| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * SLUB: A slab allocator that limits cache line use instead of queuing |
| * objects in per cpu and per node lists. |
| * |
| * The allocator synchronizes using per slab locks or atomic operatios |
| * and only uses a centralized lock to manage a pool of partial slabs. |
| * |
| * (C) 2007 SGI, Christoph Lameter |
| * (C) 2011 Linux Foundation, Christoph Lameter |
| */ |
| |
| #include <linux/mm.h> |
| #include <linux/swap.h> /* struct reclaim_state */ |
| #include <linux/module.h> |
| #include <linux/bit_spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/bitops.h> |
| #include <linux/slab.h> |
| #include "slab.h" |
| #include <linux/proc_fs.h> |
| #include <linux/notifier.h> |
| #include <linux/seq_file.h> |
| #include <linux/kasan.h> |
| #include <linux/cpu.h> |
| #include <linux/cpuset.h> |
| #include <linux/mempolicy.h> |
| #include <linux/ctype.h> |
| #include <linux/debugobjects.h> |
| #include <linux/kallsyms.h> |
| #include <linux/memory.h> |
| #include <linux/math64.h> |
| #include <linux/fault-inject.h> |
| #include <linux/stacktrace.h> |
| #include <linux/prefetch.h> |
| #include <linux/memcontrol.h> |
| #include <linux/random.h> |
| |
| #include <trace/events/kmem.h> |
| |
| #include "internal.h" |
| |
| /* |
| * Lock order: |
| * 1. slab_mutex (Global Mutex) |
| * 2. node->list_lock |
| * 3. slab_lock(page) (Only on some arches and for debugging) |
| * |
| * slab_mutex |
| * |
| * The role of the slab_mutex is to protect the list of all the slabs |
| * and to synchronize major metadata changes to slab cache structures. |
| * |
| * The slab_lock is only used for debugging and on arches that do not |
| * have the ability to do a cmpxchg_double. It only protects the second |
| * double word in the page struct. Meaning |
| * A. page->freelist -> List of object free in a page |
| * B. page->counters -> Counters of objects |
| * C. page->frozen -> frozen state |
| * |
| * If a slab is frozen then it is exempt from list management. It is not |
| * on any list. The processor that froze the slab is the one who can |
| * perform list operations on the page. Other processors may put objects |
| * onto the freelist but the processor that froze the slab is the only |
| * one that can retrieve the objects from the page's freelist. |
| * |
| * The list_lock protects the partial and full list on each node and |
| * the partial slab counter. If taken then no new slabs may be added or |
| * removed from the lists nor make the number of partial slabs be modified. |
| * (Note that the total number of slabs is an atomic value that may be |
| * modified without taking the list lock). |
| * |
| * The list_lock is a centralized lock and thus we avoid taking it as |
| * much as possible. As long as SLUB does not have to handle partial |
| * slabs, operations can continue without any centralized lock. F.e. |
| * allocating a long series of objects that fill up slabs does not require |
| * the list lock. |
| * Interrupts are disabled during allocation and deallocation in order to |
| * make the slab allocator safe to use in the context of an irq. In addition |
| * interrupts are disabled to ensure that the processor does not change |
| * while handling per_cpu slabs, due to kernel preemption. |
| * |
| * SLUB assigns one slab for allocation to each processor. |
| * Allocations only occur from these slabs called cpu slabs. |
| * |
| * Slabs with free elements are kept on a partial list and during regular |
| * operations no list for full slabs is used. If an object in a full slab is |
| * freed then the slab will show up again on the partial lists. |
| * We track full slabs for debugging purposes though because otherwise we |
| * cannot scan all objects. |
| * |
| * Slabs are freed when they become empty. Teardown and setup is |
| * minimal so we rely on the page allocators per cpu caches for |
| * fast frees and allocs. |
| * |
| * Overloading of page flags that are otherwise used for LRU management. |
| * |
| * PageActive The slab is frozen and exempt from list processing. |
| * This means that the slab is dedicated to a purpose |
| * such as satisfying allocations for a specific |
| * processor. Objects may be freed in the slab while |
| * it is frozen but slab_free will then skip the usual |
| * list operations. It is up to the processor holding |
| * the slab to integrate the slab into the slab lists |
| * when the slab is no longer needed. |
| * |
| * One use of this flag is to mark slabs that are |
| * used for allocations. Then such a slab becomes a cpu |
| * slab. The cpu slab may be equipped with an additional |
| * freelist that allows lockless access to |
| * free objects in addition to the regular freelist |
| * that requires the slab lock. |
| * |
| * PageError Slab requires special handling due to debug |
| * options set. This moves slab handling out of |
| * the fast path and disables lockless freelists. |
| */ |
| |
| static inline int kmem_cache_debug(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_SLUB_DEBUG |
| return unlikely(s->flags & SLAB_DEBUG_FLAGS); |
| #else |
| return 0; |
| #endif |
| } |
| |
| void *fixup_red_left(struct kmem_cache *s, void *p) |
| { |
| if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) |
| p += s->red_left_pad; |
| |
| return p; |
| } |
| |
| static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| return !kmem_cache_debug(s); |
| #else |
| return false; |
| #endif |
| } |
| |
| /* |
| * Issues still to be resolved: |
| * |
| * - Support PAGE_ALLOC_DEBUG. Should be easy to do. |
| * |
| * - Variable sizing of the per node arrays |
| */ |
| |
| /* Enable to test recovery from slab corruption on boot */ |
| #undef SLUB_RESILIENCY_TEST |
| |
| /* Enable to log cmpxchg failures */ |
| #undef SLUB_DEBUG_CMPXCHG |
| |
| /* |
| * Mininum number of partial slabs. These will be left on the partial |
| * lists even if they are empty. kmem_cache_shrink may reclaim them. |
| */ |
| #define MIN_PARTIAL 5 |
| |
| /* |
| * Maximum number of desirable partial slabs. |
| * The existence of more partial slabs makes kmem_cache_shrink |
| * sort the partial list by the number of objects in use. |
| */ |
| #define MAX_PARTIAL 10 |
| |
| #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \ |
| SLAB_POISON | SLAB_STORE_USER) |
| |
| /* |
| * These debug flags cannot use CMPXCHG because there might be consistency |
| * issues when checking or reading debug information |
| */ |
| #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \ |
| SLAB_TRACE) |
| |
| |
| /* |
| * Debugging flags that require metadata to be stored in the slab. These get |
| * disabled when slub_debug=O is used and a cache's min order increases with |
| * metadata. |
| */ |
| #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER) |
| |
| #define OO_SHIFT 16 |
| #define OO_MASK ((1 << OO_SHIFT) - 1) |
| #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */ |
| |
| /* Internal SLUB flags */ |
| #define __OBJECT_POISON 0x80000000UL /* Poison object */ |
| #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */ |
| |
| /* |
| * Tracking user of a slab. |
| */ |
| #define TRACK_ADDRS_COUNT 16 |
| struct track { |
| unsigned long addr; /* Called from address */ |
| #ifdef CONFIG_STACKTRACE |
| unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */ |
| #endif |
| int cpu; /* Was running on cpu */ |
| int pid; /* Pid context */ |
| unsigned long when; /* When did the operation occur */ |
| }; |
| |
| enum track_item { TRACK_ALLOC, TRACK_FREE }; |
| |
| #ifdef CONFIG_SYSFS |
| static int sysfs_slab_add(struct kmem_cache *); |
| static int sysfs_slab_alias(struct kmem_cache *, const char *); |
| static void memcg_propagate_slab_attrs(struct kmem_cache *s); |
| static void sysfs_slab_remove(struct kmem_cache *s); |
| #else |
| static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; } |
| static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p) |
| { return 0; } |
| static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { } |
| static inline void sysfs_slab_remove(struct kmem_cache *s) { } |
| #endif |
| |
| static inline void stat(const struct kmem_cache *s, enum stat_item si) |
| { |
| #ifdef CONFIG_SLUB_STATS |
| /* |
| * The rmw is racy on a preemptible kernel but this is acceptable, so |
| * avoid this_cpu_add()'s irq-disable overhead. |
| */ |
| raw_cpu_inc(s->cpu_slab->stat[si]); |
| #endif |
| } |
| |
| /******************************************************************** |
| * Core slab cache functions |
| *******************************************************************/ |
| |
| /* |
| * Returns freelist pointer (ptr). With hardening, this is obfuscated |
| * with an XOR of the address where the pointer is held and a per-cache |
| * random number. |
| */ |
| static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr, |
| unsigned long ptr_addr) |
| { |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr); |
| #else |
| return ptr; |
| #endif |
| } |
| |
| /* Returns the freelist pointer recorded at location ptr_addr. */ |
| static inline void *freelist_dereference(const struct kmem_cache *s, |
| void *ptr_addr) |
| { |
| return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr), |
| (unsigned long)ptr_addr); |
| } |
| |
| static inline void *get_freepointer(struct kmem_cache *s, void *object) |
| { |
| return freelist_dereference(s, object + s->offset); |
| } |
| |
| static void prefetch_freepointer(const struct kmem_cache *s, void *object) |
| { |
| if (object) |
| prefetch(freelist_dereference(s, object + s->offset)); |
| } |
| |
| static inline void *get_freepointer_safe(struct kmem_cache *s, void *object) |
| { |
| unsigned long freepointer_addr; |
| void *p; |
| |
| if (!debug_pagealloc_enabled()) |
| return get_freepointer(s, object); |
| |
| freepointer_addr = (unsigned long)object + s->offset; |
| probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p)); |
| return freelist_ptr(s, p, freepointer_addr); |
| } |
| |
| static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp) |
| { |
| unsigned long freeptr_addr = (unsigned long)object + s->offset; |
| |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| BUG_ON(object == fp); /* naive detection of double free or corruption */ |
| #endif |
| |
| *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr); |
| } |
| |
| /* Loop over all objects in a slab */ |
| #define for_each_object(__p, __s, __addr, __objects) \ |
| for (__p = fixup_red_left(__s, __addr); \ |
| __p < (__addr) + (__objects) * (__s)->size; \ |
| __p += (__s)->size) |
| |
| #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \ |
| for (__p = fixup_red_left(__s, __addr), __idx = 1; \ |
| __idx <= __objects; \ |
| __p += (__s)->size, __idx++) |
| |
| /* Determine object index from a given position */ |
| static inline int slab_index(void *p, struct kmem_cache *s, void *addr) |
| { |
| return (p - addr) / s->size; |
| } |
| |
| static inline int order_objects(int order, unsigned long size, int reserved) |
| { |
| return ((PAGE_SIZE << order) - reserved) / size; |
| } |
| |
| static inline struct kmem_cache_order_objects oo_make(int order, |
| unsigned long size, int reserved) |
| { |
| struct kmem_cache_order_objects x = { |
| (order << OO_SHIFT) + order_objects(order, size, reserved) |
| }; |
| |
| return x; |
| } |
| |
| static inline int oo_order(struct kmem_cache_order_objects x) |
| { |
| return x.x >> OO_SHIFT; |
| } |
| |
| static inline int oo_objects(struct kmem_cache_order_objects x) |
| { |
| return x.x & OO_MASK; |
| } |
| |
| /* |
| * Per slab locking using the pagelock |
| */ |
| static __always_inline void slab_lock(struct page *page) |
| { |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| bit_spin_lock(PG_locked, &page->flags); |
| } |
| |
| static __always_inline void slab_unlock(struct page *page) |
| { |
| VM_BUG_ON_PAGE(PageTail(page), page); |
| __bit_spin_unlock(PG_locked, &page->flags); |
| } |
| |
| static inline void set_page_slub_counters(struct page *page, unsigned long counters_new) |
| { |
| struct page tmp; |
| tmp.counters = counters_new; |
| /* |
| * page->counters can cover frozen/inuse/objects as well |
| * as page->_refcount. If we assign to ->counters directly |
| * we run the risk of losing updates to page->_refcount, so |
| * be careful and only assign to the fields we need. |
| */ |
| page->frozen = tmp.frozen; |
| page->inuse = tmp.inuse; |
| page->objects = tmp.objects; |
| } |
| |
| /* Interrupts must be disabled (for the fallback code to work right) */ |
| static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
| void *freelist_old, unsigned long counters_old, |
| void *freelist_new, unsigned long counters_new, |
| const char *n) |
| { |
| VM_BUG_ON(!irqs_disabled()); |
| #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
| defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
| if (s->flags & __CMPXCHG_DOUBLE) { |
| if (cmpxchg_double(&page->freelist, &page->counters, |
| freelist_old, counters_old, |
| freelist_new, counters_new)) |
| return true; |
| } else |
| #endif |
| { |
| slab_lock(page); |
| if (page->freelist == freelist_old && |
| page->counters == counters_old) { |
| page->freelist = freelist_new; |
| set_page_slub_counters(page, counters_new); |
| slab_unlock(page); |
| return true; |
| } |
| slab_unlock(page); |
| } |
| |
| cpu_relax(); |
| stat(s, CMPXCHG_DOUBLE_FAIL); |
| |
| #ifdef SLUB_DEBUG_CMPXCHG |
| pr_info("%s %s: cmpxchg double redo ", n, s->name); |
| #endif |
| |
| return false; |
| } |
| |
| static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page, |
| void *freelist_old, unsigned long counters_old, |
| void *freelist_new, unsigned long counters_new, |
| const char *n) |
| { |
| #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
| defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
| if (s->flags & __CMPXCHG_DOUBLE) { |
| if (cmpxchg_double(&page->freelist, &page->counters, |
| freelist_old, counters_old, |
| freelist_new, counters_new)) |
| return true; |
| } else |
| #endif |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| slab_lock(page); |
| if (page->freelist == freelist_old && |
| page->counters == counters_old) { |
| page->freelist = freelist_new; |
| set_page_slub_counters(page, counters_new); |
| slab_unlock(page); |
| local_irq_restore(flags); |
| return true; |
| } |
| slab_unlock(page); |
| local_irq_restore(flags); |
| } |
| |
| cpu_relax(); |
| stat(s, CMPXCHG_DOUBLE_FAIL); |
| |
| #ifdef SLUB_DEBUG_CMPXCHG |
| pr_info("%s %s: cmpxchg double redo ", n, s->name); |
| #endif |
| |
| return false; |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| /* |
| * Determine a map of object in use on a page. |
| * |
| * Node listlock must be held to guarantee that the page does |
| * not vanish from under us. |
| */ |
| static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map) |
| { |
| void *p; |
| void *addr = page_address(page); |
| |
| for (p = page->freelist; p; p = get_freepointer(s, p)) |
| set_bit(slab_index(p, s, addr), map); |
| } |
| |
| static inline int size_from_object(struct kmem_cache *s) |
| { |
| if (s->flags & SLAB_RED_ZONE) |
| return s->size - s->red_left_pad; |
| |
| return s->size; |
| } |
| |
| static inline void *restore_red_left(struct kmem_cache *s, void *p) |
| { |
| if (s->flags & SLAB_RED_ZONE) |
| p -= s->red_left_pad; |
| |
| return p; |
| } |
| |
| /* |
| * Debug settings: |
| */ |
| #if defined(CONFIG_SLUB_DEBUG_ON) |
| static int slub_debug = DEBUG_DEFAULT_FLAGS; |
| #else |
| static int slub_debug; |
| #endif |
| |
| static char *slub_debug_slabs; |
| static int disable_higher_order_debug; |
| |
| /* |
| * slub is about to manipulate internal object metadata. This memory lies |
| * outside the range of the allocated object, so accessing it would normally |
| * be reported by kasan as a bounds error. metadata_access_enable() is used |
| * to tell kasan that these accesses are OK. |
| */ |
| static inline void metadata_access_enable(void) |
| { |
| kasan_disable_current(); |
| } |
| |
| static inline void metadata_access_disable(void) |
| { |
| kasan_enable_current(); |
| } |
| |
| /* |
| * Object debugging |
| */ |
| |
| /* Verify that a pointer has an address that is valid within a slab page */ |
| static inline int check_valid_pointer(struct kmem_cache *s, |
| struct page *page, void *object) |
| { |
| void *base; |
| |
| if (!object) |
| return 1; |
| |
| base = page_address(page); |
| object = restore_red_left(s, object); |
| if (object < base || object >= base + page->objects * s->size || |
| (object - base) % s->size) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static void print_section(char *level, char *text, u8 *addr, |
| unsigned int length) |
| { |
| metadata_access_enable(); |
| print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr, |
| length, 1); |
| metadata_access_disable(); |
| } |
| |
| static struct track *get_track(struct kmem_cache *s, void *object, |
| enum track_item alloc) |
| { |
| struct track *p; |
| |
| if (s->offset) |
| p = object + s->offset + sizeof(void *); |
| else |
| p = object + s->inuse; |
| |
| return p + alloc; |
| } |
| |
| static void set_track(struct kmem_cache *s, void *object, |
| enum track_item alloc, unsigned long addr) |
| { |
| struct track *p = get_track(s, object, alloc); |
| |
| if (addr) { |
| #ifdef CONFIG_STACKTRACE |
| struct stack_trace trace; |
| int i; |
| |
| trace.nr_entries = 0; |
| trace.max_entries = TRACK_ADDRS_COUNT; |
| trace.entries = p->addrs; |
| trace.skip = 3; |
| metadata_access_enable(); |
| save_stack_trace(&trace); |
| metadata_access_disable(); |
| |
| /* See rant in lockdep.c */ |
| if (trace.nr_entries != 0 && |
| trace.entries[trace.nr_entries - 1] == ULONG_MAX) |
| trace.nr_entries--; |
| |
| for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++) |
| p->addrs[i] = 0; |
| #endif |
| p->addr = addr; |
| p->cpu = smp_processor_id(); |
| p->pid = current->pid; |
| p->when = jiffies; |
| } else |
| memset(p, 0, sizeof(struct track)); |
| } |
| |
| static void init_tracking(struct kmem_cache *s, void *object) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| set_track(s, object, TRACK_FREE, 0UL); |
| set_track(s, object, TRACK_ALLOC, 0UL); |
| } |
| |
| static void print_track(const char *s, struct track *t) |
| { |
| if (!t->addr) |
| return; |
| |
| pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n", |
| s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid); |
| #ifdef CONFIG_STACKTRACE |
| { |
| int i; |
| for (i = 0; i < TRACK_ADDRS_COUNT; i++) |
| if (t->addrs[i]) |
| pr_err("\t%pS\n", (void *)t->addrs[i]); |
| else |
| break; |
| } |
| #endif |
| } |
| |
| static void print_tracking(struct kmem_cache *s, void *object) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| print_track("Allocated", get_track(s, object, TRACK_ALLOC)); |
| print_track("Freed", get_track(s, object, TRACK_FREE)); |
| } |
| |
| static void print_page_info(struct page *page) |
| { |
| pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n", |
| page, page->objects, page->inuse, page->freelist, page->flags); |
| |
| } |
| |
| static void slab_bug(struct kmem_cache *s, char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| pr_err("=============================================================================\n"); |
| pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf); |
| pr_err("-----------------------------------------------------------------------------\n\n"); |
| |
| add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); |
| va_end(args); |
| } |
| |
| static void slab_fix(struct kmem_cache *s, char *fmt, ...) |
| { |
| struct va_format vaf; |
| va_list args; |
| |
| va_start(args, fmt); |
| vaf.fmt = fmt; |
| vaf.va = &args; |
| pr_err("FIX %s: %pV\n", s->name, &vaf); |
| va_end(args); |
| } |
| |
| static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p) |
| { |
| unsigned int off; /* Offset of last byte */ |
| u8 *addr = page_address(page); |
| |
| print_tracking(s, p); |
| |
| print_page_info(page); |
| |
| pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n", |
| p, p - addr, get_freepointer(s, p)); |
| |
| if (s->flags & SLAB_RED_ZONE) |
| print_section(KERN_ERR, "Redzone ", p - s->red_left_pad, |
| s->red_left_pad); |
| else if (p > addr + 16) |
| print_section(KERN_ERR, "Bytes b4 ", p - 16, 16); |
| |
| print_section(KERN_ERR, "Object ", p, |
| min_t(unsigned long, s->object_size, PAGE_SIZE)); |
| if (s->flags & SLAB_RED_ZONE) |
| print_section(KERN_ERR, "Redzone ", p + s->object_size, |
| s->inuse - s->object_size); |
| |
| if (s->offset) |
| off = s->offset + sizeof(void *); |
| else |
| off = s->inuse; |
| |
| if (s->flags & SLAB_STORE_USER) |
| off += 2 * sizeof(struct track); |
| |
| off += kasan_metadata_size(s); |
| |
| if (off != size_from_object(s)) |
| /* Beginning of the filler is the free pointer */ |
| print_section(KERN_ERR, "Padding ", p + off, |
| size_from_object(s) - off); |
| |
| dump_stack(); |
| } |
| |
| void object_err(struct kmem_cache *s, struct page *page, |
| u8 *object, char *reason) |
| { |
| slab_bug(s, "%s", reason); |
| print_trailer(s, page, object); |
| } |
| |
| static __printf(3, 4) void slab_err(struct kmem_cache *s, struct page *page, |
| const char *fmt, ...) |
| { |
| va_list args; |
| char buf[100]; |
| |
| va_start(args, fmt); |
| vsnprintf(buf, sizeof(buf), fmt, args); |
| va_end(args); |
| slab_bug(s, "%s", buf); |
| print_page_info(page); |
| dump_stack(); |
| } |
| |
| static void init_object(struct kmem_cache *s, void *object, u8 val) |
| { |
| u8 *p = object; |
| |
| if (s->flags & SLAB_RED_ZONE) |
| memset(p - s->red_left_pad, val, s->red_left_pad); |
| |
| if (s->flags & __OBJECT_POISON) { |
| memset(p, POISON_FREE, s->object_size - 1); |
| p[s->object_size - 1] = POISON_END; |
| } |
| |
| if (s->flags & SLAB_RED_ZONE) |
| memset(p + s->object_size, val, s->inuse - s->object_size); |
| } |
| |
| static void restore_bytes(struct kmem_cache *s, char *message, u8 data, |
| void *from, void *to) |
| { |
| slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data); |
| memset(from, data, to - from); |
| } |
| |
| static int check_bytes_and_report(struct kmem_cache *s, struct page *page, |
| u8 *object, char *what, |
| u8 *start, unsigned int value, unsigned int bytes) |
| { |
| u8 *fault; |
| u8 *end; |
| |
| metadata_access_enable(); |
| fault = memchr_inv(start, value, bytes); |
| metadata_access_disable(); |
| if (!fault) |
| return 1; |
| |
| end = start + bytes; |
| while (end > fault && end[-1] == value) |
| end--; |
| |
| slab_bug(s, "%s overwritten", what); |
| pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n", |
| fault, end - 1, fault[0], value); |
| print_trailer(s, page, object); |
| |
| restore_bytes(s, what, value, fault, end); |
| return 0; |
| } |
| |
| /* |
| * Object layout: |
| * |
| * object address |
| * Bytes of the object to be managed. |
| * If the freepointer may overlay the object then the free |
| * pointer is the first word of the object. |
| * |
| * Poisoning uses 0x6b (POISON_FREE) and the last byte is |
| * 0xa5 (POISON_END) |
| * |
| * object + s->object_size |
| * Padding to reach word boundary. This is also used for Redzoning. |
| * Padding is extended by another word if Redzoning is enabled and |
| * object_size == inuse. |
| * |
| * We fill with 0xbb (RED_INACTIVE) for inactive objects and with |
| * 0xcc (RED_ACTIVE) for objects in use. |
| * |
| * object + s->inuse |
| * Meta data starts here. |
| * |
| * A. Free pointer (if we cannot overwrite object on free) |
| * B. Tracking data for SLAB_STORE_USER |
| * C. Padding to reach required alignment boundary or at mininum |
| * one word if debugging is on to be able to detect writes |
| * before the word boundary. |
| * |
| * Padding is done using 0x5a (POISON_INUSE) |
| * |
| * object + s->size |
| * Nothing is used beyond s->size. |
| * |
| * If slabcaches are merged then the object_size and inuse boundaries are mostly |
| * ignored. And therefore no slab options that rely on these boundaries |
| * may be used with merged slabcaches. |
| */ |
| |
| static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p) |
| { |
| unsigned long off = s->inuse; /* The end of info */ |
| |
| if (s->offset) |
| /* Freepointer is placed after the object. */ |
| off += sizeof(void *); |
| |
| if (s->flags & SLAB_STORE_USER) |
| /* We also have user information there */ |
| off += 2 * sizeof(struct track); |
| |
| off += kasan_metadata_size(s); |
| |
| if (size_from_object(s) == off) |
| return 1; |
| |
| return check_bytes_and_report(s, page, p, "Object padding", |
| p + off, POISON_INUSE, size_from_object(s) - off); |
| } |
| |
| /* Check the pad bytes at the end of a slab page */ |
| static int slab_pad_check(struct kmem_cache *s, struct page *page) |
| { |
| u8 *start; |
| u8 *fault; |
| u8 *end; |
| int length; |
| int remainder; |
| |
| if (!(s->flags & SLAB_POISON)) |
| return 1; |
| |
| start = page_address(page); |
| length = (PAGE_SIZE << compound_order(page)) - s->reserved; |
| end = start + length; |
| remainder = length % s->size; |
| if (!remainder) |
| return 1; |
| |
| metadata_access_enable(); |
| fault = memchr_inv(end - remainder, POISON_INUSE, remainder); |
| metadata_access_disable(); |
| if (!fault) |
| return 1; |
| while (end > fault && end[-1] == POISON_INUSE) |
| end--; |
| |
| slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1); |
| print_section(KERN_ERR, "Padding ", end - remainder, remainder); |
| |
| restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end); |
| return 0; |
| } |
| |
| static int check_object(struct kmem_cache *s, struct page *page, |
| void *object, u8 val) |
| { |
| u8 *p = object; |
| u8 *endobject = object + s->object_size; |
| |
| if (s->flags & SLAB_RED_ZONE) { |
| if (!check_bytes_and_report(s, page, object, "Redzone", |
| object - s->red_left_pad, val, s->red_left_pad)) |
| return 0; |
| |
| if (!check_bytes_and_report(s, page, object, "Redzone", |
| endobject, val, s->inuse - s->object_size)) |
| return 0; |
| } else { |
| if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) { |
| check_bytes_and_report(s, page, p, "Alignment padding", |
| endobject, POISON_INUSE, |
| s->inuse - s->object_size); |
| } |
| } |
| |
| if (s->flags & SLAB_POISON) { |
| if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) && |
| (!check_bytes_and_report(s, page, p, "Poison", p, |
| POISON_FREE, s->object_size - 1) || |
| !check_bytes_and_report(s, page, p, "Poison", |
| p + s->object_size - 1, POISON_END, 1))) |
| return 0; |
| /* |
| * check_pad_bytes cleans up on its own. |
| */ |
| check_pad_bytes(s, page, p); |
| } |
| |
| if (!s->offset && val == SLUB_RED_ACTIVE) |
| /* |
| * Object and freepointer overlap. Cannot check |
| * freepointer while object is allocated. |
| */ |
| return 1; |
| |
| /* Check free pointer validity */ |
| if (!check_valid_pointer(s, page, get_freepointer(s, p))) { |
| object_err(s, page, p, "Freepointer corrupt"); |
| /* |
| * No choice but to zap it and thus lose the remainder |
| * of the free objects in this slab. May cause |
| * another error because the object count is now wrong. |
| */ |
| set_freepointer(s, p, NULL); |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int check_slab(struct kmem_cache *s, struct page *page) |
| { |
| int maxobj; |
| |
| VM_BUG_ON(!irqs_disabled()); |
| |
| if (!PageSlab(page)) { |
| slab_err(s, page, "Not a valid slab page"); |
| return 0; |
| } |
| |
| maxobj = order_objects(compound_order(page), s->size, s->reserved); |
| if (page->objects > maxobj) { |
| slab_err(s, page, "objects %u > max %u", |
| page->objects, maxobj); |
| return 0; |
| } |
| if (page->inuse > page->objects) { |
| slab_err(s, page, "inuse %u > max %u", |
| page->inuse, page->objects); |
| return 0; |
| } |
| /* Slab_pad_check fixes things up after itself */ |
| slab_pad_check(s, page); |
| return 1; |
| } |
| |
| /* |
| * Determine if a certain object on a page is on the freelist. Must hold the |
| * slab lock to guarantee that the chains are in a consistent state. |
| */ |
| static int on_freelist(struct kmem_cache *s, struct page *page, void *search) |
| { |
| int nr = 0; |
| void *fp; |
| void *object = NULL; |
| int max_objects; |
| |
| fp = page->freelist; |
| while (fp && nr <= page->objects) { |
| if (fp == search) |
| return 1; |
| if (!check_valid_pointer(s, page, fp)) { |
| if (object) { |
| object_err(s, page, object, |
| "Freechain corrupt"); |
| set_freepointer(s, object, NULL); |
| } else { |
| slab_err(s, page, "Freepointer corrupt"); |
| page->freelist = NULL; |
| page->inuse = page->objects; |
| slab_fix(s, "Freelist cleared"); |
| return 0; |
| } |
| break; |
| } |
| object = fp; |
| fp = get_freepointer(s, object); |
| nr++; |
| } |
| |
| max_objects = order_objects(compound_order(page), s->size, s->reserved); |
| if (max_objects > MAX_OBJS_PER_PAGE) |
| max_objects = MAX_OBJS_PER_PAGE; |
| |
| if (page->objects != max_objects) { |
| slab_err(s, page, "Wrong number of objects. Found %d but should be %d", |
| page->objects, max_objects); |
| page->objects = max_objects; |
| slab_fix(s, "Number of objects adjusted."); |
| } |
| if (page->inuse != page->objects - nr) { |
| slab_err(s, page, "Wrong object count. Counter is %d but counted were %d", |
| page->inuse, page->objects - nr); |
| page->inuse = page->objects - nr; |
| slab_fix(s, "Object count adjusted."); |
| } |
| return search == NULL; |
| } |
| |
| static void trace(struct kmem_cache *s, struct page *page, void *object, |
| int alloc) |
| { |
| if (s->flags & SLAB_TRACE) { |
| pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n", |
| s->name, |
| alloc ? "alloc" : "free", |
| object, page->inuse, |
| page->freelist); |
| |
| if (!alloc) |
| print_section(KERN_INFO, "Object ", (void *)object, |
| s->object_size); |
| |
| dump_stack(); |
| } |
| } |
| |
| /* |
| * Tracking of fully allocated slabs for debugging purposes. |
| */ |
| static void add_full(struct kmem_cache *s, |
| struct kmem_cache_node *n, struct page *page) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| lockdep_assert_held(&n->list_lock); |
| list_add(&page->lru, &n->full); |
| } |
| |
| static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return; |
| |
| lockdep_assert_held(&n->list_lock); |
| list_del(&page->lru); |
| } |
| |
| /* Tracking of the number of slabs for debugging purposes */ |
| static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
| { |
| struct kmem_cache_node *n = get_node(s, node); |
| |
| return atomic_long_read(&n->nr_slabs); |
| } |
| |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
| { |
| return atomic_long_read(&n->nr_slabs); |
| } |
| |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects) |
| { |
| struct kmem_cache_node *n = get_node(s, node); |
| |
| /* |
| * May be called early in order to allocate a slab for the |
| * kmem_cache_node structure. Solve the chicken-egg |
| * dilemma by deferring the increment of the count during |
| * bootstrap (see early_kmem_cache_node_alloc). |
| */ |
| if (likely(n)) { |
| atomic_long_inc(&n->nr_slabs); |
| atomic_long_add(objects, &n->total_objects); |
| } |
| } |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects) |
| { |
| struct kmem_cache_node *n = get_node(s, node); |
| |
| atomic_long_dec(&n->nr_slabs); |
| atomic_long_sub(objects, &n->total_objects); |
| } |
| |
| /* Object debug checks for alloc/free paths */ |
| static void setup_object_debug(struct kmem_cache *s, struct page *page, |
| void *object) |
| { |
| if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON))) |
| return; |
| |
| init_object(s, object, SLUB_RED_INACTIVE); |
| init_tracking(s, object); |
| } |
| |
| static inline int alloc_consistency_checks(struct kmem_cache *s, |
| struct page *page, |
| void *object, unsigned long addr) |
| { |
| if (!check_slab(s, page)) |
| return 0; |
| |
| if (!check_valid_pointer(s, page, object)) { |
| object_err(s, page, object, "Freelist Pointer check fails"); |
| return 0; |
| } |
| |
| if (!check_object(s, page, object, SLUB_RED_INACTIVE)) |
| return 0; |
| |
| return 1; |
| } |
| |
| static noinline int alloc_debug_processing(struct kmem_cache *s, |
| struct page *page, |
| void *object, unsigned long addr) |
| { |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| if (!alloc_consistency_checks(s, page, object, addr)) |
| goto bad; |
| } |
| |
| /* Success perform special debug activities for allocs */ |
| if (s->flags & SLAB_STORE_USER) |
| set_track(s, object, TRACK_ALLOC, addr); |
| trace(s, page, object, 1); |
| init_object(s, object, SLUB_RED_ACTIVE); |
| return 1; |
| |
| bad: |
| if (PageSlab(page)) { |
| /* |
| * If this is a slab page then lets do the best we can |
| * to avoid issues in the future. Marking all objects |
| * as used avoids touching the remaining objects. |
| */ |
| slab_fix(s, "Marking all objects used"); |
| page->inuse = page->objects; |
| page->freelist = NULL; |
| } |
| return 0; |
| } |
| |
| static inline int free_consistency_checks(struct kmem_cache *s, |
| struct page *page, void *object, unsigned long addr) |
| { |
| if (!check_valid_pointer(s, page, object)) { |
| slab_err(s, page, "Invalid object pointer 0x%p", object); |
| return 0; |
| } |
| |
| if (on_freelist(s, page, object)) { |
| object_err(s, page, object, "Object already free"); |
| return 0; |
| } |
| |
| if (!check_object(s, page, object, SLUB_RED_ACTIVE)) |
| return 0; |
| |
| if (unlikely(s != page->slab_cache)) { |
| if (!PageSlab(page)) { |
| slab_err(s, page, "Attempt to free object(0x%p) outside of slab", |
| object); |
| } else if (!page->slab_cache) { |
| pr_err("SLUB <none>: no slab for object 0x%p.\n", |
| object); |
| dump_stack(); |
| } else |
| object_err(s, page, object, |
| "page slab pointer corrupt."); |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* Supports checking bulk free of a constructed freelist */ |
| static noinline int free_debug_processing( |
| struct kmem_cache *s, struct page *page, |
| void *head, void *tail, int bulk_cnt, |
| unsigned long addr) |
| { |
| struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
| void *object = head; |
| int cnt = 0; |
| unsigned long uninitialized_var(flags); |
| int ret = 0; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| slab_lock(page); |
| |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| if (!check_slab(s, page)) |
| goto out; |
| } |
| |
| next_object: |
| cnt++; |
| |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| if (!free_consistency_checks(s, page, object, addr)) |
| goto out; |
| } |
| |
| if (s->flags & SLAB_STORE_USER) |
| set_track(s, object, TRACK_FREE, addr); |
| trace(s, page, object, 0); |
| /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */ |
| init_object(s, object, SLUB_RED_INACTIVE); |
| |
| /* Reached end of constructed freelist yet? */ |
| if (object != tail) { |
| object = get_freepointer(s, object); |
| goto next_object; |
| } |
| ret = 1; |
| |
| out: |
| if (cnt != bulk_cnt) |
| slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n", |
| bulk_cnt, cnt); |
| |
| slab_unlock(page); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| if (!ret) |
| slab_fix(s, "Object at 0x%p not freed", object); |
| return ret; |
| } |
| |
| static int __init setup_slub_debug(char *str) |
| { |
| slub_debug = DEBUG_DEFAULT_FLAGS; |
| if (*str++ != '=' || !*str) |
| /* |
| * No options specified. Switch on full debugging. |
| */ |
| goto out; |
| |
| if (*str == ',') |
| /* |
| * No options but restriction on slabs. This means full |
| * debugging for slabs matching a pattern. |
| */ |
| goto check_slabs; |
| |
| slub_debug = 0; |
| if (*str == '-') |
| /* |
| * Switch off all debugging measures. |
| */ |
| goto out; |
| |
| /* |
| * Determine which debug features should be switched on |
| */ |
| for (; *str && *str != ','; str++) { |
| switch (tolower(*str)) { |
| case 'f': |
| slub_debug |= SLAB_CONSISTENCY_CHECKS; |
| break; |
| case 'z': |
| slub_debug |= SLAB_RED_ZONE; |
| break; |
| case 'p': |
| slub_debug |= SLAB_POISON; |
| break; |
| case 'u': |
| slub_debug |= SLAB_STORE_USER; |
| break; |
| case 't': |
| slub_debug |= SLAB_TRACE; |
| break; |
| case 'a': |
| slub_debug |= SLAB_FAILSLAB; |
| break; |
| case 'o': |
| /* |
| * Avoid enabling debugging on caches if its minimum |
| * order would increase as a result. |
| */ |
| disable_higher_order_debug = 1; |
| break; |
| default: |
| pr_err("slub_debug option '%c' unknown. skipped\n", |
| *str); |
| } |
| } |
| |
| check_slabs: |
| if (*str == ',') |
| slub_debug_slabs = str + 1; |
| out: |
| return 1; |
| } |
| |
| __setup("slub_debug", setup_slub_debug); |
| |
| unsigned long kmem_cache_flags(unsigned long object_size, |
| unsigned long flags, const char *name, |
| void (*ctor)(void *)) |
| { |
| /* |
| * Enable debugging if selected on the kernel commandline. |
| */ |
| if (slub_debug && (!slub_debug_slabs || (name && |
| !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))) |
| flags |= slub_debug; |
| |
| return flags; |
| } |
| #else /* !CONFIG_SLUB_DEBUG */ |
| static inline void setup_object_debug(struct kmem_cache *s, |
| struct page *page, void *object) {} |
| |
| static inline int alloc_debug_processing(struct kmem_cache *s, |
| struct page *page, void *object, unsigned long addr) { return 0; } |
| |
| static inline int free_debug_processing( |
| struct kmem_cache *s, struct page *page, |
| void *head, void *tail, int bulk_cnt, |
| unsigned long addr) { return 0; } |
| |
| static inline int slab_pad_check(struct kmem_cache *s, struct page *page) |
| { return 1; } |
| static inline int check_object(struct kmem_cache *s, struct page *page, |
| void *object, u8 val) { return 1; } |
| static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n, |
| struct page *page) {} |
| static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, |
| struct page *page) {} |
| unsigned long kmem_cache_flags(unsigned long object_size, |
| unsigned long flags, const char *name, |
| void (*ctor)(void *)) |
| { |
| return flags; |
| } |
| #define slub_debug 0 |
| |
| #define disable_higher_order_debug 0 |
| |
| static inline unsigned long slabs_node(struct kmem_cache *s, int node) |
| { return 0; } |
| static inline unsigned long node_nr_slabs(struct kmem_cache_node *n) |
| { return 0; } |
| static inline void inc_slabs_node(struct kmem_cache *s, int node, |
| int objects) {} |
| static inline void dec_slabs_node(struct kmem_cache *s, int node, |
| int objects) {} |
| |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| /* |
| * Hooks for other subsystems that check memory allocations. In a typical |
| * production configuration these hooks all should produce no code at all. |
| */ |
| static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags) |
| { |
| kmemleak_alloc(ptr, size, 1, flags); |
| kasan_kmalloc_large(ptr, size, flags); |
| } |
| |
| static inline void kfree_hook(const void *x) |
| { |
| kmemleak_free(x); |
| kasan_kfree_large(x); |
| } |
| |
| static inline void *slab_free_hook(struct kmem_cache *s, void *x) |
| { |
| void *freeptr; |
| |
| kmemleak_free_recursive(x, s->flags); |
| |
| /* |
| * Trouble is that we may no longer disable interrupts in the fast path |
| * So in order to make the debug calls that expect irqs to be |
| * disabled we need to disable interrupts temporarily. |
| */ |
| #ifdef CONFIG_LOCKDEP |
| { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| debug_check_no_locks_freed(x, s->object_size); |
| local_irq_restore(flags); |
| } |
| #endif |
| if (!(s->flags & SLAB_DEBUG_OBJECTS)) |
| debug_check_no_obj_freed(x, s->object_size); |
| |
| freeptr = get_freepointer(s, x); |
| /* |
| * kasan_slab_free() may put x into memory quarantine, delaying its |
| * reuse. In this case the object's freelist pointer is changed. |
| */ |
| kasan_slab_free(s, x); |
| return freeptr; |
| } |
| |
| static inline void slab_free_freelist_hook(struct kmem_cache *s, |
| void *head, void *tail) |
| { |
| /* |
| * Compiler cannot detect this function can be removed if slab_free_hook() |
| * evaluates to nothing. Thus, catch all relevant config debug options here. |
| */ |
| #if defined(CONFIG_LOCKDEP) || \ |
| defined(CONFIG_DEBUG_KMEMLEAK) || \ |
| defined(CONFIG_DEBUG_OBJECTS_FREE) || \ |
| defined(CONFIG_KASAN) |
| |
| void *object = head; |
| void *tail_obj = tail ? : head; |
| void *freeptr; |
| |
| do { |
| freeptr = slab_free_hook(s, object); |
| } while ((object != tail_obj) && (object = freeptr)); |
| #endif |
| } |
| |
| static void setup_object(struct kmem_cache *s, struct page *page, |
| void *object) |
| { |
| setup_object_debug(s, page, object); |
| kasan_init_slab_obj(s, object); |
| if (unlikely(s->ctor)) { |
| kasan_unpoison_object_data(s, object); |
| s->ctor(object); |
| kasan_poison_object_data(s, object); |
| } |
| } |
| |
| /* |
| * Slab allocation and freeing |
| */ |
| static inline struct page *alloc_slab_page(struct kmem_cache *s, |
| gfp_t flags, int node, struct kmem_cache_order_objects oo) |
| { |
| struct page *page; |
| int order = oo_order(oo); |
| |
| if (node == NUMA_NO_NODE) |
| page = alloc_pages(flags, order); |
| else |
| page = __alloc_pages_node(node, flags, order); |
| |
| if (page && memcg_charge_slab(page, flags, order, s)) { |
| __free_pages(page, order); |
| page = NULL; |
| } |
| |
| return page; |
| } |
| |
| #ifdef CONFIG_SLAB_FREELIST_RANDOM |
| /* Pre-initialize the random sequence cache */ |
| static int init_cache_random_seq(struct kmem_cache *s) |
| { |
| int err; |
| unsigned long i, count = oo_objects(s->oo); |
| |
| /* Bailout if already initialised */ |
| if (s->random_seq) |
| return 0; |
| |
| err = cache_random_seq_create(s, count, GFP_KERNEL); |
| if (err) { |
| pr_err("SLUB: Unable to initialize free list for %s\n", |
| s->name); |
| return err; |
| } |
| |
| /* Transform to an offset on the set of pages */ |
| if (s->random_seq) { |
| for (i = 0; i < count; i++) |
| s->random_seq[i] *= s->size; |
| } |
| return 0; |
| } |
| |
| /* Initialize each random sequence freelist per cache */ |
| static void __init init_freelist_randomization(void) |
| { |
| struct kmem_cache *s; |
| |
| mutex_lock(&slab_mutex); |
| |
| list_for_each_entry(s, &slab_caches, list) |
| init_cache_random_seq(s); |
| |
| mutex_unlock(&slab_mutex); |
| } |
| |
| /* Get the next entry on the pre-computed freelist randomized */ |
| static void *next_freelist_entry(struct kmem_cache *s, struct page *page, |
| unsigned long *pos, void *start, |
| unsigned long page_limit, |
| unsigned long freelist_count) |
| { |
| unsigned int idx; |
| |
| /* |
| * If the target page allocation failed, the number of objects on the |
| * page might be smaller than the usual size defined by the cache. |
| */ |
| do { |
| idx = s->random_seq[*pos]; |
| *pos += 1; |
| if (*pos >= freelist_count) |
| *pos = 0; |
| } while (unlikely(idx >= page_limit)); |
| |
| return (char *)start + idx; |
| } |
| |
| /* Shuffle the single linked freelist based on a random pre-computed sequence */ |
| static bool shuffle_freelist(struct kmem_cache *s, struct page *page) |
| { |
| void *start; |
| void *cur; |
| void *next; |
| unsigned long idx, pos, page_limit, freelist_count; |
| |
| if (page->objects < 2 || !s->random_seq) |
| return false; |
| |
| freelist_count = oo_objects(s->oo); |
| pos = get_random_int() % freelist_count; |
| |
| page_limit = page->objects * s->size; |
| start = fixup_red_left(s, page_address(page)); |
| |
| /* First entry is used as the base of the freelist */ |
| cur = next_freelist_entry(s, page, &pos, start, page_limit, |
| freelist_count); |
| page->freelist = cur; |
| |
| for (idx = 1; idx < page->objects; idx++) { |
| setup_object(s, page, cur); |
| next = next_freelist_entry(s, page, &pos, start, page_limit, |
| freelist_count); |
| set_freepointer(s, cur, next); |
| cur = next; |
| } |
| setup_object(s, page, cur); |
| set_freepointer(s, cur, NULL); |
| |
| return true; |
| } |
| #else |
| static inline int init_cache_random_seq(struct kmem_cache *s) |
| { |
| return 0; |
| } |
| static inline void init_freelist_randomization(void) { } |
| static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page) |
| { |
| return false; |
| } |
| #endif /* CONFIG_SLAB_FREELIST_RANDOM */ |
| |
| static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node) |
| { |
| struct page *page; |
| struct kmem_cache_order_objects oo = s->oo; |
| gfp_t alloc_gfp; |
| void *start, *p; |
| int idx, order; |
| bool shuffle; |
| |
| flags &= gfp_allowed_mask; |
| |
| if (gfpflags_allow_blocking(flags)) |
| local_irq_enable(); |
| |
| flags |= s->allocflags; |
| |
| /* |
| * Let the initial higher-order allocation fail under memory pressure |
| * so we fall-back to the minimum order allocation. |
| */ |
| alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL; |
| if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min)) |
| alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL); |
| |
| page = alloc_slab_page(s, alloc_gfp, node, oo); |
| if (unlikely(!page)) { |
| oo = s->min; |
| alloc_gfp = flags; |
| /* |
| * Allocation may have failed due to fragmentation. |
| * Try a lower order alloc if possible |
| */ |
| page = alloc_slab_page(s, alloc_gfp, node, oo); |
| if (unlikely(!page)) |
| goto out; |
| stat(s, ORDER_FALLBACK); |
| } |
| |
| page->objects = oo_objects(oo); |
| |
| order = compound_order(page); |
| page->slab_cache = s; |
| __SetPageSlab(page); |
| if (page_is_pfmemalloc(page)) |
| SetPageSlabPfmemalloc(page); |
| |
| start = page_address(page); |
| |
| if (unlikely(s->flags & SLAB_POISON)) |
| memset(start, POISON_INUSE, PAGE_SIZE << order); |
| |
| kasan_poison_slab(page); |
| |
| shuffle = shuffle_freelist(s, page); |
| |
| if (!shuffle) { |
| for_each_object_idx(p, idx, s, start, page->objects) { |
| setup_object(s, page, p); |
| if (likely(idx < page->objects)) |
| set_freepointer(s, p, p + s->size); |
| else |
| set_freepointer(s, p, NULL); |
| } |
| page->freelist = fixup_red_left(s, start); |
| } |
| |
| page->inuse = page->objects; |
| page->frozen = 1; |
| |
| out: |
| if (gfpflags_allow_blocking(flags)) |
| local_irq_disable(); |
| if (!page) |
| return NULL; |
| |
| mod_lruvec_page_state(page, |
| (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
| NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, |
| 1 << oo_order(oo)); |
| |
| inc_slabs_node(s, page_to_nid(page), page->objects); |
| |
| return page; |
| } |
| |
| static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node) |
| { |
| if (unlikely(flags & GFP_SLAB_BUG_MASK)) { |
| gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK; |
| flags &= ~GFP_SLAB_BUG_MASK; |
| pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n", |
| invalid_mask, &invalid_mask, flags, &flags); |
| dump_stack(); |
| } |
| |
| return allocate_slab(s, |
| flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node); |
| } |
| |
| static void __free_slab(struct kmem_cache *s, struct page *page) |
| { |
| int order = compound_order(page); |
| int pages = 1 << order; |
| |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) { |
| void *p; |
| |
| slab_pad_check(s, page); |
| for_each_object(p, s, page_address(page), |
| page->objects) |
| check_object(s, page, p, SLUB_RED_INACTIVE); |
| } |
| |
| mod_lruvec_page_state(page, |
| (s->flags & SLAB_RECLAIM_ACCOUNT) ? |
| NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE, |
| -pages); |
| |
| __ClearPageSlabPfmemalloc(page); |
| __ClearPageSlab(page); |
| |
| page_mapcount_reset(page); |
| if (current->reclaim_state) |
| current->reclaim_state->reclaimed_slab += pages; |
| memcg_uncharge_slab(page, order, s); |
| __free_pages(page, order); |
| } |
| |
| #define need_reserve_slab_rcu \ |
| (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head)) |
| |
| static void rcu_free_slab(struct rcu_head *h) |
| { |
| struct page *page; |
| |
| if (need_reserve_slab_rcu) |
| page = virt_to_head_page(h); |
| else |
| page = container_of((struct list_head *)h, struct page, lru); |
| |
| __free_slab(page->slab_cache, page); |
| } |
| |
| static void free_slab(struct kmem_cache *s, struct page *page) |
| { |
| if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) { |
| struct rcu_head *head; |
| |
| if (need_reserve_slab_rcu) { |
| int order = compound_order(page); |
| int offset = (PAGE_SIZE << order) - s->reserved; |
| |
| VM_BUG_ON(s->reserved != sizeof(*head)); |
| head = page_address(page) + offset; |
| } else { |
| head = &page->rcu_head; |
| } |
| |
| call_rcu(head, rcu_free_slab); |
| } else |
| __free_slab(s, page); |
| } |
| |
| static void discard_slab(struct kmem_cache *s, struct page *page) |
| { |
| dec_slabs_node(s, page_to_nid(page), page->objects); |
| free_slab(s, page); |
| } |
| |
| /* |
| * Management of partially allocated slabs. |
| */ |
| static inline void |
| __add_partial(struct kmem_cache_node *n, struct page *page, int tail) |
| { |
| n->nr_partial++; |
| if (tail == DEACTIVATE_TO_TAIL) |
| list_add_tail(&page->lru, &n->partial); |
| else |
| list_add(&page->lru, &n->partial); |
| } |
| |
| static inline void add_partial(struct kmem_cache_node *n, |
| struct page *page, int tail) |
| { |
| lockdep_assert_held(&n->list_lock); |
| __add_partial(n, page, tail); |
| } |
| |
| static inline void remove_partial(struct kmem_cache_node *n, |
| struct page *page) |
| { |
| lockdep_assert_held(&n->list_lock); |
| list_del(&page->lru); |
| n->nr_partial--; |
| } |
| |
| /* |
| * Remove slab from the partial list, freeze it and |
| * return the pointer to the freelist. |
| * |
| * Returns a list of objects or NULL if it fails. |
| */ |
| static inline void *acquire_slab(struct kmem_cache *s, |
| struct kmem_cache_node *n, struct page *page, |
| int mode, int *objects) |
| { |
| void *freelist; |
| unsigned long counters; |
| struct page new; |
| |
| lockdep_assert_held(&n->list_lock); |
| |
| /* |
| * Zap the freelist and set the frozen bit. |
| * The old freelist is the list of objects for the |
| * per cpu allocation list. |
| */ |
| freelist = page->freelist; |
| counters = page->counters; |
| new.counters = counters; |
| *objects = new.objects - new.inuse; |
| if (mode) { |
| new.inuse = page->objects; |
| new.freelist = NULL; |
| } else { |
| new.freelist = freelist; |
| } |
| |
| VM_BUG_ON(new.frozen); |
| new.frozen = 1; |
| |
| if (!__cmpxchg_double_slab(s, page, |
| freelist, counters, |
| new.freelist, new.counters, |
| "acquire_slab")) |
| return NULL; |
| |
| remove_partial(n, page); |
| WARN_ON(!freelist); |
| return freelist; |
| } |
| |
| static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain); |
| static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags); |
| |
| /* |
| * Try to allocate a partial slab from a specific node. |
| */ |
| static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n, |
| struct kmem_cache_cpu *c, gfp_t flags) |
| { |
| struct page *page, *page2; |
| void *object = NULL; |
| unsigned int available = 0; |
| int objects; |
| |
| /* |
| * Racy check. If we mistakenly see no partial slabs then we |
| * just allocate an empty slab. If we mistakenly try to get a |
| * partial slab and there is none available then get_partials() |
| * will return NULL. |
| */ |
| if (!n || !n->nr_partial) |
| return NULL; |
| |
| spin_lock(&n->list_lock); |
| list_for_each_entry_safe(page, page2, &n->partial, lru) { |
| void *t; |
| |
| if (!pfmemalloc_match(page, flags)) |
| continue; |
| |
| t = acquire_slab(s, n, page, object == NULL, &objects); |
| if (!t) |
| break; |
| |
| available += objects; |
| if (!object) { |
| c->page = page; |
| stat(s, ALLOC_FROM_PARTIAL); |
| object = t; |
| } else { |
| put_cpu_partial(s, page, 0); |
| stat(s, CPU_PARTIAL_NODE); |
| } |
| if (!kmem_cache_has_cpu_partial(s) |
| || available > slub_cpu_partial(s) / 2) |
| break; |
| |
| } |
| spin_unlock(&n->list_lock); |
| return object; |
| } |
| |
| /* |
| * Get a page from somewhere. Search in increasing NUMA distances. |
| */ |
| static void *get_any_partial(struct kmem_cache *s, gfp_t flags, |
| struct kmem_cache_cpu *c) |
| { |
| #ifdef CONFIG_NUMA |
| struct zonelist *zonelist; |
| struct zoneref *z; |
| struct zone *zone; |
| enum zone_type high_zoneidx = gfp_zone(flags); |
| void *object; |
| unsigned int cpuset_mems_cookie; |
| |
| /* |
| * The defrag ratio allows a configuration of the tradeoffs between |
| * inter node defragmentation and node local allocations. A lower |
| * defrag_ratio increases the tendency to do local allocations |
| * instead of attempting to obtain partial slabs from other nodes. |
| * |
| * If the defrag_ratio is set to 0 then kmalloc() always |
| * returns node local objects. If the ratio is higher then kmalloc() |
| * may return off node objects because partial slabs are obtained |
| * from other nodes and filled up. |
| * |
| * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100 |
| * (which makes defrag_ratio = 1000) then every (well almost) |
| * allocation will first attempt to defrag slab caches on other nodes. |
| * This means scanning over all nodes to look for partial slabs which |
| * may be expensive if we do it every time we are trying to find a slab |
| * with available objects. |
| */ |
| if (!s->remote_node_defrag_ratio || |
| get_cycles() % 1024 > s->remote_node_defrag_ratio) |
| return NULL; |
| |
| do { |
| cpuset_mems_cookie = read_mems_allowed_begin(); |
| zonelist = node_zonelist(mempolicy_slab_node(), flags); |
| for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) { |
| struct kmem_cache_node *n; |
| |
| n = get_node(s, zone_to_nid(zone)); |
| |
| if (n && cpuset_zone_allowed(zone, flags) && |
| n->nr_partial > s->min_partial) { |
| object = get_partial_node(s, n, c, flags); |
| if (object) { |
| /* |
| * Don't check read_mems_allowed_retry() |
| * here - if mems_allowed was updated in |
| * parallel, that was a harmless race |
| * between allocation and the cpuset |
| * update |
| */ |
| return object; |
| } |
| } |
| } |
| } while (read_mems_allowed_retry(cpuset_mems_cookie)); |
| #endif |
| return NULL; |
| } |
| |
| /* |
| * Get a partial page, lock it and return it. |
| */ |
| static void *get_partial(struct kmem_cache *s, gfp_t flags, int node, |
| struct kmem_cache_cpu *c) |
| { |
| void *object; |
| int searchnode = node; |
| |
| if (node == NUMA_NO_NODE) |
| searchnode = numa_mem_id(); |
| else if (!node_present_pages(node)) |
| searchnode = node_to_mem_node(node); |
| |
| object = get_partial_node(s, get_node(s, searchnode), c, flags); |
| if (object || node != NUMA_NO_NODE) |
| return object; |
| |
| return get_any_partial(s, flags, c); |
| } |
| |
| #ifdef CONFIG_PREEMPT |
| /* |
| * Calculate the next globally unique transaction for disambiguiation |
| * during cmpxchg. The transactions start with the cpu number and are then |
| * incremented by CONFIG_NR_CPUS. |
| */ |
| #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS) |
| #else |
| /* |
| * No preemption supported therefore also no need to check for |
| * different cpus. |
| */ |
| #define TID_STEP 1 |
| #endif |
| |
| static inline unsigned long next_tid(unsigned long tid) |
| { |
| return tid + TID_STEP; |
| } |
| |
| static inline unsigned int tid_to_cpu(unsigned long tid) |
| { |
| return tid % TID_STEP; |
| } |
| |
| static inline unsigned long tid_to_event(unsigned long tid) |
| { |
| return tid / TID_STEP; |
| } |
| |
| static inline unsigned int init_tid(int cpu) |
| { |
| return cpu; |
| } |
| |
| static inline void note_cmpxchg_failure(const char *n, |
| const struct kmem_cache *s, unsigned long tid) |
| { |
| #ifdef SLUB_DEBUG_CMPXCHG |
| unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid); |
| |
| pr_info("%s %s: cmpxchg redo ", n, s->name); |
| |
| #ifdef CONFIG_PREEMPT |
| if (tid_to_cpu(tid) != tid_to_cpu(actual_tid)) |
| pr_warn("due to cpu change %d -> %d\n", |
| tid_to_cpu(tid), tid_to_cpu(actual_tid)); |
| else |
| #endif |
| if (tid_to_event(tid) != tid_to_event(actual_tid)) |
| pr_warn("due to cpu running other code. Event %ld->%ld\n", |
| tid_to_event(tid), tid_to_event(actual_tid)); |
| else |
| pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n", |
| actual_tid, tid, next_tid(tid)); |
| #endif |
| stat(s, CMPXCHG_DOUBLE_CPU_FAIL); |
| } |
| |
| static void init_kmem_cache_cpus(struct kmem_cache *s) |
| { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) |
| per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu); |
| } |
| |
| /* |
| * Remove the cpu slab |
| */ |
| static void deactivate_slab(struct kmem_cache *s, struct page *page, |
| void *freelist, struct kmem_cache_cpu *c) |
| { |
| enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE }; |
| struct kmem_cache_node *n = get_node(s, page_to_nid(page)); |
| int lock = 0; |
| enum slab_modes l = M_NONE, m = M_NONE; |
| void *nextfree; |
| int tail = DEACTIVATE_TO_HEAD; |
| struct page new; |
| struct page old; |
| |
| if (page->freelist) { |
| stat(s, DEACTIVATE_REMOTE_FREES); |
| tail = DEACTIVATE_TO_TAIL; |
| } |
| |
| /* |
| * Stage one: Free all available per cpu objects back |
| * to the page freelist while it is still frozen. Leave the |
| * last one. |
| * |
| * There is no need to take the list->lock because the page |
| * is still frozen. |
| */ |
| while (freelist && (nextfree = get_freepointer(s, freelist))) { |
| void *prior; |
| unsigned long counters; |
| |
| do { |
| prior = page->freelist; |
| counters = page->counters; |
| set_freepointer(s, freelist, prior); |
| new.counters = counters; |
| new.inuse--; |
| VM_BUG_ON(!new.frozen); |
| |
| } while (!__cmpxchg_double_slab(s, page, |
| prior, counters, |
| freelist, new.counters, |
| "drain percpu freelist")); |
| |
| freelist = nextfree; |
| } |
| |
| /* |
| * Stage two: Ensure that the page is unfrozen while the |
| * list presence reflects the actual number of objects |
| * during unfreeze. |
| * |
| * We setup the list membership and then perform a cmpxchg |
| * with the count. If there is a mismatch then the page |
| * is not unfrozen but the page is on the wrong list. |
| * |
| * Then we restart the process which may have to remove |
| * the page from the list that we just put it on again |
| * because the number of objects in the slab may have |
| * changed. |
| */ |
| redo: |
| |
| old.freelist = page->freelist; |
| old.counters = page->counters; |
| VM_BUG_ON(!old.frozen); |
| |
| /* Determine target state of the slab */ |
| new.counters = old.counters; |
| if (freelist) { |
| new.inuse--; |
| set_freepointer(s, freelist, old.freelist); |
| new.freelist = freelist; |
| } else |
| new.freelist = old.freelist; |
| |
| new.frozen = 0; |
| |
| if (!new.inuse && n->nr_partial >= s->min_partial) |
| m = M_FREE; |
| else if (new.freelist) { |
| m = M_PARTIAL; |
| if (!lock) { |
| lock = 1; |
| /* |
| * Taking the spinlock removes the possiblity |
| * that acquire_slab() will see a slab page that |
| * is frozen |
| */ |
| spin_lock(&n->list_lock); |
| } |
| } else { |
| m = M_FULL; |
| if (kmem_cache_debug(s) && !lock) { |
| lock = 1; |
| /* |
| * This also ensures that the scanning of full |
| * slabs from diagnostic functions will not see |
| * any frozen slabs. |
| */ |
| spin_lock(&n->list_lock); |
| } |
| } |
| |
| if (l != m) { |
| |
| if (l == M_PARTIAL) |
| |
| remove_partial(n, page); |
| |
| else if (l == M_FULL) |
| |
| remove_full(s, n, page); |
| |
| if (m == M_PARTIAL) { |
| |
| add_partial(n, page, tail); |
| stat(s, tail); |
| |
| } else if (m == M_FULL) { |
| |
| stat(s, DEACTIVATE_FULL); |
| add_full(s, n, page); |
| |
| } |
| } |
| |
| l = m; |
| if (!__cmpxchg_double_slab(s, page, |
| old.freelist, old.counters, |
| new.freelist, new.counters, |
| "unfreezing slab")) |
| goto redo; |
| |
| if (lock) |
| spin_unlock(&n->list_lock); |
| |
| if (m == M_FREE) { |
| stat(s, DEACTIVATE_EMPTY); |
| discard_slab(s, page); |
| stat(s, FREE_SLAB); |
| } |
| |
| c->page = NULL; |
| c->freelist = NULL; |
| } |
| |
| /* |
| * Unfreeze all the cpu partial slabs. |
| * |
| * This function must be called with interrupts disabled |
| * for the cpu using c (or some other guarantee must be there |
| * to guarantee no concurrent accesses). |
| */ |
| static void unfreeze_partials(struct kmem_cache *s, |
| struct kmem_cache_cpu *c) |
| { |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| struct kmem_cache_node *n = NULL, *n2 = NULL; |
| struct page *page, *discard_page = NULL; |
| |
| while ((page = c->partial)) { |
| struct page new; |
| struct page old; |
| |
| c->partial = page->next; |
| |
| n2 = get_node(s, page_to_nid(page)); |
| if (n != n2) { |
| if (n) |
| spin_unlock(&n->list_lock); |
| |
| n = n2; |
| spin_lock(&n->list_lock); |
| } |
| |
| do { |
| |
| old.freelist = page->freelist; |
| old.counters = page->counters; |
| VM_BUG_ON(!old.frozen); |
| |
| new.counters = old.counters; |
| new.freelist = old.freelist; |
| |
| new.frozen = 0; |
| |
| } while (!__cmpxchg_double_slab(s, page, |
| old.freelist, old.counters, |
| new.freelist, new.counters, |
| "unfreezing slab")); |
| |
| if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) { |
| page->next = discard_page; |
| discard_page = page; |
| } else { |
| add_partial(n, page, DEACTIVATE_TO_TAIL); |
| stat(s, FREE_ADD_PARTIAL); |
| } |
| } |
| |
| if (n) |
| spin_unlock(&n->list_lock); |
| |
| while (discard_page) { |
| page = discard_page; |
| discard_page = discard_page->next; |
| |
| stat(s, DEACTIVATE_EMPTY); |
| discard_slab(s, page); |
| stat(s, FREE_SLAB); |
| } |
| #endif |
| } |
| |
| /* |
| * Put a page that was just frozen (in __slab_free) into a partial page |
| * slot if available. This is done without interrupts disabled and without |
| * preemption disabled. The cmpxchg is racy and may put the partial page |
| * onto a random cpus partial slot. |
| * |
| * If we did not find a slot then simply move all the partials to the |
| * per node partial list. |
| */ |
| static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain) |
| { |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| struct page *oldpage; |
| int pages; |
| int pobjects; |
| |
| preempt_disable(); |
| do { |
| pages = 0; |
| pobjects = 0; |
| oldpage = this_cpu_read(s->cpu_slab->partial); |
| |
| if (oldpage) { |
| pobjects = oldpage->pobjects; |
| pages = oldpage->pages; |
| if (drain && pobjects > s->cpu_partial) { |
| unsigned long flags; |
| /* |
| * partial array is full. Move the existing |
| * set to the per node partial list. |
| */ |
| local_irq_save(flags); |
| unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
| local_irq_restore(flags); |
| oldpage = NULL; |
| pobjects = 0; |
| pages = 0; |
| stat(s, CPU_PARTIAL_DRAIN); |
| } |
| } |
| |
| pages++; |
| pobjects += page->objects - page->inuse; |
| |
| page->pages = pages; |
| page->pobjects = pobjects; |
| page->next = oldpage; |
| |
| } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page) |
| != oldpage); |
| if (unlikely(!s->cpu_partial)) { |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| unfreeze_partials(s, this_cpu_ptr(s->cpu_slab)); |
| local_irq_restore(flags); |
| } |
| preempt_enable(); |
| #endif |
| } |
| |
| static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c) |
| { |
| stat(s, CPUSLAB_FLUSH); |
| deactivate_slab(s, c->page, c->freelist, c); |
| |
| c->tid = next_tid(c->tid); |
| } |
| |
| /* |
| * Flush cpu slab. |
| * |
| * Called from IPI handler with interrupts disabled. |
| */ |
| static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu) |
| { |
| struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
| |
| if (likely(c)) { |
| if (c->page) |
| flush_slab(s, c); |
| |
| unfreeze_partials(s, c); |
| } |
| } |
| |
| static void flush_cpu_slab(void *d) |
| { |
| struct kmem_cache *s = d; |
| |
| __flush_cpu_slab(s, smp_processor_id()); |
| } |
| |
| static bool has_cpu_slab(int cpu, void *info) |
| { |
| struct kmem_cache *s = info; |
| struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu); |
| |
| return c->page || slub_percpu_partial(c); |
| } |
| |
| static void flush_all(struct kmem_cache *s) |
| { |
| on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC); |
| } |
| |
| /* |
| * Use the cpu notifier to insure that the cpu slabs are flushed when |
| * necessary. |
| */ |
| static int slub_cpu_dead(unsigned int cpu) |
| { |
| struct kmem_cache *s; |
| unsigned long flags; |
| |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) { |
| local_irq_save(flags); |
| __flush_cpu_slab(s, cpu); |
| local_irq_restore(flags); |
| } |
| mutex_unlock(&slab_mutex); |
| return 0; |
| } |
| |
| /* |
| * Check if the objects in a per cpu structure fit numa |
| * locality expectations. |
| */ |
| static inline int node_match(struct page *page, int node) |
| { |
| #ifdef CONFIG_NUMA |
| if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node)) |
| return 0; |
| #endif |
| return 1; |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static int count_free(struct page *page) |
| { |
| return page->objects - page->inuse; |
| } |
| |
| static inline unsigned long node_nr_objs(struct kmem_cache_node *n) |
| { |
| return atomic_long_read(&n->total_objects); |
| } |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS) |
| static unsigned long count_partial(struct kmem_cache_node *n, |
| int (*get_count)(struct page *)) |
| { |
| unsigned long flags; |
| unsigned long x = 0; |
| struct page *page; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| list_for_each_entry(page, &n->partial, lru) |
| x += get_count(page); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return x; |
| } |
| #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */ |
| |
| static noinline void |
| slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid) |
| { |
| #ifdef CONFIG_SLUB_DEBUG |
| static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL, |
| DEFAULT_RATELIMIT_BURST); |
| int node; |
| struct kmem_cache_node *n; |
| |
| if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs)) |
| return; |
| |
| pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n", |
| nid, gfpflags, &gfpflags); |
| pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n", |
| s->name, s->object_size, s->size, oo_order(s->oo), |
| oo_order(s->min)); |
| |
| if (oo_order(s->min) > get_order(s->object_size)) |
| pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n", |
| s->name); |
| |
| for_each_kmem_cache_node(s, node, n) { |
| unsigned long nr_slabs; |
| unsigned long nr_objs; |
| unsigned long nr_free; |
| |
| nr_free = count_partial(n, count_free); |
| nr_slabs = node_nr_slabs(n); |
| nr_objs = node_nr_objs(n); |
| |
| pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n", |
| node, nr_slabs, nr_objs, nr_free); |
| } |
| #endif |
| } |
| |
| static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags, |
| int node, struct kmem_cache_cpu **pc) |
| { |
| void *freelist; |
| struct kmem_cache_cpu *c = *pc; |
| struct page *page; |
| |
| freelist = get_partial(s, flags, node, c); |
| |
| if (freelist) |
| return freelist; |
| |
| page = new_slab(s, flags, node); |
| if (page) { |
| c = raw_cpu_ptr(s->cpu_slab); |
| if (c->page) |
| flush_slab(s, c); |
| |
| /* |
| * No other reference to the page yet so we can |
| * muck around with it freely without cmpxchg |
| */ |
| freelist = page->freelist; |
| page->freelist = NULL; |
| |
| stat(s, ALLOC_SLAB); |
| c->page = page; |
| *pc = c; |
| } else |
| freelist = NULL; |
| |
| return freelist; |
| } |
| |
| static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags) |
| { |
| if (unlikely(PageSlabPfmemalloc(page))) |
| return gfp_pfmemalloc_allowed(gfpflags); |
| |
| return true; |
| } |
| |
| /* |
| * Check the page->freelist of a page and either transfer the freelist to the |
| * per cpu freelist or deactivate the page. |
| * |
| * The page is still frozen if the return value is not NULL. |
| * |
| * If this function returns NULL then the page has been unfrozen. |
| * |
| * This function must be called with interrupt disabled. |
| */ |
| static inline void *get_freelist(struct kmem_cache *s, struct page *page) |
| { |
| struct page new; |
| unsigned long counters; |
| void *freelist; |
| |
| do { |
| freelist = page->freelist; |
| counters = page->counters; |
| |
| new.counters = counters; |
| VM_BUG_ON(!new.frozen); |
| |
| new.inuse = page->objects; |
| new.frozen = freelist != NULL; |
| |
| } while (!__cmpxchg_double_slab(s, page, |
| freelist, counters, |
| NULL, new.counters, |
| "get_freelist")); |
| |
| return freelist; |
| } |
| |
| /* |
| * Slow path. The lockless freelist is empty or we need to perform |
| * debugging duties. |
| * |
| * Processing is still very fast if new objects have been freed to the |
| * regular freelist. In that case we simply take over the regular freelist |
| * as the lockless freelist and zap the regular freelist. |
| * |
| * If that is not working then we fall back to the partial lists. We take the |
| * first element of the freelist as the object to allocate now and move the |
| * rest of the freelist to the lockless freelist. |
| * |
| * And if we were unable to get a new slab from the partial slab lists then |
| * we need to allocate a new slab. This is the slowest path since it involves |
| * a call to the page allocator and the setup of a new slab. |
| * |
| * Version of __slab_alloc to use when we know that interrupts are |
| * already disabled (which is the case for bulk allocation). |
| */ |
| static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
| unsigned long addr, struct kmem_cache_cpu *c) |
| { |
| void *freelist; |
| struct page *page; |
| |
| page = c->page; |
| if (!page) |
| goto new_slab; |
| redo: |
| |
| if (unlikely(!node_match(page, node))) { |
| int searchnode = node; |
| |
| if (node != NUMA_NO_NODE && !node_present_pages(node)) |
| searchnode = node_to_mem_node(node); |
| |
| if (unlikely(!node_match(page, searchnode))) { |
| stat(s, ALLOC_NODE_MISMATCH); |
| deactivate_slab(s, page, c->freelist, c); |
| goto new_slab; |
| } |
| } |
| |
| /* |
| * By rights, we should be searching for a slab page that was |
| * PFMEMALLOC but right now, we are losing the pfmemalloc |
| * information when the page leaves the per-cpu allocator |
| */ |
| if (unlikely(!pfmemalloc_match(page, gfpflags))) { |
| deactivate_slab(s, page, c->freelist, c); |
| goto new_slab; |
| } |
| |
| /* must check again c->freelist in case of cpu migration or IRQ */ |
| freelist = c->freelist; |
| if (freelist) |
| goto load_freelist; |
| |
| freelist = get_freelist(s, page); |
| |
| if (!freelist) { |
| c->page = NULL; |
| stat(s, DEACTIVATE_BYPASS); |
| goto new_slab; |
| } |
| |
| stat(s, ALLOC_REFILL); |
| |
| load_freelist: |
| /* |
| * freelist is pointing to the list of objects to be used. |
| * page is pointing to the page from which the objects are obtained. |
| * That page must be frozen for per cpu allocations to work. |
| */ |
| VM_BUG_ON(!c->page->frozen); |
| c->freelist = get_freepointer(s, freelist); |
| c->tid = next_tid(c->tid); |
| return freelist; |
| |
| new_slab: |
| |
| if (slub_percpu_partial(c)) { |
| page = c->page = slub_percpu_partial(c); |
| slub_set_percpu_partial(c, page); |
| stat(s, CPU_PARTIAL_ALLOC); |
| goto redo; |
| } |
| |
| freelist = new_slab_objects(s, gfpflags, node, &c); |
| |
| if (unlikely(!freelist)) { |
| slab_out_of_memory(s, gfpflags, node); |
| return NULL; |
| } |
| |
| page = c->page; |
| if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags))) |
| goto load_freelist; |
| |
| /* Only entered in the debug case */ |
| if (kmem_cache_debug(s) && |
| !alloc_debug_processing(s, page, freelist, addr)) |
| goto new_slab; /* Slab failed checks. Next slab needed */ |
| |
| deactivate_slab(s, page, get_freepointer(s, freelist), c); |
| return freelist; |
| } |
| |
| /* |
| * Another one that disabled interrupt and compensates for possible |
| * cpu changes by refetching the per cpu area pointer. |
| */ |
| static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node, |
| unsigned long addr, struct kmem_cache_cpu *c) |
| { |
| void *p; |
| unsigned long flags; |
| |
| local_irq_save(flags); |
| #ifdef CONFIG_PREEMPT |
| /* |
| * We may have been preempted and rescheduled on a different |
| * cpu before disabling interrupts. Need to reload cpu area |
| * pointer. |
| */ |
| c = this_cpu_ptr(s->cpu_slab); |
| #endif |
| |
| p = ___slab_alloc(s, gfpflags, node, addr, c); |
| local_irq_restore(flags); |
| return p; |
| } |
| |
| /* |
| * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc) |
| * have the fastpath folded into their functions. So no function call |
| * overhead for requests that can be satisfied on the fastpath. |
| * |
| * The fastpath works by first checking if the lockless freelist can be used. |
| * If not then __slab_alloc is called for slow processing. |
| * |
| * Otherwise we can simply pick the next object from the lockless free list. |
| */ |
| static __always_inline void *slab_alloc_node(struct kmem_cache *s, |
| gfp_t gfpflags, int node, unsigned long addr) |
| { |
| void *object; |
| struct kmem_cache_cpu *c; |
| struct page *page; |
| unsigned long tid; |
| |
| s = slab_pre_alloc_hook(s, gfpflags); |
| if (!s) |
| return NULL; |
| redo: |
| /* |
| * Must read kmem_cache cpu data via this cpu ptr. Preemption is |
| * enabled. We may switch back and forth between cpus while |
| * reading from one cpu area. That does not matter as long |
| * as we end up on the original cpu again when doing the cmpxchg. |
| * |
| * We should guarantee that tid and kmem_cache are retrieved on |
| * the same cpu. It could be different if CONFIG_PREEMPT so we need |
| * to check if it is matched or not. |
| */ |
| do { |
| tid = this_cpu_read(s->cpu_slab->tid); |
| c = raw_cpu_ptr(s->cpu_slab); |
| } while (IS_ENABLED(CONFIG_PREEMPT) && |
| unlikely(tid != READ_ONCE(c->tid))); |
| |
| /* |
| * Irqless object alloc/free algorithm used here depends on sequence |
| * of fetching cpu_slab's data. tid should be fetched before anything |
| * on c to guarantee that object and page associated with previous tid |
| * won't be used with current tid. If we fetch tid first, object and |
| * page could be one associated with next tid and our alloc/free |
| * request will be failed. In this case, we will retry. So, no problem. |
| */ |
| barrier(); |
| |
| /* |
| * The transaction ids are globally unique per cpu and per operation on |
| * a per cpu queue. Thus they can be guarantee that the cmpxchg_double |
| * occurs on the right processor and that there was no operation on the |
| * linked list in between. |
| */ |
| |
| object = c->freelist; |
| page = c->page; |
| if (unlikely(!object || !node_match(page, node))) { |
| object = __slab_alloc(s, gfpflags, node, addr, c); |
| stat(s, ALLOC_SLOWPATH); |
| } else { |
| void *next_object = get_freepointer_safe(s, object); |
| |
| /* |
| * The cmpxchg will only match if there was no additional |
| * operation and if we are on the right processor. |
| * |
| * The cmpxchg does the following atomically (without lock |
| * semantics!) |
| * 1. Relocate first pointer to the current per cpu area. |
| * 2. Verify that tid and freelist have not been changed |
| * 3. If they were not changed replace tid and freelist |
| * |
| * Since this is without lock semantics the protection is only |
| * against code executing on this cpu *not* from access by |
| * other cpus. |
| */ |
| if (unlikely(!this_cpu_cmpxchg_double( |
| s->cpu_slab->freelist, s->cpu_slab->tid, |
| object, tid, |
| next_object, next_tid(tid)))) { |
| |
| note_cmpxchg_failure("slab_alloc", s, tid); |
| goto redo; |
| } |
| prefetch_freepointer(s, next_object); |
| stat(s, ALLOC_FASTPATH); |
| } |
| |
| if (unlikely(gfpflags & __GFP_ZERO) && object) |
| memset(object, 0, s->object_size); |
| |
| slab_post_alloc_hook(s, gfpflags, 1, &object); |
| |
| return object; |
| } |
| |
| static __always_inline void *slab_alloc(struct kmem_cache *s, |
| gfp_t gfpflags, unsigned long addr) |
| { |
| return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr); |
| } |
| |
| void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags) |
| { |
| void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
| |
| trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size, |
| s->size, gfpflags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc); |
| |
| #ifdef CONFIG_TRACING |
| void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size) |
| { |
| void *ret = slab_alloc(s, gfpflags, _RET_IP_); |
| trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags); |
| kasan_kmalloc(s, ret, size, gfpflags); |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_trace); |
| #endif |
| |
| #ifdef CONFIG_NUMA |
| void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node) |
| { |
| void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
| |
| trace_kmem_cache_alloc_node(_RET_IP_, ret, |
| s->object_size, s->size, gfpflags, node); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_node); |
| |
| #ifdef CONFIG_TRACING |
| void *kmem_cache_alloc_node_trace(struct kmem_cache *s, |
| gfp_t gfpflags, |
| int node, size_t size) |
| { |
| void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_); |
| |
| trace_kmalloc_node(_RET_IP_, ret, |
| size, s->size, gfpflags, node); |
| |
| kasan_kmalloc(s, ret, size, gfpflags); |
| return ret; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_node_trace); |
| #endif |
| #endif |
| |
| /* |
| * Slow path handling. This may still be called frequently since objects |
| * have a longer lifetime than the cpu slabs in most processing loads. |
| * |
| * So we still attempt to reduce cache line usage. Just take the slab |
| * lock and free the item. If there is no additional partial page |
| * handling required then we can return immediately. |
| */ |
| static void __slab_free(struct kmem_cache *s, struct page *page, |
| void *head, void *tail, int cnt, |
| unsigned long addr) |
| |
| { |
| void *prior; |
| int was_frozen; |
| struct page new; |
| unsigned long counters; |
| struct kmem_cache_node *n = NULL; |
| unsigned long uninitialized_var(flags); |
| |
| stat(s, FREE_SLOWPATH); |
| |
| if (kmem_cache_debug(s) && |
| !free_debug_processing(s, page, head, tail, cnt, addr)) |
| return; |
| |
| do { |
| if (unlikely(n)) { |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| n = NULL; |
| } |
| prior = page->freelist; |
| counters = page->counters; |
| set_freepointer(s, tail, prior); |
| new.counters = counters; |
| was_frozen = new.frozen; |
| new.inuse -= cnt; |
| if ((!new.inuse || !prior) && !was_frozen) { |
| |
| if (kmem_cache_has_cpu_partial(s) && !prior) { |
| |
| /* |
| * Slab was on no list before and will be |
| * partially empty |
| * We can defer the list move and instead |
| * freeze it. |
| */ |
| new.frozen = 1; |
| |
| } else { /* Needs to be taken off a list */ |
| |
| n = get_node(s, page_to_nid(page)); |
| /* |
| * Speculatively acquire the list_lock. |
| * If the cmpxchg does not succeed then we may |
| * drop the list_lock without any processing. |
| * |
| * Otherwise the list_lock will synchronize with |
| * other processors updating the list of slabs. |
| */ |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| } |
| } |
| |
| } while (!cmpxchg_double_slab(s, page, |
| prior, counters, |
| head, new.counters, |
| "__slab_free")); |
| |
| if (likely(!n)) { |
| |
| /* |
| * If we just froze the page then put it onto the |
| * per cpu partial list. |
| */ |
| if (new.frozen && !was_frozen) { |
| put_cpu_partial(s, page, 1); |
| stat(s, CPU_PARTIAL_FREE); |
| } |
| /* |
| * The list lock was not taken therefore no list |
| * activity can be necessary. |
| */ |
| if (was_frozen) |
| stat(s, FREE_FROZEN); |
| return; |
| } |
| |
| if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) |
| goto slab_empty; |
| |
| /* |
| * Objects left in the slab. If it was not on the partial list before |
| * then add it. |
| */ |
| if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) { |
| if (kmem_cache_debug(s)) |
| remove_full(s, n, page); |
| add_partial(n, page, DEACTIVATE_TO_TAIL); |
| stat(s, FREE_ADD_PARTIAL); |
| } |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return; |
| |
| slab_empty: |
| if (prior) { |
| /* |
| * Slab on the partial list. |
| */ |
| remove_partial(n, page); |
| stat(s, FREE_REMOVE_PARTIAL); |
| } else { |
| /* Slab must be on the full list */ |
| remove_full(s, n, page); |
| } |
| |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| stat(s, FREE_SLAB); |
| discard_slab(s, page); |
| } |
| |
| /* |
| * Fastpath with forced inlining to produce a kfree and kmem_cache_free that |
| * can perform fastpath freeing without additional function calls. |
| * |
| * The fastpath is only possible if we are freeing to the current cpu slab |
| * of this processor. This typically the case if we have just allocated |
| * the item before. |
| * |
| * If fastpath is not possible then fall back to __slab_free where we deal |
| * with all sorts of special processing. |
| * |
| * Bulk free of a freelist with several objects (all pointing to the |
| * same page) possible by specifying head and tail ptr, plus objects |
| * count (cnt). Bulk free indicated by tail pointer being set. |
| */ |
| static __always_inline void do_slab_free(struct kmem_cache *s, |
| struct page *page, void *head, void *tail, |
| int cnt, unsigned long addr) |
| { |
| void *tail_obj = tail ? : head; |
| struct kmem_cache_cpu *c; |
| unsigned long tid; |
| redo: |
| /* |
| * Determine the currently cpus per cpu slab. |
| * The cpu may change afterward. However that does not matter since |
| * data is retrieved via this pointer. If we are on the same cpu |
| * during the cmpxchg then the free will succeed. |
| */ |
| do { |
| tid = this_cpu_read(s->cpu_slab->tid); |
| c = raw_cpu_ptr(s->cpu_slab); |
| } while (IS_ENABLED(CONFIG_PREEMPT) && |
| unlikely(tid != READ_ONCE(c->tid))); |
| |
| /* Same with comment on barrier() in slab_alloc_node() */ |
| barrier(); |
| |
| if (likely(page == c->page)) { |
| set_freepointer(s, tail_obj, c->freelist); |
| |
| if (unlikely(!this_cpu_cmpxchg_double( |
| s->cpu_slab->freelist, s->cpu_slab->tid, |
| c->freelist, tid, |
| head, next_tid(tid)))) { |
| |
| note_cmpxchg_failure("slab_free", s, tid); |
| goto redo; |
| } |
| stat(s, FREE_FASTPATH); |
| } else |
| __slab_free(s, page, head, tail_obj, cnt, addr); |
| |
| } |
| |
| static __always_inline void slab_free(struct kmem_cache *s, struct page *page, |
| void *head, void *tail, int cnt, |
| unsigned long addr) |
| { |
| slab_free_freelist_hook(s, head, tail); |
| /* |
| * slab_free_freelist_hook() could have put the items into quarantine. |
| * If so, no need to free them. |
| */ |
| if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU)) |
| return; |
| do_slab_free(s, page, head, tail, cnt, addr); |
| } |
| |
| #ifdef CONFIG_KASAN |
| void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr) |
| { |
| do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr); |
| } |
| #endif |
| |
| void kmem_cache_free(struct kmem_cache *s, void *x) |
| { |
| s = cache_from_obj(s, x); |
| if (!s) |
| return; |
| slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_); |
| trace_kmem_cache_free(_RET_IP_, x); |
| } |
| EXPORT_SYMBOL(kmem_cache_free); |
| |
| struct detached_freelist { |
| struct page *page; |
| void *tail; |
| void *freelist; |
| int cnt; |
| struct kmem_cache *s; |
| }; |
| |
| /* |
| * This function progressively scans the array with free objects (with |
| * a limited look ahead) and extract objects belonging to the same |
| * page. It builds a detached freelist directly within the given |
| * page/objects. This can happen without any need for |
| * synchronization, because the objects are owned by running process. |
| * The freelist is build up as a single linked list in the objects. |
| * The idea is, that this detached freelist can then be bulk |
| * transferred to the real freelist(s), but only requiring a single |
| * synchronization primitive. Look ahead in the array is limited due |
| * to performance reasons. |
| */ |
| static inline |
| int build_detached_freelist(struct kmem_cache *s, size_t size, |
| void **p, struct detached_freelist *df) |
| { |
| size_t first_skipped_index = 0; |
| int lookahead = 3; |
| void *object; |
| struct page *page; |
| |
| /* Always re-init detached_freelist */ |
| df->page = NULL; |
| |
| do { |
| object = p[--size]; |
| /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */ |
| } while (!object && size); |
| |
| if (!object) |
| return 0; |
| |
| page = virt_to_head_page(object); |
| if (!s) { |
| /* Handle kalloc'ed objects */ |
| if (unlikely(!PageSlab(page))) { |
| BUG_ON(!PageCompound(page)); |
| kfree_hook(object); |
| __free_pages(page, compound_order(page)); |
| p[size] = NULL; /* mark object processed */ |
| return size; |
| } |
| /* Derive kmem_cache from object */ |
| df->s = page->slab_cache; |
| } else { |
| df->s = cache_from_obj(s, object); /* Support for memcg */ |
| } |
| |
| /* Start new detached freelist */ |
| df->page = page; |
| set_freepointer(df->s, object, NULL); |
| df->tail = object; |
| df->freelist = object; |
| p[size] = NULL; /* mark object processed */ |
| df->cnt = 1; |
| |
| while (size) { |
| object = p[--size]; |
| if (!object) |
| continue; /* Skip processed objects */ |
| |
| /* df->page is always set at this point */ |
| if (df->page == virt_to_head_page(object)) { |
| /* Opportunity build freelist */ |
| set_freepointer(df->s, object, df->freelist); |
| df->freelist = object; |
| df->cnt++; |
| p[size] = NULL; /* mark object processed */ |
| |
| continue; |
| } |
| |
| /* Limit look ahead search */ |
| if (!--lookahead) |
| break; |
| |
| if (!first_skipped_index) |
| first_skipped_index = size + 1; |
| } |
| |
| return first_skipped_index; |
| } |
| |
| /* Note that interrupts must be enabled when calling this function. */ |
| void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p) |
| { |
| if (WARN_ON(!size)) |
| return; |
| |
| do { |
| struct detached_freelist df; |
| |
| size = build_detached_freelist(s, size, p, &df); |
| if (!df.page) |
| continue; |
| |
| slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_); |
| } while (likely(size)); |
| } |
| EXPORT_SYMBOL(kmem_cache_free_bulk); |
| |
| /* Note that interrupts must be enabled when calling this function. */ |
| int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size, |
| void **p) |
| { |
| struct kmem_cache_cpu *c; |
| int i; |
| |
| /* memcg and kmem_cache debug support */ |
| s = slab_pre_alloc_hook(s, flags); |
| if (unlikely(!s)) |
| return false; |
| /* |
| * Drain objects in the per cpu slab, while disabling local |
| * IRQs, which protects against PREEMPT and interrupts |
| * handlers invoking normal fastpath. |
| */ |
| local_irq_disable(); |
| c = this_cpu_ptr(s->cpu_slab); |
| |
| for (i = 0; i < size; i++) { |
| void *object = c->freelist; |
| |
| if (unlikely(!object)) { |
| /* |
| * Invoking slow path likely have side-effect |
| * of re-populating per CPU c->freelist |
| */ |
| p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE, |
| _RET_IP_, c); |
| if (unlikely(!p[i])) |
| goto error; |
| |
| c = this_cpu_ptr(s->cpu_slab); |
| continue; /* goto for-loop */ |
| } |
| c->freelist = get_freepointer(s, object); |
| p[i] = object; |
| } |
| c->tid = next_tid(c->tid); |
| local_irq_enable(); |
| |
| /* Clear memory outside IRQ disabled fastpath loop */ |
| if (unlikely(flags & __GFP_ZERO)) { |
| int j; |
| |
| for (j = 0; j < i; j++) |
| memset(p[j], 0, s->object_size); |
| } |
| |
| /* memcg and kmem_cache debug support */ |
| slab_post_alloc_hook(s, flags, size, p); |
| return i; |
| error: |
| local_irq_enable(); |
| slab_post_alloc_hook(s, flags, i, p); |
| __kmem_cache_free_bulk(s, i, p); |
| return 0; |
| } |
| EXPORT_SYMBOL(kmem_cache_alloc_bulk); |
| |
| |
| /* |
| * Object placement in a slab is made very easy because we always start at |
| * offset 0. If we tune the size of the object to the alignment then we can |
| * get the required alignment by putting one properly sized object after |
| * another. |
| * |
| * Notice that the allocation order determines the sizes of the per cpu |
| * caches. Each processor has always one slab available for allocations. |
| * Increasing the allocation order reduces the number of times that slabs |
| * must be moved on and off the partial lists and is therefore a factor in |
| * locking overhead. |
| */ |
| |
| /* |
| * Mininum / Maximum order of slab pages. This influences locking overhead |
| * and slab fragmentation. A higher order reduces the number of partial slabs |
| * and increases the number of allocations possible without having to |
| * take the list_lock. |
| */ |
| static int slub_min_order; |
| static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER; |
| static int slub_min_objects; |
| |
| /* |
| * Calculate the order of allocation given an slab object size. |
| * |
| * The order of allocation has significant impact on performance and other |
| * system components. Generally order 0 allocations should be preferred since |
| * order 0 does not cause fragmentation in the page allocator. Larger objects |
| * be problematic to put into order 0 slabs because there may be too much |
| * unused space left. We go to a higher order if more than 1/16th of the slab |
| * would be wasted. |
| * |
| * In order to reach satisfactory performance we must ensure that a minimum |
| * number of objects is in one slab. Otherwise we may generate too much |
| * activity on the partial lists which requires taking the list_lock. This is |
| * less a concern for large slabs though which are rarely used. |
| * |
| * slub_max_order specifies the order where we begin to stop considering the |
| * number of objects in a slab as critical. If we reach slub_max_order then |
| * we try to keep the page order as low as possible. So we accept more waste |
| * of space in favor of a small page order. |
| * |
| * Higher order allocations also allow the placement of more objects in a |
| * slab and thereby reduce object handling overhead. If the user has |
| * requested a higher mininum order then we start with that one instead of |
| * the smallest order which will fit the object. |
| */ |
| static inline int slab_order(int size, int min_objects, |
| int max_order, int fract_leftover, int reserved) |
| { |
| int order; |
| int rem; |
| int min_order = slub_min_order; |
| |
| if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE) |
| return get_order(size * MAX_OBJS_PER_PAGE) - 1; |
| |
| for (order = max(min_order, get_order(min_objects * size + reserved)); |
| order <= max_order; order++) { |
| |
| unsigned long slab_size = PAGE_SIZE << order; |
| |
| rem = (slab_size - reserved) % size; |
| |
| if (rem <= slab_size / fract_leftover) |
| break; |
| } |
| |
| return order; |
| } |
| |
| static inline int calculate_order(int size, int reserved) |
| { |
| int order; |
| int min_objects; |
| int fraction; |
| int max_objects; |
| |
| /* |
| * Attempt to find best configuration for a slab. This |
| * works by first attempting to generate a layout with |
| * the best configuration and backing off gradually. |
| * |
| * First we increase the acceptable waste in a slab. Then |
| * we reduce the minimum objects required in a slab. |
| */ |
| min_objects = slub_min_objects; |
| if (!min_objects) |
| min_objects = 4 * (fls(nr_cpu_ids) + 1); |
| max_objects = order_objects(slub_max_order, size, reserved); |
| min_objects = min(min_objects, max_objects); |
| |
| while (min_objects > 1) { |
| fraction = 16; |
| while (fraction >= 4) { |
| order = slab_order(size, min_objects, |
| slub_max_order, fraction, reserved); |
| if (order <= slub_max_order) |
| return order; |
| fraction /= 2; |
| } |
| min_objects--; |
| } |
| |
| /* |
| * We were unable to place multiple objects in a slab. Now |
| * lets see if we can place a single object there. |
| */ |
| order = slab_order(size, 1, slub_max_order, 1, reserved); |
| if (order <= slub_max_order) |
| return order; |
| |
| /* |
| * Doh this slab cannot be placed using slub_max_order. |
| */ |
| order = slab_order(size, 1, MAX_ORDER, 1, reserved); |
| if (order < MAX_ORDER) |
| return order; |
| return -ENOSYS; |
| } |
| |
| static void |
| init_kmem_cache_node(struct kmem_cache_node *n) |
| { |
| n->nr_partial = 0; |
| spin_lock_init(&n->list_lock); |
| INIT_LIST_HEAD(&n->partial); |
| #ifdef CONFIG_SLUB_DEBUG |
| atomic_long_set(&n->nr_slabs, 0); |
| atomic_long_set(&n->total_objects, 0); |
| INIT_LIST_HEAD(&n->full); |
| #endif |
| } |
| |
| static inline int alloc_kmem_cache_cpus(struct kmem_cache *s) |
| { |
| BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE < |
| KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu)); |
| |
| /* |
| * Must align to double word boundary for the double cmpxchg |
| * instructions to work; see __pcpu_double_call_return_bool(). |
| */ |
| s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu), |
| 2 * sizeof(void *)); |
| |
| if (!s->cpu_slab) |
| return 0; |
| |
| init_kmem_cache_cpus(s); |
| |
| return 1; |
| } |
| |
| static struct kmem_cache *kmem_cache_node; |
| |
| /* |
| * No kmalloc_node yet so do it by hand. We know that this is the first |
| * slab on the node for this slabcache. There are no concurrent accesses |
| * possible. |
| * |
| * Note that this function only works on the kmem_cache_node |
| * when allocating for the kmem_cache_node. This is used for bootstrapping |
| * memory on a fresh node that has no slab structures yet. |
| */ |
| static void early_kmem_cache_node_alloc(int node) |
| { |
| struct page *page; |
| struct kmem_cache_node *n; |
| |
| BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node)); |
| |
| page = new_slab(kmem_cache_node, GFP_NOWAIT, node); |
| |
| BUG_ON(!page); |
| if (page_to_nid(page) != node) { |
| pr_err("SLUB: Unable to allocate memory from node %d\n", node); |
| pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n"); |
| } |
| |
| n = page->freelist; |
| BUG_ON(!n); |
| page->freelist = get_freepointer(kmem_cache_node, n); |
| page->inuse = 1; |
| page->frozen = 0; |
| kmem_cache_node->node[node] = n; |
| #ifdef CONFIG_SLUB_DEBUG |
| init_object(kmem_cache_node, n, SLUB_RED_ACTIVE); |
| init_tracking(kmem_cache_node, n); |
| #endif |
| kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node), |
| GFP_KERNEL); |
| init_kmem_cache_node(n); |
| inc_slabs_node(kmem_cache_node, node, page->objects); |
| |
| /* |
| * No locks need to be taken here as it has just been |
| * initialized and there is no concurrent access. |
| */ |
| __add_partial(n, page, DEACTIVATE_TO_HEAD); |
| } |
| |
| static void free_kmem_cache_nodes(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| s->node[node] = NULL; |
| kmem_cache_free(kmem_cache_node, n); |
| } |
| } |
| |
| void __kmem_cache_release(struct kmem_cache *s) |
| { |
| cache_random_seq_destroy(s); |
| free_percpu(s->cpu_slab); |
| free_kmem_cache_nodes(s); |
| } |
| |
| static int init_kmem_cache_nodes(struct kmem_cache *s) |
| { |
| int node; |
| |
| for_each_node_state(node, N_NORMAL_MEMORY) { |
| struct kmem_cache_node *n; |
| |
| if (slab_state == DOWN) { |
| early_kmem_cache_node_alloc(node); |
| continue; |
| } |
| n = kmem_cache_alloc_node(kmem_cache_node, |
| GFP_KERNEL, node); |
| |
| if (!n) { |
| free_kmem_cache_nodes(s); |
| return 0; |
| } |
| |
| init_kmem_cache_node(n); |
| s->node[node] = n; |
| } |
| return 1; |
| } |
| |
| static void set_min_partial(struct kmem_cache *s, unsigned long min) |
| { |
| if (min < MIN_PARTIAL) |
| min = MIN_PARTIAL; |
| else if (min > MAX_PARTIAL) |
| min = MAX_PARTIAL; |
| s->min_partial = min; |
| } |
| |
| static void set_cpu_partial(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_SLUB_CPU_PARTIAL |
| /* |
| * cpu_partial determined the maximum number of objects kept in the |
| * per cpu partial lists of a processor. |
| * |
| * Per cpu partial lists mainly contain slabs that just have one |
| * object freed. If they are used for allocation then they can be |
| * filled up again with minimal effort. The slab will never hit the |
| * per node partial lists and therefore no locking will be required. |
| * |
| * This setting also determines |
| * |
| * A) The number of objects from per cpu partial slabs dumped to the |
| * per node list when we reach the limit. |
| * B) The number of objects in cpu partial slabs to extract from the |
| * per node list when we run out of per cpu objects. We only fetch |
| * 50% to keep some capacity around for frees. |
| */ |
| if (!kmem_cache_has_cpu_partial(s)) |
| s->cpu_partial = 0; |
| else if (s->size >= PAGE_SIZE) |
| s->cpu_partial = 2; |
| else if (s->size >= 1024) |
| s->cpu_partial = 6; |
| else if (s->size >= 256) |
| s->cpu_partial = 13; |
| else |
| s->cpu_partial = 30; |
| #endif |
| } |
| |
| /* |
| * calculate_sizes() determines the order and the distribution of data within |
| * a slab object. |
| */ |
| static int calculate_sizes(struct kmem_cache *s, int forced_order) |
| { |
| unsigned long flags = s->flags; |
| size_t size = s->object_size; |
| int order; |
| |
| /* |
| * Round up object size to the next word boundary. We can only |
| * place the free pointer at word boundaries and this determines |
| * the possible location of the free pointer. |
| */ |
| size = ALIGN(size, sizeof(void *)); |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| /* |
| * Determine if we can poison the object itself. If the user of |
| * the slab may touch the object after free or before allocation |
| * then we should never poison the object itself. |
| */ |
| if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) && |
| !s->ctor) |
| s->flags |= __OBJECT_POISON; |
| else |
| s->flags &= ~__OBJECT_POISON; |
| |
| |
| /* |
| * If we are Redzoning then check if there is some space between the |
| * end of the object and the free pointer. If not then add an |
| * additional word to have some bytes to store Redzone information. |
| */ |
| if ((flags & SLAB_RED_ZONE) && size == s->object_size) |
| size += sizeof(void *); |
| #endif |
| |
| /* |
| * With that we have determined the number of bytes in actual use |
| * by the object. This is the potential offset to the free pointer. |
| */ |
| s->inuse = size; |
| |
| if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) || |
| s->ctor)) { |
| /* |
| * Relocate free pointer after the object if it is not |
| * permitted to overwrite the first word of the object on |
| * kmem_cache_free. |
| * |
| * This is the case if we do RCU, have a constructor or |
| * destructor or are poisoning the objects. |
| */ |
| s->offset = size; |
| size += sizeof(void *); |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| if (flags & SLAB_STORE_USER) |
| /* |
| * Need to store information about allocs and frees after |
| * the object. |
| */ |
| size += 2 * sizeof(struct track); |
| #endif |
| |
| kasan_cache_create(s, &size, &s->flags); |
| #ifdef CONFIG_SLUB_DEBUG |
| if (flags & SLAB_RED_ZONE) { |
| /* |
| * Add some empty padding so that we can catch |
| * overwrites from earlier objects rather than let |
| * tracking information or the free pointer be |
| * corrupted if a user writes before the start |
| * of the object. |
| */ |
| size += sizeof(void *); |
| |
| s->red_left_pad = sizeof(void *); |
| s->red_left_pad = ALIGN(s->red_left_pad, s->align); |
| size += s->red_left_pad; |
| } |
| #endif |
| |
| /* |
| * SLUB stores one object immediately after another beginning from |
| * offset 0. In order to align the objects we have to simply size |
| * each object to conform to the alignment. |
| */ |
| size = ALIGN(size, s->align); |
| s->size = size; |
| if (forced_order >= 0) |
| order = forced_order; |
| else |
| order = calculate_order(size, s->reserved); |
| |
| if (order < 0) |
| return 0; |
| |
| s->allocflags = 0; |
| if (order) |
| s->allocflags |= __GFP_COMP; |
| |
| if (s->flags & SLAB_CACHE_DMA) |
| s->allocflags |= GFP_DMA; |
| |
| if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| s->allocflags |= __GFP_RECLAIMABLE; |
| |
| /* |
| * Determine the number of objects per slab |
| */ |
| s->oo = oo_make(order, size, s->reserved); |
| s->min = oo_make(get_order(size), size, s->reserved); |
| if (oo_objects(s->oo) > oo_objects(s->max)) |
| s->max = s->oo; |
| |
| return !!oo_objects(s->oo); |
| } |
| |
| static int kmem_cache_open(struct kmem_cache *s, unsigned long flags) |
| { |
| s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor); |
| s->reserved = 0; |
| #ifdef CONFIG_SLAB_FREELIST_HARDENED |
| s->random = get_random_long(); |
| #endif |
| |
| if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU)) |
| s->reserved = sizeof(struct rcu_head); |
| |
| if (!calculate_sizes(s, -1)) |
| goto error; |
| if (disable_higher_order_debug) { |
| /* |
| * Disable debugging flags that store metadata if the min slab |
| * order increased. |
| */ |
| if (get_order(s->size) > get_order(s->object_size)) { |
| s->flags &= ~DEBUG_METADATA_FLAGS; |
| s->offset = 0; |
| if (!calculate_sizes(s, -1)) |
| goto error; |
| } |
| } |
| |
| #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \ |
| defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE) |
| if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0) |
| /* Enable fast mode */ |
| s->flags |= __CMPXCHG_DOUBLE; |
| #endif |
| |
| /* |
| * The larger the object size is, the more pages we want on the partial |
| * list to avoid pounding the page allocator excessively. |
| */ |
| set_min_partial(s, ilog2(s->size) / 2); |
| |
| set_cpu_partial(s); |
| |
| #ifdef CONFIG_NUMA |
| s->remote_node_defrag_ratio = 1000; |
| #endif |
| |
| /* Initialize the pre-computed randomized freelist if slab is up */ |
| if (slab_state >= UP) { |
| if (init_cache_random_seq(s)) |
| goto error; |
| } |
| |
| if (!init_kmem_cache_nodes(s)) |
| goto error; |
| |
| if (alloc_kmem_cache_cpus(s)) |
| return 0; |
| |
| free_kmem_cache_nodes(s); |
| error: |
| if (flags & SLAB_PANIC) |
| panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n", |
| s->name, (unsigned long)s->size, s->size, |
| oo_order(s->oo), s->offset, flags); |
| return -EINVAL; |
| } |
| |
| static void list_slab_objects(struct kmem_cache *s, struct page *page, |
| const char *text) |
| { |
| #ifdef CONFIG_SLUB_DEBUG |
| void *addr = page_address(page); |
| void *p; |
| unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) * |
| sizeof(long), GFP_ATOMIC); |
| if (!map) |
| return; |
| slab_err(s, page, text, s->name); |
| slab_lock(page); |
| |
| get_map(s, page, map); |
| for_each_object(p, s, addr, page->objects) { |
| |
| if (!test_bit(slab_index(p, s, addr), map)) { |
| pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr); |
| print_tracking(s, p); |
| } |
| } |
| slab_unlock(page); |
| kfree(map); |
| #endif |
| } |
| |
| /* |
| * Attempt to free all partial slabs on a node. |
| * This is called from __kmem_cache_shutdown(). We must take list_lock |
| * because sysfs file might still access partial list after the shutdowning. |
| */ |
| static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n) |
| { |
| LIST_HEAD(discard); |
| struct page *page, *h; |
| |
| BUG_ON(irqs_disabled()); |
| spin_lock_irq(&n->list_lock); |
| list_for_each_entry_safe(page, h, &n->partial, lru) { |
| if (!page->inuse) { |
| remove_partial(n, page); |
| list_add(&page->lru, &discard); |
| } else { |
| list_slab_objects(s, page, |
| "Objects remaining in %s on __kmem_cache_shutdown()"); |
| } |
| } |
| spin_unlock_irq(&n->list_lock); |
| |
| list_for_each_entry_safe(page, h, &discard, lru) |
| discard_slab(s, page); |
| } |
| |
| /* |
| * Release all resources used by a slab cache. |
| */ |
| int __kmem_cache_shutdown(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| flush_all(s); |
| /* Attempt to free all objects */ |
| for_each_kmem_cache_node(s, node, n) { |
| free_partial(s, n); |
| if (n->nr_partial || slabs_node(s, node)) |
| return 1; |
| } |
| sysfs_slab_remove(s); |
| return 0; |
| } |
| |
| /******************************************************************** |
| * Kmalloc subsystem |
| *******************************************************************/ |
| |
| static int __init setup_slub_min_order(char *str) |
| { |
| get_option(&str, &slub_min_order); |
| |
| return 1; |
| } |
| |
| __setup("slub_min_order=", setup_slub_min_order); |
| |
| static int __init setup_slub_max_order(char *str) |
| { |
| get_option(&str, &slub_max_order); |
| slub_max_order = min(slub_max_order, MAX_ORDER - 1); |
| |
| return 1; |
| } |
| |
| __setup("slub_max_order=", setup_slub_max_order); |
| |
| static int __init setup_slub_min_objects(char *str) |
| { |
| get_option(&str, &slub_min_objects); |
| |
| return 1; |
| } |
| |
| __setup("slub_min_objects=", setup_slub_min_objects); |
| |
| void *__kmalloc(size_t size, gfp_t flags) |
| { |
| struct kmem_cache *s; |
| void *ret; |
| |
| if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
| return kmalloc_large(size, flags); |
| |
| s = kmalloc_slab(size, flags); |
| |
| if (unlikely(ZERO_OR_NULL_PTR(s))) |
| return s; |
| |
| ret = slab_alloc(s, flags, _RET_IP_); |
| |
| trace_kmalloc(_RET_IP_, ret, size, s->size, flags); |
| |
| kasan_kmalloc(s, ret, size, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(__kmalloc); |
| |
| #ifdef CONFIG_NUMA |
| static void *kmalloc_large_node(size_t size, gfp_t flags, int node) |
| { |
| struct page *page; |
| void *ptr = NULL; |
| |
| flags |= __GFP_COMP; |
| page = alloc_pages_node(node, flags, get_order(size)); |
| if (page) |
| ptr = page_address(page); |
| |
| kmalloc_large_node_hook(ptr, size, flags); |
| return ptr; |
| } |
| |
| void *__kmalloc_node(size_t size, gfp_t flags, int node) |
| { |
| struct kmem_cache *s; |
| void *ret; |
| |
| if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
| ret = kmalloc_large_node(size, flags, node); |
| |
| trace_kmalloc_node(_RET_IP_, ret, |
| size, PAGE_SIZE << get_order(size), |
| flags, node); |
| |
| return ret; |
| } |
| |
| s = kmalloc_slab(size, flags); |
| |
| if (unlikely(ZERO_OR_NULL_PTR(s))) |
| return s; |
| |
| ret = slab_alloc_node(s, flags, node, _RET_IP_); |
| |
| trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node); |
| |
| kasan_kmalloc(s, ret, size, flags); |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(__kmalloc_node); |
| #endif |
| |
| #ifdef CONFIG_HARDENED_USERCOPY |
| /* |
| * Rejects objects that are incorrectly sized. |
| * |
| * Returns NULL if check passes, otherwise const char * to name of cache |
| * to indicate an error. |
| */ |
| const char *__check_heap_object(const void *ptr, unsigned long n, |
| struct page *page) |
| { |
| struct kmem_cache *s; |
| unsigned long offset; |
| size_t object_size; |
| |
| /* Find object and usable object size. */ |
| s = page->slab_cache; |
| object_size = slab_ksize(s); |
| |
| /* Reject impossible pointers. */ |
| if (ptr < page_address(page)) |
| return s->name; |
| |
| /* Find offset within object. */ |
| offset = (ptr - page_address(page)) % s->size; |
| |
| /* Adjust for redzone and reject if within the redzone. */ |
| if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) { |
| if (offset < s->red_left_pad) |
| return s->name; |
| offset -= s->red_left_pad; |
| } |
| |
| /* Allow address range falling entirely within object size. */ |
| if (offset <= object_size && n <= object_size - offset) |
| return NULL; |
| |
| return s->name; |
| } |
| #endif /* CONFIG_HARDENED_USERCOPY */ |
| |
| static size_t __ksize(const void *object) |
| { |
| struct page *page; |
| |
| if (unlikely(object == ZERO_SIZE_PTR)) |
| return 0; |
| |
| page = virt_to_head_page(object); |
| |
| if (unlikely(!PageSlab(page))) { |
| WARN_ON(!PageCompound(page)); |
| return PAGE_SIZE << compound_order(page); |
| } |
| |
| return slab_ksize(page->slab_cache); |
| } |
| |
| size_t ksize(const void *object) |
| { |
| size_t size = __ksize(object); |
| /* We assume that ksize callers could use whole allocated area, |
| * so we need to unpoison this area. |
| */ |
| kasan_unpoison_shadow(object, size); |
| return size; |
| } |
| EXPORT_SYMBOL(ksize); |
| |
| void kfree(const void *x) |
| { |
| struct page *page; |
| void *object = (void *)x; |
| |
| trace_kfree(_RET_IP_, x); |
| |
| if (unlikely(ZERO_OR_NULL_PTR(x))) |
| return; |
| |
| page = virt_to_head_page(x); |
| if (unlikely(!PageSlab(page))) { |
| BUG_ON(!PageCompound(page)); |
| kfree_hook(x); |
| __free_pages(page, compound_order(page)); |
| return; |
| } |
| slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_); |
| } |
| EXPORT_SYMBOL(kfree); |
| |
| #define SHRINK_PROMOTE_MAX 32 |
| |
| /* |
| * kmem_cache_shrink discards empty slabs and promotes the slabs filled |
| * up most to the head of the partial lists. New allocations will then |
| * fill those up and thus they can be removed from the partial lists. |
| * |
| * The slabs with the least items are placed last. This results in them |
| * being allocated from last increasing the chance that the last objects |
| * are freed in them. |
| */ |
| int __kmem_cache_shrink(struct kmem_cache *s) |
| { |
| int node; |
| int i; |
| struct kmem_cache_node *n; |
| struct page *page; |
| struct page *t; |
| struct list_head discard; |
| struct list_head promote[SHRINK_PROMOTE_MAX]; |
| unsigned long flags; |
| int ret = 0; |
| |
| flush_all(s); |
| for_each_kmem_cache_node(s, node, n) { |
| INIT_LIST_HEAD(&discard); |
| for (i = 0; i < SHRINK_PROMOTE_MAX; i++) |
| INIT_LIST_HEAD(promote + i); |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| /* |
| * Build lists of slabs to discard or promote. |
| * |
| * Note that concurrent frees may occur while we hold the |
| * list_lock. page->inuse here is the upper limit. |
| */ |
| list_for_each_entry_safe(page, t, &n->partial, lru) { |
| int free = page->objects - page->inuse; |
| |
| /* Do not reread page->inuse */ |
| barrier(); |
| |
| /* We do not keep full slabs on the list */ |
| BUG_ON(free <= 0); |
| |
| if (free == page->objects) { |
| list_move(&page->lru, &discard); |
| n->nr_partial--; |
| } else if (free <= SHRINK_PROMOTE_MAX) |
| list_move(&page->lru, promote + free - 1); |
| } |
| |
| /* |
| * Promote the slabs filled up most to the head of the |
| * partial list. |
| */ |
| for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--) |
| list_splice(promote + i, &n->partial); |
| |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| |
| /* Release empty slabs */ |
| list_for_each_entry_safe(page, t, &discard, lru) |
| discard_slab(s, page); |
| |
| if (slabs_node(s, node)) |
| ret = 1; |
| } |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_MEMCG |
| static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s) |
| { |
| /* |
| * Called with all the locks held after a sched RCU grace period. |
| * Even if @s becomes empty after shrinking, we can't know that @s |
| * doesn't have allocations already in-flight and thus can't |
| * destroy @s until the associated memcg is released. |
| * |
| * However, let's remove the sysfs files for empty caches here. |
| * Each cache has a lot of interface files which aren't |
| * particularly useful for empty draining caches; otherwise, we can |
| * easily end up with millions of unnecessary sysfs files on |
| * systems which have a lot of memory and transient cgroups. |
| */ |
| if (!__kmem_cache_shrink(s)) |
| sysfs_slab_remove(s); |
| } |
| |
| void __kmemcg_cache_deactivate(struct kmem_cache *s) |
| { |
| /* |
| * Disable empty slabs caching. Used to avoid pinning offline |
| * memory cgroups by kmem pages that can be freed. |
| */ |
| slub_set_cpu_partial(s, 0); |
| s->min_partial = 0; |
| |
| /* |
| * s->cpu_partial is checked locklessly (see put_cpu_partial), so |
| * we have to make sure the change is visible before shrinking. |
| */ |
| slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu); |
| } |
| #endif |
| |
| static int slab_mem_going_offline_callback(void *arg) |
| { |
| struct kmem_cache *s; |
| |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) |
| __kmem_cache_shrink(s); |
| mutex_unlock(&slab_mutex); |
| |
| return 0; |
| } |
| |
| static void slab_mem_offline_callback(void *arg) |
| { |
| struct kmem_cache_node *n; |
| struct kmem_cache *s; |
| struct memory_notify *marg = arg; |
| int offline_node; |
| |
| offline_node = marg->status_change_nid_normal; |
| |
| /* |
| * If the node still has available memory. we need kmem_cache_node |
| * for it yet. |
| */ |
| if (offline_node < 0) |
| return; |
| |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) { |
| n = get_node(s, offline_node); |
| if (n) { |
| /* |
| * if n->nr_slabs > 0, slabs still exist on the node |
| * that is going down. We were unable to free them, |
| * and offline_pages() function shouldn't call this |
| * callback. So, we must fail. |
| */ |
| BUG_ON(slabs_node(s, offline_node)); |
| |
| s->node[offline_node] = NULL; |
| kmem_cache_free(kmem_cache_node, n); |
| } |
| } |
| mutex_unlock(&slab_mutex); |
| } |
| |
| static int slab_mem_going_online_callback(void *arg) |
| { |
| struct kmem_cache_node *n; |
| struct kmem_cache *s; |
| struct memory_notify *marg = arg; |
| int nid = marg->status_change_nid_normal; |
| int ret = 0; |
| |
| /* |
| * If the node's memory is already available, then kmem_cache_node is |
| * already created. Nothing to do. |
| */ |
| if (nid < 0) |
| return 0; |
| |
| /* |
| * We are bringing a node online. No memory is available yet. We must |
| * allocate a kmem_cache_node structure in order to bring the node |
| * online. |
| */ |
| mutex_lock(&slab_mutex); |
| list_for_each_entry(s, &slab_caches, list) { |
| /* |
| * XXX: kmem_cache_alloc_node will fallback to other nodes |
| * since memory is not yet available from the node that |
| * is brought up. |
| */ |
| n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL); |
| if (!n) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| init_kmem_cache_node(n); |
| s->node[nid] = n; |
| } |
| out: |
| mutex_unlock(&slab_mutex); |
| return ret; |
| } |
| |
| static int slab_memory_callback(struct notifier_block *self, |
| unsigned long action, void *arg) |
| { |
| int ret = 0; |
| |
| switch (action) { |
| case MEM_GOING_ONLINE: |
| ret = slab_mem_going_online_callback(arg); |
| break; |
| case MEM_GOING_OFFLINE: |
| ret = slab_mem_going_offline_callback(arg); |
| break; |
| case MEM_OFFLINE: |
| case MEM_CANCEL_ONLINE: |
| slab_mem_offline_callback(arg); |
| break; |
| case MEM_ONLINE: |
| case MEM_CANCEL_OFFLINE: |
| break; |
| } |
| if (ret) |
| ret = notifier_from_errno(ret); |
| else |
| ret = NOTIFY_OK; |
| return ret; |
| } |
| |
| static struct notifier_block slab_memory_callback_nb = { |
| .notifier_call = slab_memory_callback, |
| .priority = SLAB_CALLBACK_PRI, |
| }; |
| |
| /******************************************************************** |
| * Basic setup of slabs |
| *******************************************************************/ |
| |
| /* |
| * Used for early kmem_cache structures that were allocated using |
| * the page allocator. Allocate them properly then fix up the pointers |
| * that may be pointing to the wrong kmem_cache structure. |
| */ |
| |
| static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache) |
| { |
| int node; |
| struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT); |
| struct kmem_cache_node *n; |
| |
| memcpy(s, static_cache, kmem_cache->object_size); |
| |
| /* |
| * This runs very early, and only the boot processor is supposed to be |
| * up. Even if it weren't true, IRQs are not up so we couldn't fire |
| * IPIs around. |
| */ |
| __flush_cpu_slab(s, smp_processor_id()); |
| for_each_kmem_cache_node(s, node, n) { |
| struct page *p; |
| |
| list_for_each_entry(p, &n->partial, lru) |
| p->slab_cache = s; |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| list_for_each_entry(p, &n->full, lru) |
| p->slab_cache = s; |
| #endif |
| } |
| slab_init_memcg_params(s); |
| list_add(&s->list, &slab_caches); |
| memcg_link_cache(s); |
| return s; |
| } |
| |
| void __init kmem_cache_init(void) |
| { |
| static __initdata struct kmem_cache boot_kmem_cache, |
| boot_kmem_cache_node; |
| |
| if (debug_guardpage_minorder()) |
| slub_max_order = 0; |
| |
| kmem_cache_node = &boot_kmem_cache_node; |
| kmem_cache = &boot_kmem_cache; |
| |
| create_boot_cache(kmem_cache_node, "kmem_cache_node", |
| sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN); |
| |
| register_hotmemory_notifier(&slab_memory_callback_nb); |
| |
| /* Able to allocate the per node structures */ |
| slab_state = PARTIAL; |
| |
| create_boot_cache(kmem_cache, "kmem_cache", |
| offsetof(struct kmem_cache, node) + |
| nr_node_ids * sizeof(struct kmem_cache_node *), |
| SLAB_HWCACHE_ALIGN); |
| |
| kmem_cache = bootstrap(&boot_kmem_cache); |
| |
| /* |
| * Allocate kmem_cache_node properly from the kmem_cache slab. |
| * kmem_cache_node is separately allocated so no need to |
| * update any list pointers. |
| */ |
| kmem_cache_node = bootstrap(&boot_kmem_cache_node); |
| |
| /* Now we can use the kmem_cache to allocate kmalloc slabs */ |
| setup_kmalloc_cache_index_table(); |
| create_kmalloc_caches(0); |
| |
| /* Setup random freelists for each cache */ |
| init_freelist_randomization(); |
| |
| cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL, |
| slub_cpu_dead); |
| |
| pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n", |
| cache_line_size(), |
| slub_min_order, slub_max_order, slub_min_objects, |
| nr_cpu_ids, nr_node_ids); |
| } |
| |
| void __init kmem_cache_init_late(void) |
| { |
| } |
| |
| struct kmem_cache * |
| __kmem_cache_alias(const char *name, size_t size, size_t align, |
| unsigned long flags, void (*ctor)(void *)) |
| { |
| struct kmem_cache *s, *c; |
| |
| s = find_mergeable(size, align, flags, name, ctor); |
| if (s) { |
| s->refcount++; |
| |
| /* |
| * Adjust the object sizes so that we clear |
| * the complete object on kzalloc. |
| */ |
| s->object_size = max(s->object_size, (int)size); |
| s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *))); |
| |
| for_each_memcg_cache(c, s) { |
| c->object_size = s->object_size; |
| c->inuse = max_t(int, c->inuse, |
| ALIGN(size, sizeof(void *))); |
| } |
| |
| if (sysfs_slab_alias(s, name)) { |
| s->refcount--; |
| s = NULL; |
| } |
| } |
| |
| return s; |
| } |
| |
| int __kmem_cache_create(struct kmem_cache *s, unsigned long flags) |
| { |
| int err; |
| |
| err = kmem_cache_open(s, flags); |
| if (err) |
| return err; |
| |
| /* Mutex is not taken during early boot */ |
| if (slab_state <= UP) |
| return 0; |
| |
| memcg_propagate_slab_attrs(s); |
| err = sysfs_slab_add(s); |
| if (err) |
| __kmem_cache_release(s); |
| |
| return err; |
| } |
| |
| void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller) |
| { |
| struct kmem_cache *s; |
| void *ret; |
| |
| if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) |
| return kmalloc_large(size, gfpflags); |
| |
| s = kmalloc_slab(size, gfpflags); |
| |
| if (unlikely(ZERO_OR_NULL_PTR(s))) |
| return s; |
| |
| ret = slab_alloc(s, gfpflags, caller); |
| |
| /* Honor the call site pointer we received. */ |
| trace_kmalloc(caller, ret, size, s->size, gfpflags); |
| |
| return ret; |
| } |
| |
| #ifdef CONFIG_NUMA |
| void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags, |
| int node, unsigned long caller) |
| { |
| struct kmem_cache *s; |
| void *ret; |
| |
| if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) { |
| ret = kmalloc_large_node(size, gfpflags, node); |
| |
| trace_kmalloc_node(caller, ret, |
| size, PAGE_SIZE << get_order(size), |
| gfpflags, node); |
| |
| return ret; |
| } |
| |
| s = kmalloc_slab(size, gfpflags); |
| |
| if (unlikely(ZERO_OR_NULL_PTR(s))) |
| return s; |
| |
| ret = slab_alloc_node(s, gfpflags, node, caller); |
| |
| /* Honor the call site pointer we received. */ |
| trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node); |
| |
| return ret; |
| } |
| #endif |
| |
| #ifdef CONFIG_SYSFS |
| static int count_inuse(struct page *page) |
| { |
| return page->inuse; |
| } |
| |
| static int count_total(struct page *page) |
| { |
| return page->objects; |
| } |
| #endif |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static int validate_slab(struct kmem_cache *s, struct page *page, |
| unsigned long *map) |
| { |
| void *p; |
| void *addr = page_address(page); |
| |
| if (!check_slab(s, page) || |
| !on_freelist(s, page, NULL)) |
| return 0; |
| |
| /* Now we know that a valid freelist exists */ |
| bitmap_zero(map, page->objects); |
| |
| get_map(s, page, map); |
| for_each_object(p, s, addr, page->objects) { |
| if (test_bit(slab_index(p, s, addr), map)) |
| if (!check_object(s, page, p, SLUB_RED_INACTIVE)) |
| return 0; |
| } |
| |
| for_each_object(p, s, addr, page->objects) |
| if (!test_bit(slab_index(p, s, addr), map)) |
| if (!check_object(s, page, p, SLUB_RED_ACTIVE)) |
| return 0; |
| return 1; |
| } |
| |
| static void validate_slab_slab(struct kmem_cache *s, struct page *page, |
| unsigned long *map) |
| { |
| slab_lock(page); |
| validate_slab(s, page, map); |
| slab_unlock(page); |
| } |
| |
| static int validate_slab_node(struct kmem_cache *s, |
| struct kmem_cache_node *n, unsigned long *map) |
| { |
| unsigned long count = 0; |
| struct page *page; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| |
| list_for_each_entry(page, &n->partial, lru) { |
| validate_slab_slab(s, page, map); |
| count++; |
| } |
| if (count != n->nr_partial) |
| pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n", |
| s->name, count, n->nr_partial); |
| |
| if (!(s->flags & SLAB_STORE_USER)) |
| goto out; |
| |
| list_for_each_entry(page, &n->full, lru) { |
| validate_slab_slab(s, page, map); |
| count++; |
| } |
| if (count != atomic_long_read(&n->nr_slabs)) |
| pr_err("SLUB: %s %ld slabs counted but counter=%ld\n", |
| s->name, count, atomic_long_read(&n->nr_slabs)); |
| |
| out: |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| return count; |
| } |
| |
| static long validate_slab_cache(struct kmem_cache *s) |
| { |
| int node; |
| unsigned long count = 0; |
| unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
| sizeof(unsigned long), GFP_KERNEL); |
| struct kmem_cache_node *n; |
| |
| if (!map) |
| return -ENOMEM; |
| |
| flush_all(s); |
| for_each_kmem_cache_node(s, node, n) |
| count += validate_slab_node(s, n, map); |
| kfree(map); |
| return count; |
| } |
| /* |
| * Generate lists of code addresses where slabcache objects are allocated |
| * and freed. |
| */ |
| |
| struct location { |
| unsigned long count; |
| unsigned long addr; |
| long long sum_time; |
| long min_time; |
| long max_time; |
| long min_pid; |
| long max_pid; |
| DECLARE_BITMAP(cpus, NR_CPUS); |
| nodemask_t nodes; |
| }; |
| |
| struct loc_track { |
| unsigned long max; |
| unsigned long count; |
| struct location *loc; |
| }; |
| |
| static void free_loc_track(struct loc_track *t) |
| { |
| if (t->max) |
| free_pages((unsigned long)t->loc, |
| get_order(sizeof(struct location) * t->max)); |
| } |
| |
| static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags) |
| { |
| struct location *l; |
| int order; |
| |
| order = get_order(sizeof(struct location) * max); |
| |
| l = (void *)__get_free_pages(flags, order); |
| if (!l) |
| return 0; |
| |
| if (t->count) { |
| memcpy(l, t->loc, sizeof(struct location) * t->count); |
| free_loc_track(t); |
| } |
| t->max = max; |
| t->loc = l; |
| return 1; |
| } |
| |
| static int add_location(struct loc_track *t, struct kmem_cache *s, |
| const struct track *track) |
| { |
| long start, end, pos; |
| struct location *l; |
| unsigned long caddr; |
| unsigned long age = jiffies - track->when; |
| |
| start = -1; |
| end = t->count; |
| |
| for ( ; ; ) { |
| pos = start + (end - start + 1) / 2; |
| |
| /* |
| * There is nothing at "end". If we end up there |
| * we need to add something to before end. |
| */ |
| if (pos == end) |
| break; |
| |
| caddr = t->loc[pos].addr; |
| if (track->addr == caddr) { |
| |
| l = &t->loc[pos]; |
| l->count++; |
| if (track->when) { |
| l->sum_time += age; |
| if (age < l->min_time) |
| l->min_time = age; |
| if (age > l->max_time) |
| l->max_time = age; |
| |
| if (track->pid < l->min_pid) |
| l->min_pid = track->pid; |
| if (track->pid > l->max_pid) |
| l->max_pid = track->pid; |
| |
| cpumask_set_cpu(track->cpu, |
| to_cpumask(l->cpus)); |
| } |
| node_set(page_to_nid(virt_to_page(track)), l->nodes); |
| return 1; |
| } |
| |
| if (track->addr < caddr) |
| end = pos; |
| else |
| start = pos; |
| } |
| |
| /* |
| * Not found. Insert new tracking element. |
| */ |
| if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC)) |
| return 0; |
| |
| l = t->loc + pos; |
| if (pos < t->count) |
| memmove(l + 1, l, |
| (t->count - pos) * sizeof(struct location)); |
| t->count++; |
| l->count = 1; |
| l->addr = track->addr; |
| l->sum_time = age; |
| l->min_time = age; |
| l->max_time = age; |
| l->min_pid = track->pid; |
| l->max_pid = track->pid; |
| cpumask_clear(to_cpumask(l->cpus)); |
| cpumask_set_cpu(track->cpu, to_cpumask(l->cpus)); |
| nodes_clear(l->nodes); |
| node_set(page_to_nid(virt_to_page(track)), l->nodes); |
| return 1; |
| } |
| |
| static void process_slab(struct loc_track *t, struct kmem_cache *s, |
| struct page *page, enum track_item alloc, |
| unsigned long *map) |
| { |
| void *addr = page_address(page); |
| void *p; |
| |
| bitmap_zero(map, page->objects); |
| get_map(s, page, map); |
| |
| for_each_object(p, s, addr, page->objects) |
| if (!test_bit(slab_index(p, s, addr), map)) |
| add_location(t, s, get_track(s, p, alloc)); |
| } |
| |
| static int list_locations(struct kmem_cache *s, char *buf, |
| enum track_item alloc) |
| { |
| int len = 0; |
| unsigned long i; |
| struct loc_track t = { 0, 0, NULL }; |
| int node; |
| unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) * |
| sizeof(unsigned long), GFP_KERNEL); |
| struct kmem_cache_node *n; |
| |
| if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location), |
| GFP_KERNEL)) { |
| kfree(map); |
| return sprintf(buf, "Out of memory\n"); |
| } |
| /* Push back cpu slabs */ |
| flush_all(s); |
| |
| for_each_kmem_cache_node(s, node, n) { |
| unsigned long flags; |
| struct page *page; |
| |
| if (!atomic_long_read(&n->nr_slabs)) |
| continue; |
| |
| spin_lock_irqsave(&n->list_lock, flags); |
| list_for_each_entry(page, &n->partial, lru) |
| process_slab(&t, s, page, alloc, map); |
| list_for_each_entry(page, &n->full, lru) |
| process_slab(&t, s, page, alloc, map); |
| spin_unlock_irqrestore(&n->list_lock, flags); |
| } |
| |
| for (i = 0; i < t.count; i++) { |
| struct location *l = &t.loc[i]; |
| |
| if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100) |
| break; |
| len += sprintf(buf + len, "%7ld ", l->count); |
| |
| if (l->addr) |
| len += sprintf(buf + len, "%pS", (void *)l->addr); |
| else |
| len += sprintf(buf + len, "<not-available>"); |
| |
| if (l->sum_time != l->min_time) { |
| len += sprintf(buf + len, " age=%ld/%ld/%ld", |
| l->min_time, |
| (long)div_u64(l->sum_time, l->count), |
| l->max_time); |
| } else |
| len += sprintf(buf + len, " age=%ld", |
| l->min_time); |
| |
| if (l->min_pid != l->max_pid) |
| len += sprintf(buf + len, " pid=%ld-%ld", |
| l->min_pid, l->max_pid); |
| else |
| len += sprintf(buf + len, " pid=%ld", |
| l->min_pid); |
| |
| if (num_online_cpus() > 1 && |
| !cpumask_empty(to_cpumask(l->cpus)) && |
| len < PAGE_SIZE - 60) |
| len += scnprintf(buf + len, PAGE_SIZE - len - 50, |
| " cpus=%*pbl", |
| cpumask_pr_args(to_cpumask(l->cpus))); |
| |
| if (nr_online_nodes > 1 && !nodes_empty(l->nodes) && |
| len < PAGE_SIZE - 60) |
| len += scnprintf(buf + len, PAGE_SIZE - len - 50, |
| " nodes=%*pbl", |
| nodemask_pr_args(&l->nodes)); |
| |
| len += sprintf(buf + len, "\n"); |
| } |
| |
| free_loc_track(&t); |
| kfree(map); |
| if (!t.count) |
| len += sprintf(buf, "No data\n"); |
| return len; |
| } |
| #endif |
| |
| #ifdef SLUB_RESILIENCY_TEST |
| static void __init resiliency_test(void) |
| { |
| u8 *p; |
| |
| BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10); |
| |
| pr_err("SLUB resiliency testing\n"); |
| pr_err("-----------------------\n"); |
| pr_err("A. Corruption after allocation\n"); |
| |
| p = kzalloc(16, GFP_KERNEL); |
| p[16] = 0x12; |
| pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n", |
| p + 16); |
| |
| validate_slab_cache(kmalloc_caches[4]); |
| |
| /* Hmmm... The next two are dangerous */ |
| p = kzalloc(32, GFP_KERNEL); |
| p[32 + sizeof(void *)] = 0x34; |
| pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n", |
| p); |
| pr_err("If allocated object is overwritten then not detectable\n\n"); |
| |
| validate_slab_cache(kmalloc_caches[5]); |
| p = kzalloc(64, GFP_KERNEL); |
| p += 64 + (get_cycles() & 0xff) * sizeof(void *); |
| *p = 0x56; |
| pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n", |
| p); |
| pr_err("If allocated object is overwritten then not detectable\n\n"); |
| validate_slab_cache(kmalloc_caches[6]); |
| |
| pr_err("\nB. Corruption after free\n"); |
| p = kzalloc(128, GFP_KERNEL); |
| kfree(p); |
| *p = 0x78; |
| pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p); |
| validate_slab_cache(kmalloc_caches[7]); |
| |
| p = kzalloc(256, GFP_KERNEL); |
| kfree(p); |
| p[50] = 0x9a; |
| pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p); |
| validate_slab_cache(kmalloc_caches[8]); |
| |
| p = kzalloc(512, GFP_KERNEL); |
| kfree(p); |
| p[512] = 0xab; |
| pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p); |
| validate_slab_cache(kmalloc_caches[9]); |
| } |
| #else |
| #ifdef CONFIG_SYSFS |
| static void resiliency_test(void) {}; |
| #endif |
| #endif |
| |
| #ifdef CONFIG_SYSFS |
| enum slab_stat_type { |
| SL_ALL, /* All slabs */ |
| SL_PARTIAL, /* Only partially allocated slabs */ |
| SL_CPU, /* Only slabs used for cpu caches */ |
| SL_OBJECTS, /* Determine allocated objects not slabs */ |
| SL_TOTAL /* Determine object capacity not slabs */ |
| }; |
| |
| #define SO_ALL (1 << SL_ALL) |
| #define SO_PARTIAL (1 << SL_PARTIAL) |
| #define SO_CPU (1 << SL_CPU) |
| #define SO_OBJECTS (1 << SL_OBJECTS) |
| #define SO_TOTAL (1 << SL_TOTAL) |
| |
| #ifdef CONFIG_MEMCG |
| static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON); |
| |
| static int __init setup_slub_memcg_sysfs(char *str) |
| { |
| int v; |
| |
| if (get_option(&str, &v) > 0) |
| memcg_sysfs_enabled = v; |
| |
| return 1; |
| } |
| |
| __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs); |
| #endif |
| |
| static ssize_t show_slab_objects(struct kmem_cache *s, |
| char *buf, unsigned long flags) |
| { |
| unsigned long total = 0; |
| int node; |
| int x; |
| unsigned long *nodes; |
| |
| nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL); |
| if (!nodes) |
| return -ENOMEM; |
| |
| if (flags & SO_CPU) { |
| int cpu; |
| |
| for_each_possible_cpu(cpu) { |
| struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, |
| cpu); |
| int node; |
| struct page *page; |
| |
| page = READ_ONCE(c->page); |
| if (!page) |
| continue; |
| |
| node = page_to_nid(page); |
| if (flags & SO_TOTAL) |
| x = page->objects; |
| else if (flags & SO_OBJECTS) |
| x = page->inuse; |
| else |
| x = 1; |
| |
| total += x; |
| nodes[node] += x; |
| |
| page = slub_percpu_partial_read_once(c); |
| if (page) { |
| node = page_to_nid(page); |
| if (flags & SO_TOTAL) |
| WARN_ON_ONCE(1); |
| else if (flags & SO_OBJECTS) |
| WARN_ON_ONCE(1); |
| else |
| x = page->pages; |
| total += x; |
| nodes[node] += x; |
| } |
| } |
| } |
| |
| /* |
| * It is impossible to take "mem_hotplug_lock" here with "kernfs_mutex" |
| * already held which will conflict with an existing lock order: |
| * |
| * mem_hotplug_lock->slab_mutex->kernfs_mutex |
| * |
| * We don't really need mem_hotplug_lock (to hold off |
| * slab_mem_going_offline_callback) here because slab's memory hot |
| * unplug code doesn't destroy the kmem_cache->node[] data. |
| */ |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| if (flags & SO_ALL) { |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| |
| if (flags & SO_TOTAL) |
| x = atomic_long_read(&n->total_objects); |
| else if (flags & SO_OBJECTS) |
| x = atomic_long_read(&n->total_objects) - |
| count_partial(n, count_free); |
| else |
| x = atomic_long_read(&n->nr_slabs); |
| total += x; |
| nodes[node] += x; |
| } |
| |
| } else |
| #endif |
| if (flags & SO_PARTIAL) { |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| if (flags & SO_TOTAL) |
| x = count_partial(n, count_total); |
| else if (flags & SO_OBJECTS) |
| x = count_partial(n, count_inuse); |
| else |
| x = n->nr_partial; |
| total += x; |
| nodes[node] += x; |
| } |
| } |
| x = sprintf(buf, "%lu", total); |
| #ifdef CONFIG_NUMA |
| for (node = 0; node < nr_node_ids; node++) |
| if (nodes[node]) |
| x += sprintf(buf + x, " N%d=%lu", |
| node, nodes[node]); |
| #endif |
| kfree(nodes); |
| return x + sprintf(buf + x, "\n"); |
| } |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static int any_slab_objects(struct kmem_cache *s) |
| { |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) |
| if (atomic_long_read(&n->total_objects)) |
| return 1; |
| |
| return 0; |
| } |
| #endif |
| |
| #define to_slab_attr(n) container_of(n, struct slab_attribute, attr) |
| #define to_slab(n) container_of(n, struct kmem_cache, kobj) |
| |
| struct slab_attribute { |
| struct attribute attr; |
| ssize_t (*show)(struct kmem_cache *s, char *buf); |
| ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count); |
| }; |
| |
| #define SLAB_ATTR_RO(_name) \ |
| static struct slab_attribute _name##_attr = \ |
| __ATTR(_name, 0400, _name##_show, NULL) |
| |
| #define SLAB_ATTR(_name) \ |
| static struct slab_attribute _name##_attr = \ |
| __ATTR(_name, 0600, _name##_show, _name##_store) |
| |
| static ssize_t slab_size_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", s->size); |
| } |
| SLAB_ATTR_RO(slab_size); |
| |
| static ssize_t align_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", s->align); |
| } |
| SLAB_ATTR_RO(align); |
| |
| static ssize_t object_size_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", s->object_size); |
| } |
| SLAB_ATTR_RO(object_size); |
| |
| static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", oo_objects(s->oo)); |
| } |
| SLAB_ATTR_RO(objs_per_slab); |
| |
| static ssize_t order_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| unsigned long order; |
| int err; |
| |
| err = kstrtoul(buf, 10, &order); |
| if (err) |
| return err; |
| |
| if (order > slub_max_order || order < slub_min_order) |
| return -EINVAL; |
| |
| calculate_sizes(s, order); |
| return length; |
| } |
| |
| static ssize_t order_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", oo_order(s->oo)); |
| } |
| SLAB_ATTR(order); |
| |
| static ssize_t min_partial_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%lu\n", s->min_partial); |
| } |
| |
| static ssize_t min_partial_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| unsigned long min; |
| int err; |
| |
| err = kstrtoul(buf, 10, &min); |
| if (err) |
| return err; |
| |
| set_min_partial(s, min); |
| return length; |
| } |
| SLAB_ATTR(min_partial); |
| |
| static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%u\n", slub_cpu_partial(s)); |
| } |
| |
| static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| unsigned int objects; |
| int err; |
| |
| err = kstrtouint(buf, 10, &objects); |
| if (err) |
| return err; |
| if (objects && !kmem_cache_has_cpu_partial(s)) |
| return -EINVAL; |
| |
| slub_set_cpu_partial(s, objects); |
| flush_all(s); |
| return length; |
| } |
| SLAB_ATTR(cpu_partial); |
| |
| static ssize_t ctor_show(struct kmem_cache *s, char *buf) |
| { |
| if (!s->ctor) |
| return 0; |
| return sprintf(buf, "%pS\n", s->ctor); |
| } |
| SLAB_ATTR_RO(ctor); |
| |
| static ssize_t aliases_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1); |
| } |
| SLAB_ATTR_RO(aliases); |
| |
| static ssize_t partial_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_PARTIAL); |
| } |
| SLAB_ATTR_RO(partial); |
| |
| static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_CPU); |
| } |
| SLAB_ATTR_RO(cpu_slabs); |
| |
| static ssize_t objects_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS); |
| } |
| SLAB_ATTR_RO(objects); |
| |
| static ssize_t objects_partial_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS); |
| } |
| SLAB_ATTR_RO(objects_partial); |
| |
| static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf) |
| { |
| int objects = 0; |
| int pages = 0; |
| int cpu; |
| int len; |
| |
| for_each_online_cpu(cpu) { |
| struct page *page; |
| |
| page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
| |
| if (page) { |
| pages += page->pages; |
| objects += page->pobjects; |
| } |
| } |
| |
| len = sprintf(buf, "%d(%d)", objects, pages); |
| |
| #ifdef CONFIG_SMP |
| for_each_online_cpu(cpu) { |
| struct page *page; |
| |
| page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu)); |
| |
| if (page && len < PAGE_SIZE - 20) |
| len += sprintf(buf + len, " C%d=%d(%d)", cpu, |
| page->pobjects, page->pages); |
| } |
| #endif |
| return len + sprintf(buf + len, "\n"); |
| } |
| SLAB_ATTR_RO(slabs_cpu_partial); |
| |
| static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT)); |
| } |
| |
| static ssize_t reclaim_account_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| s->flags &= ~SLAB_RECLAIM_ACCOUNT; |
| if (buf[0] == '1') |
| s->flags |= SLAB_RECLAIM_ACCOUNT; |
| return length; |
| } |
| SLAB_ATTR(reclaim_account); |
| |
| static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN)); |
| } |
| SLAB_ATTR_RO(hwcache_align); |
| |
| #ifdef CONFIG_ZONE_DMA |
| static ssize_t cache_dma_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA)); |
| } |
| SLAB_ATTR_RO(cache_dma); |
| #endif |
| |
| static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU)); |
| } |
| SLAB_ATTR_RO(destroy_by_rcu); |
| |
| static ssize_t reserved_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", s->reserved); |
| } |
| SLAB_ATTR_RO(reserved); |
| |
| #ifdef CONFIG_SLUB_DEBUG |
| static ssize_t slabs_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_ALL); |
| } |
| SLAB_ATTR_RO(slabs); |
| |
| static ssize_t total_objects_show(struct kmem_cache *s, char *buf) |
| { |
| return show_slab_objects(s, buf, SO_ALL|SO_TOTAL); |
| } |
| SLAB_ATTR_RO(total_objects); |
| |
| static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS)); |
| } |
| |
| static ssize_t sanity_checks_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| s->flags &= ~SLAB_CONSISTENCY_CHECKS; |
| if (buf[0] == '1') { |
| s->flags &= ~__CMPXCHG_DOUBLE; |
| s->flags |= SLAB_CONSISTENCY_CHECKS; |
| } |
| return length; |
| } |
| SLAB_ATTR(sanity_checks); |
| |
| static ssize_t trace_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE)); |
| } |
| |
| static ssize_t trace_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| /* |
| * Tracing a merged cache is going to give confusing results |
| * as well as cause other issues like converting a mergeable |
| * cache into an umergeable one. |
| */ |
| if (s->refcount > 1) |
| return -EINVAL; |
| |
| s->flags &= ~SLAB_TRACE; |
| if (buf[0] == '1') { |
| s->flags &= ~__CMPXCHG_DOUBLE; |
| s->flags |= SLAB_TRACE; |
| } |
| return length; |
| } |
| SLAB_ATTR(trace); |
| |
| static ssize_t red_zone_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE)); |
| } |
| |
| static ssize_t red_zone_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| if (any_slab_objects(s)) |
| return -EBUSY; |
| |
| s->flags &= ~SLAB_RED_ZONE; |
| if (buf[0] == '1') { |
| s->flags |= SLAB_RED_ZONE; |
| } |
| calculate_sizes(s, -1); |
| return length; |
| } |
| SLAB_ATTR(red_zone); |
| |
| static ssize_t poison_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON)); |
| } |
| |
| static ssize_t poison_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| if (any_slab_objects(s)) |
| return -EBUSY; |
| |
| s->flags &= ~SLAB_POISON; |
| if (buf[0] == '1') { |
| s->flags |= SLAB_POISON; |
| } |
| calculate_sizes(s, -1); |
| return length; |
| } |
| SLAB_ATTR(poison); |
| |
| static ssize_t store_user_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER)); |
| } |
| |
| static ssize_t store_user_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| if (any_slab_objects(s)) |
| return -EBUSY; |
| |
| s->flags &= ~SLAB_STORE_USER; |
| if (buf[0] == '1') { |
| s->flags &= ~__CMPXCHG_DOUBLE; |
| s->flags |= SLAB_STORE_USER; |
| } |
| calculate_sizes(s, -1); |
| return length; |
| } |
| SLAB_ATTR(store_user); |
| |
| static ssize_t validate_show(struct kmem_cache *s, char *buf) |
| { |
| return 0; |
| } |
| |
| static ssize_t validate_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| int ret = -EINVAL; |
| |
| if (buf[0] == '1') { |
| ret = validate_slab_cache(s); |
| if (ret >= 0) |
| ret = length; |
| } |
| return ret; |
| } |
| SLAB_ATTR(validate); |
| |
| static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return -ENOSYS; |
| return list_locations(s, buf, TRACK_ALLOC); |
| } |
| SLAB_ATTR_RO(alloc_calls); |
| |
| static ssize_t free_calls_show(struct kmem_cache *s, char *buf) |
| { |
| if (!(s->flags & SLAB_STORE_USER)) |
| return -ENOSYS; |
| return list_locations(s, buf, TRACK_FREE); |
| } |
| SLAB_ATTR_RO(free_calls); |
| #endif /* CONFIG_SLUB_DEBUG */ |
| |
| #ifdef CONFIG_FAILSLAB |
| static ssize_t failslab_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB)); |
| } |
| |
| static ssize_t failslab_store(struct kmem_cache *s, const char *buf, |
| size_t length) |
| { |
| if (s->refcount > 1) |
| return -EINVAL; |
| |
| s->flags &= ~SLAB_FAILSLAB; |
| if (buf[0] == '1') |
| s->flags |= SLAB_FAILSLAB; |
| return length; |
| } |
| SLAB_ATTR(failslab); |
| #endif |
| |
| static ssize_t shrink_show(struct kmem_cache *s, char *buf) |
| { |
| return 0; |
| } |
| |
| static ssize_t shrink_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| if (buf[0] == '1') |
| kmem_cache_shrink(s); |
| else |
| return -EINVAL; |
| return length; |
| } |
| SLAB_ATTR(shrink); |
| |
| #ifdef CONFIG_NUMA |
| static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf) |
| { |
| return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10); |
| } |
| |
| static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s, |
| const char *buf, size_t length) |
| { |
| unsigned long ratio; |
| int err; |
| |
| err = kstrtoul(buf, 10, &ratio); |
| if (err) |
| return err; |
| |
| if (ratio <= 100) |
| s->remote_node_defrag_ratio = ratio * 10; |
| |
| return length; |
| } |
| SLAB_ATTR(remote_node_defrag_ratio); |
| #endif |
| |
| #ifdef CONFIG_SLUB_STATS |
| static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si) |
| { |
| unsigned long sum = 0; |
| int cpu; |
| int len; |
| int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL); |
| |
| if (!data) |
| return -ENOMEM; |
| |
| for_each_online_cpu(cpu) { |
| unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si]; |
| |
| data[cpu] = x; |
| sum += x; |
| } |
| |
| len = sprintf(buf, "%lu", sum); |
| |
| #ifdef CONFIG_SMP |
| for_each_online_cpu(cpu) { |
| if (data[cpu] && len < PAGE_SIZE - 20) |
| len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]); |
| } |
| #endif |
| kfree(data); |
| return len + sprintf(buf + len, "\n"); |
| } |
| |
| static void clear_stat(struct kmem_cache *s, enum stat_item si) |
| { |
| int cpu; |
| |
| for_each_online_cpu(cpu) |
| per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0; |
| } |
| |
| #define STAT_ATTR(si, text) \ |
| static ssize_t text##_show(struct kmem_cache *s, char *buf) \ |
| { \ |
| return show_stat(s, buf, si); \ |
| } \ |
| static ssize_t text##_store(struct kmem_cache *s, \ |
| const char *buf, size_t length) \ |
| { \ |
| if (buf[0] != '0') \ |
| return -EINVAL; \ |
| clear_stat(s, si); \ |
| return length; \ |
| } \ |
| SLAB_ATTR(text); \ |
| |
| STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath); |
| STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath); |
| STAT_ATTR(FREE_FASTPATH, free_fastpath); |
| STAT_ATTR(FREE_SLOWPATH, free_slowpath); |
| STAT_ATTR(FREE_FROZEN, free_frozen); |
| STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial); |
| STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial); |
| STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial); |
| STAT_ATTR(ALLOC_SLAB, alloc_slab); |
| STAT_ATTR(ALLOC_REFILL, alloc_refill); |
| STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch); |
| STAT_ATTR(FREE_SLAB, free_slab); |
| STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush); |
| STAT_ATTR(DEACTIVATE_FULL, deactivate_full); |
| STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty); |
| STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head); |
| STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail); |
| STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees); |
| STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass); |
| STAT_ATTR(ORDER_FALLBACK, order_fallback); |
| STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail); |
| STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail); |
| STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc); |
| STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free); |
| STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node); |
| STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain); |
| #endif |
| |
| static struct attribute *slab_attrs[] = { |
| &slab_size_attr.attr, |
| &object_size_attr.attr, |
| &objs_per_slab_attr.attr, |
| &order_attr.attr, |
| &min_partial_attr.attr, |
| &cpu_partial_attr.attr, |
| &objects_attr.attr, |
| &objects_partial_attr.attr, |
| &partial_attr.attr, |
| &cpu_slabs_attr.attr, |
| &ctor_attr.attr, |
| &aliases_attr.attr, |
| &align_attr.attr, |
| &hwcache_align_attr.attr, |
| &reclaim_account_attr.attr, |
| &destroy_by_rcu_attr.attr, |
| &shrink_attr.attr, |
| &reserved_attr.attr, |
| &slabs_cpu_partial_attr.attr, |
| #ifdef CONFIG_SLUB_DEBUG |
| &total_objects_attr.attr, |
| &slabs_attr.attr, |
| &sanity_checks_attr.attr, |
| &trace_attr.attr, |
| &red_zone_attr.attr, |
| &poison_attr.attr, |
| &store_user_attr.attr, |
| &validate_attr.attr, |
| &alloc_calls_attr.attr, |
| &free_calls_attr.attr, |
| #endif |
| #ifdef CONFIG_ZONE_DMA |
| &cache_dma_attr.attr, |
| #endif |
| #ifdef CONFIG_NUMA |
| &remote_node_defrag_ratio_attr.attr, |
| #endif |
| #ifdef CONFIG_SLUB_STATS |
| &alloc_fastpath_attr.attr, |
| &alloc_slowpath_attr.attr, |
| &free_fastpath_attr.attr, |
| &free_slowpath_attr.attr, |
| &free_frozen_attr.attr, |
| &free_add_partial_attr.attr, |
| &free_remove_partial_attr.attr, |
| &alloc_from_partial_attr.attr, |
| &alloc_slab_attr.attr, |
| &alloc_refill_attr.attr, |
| &alloc_node_mismatch_attr.attr, |
| &free_slab_attr.attr, |
| &cpuslab_flush_attr.attr, |
| &deactivate_full_attr.attr, |
| &deactivate_empty_attr.attr, |
| &deactivate_to_head_attr.attr, |
| &deactivate_to_tail_attr.attr, |
| &deactivate_remote_frees_attr.attr, |
| &deactivate_bypass_attr.attr, |
| &order_fallback_attr.attr, |
| &cmpxchg_double_fail_attr.attr, |
| &cmpxchg_double_cpu_fail_attr.attr, |
| &cpu_partial_alloc_attr.attr, |
| &cpu_partial_free_attr.attr, |
| &cpu_partial_node_attr.attr, |
| &cpu_partial_drain_attr.attr, |
| #endif |
| #ifdef CONFIG_FAILSLAB |
| &failslab_attr.attr, |
| #endif |
| |
| NULL |
| }; |
| |
| static const struct attribute_group slab_attr_group = { |
| .attrs = slab_attrs, |
| }; |
| |
| static ssize_t slab_attr_show(struct kobject *kobj, |
| struct attribute *attr, |
| char *buf) |
| { |
| struct slab_attribute *attribute; |
| struct kmem_cache *s; |
| int err; |
| |
| attribute = to_slab_attr(attr); |
| s = to_slab(kobj); |
| |
| if (!attribute->show) |
| return -EIO; |
| |
| err = attribute->show(s, buf); |
| |
| return err; |
| } |
| |
| static ssize_t slab_attr_store(struct kobject *kobj, |
| struct attribute *attr, |
| const char *buf, size_t len) |
| { |
| struct slab_attribute *attribute; |
| struct kmem_cache *s; |
| int err; |
| |
| attribute = to_slab_attr(attr); |
| s = to_slab(kobj); |
| |
| if (!attribute->store) |
| return -EIO; |
| |
| err = attribute->store(s, buf, len); |
| #ifdef CONFIG_MEMCG |
| if (slab_state >= FULL && err >= 0 && is_root_cache(s)) { |
| struct kmem_cache *c; |
| |
| mutex_lock(&slab_mutex); |
| if (s->max_attr_size < len) |
| s->max_attr_size = len; |
| |
| /* |
| * This is a best effort propagation, so this function's return |
| * value will be determined by the parent cache only. This is |
| * basically because not all attributes will have a well |
| * defined semantics for rollbacks - most of the actions will |
| * have permanent effects. |
| * |
| * Returning the error value of any of the children that fail |
| * is not 100 % defined, in the sense that users seeing the |
| * error code won't be able to know anything about the state of |
| * the cache. |
| * |
| * Only returning the error code for the parent cache at least |
| * has well defined semantics. The cache being written to |
| * directly either failed or succeeded, in which case we loop |
| * through the descendants with best-effort propagation. |
| */ |
| for_each_memcg_cache(c, s) |
| attribute->store(c, buf, len); |
| mutex_unlock(&slab_mutex); |
| } |
| #endif |
| return err; |
| } |
| |
| static void memcg_propagate_slab_attrs(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_MEMCG |
| int i; |
| char *buffer = NULL; |
| struct kmem_cache *root_cache; |
| |
| if (is_root_cache(s)) |
| return; |
| |
| root_cache = s->memcg_params.root_cache; |
| |
| /* |
| * This mean this cache had no attribute written. Therefore, no point |
| * in copying default values around |
| */ |
| if (!root_cache->max_attr_size) |
| return; |
| |
| for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) { |
| char mbuf[64]; |
| char *buf; |
| struct slab_attribute *attr = to_slab_attr(slab_attrs[i]); |
| ssize_t len; |
| |
| if (!attr || !attr->store || !attr->show) |
| continue; |
| |
| /* |
| * It is really bad that we have to allocate here, so we will |
| * do it only as a fallback. If we actually allocate, though, |
| * we can just use the allocated buffer until the end. |
| * |
| * Most of the slub attributes will tend to be very small in |
| * size, but sysfs allows buffers up to a page, so they can |
| * theoretically happen. |
| */ |
| if (buffer) |
| buf = buffer; |
| else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf)) |
| buf = mbuf; |
| else { |
| buffer = (char *) get_zeroed_page(GFP_KERNEL); |
| if (WARN_ON(!buffer)) |
| continue; |
| buf = buffer; |
| } |
| |
| len = attr->show(root_cache, buf); |
| if (len > 0) |
| attr->store(s, buf, len); |
| } |
| |
| if (buffer) |
| free_page((unsigned long)buffer); |
| #endif |
| } |
| |
| static void kmem_cache_release(struct kobject *k) |
| { |
| slab_kmem_cache_release(to_slab(k)); |
| } |
| |
| static const struct sysfs_ops slab_sysfs_ops = { |
| .show = slab_attr_show, |
| .store = slab_attr_store, |
| }; |
| |
| static struct kobj_type slab_ktype = { |
| .sysfs_ops = &slab_sysfs_ops, |
| .release = kmem_cache_release, |
| }; |
| |
| static int uevent_filter(struct kset *kset, struct kobject *kobj) |
| { |
| struct kobj_type *ktype = get_ktype(kobj); |
| |
| if (ktype == &slab_ktype) |
| return 1; |
| return 0; |
| } |
| |
| static const struct kset_uevent_ops slab_uevent_ops = { |
| .filter = uevent_filter, |
| }; |
| |
| static struct kset *slab_kset; |
| |
| static inline struct kset *cache_kset(struct kmem_cache *s) |
| { |
| #ifdef CONFIG_MEMCG |
| if (!is_root_cache(s)) |
| return s->memcg_params.root_cache->memcg_kset; |
| #endif |
| return slab_kset; |
| } |
| |
| #define ID_STR_LENGTH 64 |
| |
| /* Create a unique string id for a slab cache: |
| * |
| * Format :[flags-]size |
| */ |
| static char *create_unique_id(struct kmem_cache *s) |
| { |
| char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL); |
| char *p = name; |
| |
| BUG_ON(!name); |
| |
| *p++ = ':'; |
| /* |
| * First flags affecting slabcache operations. We will only |
| * get here for aliasable slabs so we do not need to support |
| * too many flags. The flags here must cover all flags that |
| * are matched during merging to guarantee that the id is |
| * unique. |
| */ |
| if (s->flags & SLAB_CACHE_DMA) |
| *p++ = 'd'; |
| if (s->flags & SLAB_RECLAIM_ACCOUNT) |
| *p++ = 'a'; |
| if (s->flags & SLAB_CONSISTENCY_CHECKS) |
| *p++ = 'F'; |
| if (s->flags & SLAB_ACCOUNT) |
| *p++ = 'A'; |
| if (p != name + 1) |
| *p++ = '-'; |
| p += sprintf(p, "%07d", s->size); |
| |
| BUG_ON(p > name + ID_STR_LENGTH - 1); |
| return name; |
| } |
| |
| static void sysfs_slab_remove_workfn(struct work_struct *work) |
| { |
| struct kmem_cache *s = |
| container_of(work, struct kmem_cache, kobj_remove_work); |
| |
| if (!s->kobj.state_in_sysfs) |
| /* |
| * For a memcg cache, this may be called during |
| * deactivation and again on shutdown. Remove only once. |
| * A cache is never shut down before deactivation is |
| * complete, so no need to worry about synchronization. |
| */ |
| goto out; |
| |
| #ifdef CONFIG_MEMCG |
| kset_unregister(s->memcg_kset); |
| #endif |
| kobject_uevent(&s->kobj, KOBJ_REMOVE); |
| out: |
| kobject_put(&s->kobj); |
| } |
| |
| static int sysfs_slab_add(struct kmem_cache *s) |
| { |
| int err; |
| const char *name; |
| struct kset *kset = cache_kset(s); |
| int unmergeable = slab_unmergeable(s); |
| |
| INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn); |
| |
| if (!kset) { |
| kobject_init(&s->kobj, &slab_ktype); |
| return 0; |
| } |
| |
| if (!unmergeable && disable_higher_order_debug && |
| (slub_debug & DEBUG_METADATA_FLAGS)) |
| unmergeable = 1; |
| |
| if (unmergeable) { |
| /* |
| * Slabcache can never be merged so we can use the name proper. |
| * This is typically the case for debug situations. In that |
| * case we can catch duplicate names easily. |
| */ |
| sysfs_remove_link(&slab_kset->kobj, s->name); |
| name = s->name; |
| } else { |
| /* |
| * Create a unique name for the slab as a target |
| * for the symlinks. |
| */ |
| name = create_unique_id(s); |
| } |
| |
| s->kobj.kset = kset; |
| err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name); |
| if (err) |
| goto out; |
| |
| err = sysfs_create_group(&s->kobj, &slab_attr_group); |
| if (err) |
| goto out_del_kobj; |
| |
| #ifdef CONFIG_MEMCG |
| if (is_root_cache(s) && memcg_sysfs_enabled) { |
| s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj); |
| if (!s->memcg_kset) { |
| err = -ENOMEM; |
| goto out_del_kobj; |
| } |
| } |
| #endif |
| |
| kobject_uevent(&s->kobj, KOBJ_ADD); |
| if (!unmergeable) { |
| /* Setup first alias */ |
| sysfs_slab_alias(s, s->name); |
| } |
| out: |
| if (!unmergeable) |
| kfree(name); |
| return err; |
| out_del_kobj: |
| kobject_del(&s->kobj); |
| goto out; |
| } |
| |
| static void sysfs_slab_remove(struct kmem_cache *s) |
| { |
| if (slab_state < FULL) |
| /* |
| * Sysfs has not been setup yet so no need to remove the |
| * cache from sysfs. |
| */ |
| return; |
| |
| kobject_get(&s->kobj); |
| schedule_work(&s->kobj_remove_work); |
| } |
| |
| void sysfs_slab_unlink(struct kmem_cache *s) |
| { |
| if (slab_state >= FULL) |
| kobject_del(&s->kobj); |
| } |
| |
| void sysfs_slab_release(struct kmem_cache *s) |
| { |
| if (slab_state >= FULL) |
| kobject_put(&s->kobj); |
| } |
| |
| /* |
| * Need to buffer aliases during bootup until sysfs becomes |
| * available lest we lose that information. |
| */ |
| struct saved_alias { |
| struct kmem_cache *s; |
| const char *name; |
| struct saved_alias *next; |
| }; |
| |
| static struct saved_alias *alias_list; |
| |
| static int sysfs_slab_alias(struct kmem_cache *s, const char *name) |
| { |
| struct saved_alias *al; |
| |
| if (slab_state == FULL) { |
| /* |
| * If we have a leftover link then remove it. |
| */ |
| sysfs_remove_link(&slab_kset->kobj, name); |
| return sysfs_create_link(&slab_kset->kobj, &s->kobj, name); |
| } |
| |
| al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL); |
| if (!al) |
| return -ENOMEM; |
| |
| al->s = s; |
| al->name = name; |
| al->next = alias_list; |
| alias_list = al; |
| return 0; |
| } |
| |
| static int __init slab_sysfs_init(void) |
| { |
| struct kmem_cache *s; |
| int err; |
| |
| mutex_lock(&slab_mutex); |
| |
| slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj); |
| if (!slab_kset) { |
| mutex_unlock(&slab_mutex); |
| pr_err("Cannot register slab subsystem.\n"); |
| return -ENOSYS; |
| } |
| |
| slab_state = FULL; |
| |
| list_for_each_entry(s, &slab_caches, list) { |
| err = sysfs_slab_add(s); |
| if (err) |
| pr_err("SLUB: Unable to add boot slab %s to sysfs\n", |
| s->name); |
| } |
| |
| while (alias_list) { |
| struct saved_alias *al = alias_list; |
| |
| alias_list = alias_list->next; |
| err = sysfs_slab_alias(al->s, al->name); |
| if (err) |
| pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n", |
| al->name); |
| kfree(al); |
| } |
| |
| mutex_unlock(&slab_mutex); |
| resiliency_test(); |
| return 0; |
| } |
| |
| __initcall(slab_sysfs_init); |
| #endif /* CONFIG_SYSFS */ |
| |
| /* |
| * The /proc/slabinfo ABI |
| */ |
| #ifdef CONFIG_SLABINFO |
| void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo) |
| { |
| unsigned long nr_slabs = 0; |
| unsigned long nr_objs = 0; |
| unsigned long nr_free = 0; |
| int node; |
| struct kmem_cache_node *n; |
| |
| for_each_kmem_cache_node(s, node, n) { |
| nr_slabs += node_nr_slabs(n); |
| nr_objs += node_nr_objs(n); |
| nr_free += count_partial(n, count_free); |
| } |
| |
| sinfo->active_objs = nr_objs - nr_free; |
| sinfo->num_objs = nr_objs; |
| sinfo->active_slabs = nr_slabs; |
| sinfo->num_slabs = nr_slabs; |
| sinfo->objects_per_slab = oo_objects(s->oo); |
| sinfo->cache_order = oo_order(s->oo); |
| } |
| |
| void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s) |
| { |
| } |
| |
| ssize_t slabinfo_write(struct file *file, const char __user *buffer, |
| size_t count, loff_t *ppos) |
| { |
| return -EIO; |
| } |
| #endif /* CONFIG_SLABINFO */ |