBTT_SYNC_CFG_TBTT_ADJUST, 16); |
| rt2800_register_write(rt2x00dev, TBTT_SYNC_CFG, reg); |
| } |
| } |
| |
| if (flags & CONFIG_UPDATE_MAC) { |
| if (flags & CONFIG_UPDATE_TYPE && |
| conf->sync == TSF_SYNC_AP_NONE) { |
| /* |
| * The BSSID register has to be set to our own mac |
| * address in AP mode. |
| */ |
| memcpy(conf->bssid, conf->mac, sizeof(conf->mac)); |
| update_bssid = true; |
| } |
| |
| if (!is_zero_ether_addr((const u8 *)conf->mac)) { |
| reg = le32_to_cpu(conf->mac[1]); |
| rt2x00_set_field32(®, MAC_ADDR_DW1_UNICAST_TO_ME_MASK, 0xff); |
| conf->mac[1] = cpu_to_le32(reg); |
| } |
| |
| rt2800_register_multiwrite(rt2x00dev, MAC_ADDR_DW0, |
| conf->mac, sizeof(conf->mac)); |
| } |
| |
| if ((flags & CONFIG_UPDATE_BSSID) || update_bssid) { |
| if (!is_zero_ether_addr((const u8 *)conf->bssid)) { |
| reg = le32_to_cpu(conf->bssid[1]); |
| rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_ID_MASK, 3); |
| rt2x00_set_field32(®, MAC_BSSID_DW1_BSS_BCN_NUM, 7); |
| conf->bssid[1] = cpu_to_le32(reg); |
| } |
| |
| rt2800_register_multiwrite(rt2x00dev, MAC_BSSID_DW0, |
| conf->bssid, sizeof(conf->bssid)); |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_intf); |
| |
| static void rt2800_config_ht_opmode(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_erp *erp) |
| { |
| bool any_sta_nongf = !!(erp->ht_opmode & |
| IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT); |
| u8 protection = erp->ht_opmode & IEEE80211_HT_OP_MODE_PROTECTION; |
| u8 mm20_mode, mm40_mode, gf20_mode, gf40_mode; |
| u16 mm20_rate, mm40_rate, gf20_rate, gf40_rate; |
| u32 reg; |
| |
| /* default protection rate for HT20: OFDM 24M */ |
| mm20_rate = gf20_rate = 0x4004; |
| |
| /* default protection rate for HT40: duplicate OFDM 24M */ |
| mm40_rate = gf40_rate = 0x4084; |
| |
| switch (protection) { |
| case IEEE80211_HT_OP_MODE_PROTECTION_NONE: |
| /* |
| * All STAs in this BSS are HT20/40 but there might be |
| * STAs not supporting greenfield mode. |
| * => Disable protection for HT transmissions. |
| */ |
| mm20_mode = mm40_mode = gf20_mode = gf40_mode = 0; |
| |
| break; |
| case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ: |
| /* |
| * All STAs in this BSS are HT20 or HT20/40 but there |
| * might be STAs not supporting greenfield mode. |
| * => Protect all HT40 transmissions. |
| */ |
| mm20_mode = gf20_mode = 0; |
| mm40_mode = gf40_mode = 2; |
| |
| break; |
| case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER: |
| /* |
| * Nonmember protection: |
| * According to 802.11n we _should_ protect all |
| * HT transmissions (but we don't have to). |
| * |
| * But if cts_protection is enabled we _shall_ protect |
| * all HT transmissions using a CCK rate. |
| * |
| * And if any station is non GF we _shall_ protect |
| * GF transmissions. |
| * |
| * We decide to protect everything |
| * -> fall through to mixed mode. |
| */ |
| case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED: |
| /* |
| * Legacy STAs are present |
| * => Protect all HT transmissions. |
| */ |
| mm20_mode = mm40_mode = gf20_mode = gf40_mode = 2; |
| |
| /* |
| * If erp protection is needed we have to protect HT |
| * transmissions with CCK 11M long preamble. |
| */ |
| if (erp->cts_protection) { |
| /* don't duplicate RTS/CTS in CCK mode */ |
| mm20_rate = mm40_rate = 0x0003; |
| gf20_rate = gf40_rate = 0x0003; |
| } |
| break; |
| } |
| |
| /* check for STAs not supporting greenfield mode */ |
| if (any_sta_nongf) |
| gf20_mode = gf40_mode = 2; |
| |
| /* Update HT protection config */ |
| rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, mm20_rate); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, mm20_mode); |
| rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, mm40_rate); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, mm40_mode); |
| rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, gf20_rate); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, gf20_mode); |
| rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, gf40_rate); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, gf40_mode); |
| rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); |
| } |
| |
| void rt2800_config_erp(struct rt2x00_dev *rt2x00dev, struct rt2x00lib_erp *erp, |
| u32 changed) |
| { |
| u32 reg; |
| |
| if (changed & BSS_CHANGED_ERP_PREAMBLE) { |
| rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, |
| !!erp->short_preamble); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, |
| !!erp->short_preamble); |
| rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); |
| } |
| |
| if (changed & BSS_CHANGED_ERP_CTS_PROT) { |
| rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, |
| erp->cts_protection ? 2 : 0); |
| rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); |
| } |
| |
| if (changed & BSS_CHANGED_BASIC_RATES) { |
| rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, |
| erp->basic_rates); |
| rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); |
| } |
| |
| if (changed & BSS_CHANGED_ERP_SLOT) { |
| rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); |
| rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, |
| erp->slot_time); |
| rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, erp->eifs); |
| rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); |
| } |
| |
| if (changed & BSS_CHANGED_BEACON_INT) { |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, |
| erp->beacon_int * 16); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| } |
| |
| if (changed & BSS_CHANGED_HT) |
| rt2800_config_ht_opmode(rt2x00dev, erp); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_erp); |
| |
| static void rt2800_config_3572bt_ant(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 eeprom; |
| u8 led_ctrl, led_g_mode, led_r_mode; |
| |
| rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®); |
| if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { |
| rt2x00_set_field32(®, GPIO_SWITCH_0, 1); |
| rt2x00_set_field32(®, GPIO_SWITCH_1, 1); |
| } else { |
| rt2x00_set_field32(®, GPIO_SWITCH_0, 0); |
| rt2x00_set_field32(®, GPIO_SWITCH_1, 0); |
| } |
| rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg); |
| |
| rt2800_register_read(rt2x00dev, LED_CFG, ®); |
| led_g_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 3 : 0; |
| led_r_mode = rt2x00_get_field32(reg, LED_CFG_LED_POLAR) ? 0 : 3; |
| if (led_g_mode != rt2x00_get_field32(reg, LED_CFG_G_LED_MODE) || |
| led_r_mode != rt2x00_get_field32(reg, LED_CFG_R_LED_MODE)) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); |
| led_ctrl = rt2x00_get_field16(eeprom, EEPROM_FREQ_LED_MODE); |
| if (led_ctrl == 0 || led_ctrl > 0x40) { |
| rt2x00_set_field32(®, LED_CFG_G_LED_MODE, led_g_mode); |
| rt2x00_set_field32(®, LED_CFG_R_LED_MODE, led_r_mode); |
| rt2800_register_write(rt2x00dev, LED_CFG, reg); |
| } else { |
| rt2800_mcu_request(rt2x00dev, MCU_BAND_SELECT, 0xff, |
| (led_g_mode << 2) | led_r_mode, 1); |
| } |
| } |
| } |
| |
| static void rt2800_set_ant_diversity(struct rt2x00_dev *rt2x00dev, |
| enum antenna ant) |
| { |
| u32 reg; |
| u8 eesk_pin = (ant == ANTENNA_A) ? 1 : 0; |
| u8 gpio_bit3 = (ant == ANTENNA_A) ? 0 : 1; |
| |
| if (rt2x00_is_pci(rt2x00dev)) { |
| rt2800_register_read(rt2x00dev, E2PROM_CSR, ®); |
| rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, eesk_pin); |
| rt2800_register_write(rt2x00dev, E2PROM_CSR, reg); |
| } else if (rt2x00_is_usb(rt2x00dev)) |
| rt2800_mcu_request(rt2x00dev, MCU_ANT_SELECT, 0xff, |
| eesk_pin, 0); |
| |
| rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT3, 0); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT3, gpio_bit3); |
| rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg); |
| } |
| |
| void rt2800_config_ant(struct rt2x00_dev *rt2x00dev, struct antenna_setup *ant) |
| { |
| u8 r1; |
| u8 r3; |
| u16 eeprom; |
| |
| rt2800_bbp_read(rt2x00dev, 1, &r1); |
| rt2800_bbp_read(rt2x00dev, 3, &r3); |
| |
| if (rt2x00_rt(rt2x00dev, RT3572) && |
| test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) |
| rt2800_config_3572bt_ant(rt2x00dev); |
| |
| /* |
| * Configure the TX antenna. |
| */ |
| switch (ant->tx_chain_num) { |
| case 1: |
| rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); |
| break; |
| case 2: |
| if (rt2x00_rt(rt2x00dev, RT3572) && |
| test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) |
| rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 1); |
| else |
| rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 2); |
| break; |
| case 3: |
| rt2x00_set_field8(&r1, BBP1_TX_ANTENNA, 0); |
| break; |
| } |
| |
| /* |
| * Configure the RX antenna. |
| */ |
| switch (ant->rx_chain_num) { |
| case 1: |
| if (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390)) { |
| rt2x00_eeprom_read(rt2x00dev, |
| EEPROM_NIC_CONF1, &eeprom); |
| if (rt2x00_get_field16(eeprom, |
| EEPROM_NIC_CONF1_ANT_DIVERSITY)) |
| rt2800_set_ant_diversity(rt2x00dev, |
| rt2x00dev->default_ant.rx); |
| } |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 0); |
| break; |
| case 2: |
| if (rt2x00_rt(rt2x00dev, RT3572) && |
| test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) { |
| rt2x00_set_field8(&r3, BBP3_RX_ADC, 1); |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, |
| rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); |
| rt2800_set_ant_diversity(rt2x00dev, ANTENNA_B); |
| } else { |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 1); |
| } |
| break; |
| case 3: |
| rt2x00_set_field8(&r3, BBP3_RX_ANTENNA, 2); |
| break; |
| } |
| |
| rt2800_bbp_write(rt2x00dev, 3, r3); |
| rt2800_bbp_write(rt2x00dev, 1, r1); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config_ant); |
| |
| static void rt2800_config_lna_gain(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u16 eeprom; |
| short lna_gain; |
| |
| if (libconf->rf.channel <= 14) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_BG); |
| } else if (libconf->rf.channel <= 64) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_LNA_A0); |
| } else if (libconf->rf.channel <= 128) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_BG2_LNA_A1); |
| } else { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &eeprom); |
| lna_gain = rt2x00_get_field16(eeprom, EEPROM_RSSI_A2_LNA_A2); |
| } |
| |
| rt2x00dev->lna_gain = lna_gain; |
| } |
| |
| static void rt2800_config_channel_rf2xxx(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); |
| |
| if (rt2x00dev->default_ant.tx_chain_num == 1) |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_TX1, 1); |
| |
| if (rt2x00dev->default_ant.rx_chain_num == 1) { |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX1, 1); |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); |
| } else if (rt2x00dev->default_ant.rx_chain_num == 2) |
| rt2x00_set_field32(&rf->rf2, RF2_ANTENNA_RX2, 1); |
| |
| if (rf->channel > 14) { |
| /* |
| * When TX power is below 0, we should increase it by 7 to |
| * make it a positive value (Minimum value is -7). |
| * However this means that values between 0 and 7 have |
| * double meaning, and we should set a 7DBm boost flag. |
| */ |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A_7DBM_BOOST, |
| (info->default_power1 >= 0)); |
| |
| if (info->default_power1 < 0) |
| info->default_power1 += 7; |
| |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_A, info->default_power1); |
| |
| rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A_7DBM_BOOST, |
| (info->default_power2 >= 0)); |
| |
| if (info->default_power2 < 0) |
| info->default_power2 += 7; |
| |
| rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_A, info->default_power2); |
| } else { |
| rt2x00_set_field32(&rf->rf3, RF3_TXPOWER_G, info->default_power1); |
| rt2x00_set_field32(&rf->rf4, RF4_TXPOWER_G, info->default_power2); |
| } |
| |
| rt2x00_set_field32(&rf->rf4, RF4_HT40, conf_is_ht40(conf)); |
| |
| rt2800_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2800_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt2800_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(200); |
| |
| rt2800_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2800_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2800_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); |
| rt2800_rf_write(rt2x00dev, 4, rf->rf4); |
| |
| udelay(200); |
| |
| rt2800_rf_write(rt2x00dev, 1, rf->rf1); |
| rt2800_rf_write(rt2x00dev, 2, rf->rf2); |
| rt2800_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); |
| rt2800_rf_write(rt2x00dev, 4, rf->rf4); |
| } |
| |
| static void rt2800_config_channel_rf3xxx(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| u8 rfcsr; |
| |
| rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1); |
| rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3); |
| |
| rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2); |
| rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, info->default_power1); |
| rt2800_rfcsr_write(rt2x00dev, 12, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, info->default_power2); |
| rt2800_rfcsr_write(rt2x00dev, 13, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset); |
| rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, |
| rt2x00dev->calibration[conf_is_ht40(conf)]); |
| |
| rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1); |
| rt2800_rfcsr_write(rt2x00dev, 7, rfcsr); |
| } |
| |
| static void rt2800_config_channel_rf3052(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| u8 rfcsr; |
| u32 reg; |
| |
| if (rf->channel <= 14) { |
| rt2800_bbp_write(rt2x00dev, 25, 0x15); |
| rt2800_bbp_write(rt2x00dev, 26, 0x85); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 25, 0x09); |
| rt2800_bbp_write(rt2x00dev, 26, 0xff); |
| } |
| |
| rt2800_rfcsr_write(rt2x00dev, 2, rf->rf1); |
| rt2800_rfcsr_write(rt2x00dev, 3, rf->rf3); |
| |
| rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR6_R1, rf->rf2); |
| if (rf->channel <= 14) |
| rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 2); |
| else |
| rt2x00_set_field8(&rfcsr, RFCSR6_TXDIV, 1); |
| rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 5, &rfcsr); |
| if (rf->channel <= 14) |
| rt2x00_set_field8(&rfcsr, RFCSR5_R1, 1); |
| else |
| rt2x00_set_field8(&rfcsr, RFCSR5_R1, 2); |
| rt2800_rfcsr_write(rt2x00dev, 5, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 12, &rfcsr); |
| if (rf->channel <= 14) { |
| rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 3); |
| rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, |
| (info->default_power1 & 0x3) | |
| ((info->default_power1 & 0xC) << 1)); |
| } else { |
| rt2x00_set_field8(&rfcsr, RFCSR12_DR0, 7); |
| rt2x00_set_field8(&rfcsr, RFCSR12_TX_POWER, |
| (info->default_power1 & 0x3) | |
| ((info->default_power1 & 0xC) << 1)); |
| } |
| rt2800_rfcsr_write(rt2x00dev, 12, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 13, &rfcsr); |
| if (rf->channel <= 14) { |
| rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 3); |
| rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, |
| (info->default_power2 & 0x3) | |
| ((info->default_power2 & 0xC) << 1)); |
| } else { |
| rt2x00_set_field8(&rfcsr, RFCSR13_DR0, 7); |
| rt2x00_set_field8(&rfcsr, RFCSR13_TX_POWER, |
| (info->default_power2 & 0x3) | |
| ((info->default_power2 & 0xC) << 1)); |
| } |
| rt2800_rfcsr_write(rt2x00dev, 13, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 0); |
| if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) { |
| if (rf->channel <= 14) { |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1); |
| } |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1); |
| } else { |
| switch (rt2x00dev->default_ant.tx_chain_num) { |
| case 1: |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1); |
| case 2: |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX2_PD, 1); |
| break; |
| } |
| |
| switch (rt2x00dev->default_ant.rx_chain_num) { |
| case 1: |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1); |
| case 2: |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX2_PD, 1); |
| break; |
| } |
| } |
| rt2800_rfcsr_write(rt2x00dev, 1, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 23, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR23_FREQ_OFFSET, rt2x00dev->freq_offset); |
| rt2800_rfcsr_write(rt2x00dev, 23, rfcsr); |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, |
| rt2x00dev->calibration[conf_is_ht40(conf)]); |
| rt2800_rfcsr_write(rt2x00dev, 31, |
| rt2x00dev->calibration[conf_is_ht40(conf)]); |
| |
| if (rf->channel <= 14) { |
| rt2800_rfcsr_write(rt2x00dev, 7, 0xd8); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0xc3); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0xf1); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0xb9); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x53); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0x4c); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x23); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x93); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xb3); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x15); |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x85); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x9b); |
| } else { |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x14); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0xc0); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0xf1); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x43); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0x7a); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x23); |
| if (rf->channel <= 64) { |
| rt2800_rfcsr_write(rt2x00dev, 19, 0xb7); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xf6); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x3d); |
| } else if (rf->channel <= 128) { |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x74); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xf4); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x01); |
| } else { |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x72); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xf3); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x01); |
| } |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x87); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x9f); |
| } |
| |
| rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT7, 0); |
| if (rf->channel <= 14) |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT7, 1); |
| else |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT7, 0); |
| rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg); |
| |
| rt2800_rfcsr_read(rt2x00dev, 7, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR7_RF_TUNING, 1); |
| rt2800_rfcsr_write(rt2x00dev, 7, rfcsr); |
| } |
| |
| #define RT5390_POWER_BOUND 0x27 |
| #define RT5390_FREQ_OFFSET_BOUND 0x5f |
| |
| static void rt2800_config_channel_rf53xx(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| u8 rfcsr; |
| |
| rt2800_rfcsr_write(rt2x00dev, 8, rf->rf1); |
| rt2800_rfcsr_write(rt2x00dev, 9, rf->rf3); |
| rt2800_rfcsr_read(rt2x00dev, 11, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR11_R, rf->rf2); |
| rt2800_rfcsr_write(rt2x00dev, 11, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 49, &rfcsr); |
| if (info->default_power1 > RT5390_POWER_BOUND) |
| rt2x00_set_field8(&rfcsr, RFCSR49_TX, RT5390_POWER_BOUND); |
| else |
| rt2x00_set_field8(&rfcsr, RFCSR49_TX, info->default_power1); |
| rt2800_rfcsr_write(rt2x00dev, 49, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_PLL_PD, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 1); |
| rt2800_rfcsr_write(rt2x00dev, 1, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr); |
| if (rt2x00dev->freq_offset > RT5390_FREQ_OFFSET_BOUND) |
| rt2x00_set_field8(&rfcsr, RFCSR17_CODE, |
| RT5390_FREQ_OFFSET_BOUND); |
| else |
| rt2x00_set_field8(&rfcsr, RFCSR17_CODE, rt2x00dev->freq_offset); |
| rt2800_rfcsr_write(rt2x00dev, 17, rfcsr); |
| |
| if (rf->channel <= 14) { |
| int idx = rf->channel-1; |
| |
| if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) { |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) { |
| /* r55/r59 value array of channel 1~14 */ |
| static const char r55_bt_rev[] = {0x83, 0x83, |
| 0x83, 0x73, 0x73, 0x63, 0x53, 0x53, |
| 0x53, 0x43, 0x43, 0x43, 0x43, 0x43}; |
| static const char r59_bt_rev[] = {0x0e, 0x0e, |
| 0x0e, 0x0e, 0x0e, 0x0b, 0x0a, 0x09, |
| 0x07, 0x07, 0x07, 0x07, 0x07, 0x07}; |
| |
| rt2800_rfcsr_write(rt2x00dev, 55, |
| r55_bt_rev[idx]); |
| rt2800_rfcsr_write(rt2x00dev, 59, |
| r59_bt_rev[idx]); |
| } else { |
| static const char r59_bt[] = {0x8b, 0x8b, 0x8b, |
| 0x8b, 0x8b, 0x8b, 0x8b, 0x8a, 0x89, |
| 0x88, 0x88, 0x86, 0x85, 0x84}; |
| |
| rt2800_rfcsr_write(rt2x00dev, 59, r59_bt[idx]); |
| } |
| } else { |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) { |
| static const char r55_nonbt_rev[] = {0x23, 0x23, |
| 0x23, 0x23, 0x13, 0x13, 0x03, 0x03, |
| 0x03, 0x03, 0x03, 0x03, 0x03, 0x03}; |
| static const char r59_nonbt_rev[] = {0x07, 0x07, |
| 0x07, 0x07, 0x07, 0x07, 0x07, 0x07, |
| 0x07, 0x07, 0x06, 0x05, 0x04, 0x04}; |
| |
| rt2800_rfcsr_write(rt2x00dev, 55, |
| r55_nonbt_rev[idx]); |
| rt2800_rfcsr_write(rt2x00dev, 59, |
| r59_nonbt_rev[idx]); |
| } else if (rt2x00_rt(rt2x00dev, RT5390)) { |
| static const char r59_non_bt[] = {0x8f, 0x8f, |
| 0x8f, 0x8f, 0x8f, 0x8f, 0x8f, 0x8d, |
| 0x8a, 0x88, 0x88, 0x87, 0x87, 0x86}; |
| |
| rt2800_rfcsr_write(rt2x00dev, 59, |
| r59_non_bt[idx]); |
| } |
| } |
| } |
| |
| rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR30_TX_H20M, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RX_H20M, 0); |
| rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 3, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); |
| rt2800_rfcsr_write(rt2x00dev, 3, rfcsr); |
| } |
| |
| static void rt2800_config_channel(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_conf *conf, |
| struct rf_channel *rf, |
| struct channel_info *info) |
| { |
| u32 reg; |
| unsigned int tx_pin; |
| u8 bbp; |
| |
| if (rf->channel <= 14) { |
| info->default_power1 = TXPOWER_G_TO_DEV(info->default_power1); |
| info->default_power2 = TXPOWER_G_TO_DEV(info->default_power2); |
| } else { |
| info->default_power1 = TXPOWER_A_TO_DEV(info->default_power1); |
| info->default_power2 = TXPOWER_A_TO_DEV(info->default_power2); |
| } |
| |
| if (rt2x00_rf(rt2x00dev, RF2020) || |
| rt2x00_rf(rt2x00dev, RF3020) || |
| rt2x00_rf(rt2x00dev, RF3021) || |
| rt2x00_rf(rt2x00dev, RF3022) || |
| rt2x00_rf(rt2x00dev, RF3320)) |
| rt2800_config_channel_rf3xxx(rt2x00dev, conf, rf, info); |
| else if (rt2x00_rf(rt2x00dev, RF3052)) |
| rt2800_config_channel_rf3052(rt2x00dev, conf, rf, info); |
| else if (rt2x00_rf(rt2x00dev, RF5370) || |
| rt2x00_rf(rt2x00dev, RF5390)) |
| rt2800_config_channel_rf53xx(rt2x00dev, conf, rf, info); |
| else |
| rt2800_config_channel_rf2xxx(rt2x00dev, conf, rf, info); |
| |
| /* |
| * Change BBP settings |
| */ |
| rt2800_bbp_write(rt2x00dev, 62, 0x37 - rt2x00dev->lna_gain); |
| rt2800_bbp_write(rt2x00dev, 63, 0x37 - rt2x00dev->lna_gain); |
| rt2800_bbp_write(rt2x00dev, 64, 0x37 - rt2x00dev->lna_gain); |
| rt2800_bbp_write(rt2x00dev, 86, 0); |
| |
| if (rf->channel <= 14) { |
| if (!rt2x00_rt(rt2x00dev, RT5390)) { |
| if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, |
| &rt2x00dev->cap_flags)) { |
| rt2800_bbp_write(rt2x00dev, 82, 0x62); |
| rt2800_bbp_write(rt2x00dev, 75, 0x46); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 82, 0x84); |
| rt2800_bbp_write(rt2x00dev, 75, 0x50); |
| } |
| } |
| } else { |
| if (rt2x00_rt(rt2x00dev, RT3572)) |
| rt2800_bbp_write(rt2x00dev, 82, 0x94); |
| else |
| rt2800_bbp_write(rt2x00dev, 82, 0xf2); |
| |
| if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) |
| rt2800_bbp_write(rt2x00dev, 75, 0x46); |
| else |
| rt2800_bbp_write(rt2x00dev, 75, 0x50); |
| } |
| |
| rt2800_register_read(rt2x00dev, TX_BAND_CFG, ®); |
| rt2x00_set_field32(®, TX_BAND_CFG_HT40_MINUS, conf_is_ht40_minus(conf)); |
| rt2x00_set_field32(®, TX_BAND_CFG_A, rf->channel > 14); |
| rt2x00_set_field32(®, TX_BAND_CFG_BG, rf->channel <= 14); |
| rt2800_register_write(rt2x00dev, TX_BAND_CFG, reg); |
| |
| if (rt2x00_rt(rt2x00dev, RT3572)) |
| rt2800_rfcsr_write(rt2x00dev, 8, 0); |
| |
| tx_pin = 0; |
| |
| /* Turn on unused PA or LNA when not using 1T or 1R */ |
| if (rt2x00dev->default_ant.tx_chain_num == 2) { |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A1_EN, |
| rf->channel > 14); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G1_EN, |
| rf->channel <= 14); |
| } |
| |
| /* Turn on unused PA or LNA when not using 1T or 1R */ |
| if (rt2x00dev->default_ant.rx_chain_num == 2) { |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A1_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G1_EN, 1); |
| } |
| |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_A0_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_LNA_PE_G0_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_RFTR_EN, 1); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_TRSW_EN, 1); |
| if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, 1); |
| else |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_G0_EN, |
| rf->channel <= 14); |
| rt2x00_set_field32(&tx_pin, TX_PIN_CFG_PA_PE_A0_EN, rf->channel > 14); |
| |
| rt2800_register_write(rt2x00dev, TX_PIN_CFG, tx_pin); |
| |
| if (rt2x00_rt(rt2x00dev, RT3572)) |
| rt2800_rfcsr_write(rt2x00dev, 8, 0x80); |
| |
| rt2800_bbp_read(rt2x00dev, 4, &bbp); |
| rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * conf_is_ht40(conf)); |
| rt2800_bbp_write(rt2x00dev, 4, bbp); |
| |
| rt2800_bbp_read(rt2x00dev, 3, &bbp); |
| rt2x00_set_field8(&bbp, BBP3_HT40_MINUS, conf_is_ht40_minus(conf)); |
| rt2800_bbp_write(rt2x00dev, 3, bbp); |
| |
| if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) { |
| if (conf_is_ht40(conf)) { |
| rt2800_bbp_write(rt2x00dev, 69, 0x1a); |
| rt2800_bbp_write(rt2x00dev, 70, 0x0a); |
| rt2800_bbp_write(rt2x00dev, 73, 0x16); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 69, 0x16); |
| rt2800_bbp_write(rt2x00dev, 70, 0x08); |
| rt2800_bbp_write(rt2x00dev, 73, 0x11); |
| } |
| } |
| |
| msleep(1); |
| |
| /* |
| * Clear channel statistic counters |
| */ |
| rt2800_register_read(rt2x00dev, CH_IDLE_STA, ®); |
| rt2800_register_read(rt2x00dev, CH_BUSY_STA, ®); |
| rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, ®); |
| } |
| |
| static int rt2800_get_gain_calibration_delta(struct rt2x00_dev *rt2x00dev) |
| { |
| u8 tssi_bounds[9]; |
| u8 current_tssi; |
| u16 eeprom; |
| u8 step; |
| int i; |
| |
| /* |
| * Read TSSI boundaries for temperature compensation from |
| * the EEPROM. |
| * |
| * Array idx 0 1 2 3 4 5 6 7 8 |
| * Matching Delta value -4 -3 -2 -1 0 +1 +2 +3 +4 |
| * Example TSSI bounds 0xF0 0xD0 0xB5 0xA0 0x88 0x45 0x25 0x15 0x00 |
| */ |
| if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG1, &eeprom); |
| tssi_bounds[0] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG1_MINUS4); |
| tssi_bounds[1] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG1_MINUS3); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG2, &eeprom); |
| tssi_bounds[2] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG2_MINUS2); |
| tssi_bounds[3] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG2_MINUS1); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG3, &eeprom); |
| tssi_bounds[4] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG3_REF); |
| tssi_bounds[5] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG3_PLUS1); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG4, &eeprom); |
| tssi_bounds[6] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG4_PLUS2); |
| tssi_bounds[7] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG4_PLUS3); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_BG5, &eeprom); |
| tssi_bounds[8] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG5_PLUS4); |
| |
| step = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_BG5_AGC_STEP); |
| } else { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A1, &eeprom); |
| tssi_bounds[0] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A1_MINUS4); |
| tssi_bounds[1] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A1_MINUS3); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A2, &eeprom); |
| tssi_bounds[2] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A2_MINUS2); |
| tssi_bounds[3] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A2_MINUS1); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A3, &eeprom); |
| tssi_bounds[4] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A3_REF); |
| tssi_bounds[5] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A3_PLUS1); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A4, &eeprom); |
| tssi_bounds[6] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A4_PLUS2); |
| tssi_bounds[7] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A4_PLUS3); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TSSI_BOUND_A5, &eeprom); |
| tssi_bounds[8] = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A5_PLUS4); |
| |
| step = rt2x00_get_field16(eeprom, |
| EEPROM_TSSI_BOUND_A5_AGC_STEP); |
| } |
| |
| /* |
| * Check if temperature compensation is supported. |
| */ |
| if (tssi_bounds[4] == 0xff) |
| return 0; |
| |
| /* |
| * Read current TSSI (BBP 49). |
| */ |
| rt2800_bbp_read(rt2x00dev, 49, ¤t_tssi); |
| |
| /* |
| * Compare TSSI value (BBP49) with the compensation boundaries |
| * from the EEPROM and increase or decrease tx power. |
| */ |
| for (i = 0; i <= 3; i++) { |
| if (current_tssi > tssi_bounds[i]) |
| break; |
| } |
| |
| if (i == 4) { |
| for (i = 8; i >= 5; i--) { |
| if (current_tssi < tssi_bounds[i]) |
| break; |
| } |
| } |
| |
| return (i - 4) * step; |
| } |
| |
| static int rt2800_get_txpower_bw_comp(struct rt2x00_dev *rt2x00dev, |
| enum ieee80211_band band) |
| { |
| u16 eeprom; |
| u8 comp_en; |
| u8 comp_type; |
| int comp_value = 0; |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_DELTA, &eeprom); |
| |
| /* |
| * HT40 compensation not required. |
| */ |
| if (eeprom == 0xffff || |
| !test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) |
| return 0; |
| |
| if (band == IEEE80211_BAND_2GHZ) { |
| comp_en = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_DELTA_ENABLE_2G); |
| if (comp_en) { |
| comp_type = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_DELTA_TYPE_2G); |
| comp_value = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_DELTA_VALUE_2G); |
| if (!comp_type) |
| comp_value = -comp_value; |
| } |
| } else { |
| comp_en = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_DELTA_ENABLE_5G); |
| if (comp_en) { |
| comp_type = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_DELTA_TYPE_5G); |
| comp_value = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_DELTA_VALUE_5G); |
| if (!comp_type) |
| comp_value = -comp_value; |
| } |
| } |
| |
| return comp_value; |
| } |
| |
| static u8 rt2800_compensate_txpower(struct rt2x00_dev *rt2x00dev, int is_rate_b, |
| enum ieee80211_band band, int power_level, |
| u8 txpower, int delta) |
| { |
| u32 reg; |
| u16 eeprom; |
| u8 criterion; |
| u8 eirp_txpower; |
| u8 eirp_txpower_criterion; |
| u8 reg_limit; |
| |
| if (!((band == IEEE80211_BAND_5GHZ) && is_rate_b)) |
| return txpower; |
| |
| if (test_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags)) { |
| /* |
| * Check if eirp txpower exceed txpower_limit. |
| * We use OFDM 6M as criterion and its eirp txpower |
| * is stored at EEPROM_EIRP_MAX_TX_POWER. |
| * .11b data rate need add additional 4dbm |
| * when calculating eirp txpower. |
| */ |
| rt2800_register_read(rt2x00dev, TX_PWR_CFG_0, ®); |
| criterion = rt2x00_get_field32(reg, TX_PWR_CFG_0_6MBS); |
| |
| rt2x00_eeprom_read(rt2x00dev, |
| EEPROM_EIRP_MAX_TX_POWER, &eeprom); |
| |
| if (band == IEEE80211_BAND_2GHZ) |
| eirp_txpower_criterion = rt2x00_get_field16(eeprom, |
| EEPROM_EIRP_MAX_TX_POWER_2GHZ); |
| else |
| eirp_txpower_criterion = rt2x00_get_field16(eeprom, |
| EEPROM_EIRP_MAX_TX_POWER_5GHZ); |
| |
| eirp_txpower = eirp_txpower_criterion + (txpower - criterion) + |
| (is_rate_b ? 4 : 0) + delta; |
| |
| reg_limit = (eirp_txpower > power_level) ? |
| (eirp_txpower - power_level) : 0; |
| } else |
| reg_limit = 0; |
| |
| return txpower + delta - reg_limit; |
| } |
| |
| static void rt2800_config_txpower(struct rt2x00_dev *rt2x00dev, |
| enum ieee80211_band band, |
| int power_level) |
| { |
| u8 txpower; |
| u16 eeprom; |
| int i, is_rate_b; |
| u32 reg; |
| u8 r1; |
| u32 offset; |
| int delta; |
| |
| /* |
| * Calculate HT40 compensation delta |
| */ |
| delta = rt2800_get_txpower_bw_comp(rt2x00dev, band); |
| |
| /* |
| * calculate temperature compensation delta |
| */ |
| delta += rt2800_get_gain_calibration_delta(rt2x00dev); |
| |
| /* |
| * set to normal bbp tx power control mode: +/- 0dBm |
| */ |
| rt2800_bbp_read(rt2x00dev, 1, &r1); |
| rt2x00_set_field8(&r1, BBP1_TX_POWER_CTRL, 0); |
| rt2800_bbp_write(rt2x00dev, 1, r1); |
| offset = TX_PWR_CFG_0; |
| |
| for (i = 0; i < EEPROM_TXPOWER_BYRATE_SIZE; i += 2) { |
| /* just to be safe */ |
| if (offset > TX_PWR_CFG_4) |
| break; |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| |
| /* read the next four txpower values */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i, |
| &eeprom); |
| |
| is_rate_b = i ? 0 : 1; |
| /* |
| * TX_PWR_CFG_0: 1MBS, TX_PWR_CFG_1: 24MBS, |
| * TX_PWR_CFG_2: MCS4, TX_PWR_CFG_3: MCS12, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE0); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE0, txpower); |
| |
| /* |
| * TX_PWR_CFG_0: 2MBS, TX_PWR_CFG_1: 36MBS, |
| * TX_PWR_CFG_2: MCS5, TX_PWR_CFG_3: MCS13, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE1); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE1, txpower); |
| |
| /* |
| * TX_PWR_CFG_0: 5.5MBS, TX_PWR_CFG_1: 48MBS, |
| * TX_PWR_CFG_2: MCS6, TX_PWR_CFG_3: MCS14, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE2); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE2, txpower); |
| |
| /* |
| * TX_PWR_CFG_0: 11MBS, TX_PWR_CFG_1: 54MBS, |
| * TX_PWR_CFG_2: MCS7, TX_PWR_CFG_3: MCS15, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE3); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE3, txpower); |
| |
| /* read the next four txpower values */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TXPOWER_BYRATE + i + 1, |
| &eeprom); |
| |
| is_rate_b = 0; |
| /* |
| * TX_PWR_CFG_0: 6MBS, TX_PWR_CFG_1: MCS0, |
| * TX_PWR_CFG_2: MCS8, TX_PWR_CFG_3: unknown, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE0); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE4, txpower); |
| |
| /* |
| * TX_PWR_CFG_0: 9MBS, TX_PWR_CFG_1: MCS1, |
| * TX_PWR_CFG_2: MCS9, TX_PWR_CFG_3: unknown, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE1); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE5, txpower); |
| |
| /* |
| * TX_PWR_CFG_0: 12MBS, TX_PWR_CFG_1: MCS2, |
| * TX_PWR_CFG_2: MCS10, TX_PWR_CFG_3: unknown, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE2); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE6, txpower); |
| |
| /* |
| * TX_PWR_CFG_0: 18MBS, TX_PWR_CFG_1: MCS3, |
| * TX_PWR_CFG_2: MCS11, TX_PWR_CFG_3: unknown, |
| * TX_PWR_CFG_4: unknown |
| */ |
| txpower = rt2x00_get_field16(eeprom, |
| EEPROM_TXPOWER_BYRATE_RATE3); |
| txpower = rt2800_compensate_txpower(rt2x00dev, is_rate_b, band, |
| power_level, txpower, delta); |
| rt2x00_set_field32(®, TX_PWR_CFG_RATE7, txpower); |
| |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| /* next TX_PWR_CFG register */ |
| offset += 4; |
| } |
| } |
| |
| void rt2800_gain_calibration(struct rt2x00_dev *rt2x00dev) |
| { |
| rt2800_config_txpower(rt2x00dev, rt2x00dev->curr_band, |
| rt2x00dev->tx_power); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_gain_calibration); |
| |
| static void rt2800_config_retry_limit(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); |
| rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, |
| libconf->conf->short_frame_max_tx_count); |
| rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, |
| libconf->conf->long_frame_max_tx_count); |
| rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); |
| } |
| |
| static void rt2800_config_ps(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf) |
| { |
| enum dev_state state = |
| (libconf->conf->flags & IEEE80211_CONF_PS) ? |
| STATE_SLEEP : STATE_AWAKE; |
| u32 reg; |
| |
| if (state == STATE_SLEEP) { |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0); |
| |
| rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 5); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, |
| libconf->conf->listen_interval - 1); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 1); |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| } else { |
| rt2800_register_read(rt2x00dev, AUTOWAKEUP_CFG, ®); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTO_LEAD_TIME, 0); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_TBCN_BEFORE_WAKE, 0); |
| rt2x00_set_field32(®, AUTOWAKEUP_CFG_AUTOWAKE, 0); |
| rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, reg); |
| |
| rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); |
| } |
| } |
| |
| void rt2800_config(struct rt2x00_dev *rt2x00dev, |
| struct rt2x00lib_conf *libconf, |
| const unsigned int flags) |
| { |
| /* Always recalculate LNA gain before changing configuration */ |
| rt2800_config_lna_gain(rt2x00dev, libconf); |
| |
| if (flags & IEEE80211_CONF_CHANGE_CHANNEL) { |
| rt2800_config_channel(rt2x00dev, libconf->conf, |
| &libconf->rf, &libconf->channel); |
| rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band, |
| libconf->conf->power_level); |
| } |
| if (flags & IEEE80211_CONF_CHANGE_POWER) |
| rt2800_config_txpower(rt2x00dev, libconf->conf->channel->band, |
| libconf->conf->power_level); |
| if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) |
| rt2800_config_retry_limit(rt2x00dev, libconf); |
| if (flags & IEEE80211_CONF_CHANGE_PS) |
| rt2800_config_ps(rt2x00dev, libconf); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_config); |
| |
| /* |
| * Link tuning |
| */ |
| void rt2800_link_stats(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) |
| { |
| u32 reg; |
| |
| /* |
| * Update FCS error count from register. |
| */ |
| rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); |
| qual->rx_failed = rt2x00_get_field32(reg, RX_STA_CNT0_CRC_ERR); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_link_stats); |
| |
| static u8 rt2800_get_default_vgc(struct rt2x00_dev *rt2x00dev) |
| { |
| if (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ) { |
| if (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390) || |
| rt2x00_rt(rt2x00dev, RT5390)) |
| return 0x1c + (2 * rt2x00dev->lna_gain); |
| else |
| return 0x2e + rt2x00dev->lna_gain; |
| } |
| |
| if (!test_bit(CONFIG_CHANNEL_HT40, &rt2x00dev->flags)) |
| return 0x32 + (rt2x00dev->lna_gain * 5) / 3; |
| else |
| return 0x3a + (rt2x00dev->lna_gain * 5) / 3; |
| } |
| |
| static inline void rt2800_set_vgc(struct rt2x00_dev *rt2x00dev, |
| struct link_qual *qual, u8 vgc_level) |
| { |
| if (qual->vgc_level != vgc_level) { |
| rt2800_bbp_write(rt2x00dev, 66, vgc_level); |
| qual->vgc_level = vgc_level; |
| qual->vgc_level_reg = vgc_level; |
| } |
| } |
| |
| void rt2800_reset_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual) |
| { |
| rt2800_set_vgc(rt2x00dev, qual, rt2800_get_default_vgc(rt2x00dev)); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_reset_tuner); |
| |
| void rt2800_link_tuner(struct rt2x00_dev *rt2x00dev, struct link_qual *qual, |
| const u32 count) |
| { |
| if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) |
| return; |
| |
| /* |
| * When RSSI is better then -80 increase VGC level with 0x10 |
| */ |
| rt2800_set_vgc(rt2x00dev, qual, |
| rt2800_get_default_vgc(rt2x00dev) + |
| ((qual->rssi > -80) * 0x10)); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_link_tuner); |
| |
| /* |
| * Initialization functions. |
| */ |
| static int rt2800_init_registers(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 eeprom; |
| unsigned int i; |
| int ret; |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| ret = rt2800_drv_init_registers(rt2x00dev); |
| if (ret) |
| return ret; |
| |
| rt2800_register_read(rt2x00dev, BCN_OFFSET0, ®); |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN0, 0xe0); /* 0x3800 */ |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN1, 0xe8); /* 0x3a00 */ |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN2, 0xf0); /* 0x3c00 */ |
| rt2x00_set_field32(®, BCN_OFFSET0_BCN3, 0xf8); /* 0x3e00 */ |
| rt2800_register_write(rt2x00dev, BCN_OFFSET0, reg); |
| |
| rt2800_register_read(rt2x00dev, BCN_OFFSET1, ®); |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN4, 0xc8); /* 0x3200 */ |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN5, 0xd0); /* 0x3400 */ |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN6, 0x77); /* 0x1dc0 */ |
| rt2x00_set_field32(®, BCN_OFFSET1_BCN7, 0x6f); /* 0x1bc0 */ |
| rt2800_register_write(rt2x00dev, BCN_OFFSET1, reg); |
| |
| rt2800_register_write(rt2x00dev, LEGACY_BASIC_RATE, 0x0000013f); |
| rt2800_register_write(rt2x00dev, HT_BASIC_RATE, 0x00008003); |
| |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); |
| |
| rt2800_register_read(rt2x00dev, BCN_TIME_CFG, ®); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, 1600); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TSF_SYNC, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); |
| rt2x00_set_field32(®, BCN_TIME_CFG_TX_TIME_COMPENSATE, 0); |
| rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg); |
| |
| rt2800_config_filter(rt2x00dev, FIF_ALLMULTI); |
| |
| rt2800_register_read(rt2x00dev, BKOFF_SLOT_CFG, ®); |
| rt2x00_set_field32(®, BKOFF_SLOT_CFG_SLOT_TIME, 9); |
| rt2x00_set_field32(®, BKOFF_SLOT_CFG_CC_DELAY_TIME, 2); |
| rt2800_register_write(rt2x00dev, BKOFF_SLOT_CFG, reg); |
| |
| if (rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390)) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); |
| if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST)) |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, |
| 0x0000002c); |
| else |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, |
| 0x0000000f); |
| } else { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); |
| } |
| } else if (rt2x00_rt(rt2x00dev, RT3070)) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); |
| |
| if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x0000002c); |
| } else { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); |
| } |
| } else if (rt2800_is_305x_soc(rt2x00dev)) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00000000); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000030); |
| } else if (rt2x00_rt(rt2x00dev, RT3572)) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000400); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); |
| } else if (rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000404); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG2, 0x00000000); |
| } else { |
| rt2800_register_write(rt2x00dev, TX_SW_CFG0, 0x00000000); |
| rt2800_register_write(rt2x00dev, TX_SW_CFG1, 0x00080606); |
| } |
| |
| rt2800_register_read(rt2x00dev, TX_LINK_CFG, ®); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB_LIFETIME, 32); |
| rt2x00_set_field32(®, TX_LINK_CFG_MFB_ENABLE, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_UMFS_ENABLE, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_TX_MRQ_EN, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_TX_RDG_EN, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_TX_CF_ACK_EN, 1); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFB, 0); |
| rt2x00_set_field32(®, TX_LINK_CFG_REMOTE_MFS, 0); |
| rt2800_register_write(rt2x00dev, TX_LINK_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, TX_TIMEOUT_CFG, ®); |
| rt2x00_set_field32(®, TX_TIMEOUT_CFG_MPDU_LIFETIME, 9); |
| rt2x00_set_field32(®, TX_TIMEOUT_CFG_RX_ACK_TIMEOUT, 32); |
| rt2x00_set_field32(®, TX_TIMEOUT_CFG_TX_OP_TIMEOUT, 10); |
| rt2800_register_write(rt2x00dev, TX_TIMEOUT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MAX_LEN_CFG, ®); |
| rt2x00_set_field32(®, MAX_LEN_CFG_MAX_MPDU, AGGREGATION_SIZE); |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT2872, REV_RT2872E) || |
| rt2x00_rt(rt2x00dev, RT2883) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070E)) |
| rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 2); |
| else |
| rt2x00_set_field32(®, MAX_LEN_CFG_MAX_PSDU, 1); |
| rt2x00_set_field32(®, MAX_LEN_CFG_MIN_PSDU, 0); |
| rt2x00_set_field32(®, MAX_LEN_CFG_MIN_MPDU, 0); |
| rt2800_register_write(rt2x00dev, MAX_LEN_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, LED_CFG, ®); |
| rt2x00_set_field32(®, LED_CFG_ON_PERIOD, 70); |
| rt2x00_set_field32(®, LED_CFG_OFF_PERIOD, 30); |
| rt2x00_set_field32(®, LED_CFG_SLOW_BLINK_PERIOD, 3); |
| rt2x00_set_field32(®, LED_CFG_R_LED_MODE, 3); |
| rt2x00_set_field32(®, LED_CFG_G_LED_MODE, 3); |
| rt2x00_set_field32(®, LED_CFG_Y_LED_MODE, 3); |
| rt2x00_set_field32(®, LED_CFG_LED_POLAR, 1); |
| rt2800_register_write(rt2x00dev, LED_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, PBF_MAX_PCNT, 0x1f3fbf9f); |
| |
| rt2800_register_read(rt2x00dev, TX_RTY_CFG, ®); |
| rt2x00_set_field32(®, TX_RTY_CFG_SHORT_RTY_LIMIT, 15); |
| rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_LIMIT, 31); |
| rt2x00_set_field32(®, TX_RTY_CFG_LONG_RTY_THRE, 2000); |
| rt2x00_set_field32(®, TX_RTY_CFG_NON_AGG_RTY_MODE, 0); |
| rt2x00_set_field32(®, TX_RTY_CFG_AGG_RTY_MODE, 0); |
| rt2x00_set_field32(®, TX_RTY_CFG_TX_AUTO_FB_ENABLE, 1); |
| rt2800_register_write(rt2x00dev, TX_RTY_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, AUTO_RSP_CFG, ®); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_AUTORESPONDER, 1); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_BAC_ACK_POLICY, 1); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MMODE, 0); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_CTS_40_MREF, 0); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_AR_PREAMBLE, 1); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_DUAL_CTS_EN, 0); |
| rt2x00_set_field32(®, AUTO_RSP_CFG_ACK_CTS_PSM_BIT, 0); |
| rt2800_register_write(rt2x00dev, AUTO_RSP_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); |
| rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_RATE, 3); |
| rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, CCK_PROT_CFG_PROTECT_NAV_SHORT, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_MM40, 0); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, CCK_PROT_CFG_TX_OP_ALLOW_GF40, 0); |
| rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, 1); |
| rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_RATE, 3); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_PROTECT_NAV_SHORT, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_MM40, 0); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_TX_OP_ALLOW_GF40, 0); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, 1); |
| rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_RATE, 0x4004); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, MM20_PROT_CFG_PROTECT_NAV_SHORT, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_MM40, 0); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, MM20_PROT_CFG_TX_OP_ALLOW_GF40, 0); |
| rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, 0); |
| rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_RATE, 0x4084); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, MM40_PROT_CFG_PROTECT_NAV_SHORT, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_MM40, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_TX_OP_ALLOW_GF40, 1); |
| rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, 0); |
| rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_RATE, 0x4004); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, GF20_PROT_CFG_PROTECT_NAV_SHORT, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_MM40, 0); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, GF20_PROT_CFG_TX_OP_ALLOW_GF40, 0); |
| rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, 0); |
| rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_RATE, 0x4084); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_CTRL, 0); |
| rt2x00_set_field32(®, GF40_PROT_CFG_PROTECT_NAV_SHORT, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_CCK, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_OFDM, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM20, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_MM40, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF20, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_TX_OP_ALLOW_GF40, 1); |
| rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, 0); |
| rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); |
| |
| if (rt2x00_is_usb(rt2x00dev)) { |
| rt2800_register_write(rt2x00dev, PBF_CFG, 0xf40006); |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_DMA_BUSY, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 3); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_BIG_ENDIAN, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_RX_HDR_SCATTER, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_HDR_SEG_LEN, 0); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| } |
| |
| /* |
| * The legacy driver also sets TXOP_CTRL_CFG_RESERVED_TRUN_EN to 1 |
| * although it is reserved. |
| */ |
| rt2800_register_read(rt2x00dev, TXOP_CTRL_CFG, ®); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_TIMEOUT_TRUN_EN, 1); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_AC_TRUN_EN, 1); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_TXRATEGRP_TRUN_EN, 1); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_USER_MODE_TRUN_EN, 1); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_MIMO_PS_TRUN_EN, 1); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_RESERVED_TRUN_EN, 1); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_LSIG_TXOP_EN, 0); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CCA_EN, 0); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CCA_DLY, 88); |
| rt2x00_set_field32(®, TXOP_CTRL_CFG_EXT_CWMIN, 0); |
| rt2800_register_write(rt2x00dev, TXOP_CTRL_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, TXOP_HLDR_ET, 0x00000002); |
| |
| rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); |
| rt2x00_set_field32(®, TX_RTS_CFG_AUTO_RTS_RETRY_LIMIT, 32); |
| rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, |
| IEEE80211_MAX_RTS_THRESHOLD); |
| rt2x00_set_field32(®, TX_RTS_CFG_RTS_FBK_EN, 0); |
| rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, EXP_ACK_TIME, 0x002400ca); |
| |
| /* |
| * Usually the CCK SIFS time should be set to 10 and the OFDM SIFS |
| * time should be set to 16. However, the original Ralink driver uses |
| * 16 for both and indeed using a value of 10 for CCK SIFS results in |
| * connection problems with 11g + CTS protection. Hence, use the same |
| * defaults as the Ralink driver: 16 for both, CCK and OFDM SIFS. |
| */ |
| rt2800_register_read(rt2x00dev, XIFS_TIME_CFG, ®); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_CCKM_SIFS_TIME, 16); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_SIFS_TIME, 16); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_OFDM_XIFS_TIME, 4); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_EIFS, 314); |
| rt2x00_set_field32(®, XIFS_TIME_CFG_BB_RXEND_ENABLE, 1); |
| rt2800_register_write(rt2x00dev, XIFS_TIME_CFG, reg); |
| |
| rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); |
| |
| /* |
| * ASIC will keep garbage value after boot, clear encryption keys. |
| */ |
| for (i = 0; i < 4; i++) |
| rt2800_register_write(rt2x00dev, |
| SHARED_KEY_MODE_ENTRY(i), 0); |
| |
| for (i = 0; i < 256; i++) { |
| rt2800_config_wcid(rt2x00dev, NULL, i); |
| rt2800_delete_wcid_attr(rt2x00dev, i); |
| rt2800_register_write(rt2x00dev, MAC_IVEIV_ENTRY(i), 0); |
| } |
| |
| /* |
| * Clear all beacons |
| */ |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE0); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE1); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE2); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE3); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE4); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE5); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE6); |
| rt2800_clear_beacon_register(rt2x00dev, HW_BEACON_BASE7); |
| |
| if (rt2x00_is_usb(rt2x00dev)) { |
| rt2800_register_read(rt2x00dev, US_CYC_CNT, ®); |
| rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 30); |
| rt2800_register_write(rt2x00dev, US_CYC_CNT, reg); |
| } else if (rt2x00_is_pcie(rt2x00dev)) { |
| rt2800_register_read(rt2x00dev, US_CYC_CNT, ®); |
| rt2x00_set_field32(®, US_CYC_CNT_CLOCK_CYCLE, 125); |
| rt2800_register_write(rt2x00dev, US_CYC_CNT, reg); |
| } |
| |
| rt2800_register_read(rt2x00dev, HT_FBK_CFG0, ®); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS0FBK, 0); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS1FBK, 0); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS2FBK, 1); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS3FBK, 2); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS4FBK, 3); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS5FBK, 4); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS6FBK, 5); |
| rt2x00_set_field32(®, HT_FBK_CFG0_HTMCS7FBK, 6); |
| rt2800_register_write(rt2x00dev, HT_FBK_CFG0, reg); |
| |
| rt2800_register_read(rt2x00dev, HT_FBK_CFG1, ®); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS8FBK, 8); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS9FBK, 8); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS10FBK, 9); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS11FBK, 10); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS12FBK, 11); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS13FBK, 12); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS14FBK, 13); |
| rt2x00_set_field32(®, HT_FBK_CFG1_HTMCS15FBK, 14); |
| rt2800_register_write(rt2x00dev, HT_FBK_CFG1, reg); |
| |
| rt2800_register_read(rt2x00dev, LG_FBK_CFG0, ®); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS0FBK, 8); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS1FBK, 8); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS2FBK, 9); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS3FBK, 10); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS4FBK, 11); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS5FBK, 12); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS6FBK, 13); |
| rt2x00_set_field32(®, LG_FBK_CFG0_OFDMMCS7FBK, 14); |
| rt2800_register_write(rt2x00dev, LG_FBK_CFG0, reg); |
| |
| rt2800_register_read(rt2x00dev, LG_FBK_CFG1, ®); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS0FBK, 0); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS1FBK, 0); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS2FBK, 1); |
| rt2x00_set_field32(®, LG_FBK_CFG0_CCKMCS3FBK, 2); |
| rt2800_register_write(rt2x00dev, LG_FBK_CFG1, reg); |
| |
| /* |
| * Do not force the BA window size, we use the TXWI to set it |
| */ |
| rt2800_register_read(rt2x00dev, AMPDU_BA_WINSIZE, ®); |
| rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE_ENABLE, 0); |
| rt2x00_set_field32(®, AMPDU_BA_WINSIZE_FORCE_WINSIZE, 0); |
| rt2800_register_write(rt2x00dev, AMPDU_BA_WINSIZE, reg); |
| |
| /* |
| * We must clear the error counters. |
| * These registers are cleared on read, |
| * so we may pass a useless variable to store the value. |
| */ |
| rt2800_register_read(rt2x00dev, RX_STA_CNT0, ®); |
| rt2800_register_read(rt2x00dev, RX_STA_CNT1, ®); |
| rt2800_register_read(rt2x00dev, RX_STA_CNT2, ®); |
| rt2800_register_read(rt2x00dev, TX_STA_CNT0, ®); |
| rt2800_register_read(rt2x00dev, TX_STA_CNT1, ®); |
| rt2800_register_read(rt2x00dev, TX_STA_CNT2, ®); |
| |
| /* |
| * Setup leadtime for pre tbtt interrupt to 6ms |
| */ |
| rt2800_register_read(rt2x00dev, INT_TIMER_CFG, ®); |
| rt2x00_set_field32(®, INT_TIMER_CFG_PRE_TBTT_TIMER, 6 << 4); |
| rt2800_register_write(rt2x00dev, INT_TIMER_CFG, reg); |
| |
| /* |
| * Set up channel statistics timer |
| */ |
| rt2800_register_read(rt2x00dev, CH_TIME_CFG, ®); |
| rt2x00_set_field32(®, CH_TIME_CFG_EIFS_BUSY, 1); |
| rt2x00_set_field32(®, CH_TIME_CFG_NAV_BUSY, 1); |
| rt2x00_set_field32(®, CH_TIME_CFG_RX_BUSY, 1); |
| rt2x00_set_field32(®, CH_TIME_CFG_TX_BUSY, 1); |
| rt2x00_set_field32(®, CH_TIME_CFG_TMR_EN, 1); |
| rt2800_register_write(rt2x00dev, CH_TIME_CFG, reg); |
| |
| return 0; |
| } |
| |
| static int rt2800_wait_bbp_rf_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u32 reg; |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_register_read(rt2x00dev, MAC_STATUS_CFG, ®); |
| if (!rt2x00_get_field32(reg, MAC_STATUS_CFG_BBP_RF_BUSY)) |
| return 0; |
| |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP/RF register access failed, aborting.\n"); |
| return -EACCES; |
| } |
| |
| static int rt2800_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u8 value; |
| |
| /* |
| * BBP was enabled after firmware was loaded, |
| * but we need to reactivate it now. |
| */ |
| rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0); |
| rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); |
| msleep(1); |
| |
| for (i = 0; i < REGISTER_BUSY_COUNT; i++) { |
| rt2800_bbp_read(rt2x00dev, 0, &value); |
| if ((value != 0xff) && (value != 0x00)) |
| return 0; |
| udelay(REGISTER_BUSY_DELAY); |
| } |
| |
| ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); |
| return -EACCES; |
| } |
| |
| static int rt2800_init_bbp(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| u16 eeprom; |
| u8 reg_id; |
| u8 value; |
| |
| if (unlikely(rt2800_wait_bbp_rf_ready(rt2x00dev) || |
| rt2800_wait_bbp_ready(rt2x00dev))) |
| return -EACCES; |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_bbp_read(rt2x00dev, 4, &value); |
| rt2x00_set_field8(&value, BBP4_MAC_IF_CTRL, 1); |
| rt2800_bbp_write(rt2x00dev, 4, value); |
| } |
| |
| if (rt2800_is_305x_soc(rt2x00dev) || |
| rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 31, 0x08); |
| |
| rt2800_bbp_write(rt2x00dev, 65, 0x2c); |
| rt2800_bbp_write(rt2x00dev, 66, 0x38); |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 68, 0x0b); |
| |
| if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860C)) { |
| rt2800_bbp_write(rt2x00dev, 69, 0x16); |
| rt2800_bbp_write(rt2x00dev, 73, 0x12); |
| } else if (rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_bbp_write(rt2x00dev, 69, 0x12); |
| rt2800_bbp_write(rt2x00dev, 73, 0x13); |
| rt2800_bbp_write(rt2x00dev, 75, 0x46); |
| rt2800_bbp_write(rt2x00dev, 76, 0x28); |
| rt2800_bbp_write(rt2x00dev, 77, 0x59); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 69, 0x12); |
| rt2800_bbp_write(rt2x00dev, 73, 0x10); |
| } |
| |
| rt2800_bbp_write(rt2x00dev, 70, 0x0a); |
| |
| if (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390) || |
| rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_bbp_write(rt2x00dev, 79, 0x13); |
| rt2800_bbp_write(rt2x00dev, 80, 0x05); |
| rt2800_bbp_write(rt2x00dev, 81, 0x33); |
| } else if (rt2800_is_305x_soc(rt2x00dev)) { |
| rt2800_bbp_write(rt2x00dev, 78, 0x0e); |
| rt2800_bbp_write(rt2x00dev, 80, 0x08); |
| } else { |
| rt2800_bbp_write(rt2x00dev, 81, 0x37); |
| } |
| |
| rt2800_bbp_write(rt2x00dev, 82, 0x62); |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 83, 0x7a); |
| else |
| rt2800_bbp_write(rt2x00dev, 83, 0x6a); |
| |
| if (rt2x00_rt_rev(rt2x00dev, RT2860, REV_RT2860D)) |
| rt2800_bbp_write(rt2x00dev, 84, 0x19); |
| else if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 84, 0x9a); |
| else |
| rt2800_bbp_write(rt2x00dev, 84, 0x99); |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 86, 0x38); |
| else |
| rt2800_bbp_write(rt2x00dev, 86, 0x00); |
| |
| rt2800_bbp_write(rt2x00dev, 91, 0x04); |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 92, 0x02); |
| else |
| rt2800_bbp_write(rt2x00dev, 92, 0x00); |
| |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT3070, REV_RT3070F) || |
| rt2x00_rt_rev_gte(rt2x00dev, RT3071, REV_RT3071E) || |
| rt2x00_rt_rev_gte(rt2x00dev, RT3090, REV_RT3090E) || |
| rt2x00_rt_rev_gte(rt2x00dev, RT3390, REV_RT3390E) || |
| rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT5390) || |
| rt2800_is_305x_soc(rt2x00dev)) |
| rt2800_bbp_write(rt2x00dev, 103, 0xc0); |
| else |
| rt2800_bbp_write(rt2x00dev, 103, 0x00); |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 104, 0x92); |
| |
| if (rt2800_is_305x_soc(rt2x00dev)) |
| rt2800_bbp_write(rt2x00dev, 105, 0x01); |
| else if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 105, 0x3c); |
| else |
| rt2800_bbp_write(rt2x00dev, 105, 0x05); |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 106, 0x03); |
| else |
| rt2800_bbp_write(rt2x00dev, 106, 0x35); |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) |
| rt2800_bbp_write(rt2x00dev, 128, 0x12); |
| |
| if (rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390) || |
| rt2x00_rt(rt2x00dev, RT3572) || |
| rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_bbp_read(rt2x00dev, 138, &value); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1) |
| value |= 0x20; |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1) |
| value &= ~0x02; |
| |
| rt2800_bbp_write(rt2x00dev, 138, value); |
| } |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) { |
| int ant, div_mode; |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); |
| div_mode = rt2x00_get_field16(eeprom, |
| EEPROM_NIC_CONF1_ANT_DIVERSITY); |
| ant = (div_mode == 3) ? 1 : 0; |
| |
| /* check if this is a Bluetooth combo card */ |
| if (test_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags)) { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT3, 0); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT6, 0); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT3, 0); |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT6, 0); |
| if (ant == 0) |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT3, 1); |
| else if (ant == 1) |
| rt2x00_set_field32(®, GPIO_CTRL_CFG_BIT6, 1); |
| rt2800_register_write(rt2x00dev, GPIO_CTRL_CFG, reg); |
| } |
| |
| rt2800_bbp_read(rt2x00dev, 152, &value); |
| if (ant == 0) |
| rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 1); |
| else |
| rt2x00_set_field8(&value, BBP152_RX_DEFAULT_ANT, 0); |
| rt2800_bbp_write(rt2x00dev, 152, value); |
| |
| /* Init frequency calibration */ |
| rt2800_bbp_write(rt2x00dev, 142, 1); |
| rt2800_bbp_write(rt2x00dev, 143, 57); |
| } |
| |
| for (i = 0; i < EEPROM_BBP_SIZE; i++) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); |
| |
| if (eeprom != 0xffff && eeprom != 0x0000) { |
| reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); |
| value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); |
| rt2800_bbp_write(rt2x00dev, reg_id, value); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static u8 rt2800_init_rx_filter(struct rt2x00_dev *rt2x00dev, |
| bool bw40, u8 rfcsr24, u8 filter_target) |
| { |
| unsigned int i; |
| u8 bbp; |
| u8 rfcsr; |
| u8 passband; |
| u8 stopband; |
| u8 overtuned = 0; |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); |
| |
| rt2800_bbp_read(rt2x00dev, 4, &bbp); |
| rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 2 * bw40); |
| rt2800_bbp_write(rt2x00dev, 4, bbp); |
| |
| rt2800_rfcsr_read(rt2x00dev, 31, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR31_RX_H20M, bw40); |
| rt2800_rfcsr_write(rt2x00dev, 31, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 1); |
| rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); |
| |
| /* |
| * Set power & frequency of passband test tone |
| */ |
| rt2800_bbp_write(rt2x00dev, 24, 0); |
| |
| for (i = 0; i < 100; i++) { |
| rt2800_bbp_write(rt2x00dev, 25, 0x90); |
| msleep(1); |
| |
| rt2800_bbp_read(rt2x00dev, 55, &passband); |
| if (passband) |
| break; |
| } |
| |
| /* |
| * Set power & frequency of stopband test tone |
| */ |
| rt2800_bbp_write(rt2x00dev, 24, 0x06); |
| |
| for (i = 0; i < 100; i++) { |
| rt2800_bbp_write(rt2x00dev, 25, 0x90); |
| msleep(1); |
| |
| rt2800_bbp_read(rt2x00dev, 55, &stopband); |
| |
| if ((passband - stopband) <= filter_target) { |
| rfcsr24++; |
| overtuned += ((passband - stopband) == filter_target); |
| } else |
| break; |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); |
| } |
| |
| rfcsr24 -= !!overtuned; |
| |
| rt2800_rfcsr_write(rt2x00dev, 24, rfcsr24); |
| return rfcsr24; |
| } |
| |
| static int rt2800_init_rfcsr(struct rt2x00_dev *rt2x00dev) |
| { |
| u8 rfcsr; |
| u8 bbp; |
| u32 reg; |
| u16 eeprom; |
| |
| if (!rt2x00_rt(rt2x00dev, RT3070) && |
| !rt2x00_rt(rt2x00dev, RT3071) && |
| !rt2x00_rt(rt2x00dev, RT3090) && |
| !rt2x00_rt(rt2x00dev, RT3390) && |
| !rt2x00_rt(rt2x00dev, RT3572) && |
| !rt2x00_rt(rt2x00dev, RT5390) && |
| !rt2800_is_305x_soc(rt2x00dev)) |
| return 0; |
| |
| /* |
| * Init RF calibration. |
| */ |
| if (rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_rfcsr_read(rt2x00dev, 2, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 1); |
| rt2800_rfcsr_write(rt2x00dev, 2, rfcsr); |
| msleep(1); |
| rt2x00_set_field8(&rfcsr, RFCSR2_RESCAL_EN, 0); |
| rt2800_rfcsr_write(rt2x00dev, 2, rfcsr); |
| } else { |
| rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 1); |
| rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); |
| msleep(1); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RF_CALIBRATION, 0); |
| rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); |
| } |
| |
| if (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090)) { |
| rt2800_rfcsr_write(rt2x00dev, 4, 0x40); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x03); |
| rt2800_rfcsr_write(rt2x00dev, 6, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x60); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0x41); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x21); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0x7b); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0x90); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x58); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x92); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xba); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x16); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x1f); |
| } else if (rt2x00_rt(rt2x00dev, RT3390)) { |
| rt2800_rfcsr_write(rt2x00dev, 0, 0xa0); |
| rt2800_rfcsr_write(rt2x00dev, 1, 0xe1); |
| rt2800_rfcsr_write(rt2x00dev, 2, 0xf1); |
| rt2800_rfcsr_write(rt2x00dev, 3, 0x62); |
| rt2800_rfcsr_write(rt2x00dev, 4, 0x40); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x8b); |
| rt2800_rfcsr_write(rt2x00dev, 6, 0x42); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x34); |
| rt2800_rfcsr_write(rt2x00dev, 8, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0xc0); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0x61); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x21); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0x3b); |
| rt2800_rfcsr_write(rt2x00dev, 13, 0xe0); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0x90); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x53); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0xe0); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x94); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0x5c); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x4a); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xb2); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0xf6); |
| rt2800_rfcsr_write(rt2x00dev, 22, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 23, 0x14); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x08); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x3d); |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x85); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 28, 0x41); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x8f); |
| rt2800_rfcsr_write(rt2x00dev, 30, 0x20); |
| rt2800_rfcsr_write(rt2x00dev, 31, 0x0f); |
| } else if (rt2x00_rt(rt2x00dev, RT3572)) { |
| rt2800_rfcsr_write(rt2x00dev, 0, 0x70); |
| rt2800_rfcsr_write(rt2x00dev, 1, 0x81); |
| rt2800_rfcsr_write(rt2x00dev, 2, 0xf1); |
| rt2800_rfcsr_write(rt2x00dev, 3, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 4, 0x4c); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x05); |
| rt2800_rfcsr_write(rt2x00dev, 6, 0x4a); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0xd8); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0xc3); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0xf1); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0xb9); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0x70); |
| rt2800_rfcsr_write(rt2x00dev, 13, 0x65); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0xa0); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x53); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0x4c); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x23); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0xac); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x93); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xb3); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0xd0); |
| rt2800_rfcsr_write(rt2x00dev, 22, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 23, 0x3c); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x16); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x15); |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x85); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 28, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x9b); |
| rt2800_rfcsr_write(rt2x00dev, 30, 0x09); |
| rt2800_rfcsr_write(rt2x00dev, 31, 0x10); |
| } else if (rt2800_is_305x_soc(rt2x00dev)) { |
| rt2800_rfcsr_write(rt2x00dev, 0, 0x50); |
| rt2800_rfcsr_write(rt2x00dev, 1, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 2, 0xf7); |
| rt2800_rfcsr_write(rt2x00dev, 3, 0x75); |
| rt2800_rfcsr_write(rt2x00dev, 4, 0x40); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x03); |
| rt2800_rfcsr_write(rt2x00dev, 6, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x50); |
| rt2800_rfcsr_write(rt2x00dev, 8, 0x39); |
| rt2800_rfcsr_write(rt2x00dev, 9, 0x0f); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0x60); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x21); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0x75); |
| rt2800_rfcsr_write(rt2x00dev, 13, 0x75); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0x90); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x58); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0xb3); |
| rt2800_rfcsr_write(rt2x00dev, 17, 0x92); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0x2c); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x02); |
| rt2800_rfcsr_write(rt2x00dev, 20, 0xba); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0xdb); |
| rt2800_rfcsr_write(rt2x00dev, 22, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 23, 0x31); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x08); |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x01); |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x25); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x23); |
| rt2800_rfcsr_write(rt2x00dev, 28, 0x13); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x83); |
| rt2800_rfcsr_write(rt2x00dev, 30, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 31, 0x00); |
| return 0; |
| } else if (rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_rfcsr_write(rt2x00dev, 1, 0x0f); |
| rt2800_rfcsr_write(rt2x00dev, 2, 0x80); |
| rt2800_rfcsr_write(rt2x00dev, 3, 0x88); |
| rt2800_rfcsr_write(rt2x00dev, 5, 0x10); |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) |
| rt2800_rfcsr_write(rt2x00dev, 6, 0xe0); |
| else |
| rt2800_rfcsr_write(rt2x00dev, 6, 0xa0); |
| rt2800_rfcsr_write(rt2x00dev, 7, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 10, 0x53); |
| rt2800_rfcsr_write(rt2x00dev, 11, 0x4a); |
| rt2800_rfcsr_write(rt2x00dev, 12, 0xc6); |
| rt2800_rfcsr_write(rt2x00dev, 13, 0x9f); |
| rt2800_rfcsr_write(rt2x00dev, 14, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 15, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 16, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 18, 0x03); |
| rt2800_rfcsr_write(rt2x00dev, 19, 0x00); |
| |
| rt2800_rfcsr_write(rt2x00dev, 20, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 21, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 22, 0x20); |
| rt2800_rfcsr_write(rt2x00dev, 23, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 24, 0x00); |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) |
| rt2800_rfcsr_write(rt2x00dev, 25, 0x80); |
| else |
| rt2800_rfcsr_write(rt2x00dev, 25, 0xc0); |
| rt2800_rfcsr_write(rt2x00dev, 26, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x09); |
| rt2800_rfcsr_write(rt2x00dev, 28, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 29, 0x10); |
| |
| rt2800_rfcsr_write(rt2x00dev, 30, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 31, 0x80); |
| rt2800_rfcsr_write(rt2x00dev, 32, 0x80); |
| rt2800_rfcsr_write(rt2x00dev, 33, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 34, 0x07); |
| rt2800_rfcsr_write(rt2x00dev, 35, 0x12); |
| rt2800_rfcsr_write(rt2x00dev, 36, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 37, 0x08); |
| rt2800_rfcsr_write(rt2x00dev, 38, 0x85); |
| rt2800_rfcsr_write(rt2x00dev, 39, 0x1b); |
| |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) |
| rt2800_rfcsr_write(rt2x00dev, 40, 0x0b); |
| else |
| rt2800_rfcsr_write(rt2x00dev, 40, 0x4b); |
| rt2800_rfcsr_write(rt2x00dev, 41, 0xbb); |
| rt2800_rfcsr_write(rt2x00dev, 42, 0xd2); |
| rt2800_rfcsr_write(rt2x00dev, 43, 0x9a); |
| rt2800_rfcsr_write(rt2x00dev, 44, 0x0e); |
| rt2800_rfcsr_write(rt2x00dev, 45, 0xa2); |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) |
| rt2800_rfcsr_write(rt2x00dev, 46, 0x73); |
| else |
| rt2800_rfcsr_write(rt2x00dev, 46, 0x7b); |
| rt2800_rfcsr_write(rt2x00dev, 47, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 48, 0x10); |
| rt2800_rfcsr_write(rt2x00dev, 49, 0x94); |
| |
| rt2800_rfcsr_write(rt2x00dev, 52, 0x38); |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) |
| rt2800_rfcsr_write(rt2x00dev, 53, 0x00); |
| else |
| rt2800_rfcsr_write(rt2x00dev, 53, 0x84); |
| rt2800_rfcsr_write(rt2x00dev, 54, 0x78); |
| rt2800_rfcsr_write(rt2x00dev, 55, 0x44); |
| rt2800_rfcsr_write(rt2x00dev, 56, 0x22); |
| rt2800_rfcsr_write(rt2x00dev, 57, 0x80); |
| rt2800_rfcsr_write(rt2x00dev, 58, 0x7f); |
| rt2800_rfcsr_write(rt2x00dev, 59, 0x63); |
| |
| rt2800_rfcsr_write(rt2x00dev, 60, 0x45); |
| if (rt2x00_rt_rev_gte(rt2x00dev, RT5390, REV_RT5390F)) |
| rt2800_rfcsr_write(rt2x00dev, 61, 0xd1); |
| else |
| rt2800_rfcsr_write(rt2x00dev, 61, 0xdd); |
| rt2800_rfcsr_write(rt2x00dev, 62, 0x00); |
| rt2800_rfcsr_write(rt2x00dev, 63, 0x00); |
| } |
| |
| if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) { |
| rt2800_register_read(rt2x00dev, LDO_CFG0, ®); |
| rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); |
| rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); |
| rt2800_register_write(rt2x00dev, LDO_CFG0, reg); |
| } else if (rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090)) { |
| rt2800_rfcsr_write(rt2x00dev, 31, 0x14); |
| |
| rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1); |
| rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); |
| |
| rt2800_register_read(rt2x00dev, LDO_CFG0, ®); |
| rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); |
| if (rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E)) { |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_DAC_TEST)) |
| rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); |
| else |
| rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 0); |
| } |
| rt2800_register_write(rt2x00dev, LDO_CFG0, reg); |
| |
| rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®); |
| rt2x00_set_field32(®, GPIO_SWITCH_5, 0); |
| rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg); |
| } else if (rt2x00_rt(rt2x00dev, RT3390)) { |
| rt2800_register_read(rt2x00dev, GPIO_SWITCH, ®); |
| rt2x00_set_field32(®, GPIO_SWITCH_5, 0); |
| rt2800_register_write(rt2x00dev, GPIO_SWITCH, reg); |
| } else if (rt2x00_rt(rt2x00dev, RT3572)) { |
| rt2800_rfcsr_read(rt2x00dev, 6, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR6_R2, 1); |
| rt2800_rfcsr_write(rt2x00dev, 6, rfcsr); |
| |
| rt2800_register_read(rt2x00dev, LDO_CFG0, ®); |
| rt2x00_set_field32(®, LDO_CFG0_LDO_CORE_VLEVEL, 3); |
| rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); |
| rt2800_register_write(rt2x00dev, LDO_CFG0, reg); |
| msleep(1); |
| rt2800_register_read(rt2x00dev, LDO_CFG0, ®); |
| rt2x00_set_field32(®, LDO_CFG0_BGSEL, 1); |
| rt2800_register_write(rt2x00dev, LDO_CFG0, reg); |
| } |
| |
| /* |
| * Set RX Filter calibration for 20MHz and 40MHz |
| */ |
| if (rt2x00_rt(rt2x00dev, RT3070)) { |
| rt2x00dev->calibration[0] = |
| rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x16); |
| rt2x00dev->calibration[1] = |
| rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x19); |
| } else if (rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390) || |
| rt2x00_rt(rt2x00dev, RT3572)) { |
| rt2x00dev->calibration[0] = |
| rt2800_init_rx_filter(rt2x00dev, false, 0x07, 0x13); |
| rt2x00dev->calibration[1] = |
| rt2800_init_rx_filter(rt2x00dev, true, 0x27, 0x15); |
| } |
| |
| if (!rt2x00_rt(rt2x00dev, RT5390)) { |
| /* |
| * Set back to initial state |
| */ |
| rt2800_bbp_write(rt2x00dev, 24, 0); |
| |
| rt2800_rfcsr_read(rt2x00dev, 22, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR22_BASEBAND_LOOPBACK, 0); |
| rt2800_rfcsr_write(rt2x00dev, 22, rfcsr); |
| |
| /* |
| * Set BBP back to BW20 |
| */ |
| rt2800_bbp_read(rt2x00dev, 4, &bbp); |
| rt2x00_set_field8(&bbp, BBP4_BANDWIDTH, 0); |
| rt2800_bbp_write(rt2x00dev, 4, bbp); |
| } |
| |
| if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) |
| rt2800_rfcsr_write(rt2x00dev, 27, 0x03); |
| |
| rt2800_register_read(rt2x00dev, OPT_14_CSR, ®); |
| rt2x00_set_field32(®, OPT_14_CSR_BIT0, 1); |
| rt2800_register_write(rt2x00dev, OPT_14_CSR, reg); |
| |
| if (!rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_rfcsr_read(rt2x00dev, 17, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR17_TX_LO1_EN, 0); |
| if (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3071, REV_RT3071E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3090, REV_RT3090E) || |
| rt2x00_rt_rev_lt(rt2x00dev, RT3390, REV_RT3390E)) { |
| if (!test_bit(CAPABILITY_EXTERNAL_LNA_BG, |
| &rt2x00dev->cap_flags)) |
| rt2x00_set_field8(&rfcsr, RFCSR17_R, 1); |
| } |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_TXMIXER_GAIN_BG, &eeprom); |
| if (rt2x00_get_field16(eeprom, EEPROM_TXMIXER_GAIN_BG_VAL) >= 1) |
| rt2x00_set_field8(&rfcsr, RFCSR17_TXMIXER_GAIN, |
| rt2x00_get_field16(eeprom, |
| EEPROM_TXMIXER_GAIN_BG_VAL)); |
| rt2800_rfcsr_write(rt2x00dev, 17, rfcsr); |
| } |
| |
| if (rt2x00_rt(rt2x00dev, RT3090)) { |
| rt2800_bbp_read(rt2x00dev, 138, &bbp); |
| |
| /* Turn off unused DAC1 and ADC1 to reduce power consumption */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) == 1) |
| rt2x00_set_field8(&bbp, BBP138_RX_ADC1, 0); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) == 1) |
| rt2x00_set_field8(&bbp, BBP138_TX_DAC1, 1); |
| |
| rt2800_bbp_write(rt2x00dev, 138, bbp); |
| } |
| |
| if (rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390)) { |
| rt2800_rfcsr_read(rt2x00dev, 1, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RF_BLOCK_EN, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX0_PD, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX0_PD, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR1_RX1_PD, 1); |
| rt2x00_set_field8(&rfcsr, RFCSR1_TX1_PD, 1); |
| rt2800_rfcsr_write(rt2x00dev, 1, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 15, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR15_TX_LO2_EN, 0); |
| rt2800_rfcsr_write(rt2x00dev, 15, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 20, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR20_RX_LO1_EN, 0); |
| rt2800_rfcsr_write(rt2x00dev, 20, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 21, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR21_RX_LO2_EN, 0); |
| rt2800_rfcsr_write(rt2x00dev, 21, rfcsr); |
| } |
| |
| if (rt2x00_rt(rt2x00dev, RT3070)) { |
| rt2800_rfcsr_read(rt2x00dev, 27, &rfcsr); |
| if (rt2x00_rt_rev_lt(rt2x00dev, RT3070, REV_RT3070F)) |
| rt2x00_set_field8(&rfcsr, RFCSR27_R1, 3); |
| else |
| rt2x00_set_field8(&rfcsr, RFCSR27_R1, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR27_R2, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR27_R3, 0); |
| rt2x00_set_field8(&rfcsr, RFCSR27_R4, 0); |
| rt2800_rfcsr_write(rt2x00dev, 27, rfcsr); |
| } |
| |
| if (rt2x00_rt(rt2x00dev, RT5390)) { |
| rt2800_rfcsr_read(rt2x00dev, 38, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR38_RX_LO1_EN, 0); |
| rt2800_rfcsr_write(rt2x00dev, 38, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 39, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR39_RX_LO2_EN, 0); |
| rt2800_rfcsr_write(rt2x00dev, 39, rfcsr); |
| |
| rt2800_rfcsr_read(rt2x00dev, 30, &rfcsr); |
| rt2x00_set_field8(&rfcsr, RFCSR30_RX_VCM, 2); |
| rt2800_rfcsr_write(rt2x00dev, 30, rfcsr); |
| } |
| |
| return 0; |
| } |
| |
| int rt2800_enable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 word; |
| |
| /* |
| * Initialize all registers. |
| */ |
| if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || |
| rt2800_init_registers(rt2x00dev) || |
| rt2800_init_bbp(rt2x00dev) || |
| rt2800_init_rfcsr(rt2x00dev))) |
| return -EIO; |
| |
| /* |
| * Send signal to firmware during boot time. |
| */ |
| rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0, 0, 0); |
| |
| if (rt2x00_is_usb(rt2x00dev) && |
| (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt(rt2x00dev, RT3071) || |
| rt2x00_rt(rt2x00dev, RT3572))) { |
| udelay(200); |
| rt2800_mcu_request(rt2x00dev, MCU_CURRENT, 0, 0, 0); |
| udelay(10); |
| } |
| |
| /* |
| * Enable RX. |
| */ |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| udelay(50); |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 1); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| |
| /* |
| * Initialize LED control |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_AG_CONF, &word); |
| rt2800_mcu_request(rt2x00dev, MCU_LED_AG_CONF, 0xff, |
| word & 0xff, (word >> 8) & 0xff); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_ACT_CONF, &word); |
| rt2800_mcu_request(rt2x00dev, MCU_LED_ACT_CONF, 0xff, |
| word & 0xff, (word >> 8) & 0xff); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LED_POLARITY, &word); |
| rt2800_mcu_request(rt2x00dev, MCU_LED_LED_POLARITY, 0xff, |
| word & 0xff, (word >> 8) & 0xff); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_enable_radio); |
| |
| void rt2800_disable_radio(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); |
| rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); |
| rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); |
| |
| /* Wait for DMA, ignore error */ |
| rt2800_wait_wpdma_ready(rt2x00dev); |
| |
| rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, ®); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_TX, 0); |
| rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); |
| rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_disable_radio); |
| |
| int rt2800_efuse_detect(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, EFUSE_CTRL, ®); |
| |
| return rt2x00_get_field32(reg, EFUSE_CTRL_PRESENT); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_efuse_detect); |
| |
| static void rt2800_efuse_read(struct rt2x00_dev *rt2x00dev, unsigned int i) |
| { |
| u32 reg; |
| |
| mutex_lock(&rt2x00dev->csr_mutex); |
| |
| rt2800_register_read_lock(rt2x00dev, EFUSE_CTRL, ®); |
| rt2x00_set_field32(®, EFUSE_CTRL_ADDRESS_IN, i); |
| rt2x00_set_field32(®, EFUSE_CTRL_MODE, 0); |
| rt2x00_set_field32(®, EFUSE_CTRL_KICK, 1); |
| rt2800_register_write_lock(rt2x00dev, EFUSE_CTRL, reg); |
| |
| /* Wait until the EEPROM has been loaded */ |
| rt2800_regbusy_read(rt2x00dev, EFUSE_CTRL, EFUSE_CTRL_KICK, ®); |
| |
| /* Apparently the data is read from end to start */ |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA3, ®); |
| /* The returned value is in CPU order, but eeprom is le */ |
| rt2x00dev->eeprom[i] = cpu_to_le32(reg); |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA2, ®); |
| *(u32 *)&rt2x00dev->eeprom[i + 2] = cpu_to_le32(reg); |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA1, ®); |
| *(u32 *)&rt2x00dev->eeprom[i + 4] = cpu_to_le32(reg); |
| rt2800_register_read_lock(rt2x00dev, EFUSE_DATA0, ®); |
| *(u32 *)&rt2x00dev->eeprom[i + 6] = cpu_to_le32(reg); |
| |
| mutex_unlock(&rt2x00dev->csr_mutex); |
| } |
| |
| void rt2800_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) |
| { |
| unsigned int i; |
| |
| for (i = 0; i < EEPROM_SIZE / sizeof(u16); i += 8) |
| rt2800_efuse_read(rt2x00dev, i); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_read_eeprom_efuse); |
| |
| int rt2800_validate_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u16 word; |
| u8 *mac; |
| u8 default_lna_gain; |
| |
| /* |
| * Start validation of the data that has been read. |
| */ |
| mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); |
| if (!is_valid_ether_addr(mac)) { |
| random_ether_addr(mac); |
| EEPROM(rt2x00dev, "MAC: %pM\n", mac); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF0_TXPATH, 1); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RF_TYPE, RF2820); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word); |
| EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); |
| } else if (rt2x00_rt(rt2x00dev, RT2860) || |
| rt2x00_rt(rt2x00dev, RT2872)) { |
| /* |
| * There is a max of 2 RX streams for RT28x0 series |
| */ |
| if (rt2x00_get_field16(word, EEPROM_NIC_CONF0_RXPATH) > 2) |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF0_RXPATH, 2); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF0, word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &word); |
| if (word == 0xffff) { |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_HW_RADIO, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_TX_ALC, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_CARDBUS_ACCEL, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_2G, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_SB_5G, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_WPS_PBC, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_2G, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BW40M_5G, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BROADBAND_EXT_LNA, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_ANT_DIVERSITY, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_INTERNAL_TX_ALC, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_BT_COEXIST, 0); |
| rt2x00_set_field16(&word, EEPROM_NIC_CONF1_DAC_TEST, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC_CONF1, word); |
| EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); |
| } |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); |
| if ((word & 0x00ff) == 0x00ff) { |
| rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); |
| EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); |
| } |
| if ((word & 0xff00) == 0xff00) { |
| rt2x00_set_field16(&word, EEPROM_FREQ_LED_MODE, |
| LED_MODE_TXRX_ACTIVITY); |
| rt2x00_set_field16(&word, EEPROM_FREQ_LED_POLARITY, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_AG_CONF, 0x5555); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_ACT_CONF, 0x2221); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_LED_POLARITY, 0xa9f8); |
| EEPROM(rt2x00dev, "Led Mode: 0x%04x\n", word); |
| } |
| |
| /* |
| * During the LNA validation we are going to use |
| * lna0 as correct value. Note that EEPROM_LNA |
| * is never validated. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_LNA, &word); |
| default_lna_gain = rt2x00_get_field16(word, EEPROM_LNA_A0); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET0)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET0, 0); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG_OFFSET1)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG_OFFSET1, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG, word); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_BG2, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_BG2_OFFSET2)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG2_OFFSET2, 0); |
| if (rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0x00 || |
| rt2x00_get_field16(word, EEPROM_RSSI_BG2_LNA_A1) == 0xff) |
| rt2x00_set_field16(&word, EEPROM_RSSI_BG2_LNA_A1, |
| default_lna_gain); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_BG2, word); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET0)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET0, 0); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A_OFFSET1)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A_OFFSET1, 0); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A, word); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_A2, &word); |
| if (abs(rt2x00_get_field16(word, EEPROM_RSSI_A2_OFFSET2)) > 10) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A2_OFFSET2, 0); |
| if (rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0x00 || |
| rt2x00_get_field16(word, EEPROM_RSSI_A2_LNA_A2) == 0xff) |
| rt2x00_set_field16(&word, EEPROM_RSSI_A2_LNA_A2, |
| default_lna_gain); |
| rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_A2, word); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_validate_eeprom); |
| |
| int rt2800_init_eeprom(struct rt2x00_dev *rt2x00dev) |
| { |
| u32 reg; |
| u16 value; |
| u16 eeprom; |
| |
| /* |
| * Read EEPROM word for configuration. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); |
| |
| /* |
| * Identify RF chipset by EEPROM value |
| * RT28xx/RT30xx: defined in "EEPROM_NIC_CONF0_RF_TYPE" field |
| * RT53xx: defined in "EEPROM_CHIP_ID" field |
| */ |
| rt2800_register_read(rt2x00dev, MAC_CSR0, ®); |
| if (rt2x00_get_field32(reg, MAC_CSR0_CHIPSET) == RT5390) |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_CHIP_ID, &value); |
| else |
| value = rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RF_TYPE); |
| |
| rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), |
| value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); |
| |
| if (!rt2x00_rt(rt2x00dev, RT2860) && |
| !rt2x00_rt(rt2x00dev, RT2872) && |
| !rt2x00_rt(rt2x00dev, RT2883) && |
| !rt2x00_rt(rt2x00dev, RT3070) && |
| !rt2x00_rt(rt2x00dev, RT3071) && |
| !rt2x00_rt(rt2x00dev, RT3090) && |
| !rt2x00_rt(rt2x00dev, RT3390) && |
| !rt2x00_rt(rt2x00dev, RT3572) && |
| !rt2x00_rt(rt2x00dev, RT5390)) { |
| ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); |
| return -ENODEV; |
| } |
| |
| switch (rt2x00dev->chip.rf) { |
| case RF2820: |
| case RF2850: |
| case RF2720: |
| case RF2750: |
| case RF3020: |
| case RF2020: |
| case RF3021: |
| case RF3022: |
| case RF3052: |
| case RF3320: |
| case RF5370: |
| case RF5390: |
| break; |
| default: |
| ERROR(rt2x00dev, "Invalid RF chipset 0x%x detected.\n", |
| rt2x00dev->chip.rf); |
| return -ENODEV; |
| } |
| |
| /* |
| * Identify default antenna configuration. |
| */ |
| rt2x00dev->default_ant.tx_chain_num = |
| rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH); |
| rt2x00dev->default_ant.rx_chain_num = |
| rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH); |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF1, &eeprom); |
| |
| if (rt2x00_rt(rt2x00dev, RT3070) || |
| rt2x00_rt(rt2x00dev, RT3090) || |
| rt2x00_rt(rt2x00dev, RT3390)) { |
| value = rt2x00_get_field16(eeprom, |
| EEPROM_NIC_CONF1_ANT_DIVERSITY); |
| switch (value) { |
| case 0: |
| case 1: |
| case 2: |
| rt2x00dev->default_ant.tx = ANTENNA_A; |
| rt2x00dev->default_ant.rx = ANTENNA_A; |
| break; |
| case 3: |
| rt2x00dev->default_ant.tx = ANTENNA_A; |
| rt2x00dev->default_ant.rx = ANTENNA_B; |
| break; |
| } |
| } else { |
| rt2x00dev->default_ant.tx = ANTENNA_A; |
| rt2x00dev->default_ant.rx = ANTENNA_A; |
| } |
| |
| /* |
| * Determine external LNA informations. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_5G)) |
| __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_EXTERNAL_LNA_2G)) |
| __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); |
| |
| /* |
| * Detect if this device has an hardware controlled radio. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_HW_RADIO)) |
| __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); |
| |
| /* |
| * Detect if this device has Bluetooth co-existence. |
| */ |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF1_BT_COEXIST)) |
| __set_bit(CAPABILITY_BT_COEXIST, &rt2x00dev->cap_flags); |
| |
| /* |
| * Read frequency offset and RF programming sequence. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); |
| rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); |
| |
| /* |
| * Store led settings, for correct led behaviour. |
| */ |
| #ifdef CONFIG_RT2X00_LIB_LEDS |
| rt2800_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); |
| rt2800_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); |
| rt2800_init_led(rt2x00dev, &rt2x00dev->led_qual, LED_TYPE_QUALITY); |
| |
| rt2x00dev->led_mcu_reg = eeprom; |
| #endif /* CONFIG_RT2X00_LIB_LEDS */ |
| |
| /* |
| * Check if support EIRP tx power limit feature. |
| */ |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_EIRP_MAX_TX_POWER, &eeprom); |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_EIRP_MAX_TX_POWER_2GHZ) < |
| EIRP_MAX_TX_POWER_LIMIT) |
| __set_bit(CAPABILITY_POWER_LIMIT, &rt2x00dev->cap_flags); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_init_eeprom); |
| |
| /* |
| * RF value list for rt28xx |
| * Supports: 2.4 GHz (all) & 5.2 GHz (RF2850 & RF2750) |
| */ |
| static const struct rf_channel rf_vals[] = { |
| { 1, 0x18402ecc, 0x184c0786, 0x1816b455, 0x1800510b }, |
| { 2, 0x18402ecc, 0x184c0786, 0x18168a55, 0x1800519f }, |
| { 3, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800518b }, |
| { 4, 0x18402ecc, 0x184c078a, 0x18168a55, 0x1800519f }, |
| { 5, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800518b }, |
| { 6, 0x18402ecc, 0x184c078e, 0x18168a55, 0x1800519f }, |
| { 7, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800518b }, |
| { 8, 0x18402ecc, 0x184c0792, 0x18168a55, 0x1800519f }, |
| { 9, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800518b }, |
| { 10, 0x18402ecc, 0x184c0796, 0x18168a55, 0x1800519f }, |
| { 11, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800518b }, |
| { 12, 0x18402ecc, 0x184c079a, 0x18168a55, 0x1800519f }, |
| { 13, 0x18402ecc, 0x184c079e, 0x18168a55, 0x1800518b }, |
| { 14, 0x18402ecc, 0x184c07a2, 0x18168a55, 0x18005193 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| { 36, 0x18402ecc, 0x184c099a, 0x18158a55, 0x180ed1a3 }, |
| { 38, 0x18402ecc, 0x184c099e, 0x18158a55, 0x180ed193 }, |
| { 40, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed183 }, |
| { 44, 0x18402ec8, 0x184c0682, 0x18158a55, 0x180ed1a3 }, |
| { 46, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed18b }, |
| { 48, 0x18402ec8, 0x184c0686, 0x18158a55, 0x180ed19b }, |
| { 52, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed193 }, |
| { 54, 0x18402ec8, 0x184c068a, 0x18158a55, 0x180ed1a3 }, |
| { 56, 0x18402ec8, 0x184c068e, 0x18158a55, 0x180ed18b }, |
| { 60, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed183 }, |
| { 62, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed193 }, |
| { 64, 0x18402ec8, 0x184c0692, 0x18158a55, 0x180ed1a3 }, |
| |
| /* 802.11 HyperLan 2 */ |
| { 100, 0x18402ec8, 0x184c06b2, 0x18178a55, 0x180ed783 }, |
| { 102, 0x18402ec8, 0x184c06b2, 0x18578a55, 0x180ed793 }, |
| { 104, 0x18402ec8, 0x185c06b2, 0x18578a55, 0x180ed1a3 }, |
| { 108, 0x18402ecc, 0x185c0a32, 0x18578a55, 0x180ed193 }, |
| { 110, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed183 }, |
| { 112, 0x18402ecc, 0x184c0a36, 0x18178a55, 0x180ed19b }, |
| { 116, 0x18402ecc, 0x184c0a3a, 0x18178a55, 0x180ed1a3 }, |
| { 118, 0x18402ecc, 0x184c0a3e, 0x18178a55, 0x180ed193 }, |
| { 120, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed183 }, |
| { 124, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed193 }, |
| { 126, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed15b }, |
| { 128, 0x18402ec4, 0x184c0382, 0x18178a55, 0x180ed1a3 }, |
| { 132, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed18b }, |
| { 134, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed193 }, |
| { 136, 0x18402ec4, 0x184c0386, 0x18178a55, 0x180ed19b }, |
| { 140, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed183 }, |
| |
| /* 802.11 UNII */ |
| { 149, 0x18402ec4, 0x184c038a, 0x18178a55, 0x180ed1a7 }, |
| { 151, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed187 }, |
| { 153, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed18f }, |
| { 157, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed19f }, |
| { 159, 0x18402ec4, 0x184c038e, 0x18178a55, 0x180ed1a7 }, |
| { 161, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed187 }, |
| { 165, 0x18402ec4, 0x184c0392, 0x18178a55, 0x180ed197 }, |
| { 167, 0x18402ec4, 0x184c03d2, 0x18179855, 0x1815531f }, |
| { 169, 0x18402ec4, 0x184c03d2, 0x18179855, 0x18155327 }, |
| { 171, 0x18402ec4, 0x184c03d6, 0x18179855, 0x18155307 }, |
| { 173, 0x18402ec4, 0x184c03d6, 0x18179855, 0x1815530f }, |
| |
| /* 802.11 Japan */ |
| { 184, 0x15002ccc, 0x1500491e, 0x1509be55, 0x150c0a0b }, |
| { 188, 0x15002ccc, 0x15004922, 0x1509be55, 0x150c0a13 }, |
| { 192, 0x15002ccc, 0x15004926, 0x1509be55, 0x150c0a1b }, |
| { 196, 0x15002ccc, 0x1500492a, 0x1509be55, 0x150c0a23 }, |
| { 208, 0x15002ccc, 0x1500493a, 0x1509be55, 0x150c0a13 }, |
| { 212, 0x15002ccc, 0x1500493e, 0x1509be55, 0x150c0a1b }, |
| { 216, 0x15002ccc, 0x15004982, 0x1509be55, 0x150c0a23 }, |
| }; |
| |
| /* |
| * RF value list for rt3xxx |
| * Supports: 2.4 GHz (all) & 5.2 GHz (RF3052) |
| */ |
| static const struct rf_channel rf_vals_3x[] = { |
| {1, 241, 2, 2 }, |
| {2, 241, 2, 7 }, |
| {3, 242, 2, 2 }, |
| {4, 242, 2, 7 }, |
| {5, 243, 2, 2 }, |
| {6, 243, 2, 7 }, |
| {7, 244, 2, 2 }, |
| {8, 244, 2, 7 }, |
| {9, 245, 2, 2 }, |
| {10, 245, 2, 7 }, |
| {11, 246, 2, 2 }, |
| {12, 246, 2, 7 }, |
| {13, 247, 2, 2 }, |
| {14, 248, 2, 4 }, |
| |
| /* 802.11 UNI / HyperLan 2 */ |
| {36, 0x56, 0, 4}, |
| {38, 0x56, 0, 6}, |
| {40, 0x56, 0, 8}, |
| {44, 0x57, 0, 0}, |
| {46, 0x57, 0, 2}, |
| {48, 0x57, 0, 4}, |
| {52, 0x57, 0, 8}, |
| {54, 0x57, 0, 10}, |
| {56, 0x58, 0, 0}, |
| {60, 0x58, 0, 4}, |
| {62, 0x58, 0, 6}, |
| {64, 0x58, 0, 8}, |
| |
| /* 802.11 HyperLan 2 */ |
| {100, 0x5b, 0, 8}, |
| {102, 0x5b, 0, 10}, |
| {104, 0x5c, 0, 0}, |
| {108, 0x5c, 0, 4}, |
| {110, 0x5c, 0, 6}, |
| {112, 0x5c, 0, 8}, |
| {116, 0x5d, 0, 0}, |
| {118, 0x5d, 0, 2}, |
| {120, 0x5d, 0, 4}, |
| {124, 0x5d, 0, 8}, |
| {126, 0x5d, 0, 10}, |
| {128, 0x5e, 0, 0}, |
| {132, 0x5e, 0, 4}, |
| {134, 0x5e, 0, 6}, |
| {136, 0x5e, 0, 8}, |
| {140, 0x5f, 0, 0}, |
| |
| /* 802.11 UNII */ |
| {149, 0x5f, 0, 9}, |
| {151, 0x5f, 0, 11}, |
| {153, 0x60, 0, 1}, |
| {157, 0x60, 0, 5}, |
| {159, 0x60, 0, 7}, |
| {161, 0x60, 0, 9}, |
| {165, 0x61, 0, 1}, |
| {167, 0x61, 0, 3}, |
| {169, 0x61, 0, 5}, |
| {171, 0x61, 0, 7}, |
| {173, 0x61, 0, 9}, |
| }; |
| |
| int rt2800_probe_hw_mode(struct rt2x00_dev *rt2x00dev) |
| { |
| struct hw_mode_spec *spec = &rt2x00dev->spec; |
| struct channel_info *info; |
| char *default_power1; |
| char *default_power2; |
| unsigned int i; |
| u16 eeprom; |
| |
| /* |
| * Disable powersaving as default on PCI devices. |
| */ |
| if (rt2x00_is_pci(rt2x00dev) || rt2x00_is_soc(rt2x00dev)) |
| rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; |
| |
| /* |
| * Initialize all hw fields. |
| */ |
| rt2x00dev->hw->flags = |
| IEEE80211_HW_SIGNAL_DBM | |
| IEEE80211_HW_SUPPORTS_PS | |
| IEEE80211_HW_PS_NULLFUNC_STACK | |
| IEEE80211_HW_AMPDU_AGGREGATION; |
| /* |
| * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING for USB devices |
| * unless we are capable of sending the buffered frames out after the |
| * DTIM transmission using rt2x00lib_beacondone. This will send out |
| * multicast and broadcast traffic immediately instead of buffering it |
| * infinitly and thus dropping it after some time. |
| */ |
| if (!rt2x00_is_usb(rt2x00dev)) |
| rt2x00dev->hw->flags |= |
| IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING; |
| |
| SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); |
| SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, |
| rt2x00_eeprom_addr(rt2x00dev, |
| EEPROM_MAC_ADDR_0)); |
| |
| /* |
| * As rt2800 has a global fallback table we cannot specify |
| * more then one tx rate per frame but since the hw will |
| * try several rates (based on the fallback table) we should |
| * initialize max_report_rates to the maximum number of rates |
| * we are going to try. Otherwise mac80211 will truncate our |
| * reported tx rates and the rc algortihm will end up with |
| * incorrect data. |
| */ |
| rt2x00dev->hw->max_rates = 1; |
| rt2x00dev->hw->max_report_rates = 7; |
| rt2x00dev->hw->max_rate_tries = 1; |
| |
| rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC_CONF0, &eeprom); |
| |
| /* |
| * Initialize hw_mode information. |
| */ |
| spec->supported_bands = SUPPORT_BAND_2GHZ; |
| spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; |
| |
| if (rt2x00_rf(rt2x00dev, RF2820) || |
| rt2x00_rf(rt2x00dev, RF2720)) { |
| spec->num_channels = 14; |
| spec->channels = rf_vals; |
| } else if (rt2x00_rf(rt2x00dev, RF2850) || |
| rt2x00_rf(rt2x00dev, RF2750)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals); |
| spec->channels = rf_vals; |
| } else if (rt2x00_rf(rt2x00dev, RF3020) || |
| rt2x00_rf(rt2x00dev, RF2020) || |
| rt2x00_rf(rt2x00dev, RF3021) || |
| rt2x00_rf(rt2x00dev, RF3022) || |
| rt2x00_rf(rt2x00dev, RF3320) || |
| rt2x00_rf(rt2x00dev, RF5370) || |
| rt2x00_rf(rt2x00dev, RF5390)) { |
| spec->num_channels = 14; |
| spec->channels = rf_vals_3x; |
| } else if (rt2x00_rf(rt2x00dev, RF3052)) { |
| spec->supported_bands |= SUPPORT_BAND_5GHZ; |
| spec->num_channels = ARRAY_SIZE(rf_vals_3x); |
| spec->channels = rf_vals_3x; |
| } |
| |
| /* |
| * Initialize HT information. |
| */ |
| if (!rt2x00_rf(rt2x00dev, RF2020)) |
| spec->ht.ht_supported = true; |
| else |
| spec->ht.ht_supported = false; |
| |
| spec->ht.cap = |
| IEEE80211_HT_CAP_SUP_WIDTH_20_40 | |
| IEEE80211_HT_CAP_GRN_FLD | |
| IEEE80211_HT_CAP_SGI_20 | |
| IEEE80211_HT_CAP_SGI_40; |
| |
| if (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) >= 2) |
| spec->ht.cap |= IEEE80211_HT_CAP_TX_STBC; |
| |
| spec->ht.cap |= |
| rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH) << |
| IEEE80211_HT_CAP_RX_STBC_SHIFT; |
| |
| spec->ht.ampdu_factor = 3; |
| spec->ht.ampdu_density = 4; |
| spec->ht.mcs.tx_params = |
| IEEE80211_HT_MCS_TX_DEFINED | |
| IEEE80211_HT_MCS_TX_RX_DIFF | |
| ((rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_TXPATH) - 1) << |
| IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT); |
| |
| switch (rt2x00_get_field16(eeprom, EEPROM_NIC_CONF0_RXPATH)) { |
| case 3: |
| spec->ht.mcs.rx_mask[2] = 0xff; |
| case 2: |
| spec->ht.mcs.rx_mask[1] = 0xff; |
| case 1: |
| spec->ht.mcs.rx_mask[0] = 0xff; |
| spec->ht.mcs.rx_mask[4] = 0x1; /* MCS32 */ |
| break; |
| } |
| |
| /* |
| * Create channel information array |
| */ |
| info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); |
| if (!info) |
| return -ENOMEM; |
| |
| spec->channels_info = info; |
| |
| default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG1); |
| default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_BG2); |
| |
| for (i = 0; i < 14; i++) { |
| info[i].default_power1 = default_power1[i]; |
| info[i].default_power2 = default_power2[i]; |
| } |
| |
| if (spec->num_channels > 14) { |
| default_power1 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A1); |
| default_power2 = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A2); |
| |
| for (i = 14; i < spec->num_channels; i++) { |
| info[i].default_power1 = default_power1[i]; |
| info[i].default_power2 = default_power2[i]; |
| } |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_probe_hw_mode); |
| |
| /* |
| * IEEE80211 stack callback functions. |
| */ |
| void rt2800_get_tkip_seq(struct ieee80211_hw *hw, u8 hw_key_idx, u32 *iv32, |
| u16 *iv16) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct mac_iveiv_entry iveiv_entry; |
| u32 offset; |
| |
| offset = MAC_IVEIV_ENTRY(hw_key_idx); |
| rt2800_register_multiread(rt2x00dev, offset, |
| &iveiv_entry, sizeof(iveiv_entry)); |
| |
| memcpy(iv16, &iveiv_entry.iv[0], sizeof(*iv16)); |
| memcpy(iv32, &iveiv_entry.iv[4], sizeof(*iv32)); |
| } |
| EXPORT_SYMBOL_GPL(rt2800_get_tkip_seq); |
| |
| int rt2800_set_rts_threshold(struct ieee80211_hw *hw, u32 value) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u32 reg; |
| bool enabled = (value < IEEE80211_MAX_RTS_THRESHOLD); |
| |
| rt2800_register_read(rt2x00dev, TX_RTS_CFG, ®); |
| rt2x00_set_field32(®, TX_RTS_CFG_RTS_THRES, value); |
| rt2800_register_write(rt2x00dev, TX_RTS_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, CCK_PROT_CFG, ®); |
| rt2x00_set_field32(®, CCK_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, CCK_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, OFDM_PROT_CFG, ®); |
| rt2x00_set_field32(®, OFDM_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, OFDM_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM20_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM20_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, MM20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, MM40_PROT_CFG, ®); |
| rt2x00_set_field32(®, MM40_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, MM40_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF20_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF20_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, GF20_PROT_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, GF40_PROT_CFG, ®); |
| rt2x00_set_field32(®, GF40_PROT_CFG_RTS_TH_EN, enabled); |
| rt2800_register_write(rt2x00dev, GF40_PROT_CFG, reg); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_set_rts_threshold); |
| |
| int rt2800_conf_tx(struct ieee80211_hw *hw, |
| struct ieee80211_vif *vif, u16 queue_idx, |
| const struct ieee80211_tx_queue_params *params) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct data_queue *queue; |
| struct rt2x00_field32 field; |
| int retval; |
| u32 reg; |
| u32 offset; |
| |
| /* |
| * First pass the configuration through rt2x00lib, that will |
| * update the queue settings and validate the input. After that |
| * we are free to update the registers based on the value |
| * in the queue parameter. |
| */ |
| retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); |
| if (retval) |
| return retval; |
| |
| /* |
| * We only need to perform additional register initialization |
| * for WMM queues/ |
| */ |
| if (queue_idx >= 4) |
| return 0; |
| |
| queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); |
| |
| /* Update WMM TXOP register */ |
| offset = WMM_TXOP0_CFG + (sizeof(u32) * (!!(queue_idx & 2))); |
| field.bit_offset = (queue_idx & 1) * 16; |
| field.bit_mask = 0xffff << field.bit_offset; |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, field, queue->txop); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| /* Update WMM registers */ |
| field.bit_offset = queue_idx * 4; |
| field.bit_mask = 0xf << field.bit_offset; |
| |
| rt2800_register_read(rt2x00dev, WMM_AIFSN_CFG, ®); |
| rt2x00_set_field32(®, field, queue->aifs); |
| rt2800_register_write(rt2x00dev, WMM_AIFSN_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, WMM_CWMIN_CFG, ®); |
| rt2x00_set_field32(®, field, queue->cw_min); |
| rt2800_register_write(rt2x00dev, WMM_CWMIN_CFG, reg); |
| |
| rt2800_register_read(rt2x00dev, WMM_CWMAX_CFG, ®); |
| rt2x00_set_field32(®, field, queue->cw_max); |
| rt2800_register_write(rt2x00dev, WMM_CWMAX_CFG, reg); |
| |
| /* Update EDCA registers */ |
| offset = EDCA_AC0_CFG + (sizeof(u32) * queue_idx); |
| |
| rt2800_register_read(rt2x00dev, offset, ®); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_TX_OP, queue->txop); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_AIFSN, queue->aifs); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_CWMIN, queue->cw_min); |
| rt2x00_set_field32(®, EDCA_AC0_CFG_CWMAX, queue->cw_max); |
| rt2800_register_write(rt2x00dev, offset, reg); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_conf_tx); |
| |
| u64 rt2800_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| u64 tsf; |
| u32 reg; |
| |
| rt2800_register_read(rt2x00dev, TSF_TIMER_DW1, ®); |
| tsf = (u64) rt2x00_get_field32(reg, TSF_TIMER_DW1_HIGH_WORD) << 32; |
| rt2800_register_read(rt2x00dev, TSF_TIMER_DW0, ®); |
| tsf |= rt2x00_get_field32(reg, TSF_TIMER_DW0_LOW_WORD); |
| |
| return tsf; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_get_tsf); |
| |
| int rt2800_ampdu_action(struct ieee80211_hw *hw, struct ieee80211_vif *vif, |
| enum ieee80211_ampdu_mlme_action action, |
| struct ieee80211_sta *sta, u16 tid, u16 *ssn, |
| u8 buf_size) |
| { |
| struct rt2x00_sta *sta_priv = (struct rt2x00_sta *)sta->drv_priv; |
| int ret = 0; |
| |
| /* |
| * Don't allow aggregation for stations the hardware isn't aware |
| * of because tx status reports for frames to an unknown station |
| * always contain wcid=255 and thus we can't distinguish between |
| * multiple stations which leads to unwanted situations when the |
| * hw reorders frames due to aggregation. |
| */ |
| if (sta_priv->wcid < 0) |
| return 1; |
| |
| switch (action) { |
| case IEEE80211_AMPDU_RX_START: |
| case IEEE80211_AMPDU_RX_STOP: |
| /* |
| * The hw itself takes care of setting up BlockAck mechanisms. |
| * So, we only have to allow mac80211 to nagotiate a BlockAck |
| * agreement. Once that is done, the hw will BlockAck incoming |
| * AMPDUs without further setup. |
| */ |
| break; |
| case IEEE80211_AMPDU_TX_START: |
| ieee80211_start_tx_ba_cb_irqsafe(vif, sta->addr, tid); |
| break; |
| case IEEE80211_AMPDU_TX_STOP: |
| ieee80211_stop_tx_ba_cb_irqsafe(vif, sta->addr, tid); |
| break; |
| case IEEE80211_AMPDU_TX_OPERATIONAL: |
| break; |
| default: |
| WARNING((struct rt2x00_dev *)hw->priv, "Unknown AMPDU action\n"); |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL_GPL(rt2800_ampdu_action); |
| |
| int rt2800_get_survey(struct ieee80211_hw *hw, int idx, |
| struct survey_info *survey) |
| { |
| struct rt2x00_dev *rt2x00dev = hw->priv; |
| struct ieee80211_conf *conf = &hw->conf; |
| u32 idle, busy, busy_ext; |
| |
| if (idx != 0) |
| return -ENOENT; |
| |
| survey->channel = conf->channel; |
| |
| rt2800_register_read(rt2x00dev, CH_IDLE_STA, &idle); |
| rt2800_register_read(rt2x00dev, CH_BUSY_STA, &busy); |
| rt2800_register_read(rt2x00dev, CH_BUSY_STA_SEC, &busy_ext); |
| |
| if (idle || busy) { |
| survey->filled = SURVEY_INFO_CHANNEL_TIME | |
| SURVEY_INFO_CHANNEL_TIME_BUSY | |
| SURVEY_INFO_CHANNEL_TIME_EXT_BUSY; |
| |
| survey->channel_time = (idle + busy) / 1000; |
| survey->channel_time_busy = busy / 1000; |
| survey->channel_time_ext_busy = busy_ext / 1000; |
| } |
| |
| return 0; |
| |
| } |
| EXPORT_SYMBOL_GPL(rt2800_get_survey); |
| |
| MODULE_AUTHOR(DRV_PROJECT ", Bartlomiej Zolnierkiewicz"); |
| MODULE_VERSION(DRV_VERSION); |
| MODULE_DESCRIPTION("Ralink RT2800 library"); |
| MODULE_LICENSE("GPL"); |