| /* $Id: time.c,v 1.42 2002/01/23 14:33:55 davem Exp $ |
| * time.c: UltraSparc timer and TOD clock support. |
| * |
| * Copyright (C) 1997 David S. Miller (davem@caip.rutgers.edu) |
| * Copyright (C) 1998 Eddie C. Dost (ecd@skynet.be) |
| * |
| * Based largely on code which is: |
| * |
| * Copyright (C) 1996 Thomas K. Dyas (tdyas@eden.rutgers.edu) |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/module.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/timex.h> |
| #include <linux/init.h> |
| #include <linux/ioport.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/delay.h> |
| #include <linux/profile.h> |
| #include <linux/bcd.h> |
| #include <linux/jiffies.h> |
| #include <linux/cpufreq.h> |
| #include <linux/percpu.h> |
| #include <linux/profile.h> |
| #include <linux/miscdevice.h> |
| #include <linux/rtc.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/clockchips.h> |
| #include <linux/clocksource.h> |
| |
| #include <asm/oplib.h> |
| #include <asm/mostek.h> |
| #include <asm/timer.h> |
| #include <asm/irq.h> |
| #include <asm/io.h> |
| #include <asm/prom.h> |
| #include <asm/of_device.h> |
| #include <asm/starfire.h> |
| #include <asm/smp.h> |
| #include <asm/sections.h> |
| #include <asm/cpudata.h> |
| #include <asm/uaccess.h> |
| #include <asm/prom.h> |
| #include <asm/irq_regs.h> |
| |
| DEFINE_SPINLOCK(mostek_lock); |
| DEFINE_SPINLOCK(rtc_lock); |
| void __iomem *mstk48t02_regs = NULL; |
| #ifdef CONFIG_PCI |
| unsigned long ds1287_regs = 0UL; |
| static void __iomem *bq4802_regs; |
| #endif |
| |
| static void __iomem *mstk48t08_regs; |
| static void __iomem *mstk48t59_regs; |
| |
| static int set_rtc_mmss(unsigned long); |
| |
| #define TICK_PRIV_BIT (1UL << 63) |
| #define TICKCMP_IRQ_BIT (1UL << 63) |
| |
| #ifdef CONFIG_SMP |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (in_lock_functions(pc)) |
| return regs->u_regs[UREG_RETPC]; |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| #endif |
| |
| static void tick_disable_protection(void) |
| { |
| /* Set things up so user can access tick register for profiling |
| * purposes. Also workaround BB_ERRATA_1 by doing a dummy |
| * read back of %tick after writing it. |
| */ |
| __asm__ __volatile__( |
| " ba,pt %%xcc, 1f\n" |
| " nop\n" |
| " .align 64\n" |
| "1: rd %%tick, %%g2\n" |
| " add %%g2, 6, %%g2\n" |
| " andn %%g2, %0, %%g2\n" |
| " wrpr %%g2, 0, %%tick\n" |
| " rdpr %%tick, %%g0" |
| : /* no outputs */ |
| : "r" (TICK_PRIV_BIT) |
| : "g2"); |
| } |
| |
| static void tick_disable_irq(void) |
| { |
| __asm__ __volatile__( |
| " ba,pt %%xcc, 1f\n" |
| " nop\n" |
| " .align 64\n" |
| "1: wr %0, 0x0, %%tick_cmpr\n" |
| " rd %%tick_cmpr, %%g0" |
| : /* no outputs */ |
| : "r" (TICKCMP_IRQ_BIT)); |
| } |
| |
| static void tick_init_tick(void) |
| { |
| tick_disable_protection(); |
| tick_disable_irq(); |
| } |
| |
| static unsigned long tick_get_tick(void) |
| { |
| unsigned long ret; |
| |
| __asm__ __volatile__("rd %%tick, %0\n\t" |
| "mov %0, %0" |
| : "=r" (ret)); |
| |
| return ret & ~TICK_PRIV_BIT; |
| } |
| |
| static int tick_add_compare(unsigned long adj) |
| { |
| unsigned long orig_tick, new_tick, new_compare; |
| |
| __asm__ __volatile__("rd %%tick, %0" |
| : "=r" (orig_tick)); |
| |
| orig_tick &= ~TICKCMP_IRQ_BIT; |
| |
| /* Workaround for Spitfire Errata (#54 I think??), I discovered |
| * this via Sun BugID 4008234, mentioned in Solaris-2.5.1 patch |
| * number 103640. |
| * |
| * On Blackbird writes to %tick_cmpr can fail, the |
| * workaround seems to be to execute the wr instruction |
| * at the start of an I-cache line, and perform a dummy |
| * read back from %tick_cmpr right after writing to it. -DaveM |
| */ |
| __asm__ __volatile__("ba,pt %%xcc, 1f\n\t" |
| " add %1, %2, %0\n\t" |
| ".align 64\n" |
| "1:\n\t" |
| "wr %0, 0, %%tick_cmpr\n\t" |
| "rd %%tick_cmpr, %%g0\n\t" |
| : "=r" (new_compare) |
| : "r" (orig_tick), "r" (adj)); |
| |
| __asm__ __volatile__("rd %%tick, %0" |
| : "=r" (new_tick)); |
| new_tick &= ~TICKCMP_IRQ_BIT; |
| |
| return ((long)(new_tick - (orig_tick+adj))) > 0L; |
| } |
| |
| static unsigned long tick_add_tick(unsigned long adj) |
| { |
| unsigned long new_tick; |
| |
| /* Also need to handle Blackbird bug here too. */ |
| __asm__ __volatile__("rd %%tick, %0\n\t" |
| "add %0, %1, %0\n\t" |
| "wrpr %0, 0, %%tick\n\t" |
| : "=&r" (new_tick) |
| : "r" (adj)); |
| |
| return new_tick; |
| } |
| |
| static struct sparc64_tick_ops tick_operations __read_mostly = { |
| .name = "tick", |
| .init_tick = tick_init_tick, |
| .disable_irq = tick_disable_irq, |
| .get_tick = tick_get_tick, |
| .add_tick = tick_add_tick, |
| .add_compare = tick_add_compare, |
| .softint_mask = 1UL << 0, |
| }; |
| |
| struct sparc64_tick_ops *tick_ops __read_mostly = &tick_operations; |
| |
| static void stick_disable_irq(void) |
| { |
| __asm__ __volatile__( |
| "wr %0, 0x0, %%asr25" |
| : /* no outputs */ |
| : "r" (TICKCMP_IRQ_BIT)); |
| } |
| |
| static void stick_init_tick(void) |
| { |
| /* Writes to the %tick and %stick register are not |
| * allowed on sun4v. The Hypervisor controls that |
| * bit, per-strand. |
| */ |
| if (tlb_type != hypervisor) { |
| tick_disable_protection(); |
| tick_disable_irq(); |
| |
| /* Let the user get at STICK too. */ |
| __asm__ __volatile__( |
| " rd %%asr24, %%g2\n" |
| " andn %%g2, %0, %%g2\n" |
| " wr %%g2, 0, %%asr24" |
| : /* no outputs */ |
| : "r" (TICK_PRIV_BIT) |
| : "g1", "g2"); |
| } |
| |
| stick_disable_irq(); |
| } |
| |
| static unsigned long stick_get_tick(void) |
| { |
| unsigned long ret; |
| |
| __asm__ __volatile__("rd %%asr24, %0" |
| : "=r" (ret)); |
| |
| return ret & ~TICK_PRIV_BIT; |
| } |
| |
| static unsigned long stick_add_tick(unsigned long adj) |
| { |
| unsigned long new_tick; |
| |
| __asm__ __volatile__("rd %%asr24, %0\n\t" |
| "add %0, %1, %0\n\t" |
| "wr %0, 0, %%asr24\n\t" |
| : "=&r" (new_tick) |
| : "r" (adj)); |
| |
| return new_tick; |
| } |
| |
| static int stick_add_compare(unsigned long adj) |
| { |
| unsigned long orig_tick, new_tick; |
| |
| __asm__ __volatile__("rd %%asr24, %0" |
| : "=r" (orig_tick)); |
| orig_tick &= ~TICKCMP_IRQ_BIT; |
| |
| __asm__ __volatile__("wr %0, 0, %%asr25" |
| : /* no outputs */ |
| : "r" (orig_tick + adj)); |
| |
| __asm__ __volatile__("rd %%asr24, %0" |
| : "=r" (new_tick)); |
| new_tick &= ~TICKCMP_IRQ_BIT; |
| |
| return ((long)(new_tick - (orig_tick+adj))) > 0L; |
| } |
| |
| static struct sparc64_tick_ops stick_operations __read_mostly = { |
| .name = "stick", |
| .init_tick = stick_init_tick, |
| .disable_irq = stick_disable_irq, |
| .get_tick = stick_get_tick, |
| .add_tick = stick_add_tick, |
| .add_compare = stick_add_compare, |
| .softint_mask = 1UL << 16, |
| }; |
| |
| /* On Hummingbird the STICK/STICK_CMPR register is implemented |
| * in I/O space. There are two 64-bit registers each, the |
| * first holds the low 32-bits of the value and the second holds |
| * the high 32-bits. |
| * |
| * Since STICK is constantly updating, we have to access it carefully. |
| * |
| * The sequence we use to read is: |
| * 1) read high |
| * 2) read low |
| * 3) read high again, if it rolled re-read both low and high again. |
| * |
| * Writing STICK safely is also tricky: |
| * 1) write low to zero |
| * 2) write high |
| * 3) write low |
| */ |
| #define HBIRD_STICKCMP_ADDR 0x1fe0000f060UL |
| #define HBIRD_STICK_ADDR 0x1fe0000f070UL |
| |
| static unsigned long __hbird_read_stick(void) |
| { |
| unsigned long ret, tmp1, tmp2, tmp3; |
| unsigned long addr = HBIRD_STICK_ADDR+8; |
| |
| __asm__ __volatile__("ldxa [%1] %5, %2\n" |
| "1:\n\t" |
| "sub %1, 0x8, %1\n\t" |
| "ldxa [%1] %5, %3\n\t" |
| "add %1, 0x8, %1\n\t" |
| "ldxa [%1] %5, %4\n\t" |
| "cmp %4, %2\n\t" |
| "bne,a,pn %%xcc, 1b\n\t" |
| " mov %4, %2\n\t" |
| "sllx %4, 32, %4\n\t" |
| "or %3, %4, %0\n\t" |
| : "=&r" (ret), "=&r" (addr), |
| "=&r" (tmp1), "=&r" (tmp2), "=&r" (tmp3) |
| : "i" (ASI_PHYS_BYPASS_EC_E), "1" (addr)); |
| |
| return ret; |
| } |
| |
| static void __hbird_write_stick(unsigned long val) |
| { |
| unsigned long low = (val & 0xffffffffUL); |
| unsigned long high = (val >> 32UL); |
| unsigned long addr = HBIRD_STICK_ADDR; |
| |
| __asm__ __volatile__("stxa %%g0, [%0] %4\n\t" |
| "add %0, 0x8, %0\n\t" |
| "stxa %3, [%0] %4\n\t" |
| "sub %0, 0x8, %0\n\t" |
| "stxa %2, [%0] %4" |
| : "=&r" (addr) |
| : "0" (addr), "r" (low), "r" (high), |
| "i" (ASI_PHYS_BYPASS_EC_E)); |
| } |
| |
| static void __hbird_write_compare(unsigned long val) |
| { |
| unsigned long low = (val & 0xffffffffUL); |
| unsigned long high = (val >> 32UL); |
| unsigned long addr = HBIRD_STICKCMP_ADDR + 0x8UL; |
| |
| __asm__ __volatile__("stxa %3, [%0] %4\n\t" |
| "sub %0, 0x8, %0\n\t" |
| "stxa %2, [%0] %4" |
| : "=&r" (addr) |
| : "0" (addr), "r" (low), "r" (high), |
| "i" (ASI_PHYS_BYPASS_EC_E)); |
| } |
| |
| static void hbtick_disable_irq(void) |
| { |
| __hbird_write_compare(TICKCMP_IRQ_BIT); |
| } |
| |
| static void hbtick_init_tick(void) |
| { |
| tick_disable_protection(); |
| |
| /* XXX This seems to be necessary to 'jumpstart' Hummingbird |
| * XXX into actually sending STICK interrupts. I think because |
| * XXX of how we store %tick_cmpr in head.S this somehow resets the |
| * XXX {TICK + STICK} interrupt mux. -DaveM |
| */ |
| __hbird_write_stick(__hbird_read_stick()); |
| |
| hbtick_disable_irq(); |
| } |
| |
| static unsigned long hbtick_get_tick(void) |
| { |
| return __hbird_read_stick() & ~TICK_PRIV_BIT; |
| } |
| |
| static unsigned long hbtick_add_tick(unsigned long adj) |
| { |
| unsigned long val; |
| |
| val = __hbird_read_stick() + adj; |
| __hbird_write_stick(val); |
| |
| return val; |
| } |
| |
| static int hbtick_add_compare(unsigned long adj) |
| { |
| unsigned long val = __hbird_read_stick(); |
| unsigned long val2; |
| |
| val &= ~TICKCMP_IRQ_BIT; |
| val += adj; |
| __hbird_write_compare(val); |
| |
| val2 = __hbird_read_stick() & ~TICKCMP_IRQ_BIT; |
| |
| return ((long)(val2 - val)) > 0L; |
| } |
| |
| static struct sparc64_tick_ops hbtick_operations __read_mostly = { |
| .name = "hbtick", |
| .init_tick = hbtick_init_tick, |
| .disable_irq = hbtick_disable_irq, |
| .get_tick = hbtick_get_tick, |
| .add_tick = hbtick_add_tick, |
| .add_compare = hbtick_add_compare, |
| .softint_mask = 1UL << 0, |
| }; |
| |
| static unsigned long timer_ticks_per_nsec_quotient __read_mostly; |
| |
| #define TICK_SIZE (tick_nsec / 1000) |
| |
| #define USEC_AFTER 500000 |
| #define USEC_BEFORE 500000 |
| |
| static void sync_cmos_clock(unsigned long dummy); |
| |
| static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0); |
| |
| static void sync_cmos_clock(unsigned long dummy) |
| { |
| struct timeval now, next; |
| int fail = 1; |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| * This code is run on a timer. If the clock is set, that timer |
| * may not expire at the correct time. Thus, we adjust... |
| */ |
| if (!ntp_synced()) |
| /* |
| * Not synced, exit, do not restart a timer (if one is |
| * running, let it run out). |
| */ |
| return; |
| |
| do_gettimeofday(&now); |
| if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 && |
| now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2) |
| fail = set_rtc_mmss(now.tv_sec); |
| |
| next.tv_usec = USEC_AFTER - now.tv_usec; |
| if (next.tv_usec <= 0) |
| next.tv_usec += USEC_PER_SEC; |
| |
| if (!fail) |
| next.tv_sec = 659; |
| else |
| next.tv_sec = 0; |
| |
| if (next.tv_usec >= USEC_PER_SEC) { |
| next.tv_sec++; |
| next.tv_usec -= USEC_PER_SEC; |
| } |
| mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next)); |
| } |
| |
| void notify_arch_cmos_timer(void) |
| { |
| mod_timer(&sync_cmos_timer, jiffies + 1); |
| } |
| |
| /* Kick start a stopped clock (procedure from the Sun NVRAM/hostid FAQ). */ |
| static void __init kick_start_clock(void) |
| { |
| void __iomem *regs = mstk48t02_regs; |
| u8 sec, tmp; |
| int i, count; |
| |
| prom_printf("CLOCK: Clock was stopped. Kick start "); |
| |
| spin_lock_irq(&mostek_lock); |
| |
| /* Turn on the kick start bit to start the oscillator. */ |
| tmp = mostek_read(regs + MOSTEK_CREG); |
| tmp |= MSTK_CREG_WRITE; |
| mostek_write(regs + MOSTEK_CREG, tmp); |
| tmp = mostek_read(regs + MOSTEK_SEC); |
| tmp &= ~MSTK_STOP; |
| mostek_write(regs + MOSTEK_SEC, tmp); |
| tmp = mostek_read(regs + MOSTEK_HOUR); |
| tmp |= MSTK_KICK_START; |
| mostek_write(regs + MOSTEK_HOUR, tmp); |
| tmp = mostek_read(regs + MOSTEK_CREG); |
| tmp &= ~MSTK_CREG_WRITE; |
| mostek_write(regs + MOSTEK_CREG, tmp); |
| |
| spin_unlock_irq(&mostek_lock); |
| |
| /* Delay to allow the clock oscillator to start. */ |
| sec = MSTK_REG_SEC(regs); |
| for (i = 0; i < 3; i++) { |
| while (sec == MSTK_REG_SEC(regs)) |
| for (count = 0; count < 100000; count++) |
| /* nothing */ ; |
| prom_printf("."); |
| sec = MSTK_REG_SEC(regs); |
| } |
| prom_printf("\n"); |
| |
| spin_lock_irq(&mostek_lock); |
| |
| /* Turn off kick start and set a "valid" time and date. */ |
| tmp = mostek_read(regs + MOSTEK_CREG); |
| tmp |= MSTK_CREG_WRITE; |
| mostek_write(regs + MOSTEK_CREG, tmp); |
| tmp = mostek_read(regs + MOSTEK_HOUR); |
| tmp &= ~MSTK_KICK_START; |
| mostek_write(regs + MOSTEK_HOUR, tmp); |
| MSTK_SET_REG_SEC(regs,0); |
| MSTK_SET_REG_MIN(regs,0); |
| MSTK_SET_REG_HOUR(regs,0); |
| MSTK_SET_REG_DOW(regs,5); |
| MSTK_SET_REG_DOM(regs,1); |
| MSTK_SET_REG_MONTH(regs,8); |
| MSTK_SET_REG_YEAR(regs,1996 - MSTK_YEAR_ZERO); |
| tmp = mostek_read(regs + MOSTEK_CREG); |
| tmp &= ~MSTK_CREG_WRITE; |
| mostek_write(regs + MOSTEK_CREG, tmp); |
| |
| spin_unlock_irq(&mostek_lock); |
| |
| /* Ensure the kick start bit is off. If it isn't, turn it off. */ |
| while (mostek_read(regs + MOSTEK_HOUR) & MSTK_KICK_START) { |
| prom_printf("CLOCK: Kick start still on!\n"); |
| |
| spin_lock_irq(&mostek_lock); |
| |
| tmp = mostek_read(regs + MOSTEK_CREG); |
| tmp |= MSTK_CREG_WRITE; |
| mostek_write(regs + MOSTEK_CREG, tmp); |
| |
| tmp = mostek_read(regs + MOSTEK_HOUR); |
| tmp &= ~MSTK_KICK_START; |
| mostek_write(regs + MOSTEK_HOUR, tmp); |
| |
| tmp = mostek_read(regs + MOSTEK_CREG); |
| tmp &= ~MSTK_CREG_WRITE; |
| mostek_write(regs + MOSTEK_CREG, tmp); |
| |
| spin_unlock_irq(&mostek_lock); |
| } |
| |
| prom_printf("CLOCK: Kick start procedure successful.\n"); |
| } |
| |
| /* Return nonzero if the clock chip battery is low. */ |
| static int __init has_low_battery(void) |
| { |
| void __iomem *regs = mstk48t02_regs; |
| u8 data1, data2; |
| |
| spin_lock_irq(&mostek_lock); |
| |
| data1 = mostek_read(regs + MOSTEK_EEPROM); /* Read some data. */ |
| mostek_write(regs + MOSTEK_EEPROM, ~data1); /* Write back the complement. */ |
| data2 = mostek_read(regs + MOSTEK_EEPROM); /* Read back the complement. */ |
| mostek_write(regs + MOSTEK_EEPROM, data1); /* Restore original value. */ |
| |
| spin_unlock_irq(&mostek_lock); |
| |
| return (data1 == data2); /* Was the write blocked? */ |
| } |
| |
| /* Probe for the real time clock chip. */ |
| static void __init set_system_time(void) |
| { |
| unsigned int year, mon, day, hour, min, sec; |
| void __iomem *mregs = mstk48t02_regs; |
| #ifdef CONFIG_PCI |
| unsigned long dregs = ds1287_regs; |
| void __iomem *bregs = bq4802_regs; |
| #else |
| unsigned long dregs = 0UL; |
| void __iomem *bregs = 0UL; |
| #endif |
| u8 tmp; |
| |
| if (!mregs && !dregs && !bregs) { |
| prom_printf("Something wrong, clock regs not mapped yet.\n"); |
| prom_halt(); |
| } |
| |
| if (mregs) { |
| spin_lock_irq(&mostek_lock); |
| |
| /* Traditional Mostek chip. */ |
| tmp = mostek_read(mregs + MOSTEK_CREG); |
| tmp |= MSTK_CREG_READ; |
| mostek_write(mregs + MOSTEK_CREG, tmp); |
| |
| sec = MSTK_REG_SEC(mregs); |
| min = MSTK_REG_MIN(mregs); |
| hour = MSTK_REG_HOUR(mregs); |
| day = MSTK_REG_DOM(mregs); |
| mon = MSTK_REG_MONTH(mregs); |
| year = MSTK_CVT_YEAR( MSTK_REG_YEAR(mregs) ); |
| } else if (bregs) { |
| unsigned char val = readb(bregs + 0x0e); |
| unsigned int century; |
| |
| /* BQ4802 RTC chip. */ |
| |
| writeb(val | 0x08, bregs + 0x0e); |
| |
| sec = readb(bregs + 0x00); |
| min = readb(bregs + 0x02); |
| hour = readb(bregs + 0x04); |
| day = readb(bregs + 0x06); |
| mon = readb(bregs + 0x09); |
| year = readb(bregs + 0x0a); |
| century = readb(bregs + 0x0f); |
| |
| writeb(val, bregs + 0x0e); |
| |
| BCD_TO_BIN(sec); |
| BCD_TO_BIN(min); |
| BCD_TO_BIN(hour); |
| BCD_TO_BIN(day); |
| BCD_TO_BIN(mon); |
| BCD_TO_BIN(year); |
| BCD_TO_BIN(century); |
| |
| year += (century * 100); |
| } else { |
| /* Dallas 12887 RTC chip. */ |
| |
| do { |
| sec = CMOS_READ(RTC_SECONDS); |
| min = CMOS_READ(RTC_MINUTES); |
| hour = CMOS_READ(RTC_HOURS); |
| day = CMOS_READ(RTC_DAY_OF_MONTH); |
| mon = CMOS_READ(RTC_MONTH); |
| year = CMOS_READ(RTC_YEAR); |
| } while (sec != CMOS_READ(RTC_SECONDS)); |
| |
| if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| BCD_TO_BIN(sec); |
| BCD_TO_BIN(min); |
| BCD_TO_BIN(hour); |
| BCD_TO_BIN(day); |
| BCD_TO_BIN(mon); |
| BCD_TO_BIN(year); |
| } |
| if ((year += 1900) < 1970) |
| year += 100; |
| } |
| |
| xtime.tv_sec = mktime(year, mon, day, hour, min, sec); |
| xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| if (mregs) { |
| tmp = mostek_read(mregs + MOSTEK_CREG); |
| tmp &= ~MSTK_CREG_READ; |
| mostek_write(mregs + MOSTEK_CREG, tmp); |
| |
| spin_unlock_irq(&mostek_lock); |
| } |
| } |
| |
| /* davem suggests we keep this within the 4M locked kernel image */ |
| static u32 starfire_get_time(void) |
| { |
| static char obp_gettod[32]; |
| static u32 unix_tod; |
| |
| sprintf(obp_gettod, "h# %08x unix-gettod", |
| (unsigned int) (long) &unix_tod); |
| prom_feval(obp_gettod); |
| |
| return unix_tod; |
| } |
| |
| static int starfire_set_time(u32 val) |
| { |
| /* Do nothing, time is set using the service processor |
| * console on this platform. |
| */ |
| return 0; |
| } |
| |
| static u32 hypervisor_get_time(void) |
| { |
| register unsigned long func asm("%o5"); |
| register unsigned long arg0 asm("%o0"); |
| register unsigned long arg1 asm("%o1"); |
| int retries = 10000; |
| |
| retry: |
| func = HV_FAST_TOD_GET; |
| arg0 = 0; |
| arg1 = 0; |
| __asm__ __volatile__("ta %6" |
| : "=&r" (func), "=&r" (arg0), "=&r" (arg1) |
| : "0" (func), "1" (arg0), "2" (arg1), |
| "i" (HV_FAST_TRAP)); |
| if (arg0 == HV_EOK) |
| return arg1; |
| if (arg0 == HV_EWOULDBLOCK) { |
| if (--retries > 0) { |
| udelay(100); |
| goto retry; |
| } |
| printk(KERN_WARNING "SUN4V: tod_get() timed out.\n"); |
| return 0; |
| } |
| printk(KERN_WARNING "SUN4V: tod_get() not supported.\n"); |
| return 0; |
| } |
| |
| static int hypervisor_set_time(u32 secs) |
| { |
| register unsigned long func asm("%o5"); |
| register unsigned long arg0 asm("%o0"); |
| int retries = 10000; |
| |
| retry: |
| func = HV_FAST_TOD_SET; |
| arg0 = secs; |
| __asm__ __volatile__("ta %4" |
| : "=&r" (func), "=&r" (arg0) |
| : "0" (func), "1" (arg0), |
| "i" (HV_FAST_TRAP)); |
| if (arg0 == HV_EOK) |
| return 0; |
| if (arg0 == HV_EWOULDBLOCK) { |
| if (--retries > 0) { |
| udelay(100); |
| goto retry; |
| } |
| printk(KERN_WARNING "SUN4V: tod_set() timed out.\n"); |
| return -EAGAIN; |
| } |
| printk(KERN_WARNING "SUN4V: tod_set() not supported.\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| static int __init clock_model_matches(const char *model) |
| { |
| if (strcmp(model, "mk48t02") && |
| strcmp(model, "mk48t08") && |
| strcmp(model, "mk48t59") && |
| strcmp(model, "m5819") && |
| strcmp(model, "m5819p") && |
| strcmp(model, "m5823") && |
| strcmp(model, "ds1287") && |
| strcmp(model, "bq4802")) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int __devinit clock_probe(struct of_device *op, const struct of_device_id *match) |
| { |
| struct device_node *dp = op->node; |
| const char *model = of_get_property(dp, "model", NULL); |
| const char *compat = of_get_property(dp, "compatible", NULL); |
| unsigned long size, flags; |
| void __iomem *regs; |
| |
| if (!model) |
| model = compat; |
| |
| if (!model || !clock_model_matches(model)) |
| return -ENODEV; |
| |
| /* On an Enterprise system there can be multiple mostek clocks. |
| * We should only match the one that is on the central FHC bus. |
| */ |
| if (!strcmp(dp->parent->name, "fhc") && |
| strcmp(dp->parent->parent->name, "central") != 0) |
| return -ENODEV; |
| |
| size = (op->resource[0].end - op->resource[0].start) + 1; |
| regs = of_ioremap(&op->resource[0], 0, size, "clock"); |
| if (!regs) |
| return -ENOMEM; |
| |
| #ifdef CONFIG_PCI |
| if (!strcmp(model, "ds1287") || |
| !strcmp(model, "m5819") || |
| !strcmp(model, "m5819p") || |
| !strcmp(model, "m5823")) { |
| ds1287_regs = (unsigned long) regs; |
| } else if (!strcmp(model, "bq4802")) { |
| bq4802_regs = regs; |
| } else |
| #endif |
| if (model[5] == '0' && model[6] == '2') { |
| mstk48t02_regs = regs; |
| } else if(model[5] == '0' && model[6] == '8') { |
| mstk48t08_regs = regs; |
| mstk48t02_regs = mstk48t08_regs + MOSTEK_48T08_48T02; |
| } else { |
| mstk48t59_regs = regs; |
| mstk48t02_regs = mstk48t59_regs + MOSTEK_48T59_48T02; |
| } |
| |
| printk(KERN_INFO "%s: Clock regs at %p\n", dp->full_name, regs); |
| |
| local_irq_save(flags); |
| |
| if (mstk48t02_regs != NULL) { |
| /* Report a low battery voltage condition. */ |
| if (has_low_battery()) |
| prom_printf("NVRAM: Low battery voltage!\n"); |
| |
| /* Kick start the clock if it is completely stopped. */ |
| if (mostek_read(mstk48t02_regs + MOSTEK_SEC) & MSTK_STOP) |
| kick_start_clock(); |
| } |
| |
| set_system_time(); |
| |
| local_irq_restore(flags); |
| |
| return 0; |
| } |
| |
| static struct of_device_id clock_match[] = { |
| { |
| .name = "eeprom", |
| }, |
| { |
| .name = "rtc", |
| }, |
| {}, |
| }; |
| |
| static struct of_platform_driver clock_driver = { |
| .name = "clock", |
| .match_table = clock_match, |
| .probe = clock_probe, |
| }; |
| |
| static int __init clock_init(void) |
| { |
| if (this_is_starfire) { |
| xtime.tv_sec = starfire_get_time(); |
| xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| return 0; |
| } |
| if (tlb_type == hypervisor) { |
| xtime.tv_sec = hypervisor_get_time(); |
| xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| return 0; |
| } |
| |
| return of_register_driver(&clock_driver, &of_bus_type); |
| } |
| |
| /* Must be after subsys_initcall() so that busses are probed. Must |
| * be before device_initcall() because things like the RTC driver |
| * need to see the clock registers. |
| */ |
| fs_initcall(clock_init); |
| |
| /* This is gets the master TICK_INT timer going. */ |
| static unsigned long sparc64_init_timers(void) |
| { |
| struct device_node *dp; |
| unsigned long clock; |
| #ifdef CONFIG_SMP |
| extern void smp_tick_init(void); |
| #endif |
| |
| dp = of_find_node_by_path("/"); |
| if (tlb_type == spitfire) { |
| unsigned long ver, manuf, impl; |
| |
| __asm__ __volatile__ ("rdpr %%ver, %0" |
| : "=&r" (ver)); |
| manuf = ((ver >> 48) & 0xffff); |
| impl = ((ver >> 32) & 0xffff); |
| if (manuf == 0x17 && impl == 0x13) { |
| /* Hummingbird, aka Ultra-IIe */ |
| tick_ops = &hbtick_operations; |
| clock = of_getintprop_default(dp, "stick-frequency", 0); |
| } else { |
| tick_ops = &tick_operations; |
| clock = local_cpu_data().clock_tick; |
| } |
| } else { |
| tick_ops = &stick_operations; |
| clock = of_getintprop_default(dp, "stick-frequency", 0); |
| } |
| |
| #ifdef CONFIG_SMP |
| smp_tick_init(); |
| #endif |
| |
| return clock; |
| } |
| |
| struct freq_table { |
| unsigned long clock_tick_ref; |
| unsigned int ref_freq; |
| }; |
| static DEFINE_PER_CPU(struct freq_table, sparc64_freq_table) = { 0, 0 }; |
| |
| unsigned long sparc64_get_clock_tick(unsigned int cpu) |
| { |
| struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); |
| |
| if (ft->clock_tick_ref) |
| return ft->clock_tick_ref; |
| return cpu_data(cpu).clock_tick; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| |
| static int sparc64_cpufreq_notifier(struct notifier_block *nb, unsigned long val, |
| void *data) |
| { |
| struct cpufreq_freqs *freq = data; |
| unsigned int cpu = freq->cpu; |
| struct freq_table *ft = &per_cpu(sparc64_freq_table, cpu); |
| |
| if (!ft->ref_freq) { |
| ft->ref_freq = freq->old; |
| ft->clock_tick_ref = cpu_data(cpu).clock_tick; |
| } |
| if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) || |
| (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) || |
| (val == CPUFREQ_RESUMECHANGE)) { |
| cpu_data(cpu).clock_tick = |
| cpufreq_scale(ft->clock_tick_ref, |
| ft->ref_freq, |
| freq->new); |
| } |
| |
| return 0; |
| } |
| |
| static struct notifier_block sparc64_cpufreq_notifier_block = { |
| .notifier_call = sparc64_cpufreq_notifier |
| }; |
| |
| #endif /* CONFIG_CPU_FREQ */ |
| |
| static int sparc64_next_event(unsigned long delta, |
| struct clock_event_device *evt) |
| { |
| return tick_ops->add_compare(delta) ? -ETIME : 0; |
| } |
| |
| static void sparc64_timer_setup(enum clock_event_mode mode, |
| struct clock_event_device *evt) |
| { |
| switch (mode) { |
| case CLOCK_EVT_MODE_ONESHOT: |
| break; |
| |
| case CLOCK_EVT_MODE_SHUTDOWN: |
| tick_ops->disable_irq(); |
| break; |
| |
| case CLOCK_EVT_MODE_PERIODIC: |
| case CLOCK_EVT_MODE_UNUSED: |
| WARN_ON(1); |
| break; |
| }; |
| } |
| |
| static struct clock_event_device sparc64_clockevent = { |
| .features = CLOCK_EVT_FEAT_ONESHOT, |
| .set_mode = sparc64_timer_setup, |
| .set_next_event = sparc64_next_event, |
| .rating = 100, |
| .shift = 30, |
| .irq = -1, |
| }; |
| static DEFINE_PER_CPU(struct clock_event_device, sparc64_events); |
| |
| void timer_interrupt(int irq, struct pt_regs *regs) |
| { |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| unsigned long tick_mask = tick_ops->softint_mask; |
| int cpu = smp_processor_id(); |
| struct clock_event_device *evt = &per_cpu(sparc64_events, cpu); |
| |
| clear_softint(tick_mask); |
| |
| irq_enter(); |
| |
| kstat_this_cpu.irqs[0]++; |
| |
| if (unlikely(!evt->event_handler)) { |
| printk(KERN_WARNING |
| "Spurious SPARC64 timer interrupt on cpu %d\n", cpu); |
| } else |
| evt->event_handler(evt); |
| |
| irq_exit(); |
| |
| set_irq_regs(old_regs); |
| } |
| |
| void __devinit setup_sparc64_timer(void) |
| { |
| struct clock_event_device *sevt; |
| unsigned long pstate; |
| |
| /* Guarantee that the following sequences execute |
| * uninterrupted. |
| */ |
| __asm__ __volatile__("rdpr %%pstate, %0\n\t" |
| "wrpr %0, %1, %%pstate" |
| : "=r" (pstate) |
| : "i" (PSTATE_IE)); |
| |
| tick_ops->init_tick(); |
| |
| /* Restore PSTATE_IE. */ |
| __asm__ __volatile__("wrpr %0, 0x0, %%pstate" |
| : /* no outputs */ |
| : "r" (pstate)); |
| |
| sevt = &__get_cpu_var(sparc64_events); |
| |
| memcpy(sevt, &sparc64_clockevent, sizeof(*sevt)); |
| sevt->cpumask = cpumask_of_cpu(smp_processor_id()); |
| |
| clockevents_register_device(sevt); |
| } |
| |
| #define SPARC64_NSEC_PER_CYC_SHIFT 10UL |
| |
| static struct clocksource clocksource_tick = { |
| .rating = 100, |
| .mask = CLOCKSOURCE_MASK(64), |
| .shift = 16, |
| .flags = CLOCK_SOURCE_IS_CONTINUOUS, |
| }; |
| |
| static void __init setup_clockevent_multiplier(unsigned long hz) |
| { |
| unsigned long mult, shift = 32; |
| |
| while (1) { |
| mult = div_sc(hz, NSEC_PER_SEC, shift); |
| if (mult && (mult >> 32UL) == 0UL) |
| break; |
| |
| shift--; |
| } |
| |
| sparc64_clockevent.shift = shift; |
| sparc64_clockevent.mult = mult; |
| } |
| |
| void __init time_init(void) |
| { |
| unsigned long clock = sparc64_init_timers(); |
| |
| timer_ticks_per_nsec_quotient = |
| clocksource_hz2mult(clock, SPARC64_NSEC_PER_CYC_SHIFT); |
| |
| clocksource_tick.name = tick_ops->name; |
| clocksource_tick.mult = |
| clocksource_hz2mult(clock, |
| clocksource_tick.shift); |
| clocksource_tick.read = tick_ops->get_tick; |
| |
| printk("clocksource: mult[%x] shift[%d]\n", |
| clocksource_tick.mult, clocksource_tick.shift); |
| |
| clocksource_register(&clocksource_tick); |
| |
| sparc64_clockevent.name = tick_ops->name; |
| |
| setup_clockevent_multiplier(clock); |
| |
| sparc64_clockevent.max_delta_ns = |
| clockevent_delta2ns(0x7fffffffffffffff, &sparc64_clockevent); |
| sparc64_clockevent.min_delta_ns = |
| clockevent_delta2ns(0xF, &sparc64_clockevent); |
| |
| printk("clockevent: mult[%lx] shift[%d]\n", |
| sparc64_clockevent.mult, sparc64_clockevent.shift); |
| |
| setup_sparc64_timer(); |
| |
| #ifdef CONFIG_CPU_FREQ |
| cpufreq_register_notifier(&sparc64_cpufreq_notifier_block, |
| CPUFREQ_TRANSITION_NOTIFIER); |
| #endif |
| } |
| |
| unsigned long long sched_clock(void) |
| { |
| unsigned long ticks = tick_ops->get_tick(); |
| |
| return (ticks * timer_ticks_per_nsec_quotient) |
| >> SPARC64_NSEC_PER_CYC_SHIFT; |
| } |
| |
| static int set_rtc_mmss(unsigned long nowtime) |
| { |
| int real_seconds, real_minutes, chip_minutes; |
| void __iomem *mregs = mstk48t02_regs; |
| #ifdef CONFIG_PCI |
| unsigned long dregs = ds1287_regs; |
| void __iomem *bregs = bq4802_regs; |
| #else |
| unsigned long dregs = 0UL; |
| void __iomem *bregs = 0UL; |
| #endif |
| unsigned long flags; |
| u8 tmp; |
| |
| /* |
| * Not having a register set can lead to trouble. |
| * Also starfire doesn't have a tod clock. |
| */ |
| if (!mregs && !dregs & !bregs) |
| return -1; |
| |
| if (mregs) { |
| spin_lock_irqsave(&mostek_lock, flags); |
| |
| /* Read the current RTC minutes. */ |
| tmp = mostek_read(mregs + MOSTEK_CREG); |
| tmp |= MSTK_CREG_READ; |
| mostek_write(mregs + MOSTEK_CREG, tmp); |
| |
| chip_minutes = MSTK_REG_MIN(mregs); |
| |
| tmp = mostek_read(mregs + MOSTEK_CREG); |
| tmp &= ~MSTK_CREG_READ; |
| mostek_write(mregs + MOSTEK_CREG, tmp); |
| |
| /* |
| * since we're only adjusting minutes and seconds, |
| * don't interfere with hour overflow. This avoids |
| * messing with unknown time zones but requires your |
| * RTC not to be off by more than 15 minutes |
| */ |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) |
| real_minutes += 30; /* correct for half hour time zone */ |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - chip_minutes) < 30) { |
| tmp = mostek_read(mregs + MOSTEK_CREG); |
| tmp |= MSTK_CREG_WRITE; |
| mostek_write(mregs + MOSTEK_CREG, tmp); |
| |
| MSTK_SET_REG_SEC(mregs,real_seconds); |
| MSTK_SET_REG_MIN(mregs,real_minutes); |
| |
| tmp = mostek_read(mregs + MOSTEK_CREG); |
| tmp &= ~MSTK_CREG_WRITE; |
| mostek_write(mregs + MOSTEK_CREG, tmp); |
| |
| spin_unlock_irqrestore(&mostek_lock, flags); |
| |
| return 0; |
| } else { |
| spin_unlock_irqrestore(&mostek_lock, flags); |
| |
| return -1; |
| } |
| } else if (bregs) { |
| int retval = 0; |
| unsigned char val = readb(bregs + 0x0e); |
| |
| /* BQ4802 RTC chip. */ |
| |
| writeb(val | 0x08, bregs + 0x0e); |
| |
| chip_minutes = readb(bregs + 0x02); |
| BCD_TO_BIN(chip_minutes); |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) |
| real_minutes += 30; |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - chip_minutes) < 30) { |
| BIN_TO_BCD(real_seconds); |
| BIN_TO_BCD(real_minutes); |
| writeb(real_seconds, bregs + 0x00); |
| writeb(real_minutes, bregs + 0x02); |
| } else { |
| printk(KERN_WARNING |
| "set_rtc_mmss: can't update from %d to %d\n", |
| chip_minutes, real_minutes); |
| retval = -1; |
| } |
| |
| writeb(val, bregs + 0x0e); |
| |
| return retval; |
| } else { |
| int retval = 0; |
| unsigned char save_control, save_freq_select; |
| |
| /* Stolen from arch/i386/kernel/time.c, see there for |
| * credits and descriptive comments. |
| */ |
| spin_lock_irqsave(&rtc_lock, flags); |
| save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */ |
| CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL); |
| |
| save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */ |
| CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT); |
| |
| chip_minutes = CMOS_READ(RTC_MINUTES); |
| if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) |
| BCD_TO_BIN(chip_minutes); |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - chip_minutes) + 15)/30) & 1) |
| real_minutes += 30; |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - chip_minutes) < 30) { |
| if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) { |
| BIN_TO_BCD(real_seconds); |
| BIN_TO_BCD(real_minutes); |
| } |
| CMOS_WRITE(real_seconds,RTC_SECONDS); |
| CMOS_WRITE(real_minutes,RTC_MINUTES); |
| } else { |
| printk(KERN_WARNING |
| "set_rtc_mmss: can't update from %d to %d\n", |
| chip_minutes, real_minutes); |
| retval = -1; |
| } |
| |
| CMOS_WRITE(save_control, RTC_CONTROL); |
| CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| return retval; |
| } |
| } |
| |
| #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */ |
| static unsigned char mini_rtc_status; /* bitmapped status byte. */ |
| |
| #define FEBRUARY 2 |
| #define STARTOFTIME 1970 |
| #define SECDAY 86400L |
| #define SECYR (SECDAY * 365) |
| #define leapyear(year) ((year) % 4 == 0 && \ |
| ((year) % 100 != 0 || (year) % 400 == 0)) |
| #define days_in_year(a) (leapyear(a) ? 366 : 365) |
| #define days_in_month(a) (month_days[(a) - 1]) |
| |
| static int month_days[12] = { |
| 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| }; |
| |
| /* |
| * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) |
| */ |
| static void GregorianDay(struct rtc_time * tm) |
| { |
| int leapsToDate; |
| int lastYear; |
| int day; |
| int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; |
| |
| lastYear = tm->tm_year - 1; |
| |
| /* |
| * Number of leap corrections to apply up to end of last year |
| */ |
| leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; |
| |
| /* |
| * This year is a leap year if it is divisible by 4 except when it is |
| * divisible by 100 unless it is divisible by 400 |
| * |
| * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was |
| */ |
| day = tm->tm_mon > 2 && leapyear(tm->tm_year); |
| |
| day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + |
| tm->tm_mday; |
| |
| tm->tm_wday = day % 7; |
| } |
| |
| static void to_tm(int tim, struct rtc_time *tm) |
| { |
| register int i; |
| register long hms, day; |
| |
| day = tim / SECDAY; |
| hms = tim % SECDAY; |
| |
| /* Hours, minutes, seconds are easy */ |
| tm->tm_hour = hms / 3600; |
| tm->tm_min = (hms % 3600) / 60; |
| tm->tm_sec = (hms % 3600) % 60; |
| |
| /* Number of years in days */ |
| for (i = STARTOFTIME; day >= days_in_year(i); i++) |
| day -= days_in_year(i); |
| tm->tm_year = i; |
| |
| /* Number of months in days left */ |
| if (leapyear(tm->tm_year)) |
| days_in_month(FEBRUARY) = 29; |
| for (i = 1; day >= days_in_month(i); i++) |
| day -= days_in_month(i); |
| days_in_month(FEBRUARY) = 28; |
| tm->tm_mon = i; |
| |
| /* Days are what is left over (+1) from all that. */ |
| tm->tm_mday = day + 1; |
| |
| /* |
| * Determine the day of week |
| */ |
| GregorianDay(tm); |
| } |
| |
| /* Both Starfire and SUN4V give us seconds since Jan 1st, 1970, |
| * aka Unix time. So we have to convert to/from rtc_time. |
| */ |
| static void starfire_get_rtc_time(struct rtc_time *time) |
| { |
| u32 seconds = starfire_get_time(); |
| |
| to_tm(seconds, time); |
| time->tm_year -= 1900; |
| time->tm_mon -= 1; |
| } |
| |
| static int starfire_set_rtc_time(struct rtc_time *time) |
| { |
| u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1, |
| time->tm_mday, time->tm_hour, |
| time->tm_min, time->tm_sec); |
| |
| return starfire_set_time(seconds); |
| } |
| |
| static void hypervisor_get_rtc_time(struct rtc_time *time) |
| { |
| u32 seconds = hypervisor_get_time(); |
| |
| to_tm(seconds, time); |
| time->tm_year -= 1900; |
| time->tm_mon -= 1; |
| } |
| |
| static int hypervisor_set_rtc_time(struct rtc_time *time) |
| { |
| u32 seconds = mktime(time->tm_year + 1900, time->tm_mon + 1, |
| time->tm_mday, time->tm_hour, |
| time->tm_min, time->tm_sec); |
| |
| return hypervisor_set_time(seconds); |
| } |
| |
| static void bq4802_get_rtc_time(struct rtc_time *time) |
| { |
| unsigned char val = readb(bq4802_regs + 0x0e); |
| unsigned int century; |
| |
| writeb(val | 0x08, bq4802_regs + 0x0e); |
| |
| time->tm_sec = readb(bq4802_regs + 0x00); |
| time->tm_min = readb(bq4802_regs + 0x02); |
| time->tm_hour = readb(bq4802_regs + 0x04); |
| time->tm_mday = readb(bq4802_regs + 0x06); |
| time->tm_mon = readb(bq4802_regs + 0x09); |
| time->tm_year = readb(bq4802_regs + 0x0a); |
| time->tm_wday = readb(bq4802_regs + 0x08); |
| century = readb(bq4802_regs + 0x0f); |
| |
| writeb(val, bq4802_regs + 0x0e); |
| |
| BCD_TO_BIN(time->tm_sec); |
| BCD_TO_BIN(time->tm_min); |
| BCD_TO_BIN(time->tm_hour); |
| BCD_TO_BIN(time->tm_mday); |
| BCD_TO_BIN(time->tm_mon); |
| BCD_TO_BIN(time->tm_year); |
| BCD_TO_BIN(time->tm_wday); |
| BCD_TO_BIN(century); |
| |
| time->tm_year += (century * 100); |
| time->tm_year -= 1900; |
| |
| time->tm_mon--; |
| } |
| |
| static int bq4802_set_rtc_time(struct rtc_time *time) |
| { |
| unsigned char val = readb(bq4802_regs + 0x0e); |
| unsigned char sec, min, hrs, day, mon, yrs, century; |
| unsigned int year; |
| |
| year = time->tm_year + 1900; |
| century = year / 100; |
| yrs = year % 100; |
| |
| mon = time->tm_mon + 1; /* tm_mon starts at zero */ |
| day = time->tm_mday; |
| hrs = time->tm_hour; |
| min = time->tm_min; |
| sec = time->tm_sec; |
| |
| BIN_TO_BCD(sec); |
| BIN_TO_BCD(min); |
| BIN_TO_BCD(hrs); |
| BIN_TO_BCD(day); |
| BIN_TO_BCD(mon); |
| BIN_TO_BCD(yrs); |
| BIN_TO_BCD(century); |
| |
| writeb(val | 0x08, bq4802_regs + 0x0e); |
| |
| writeb(sec, bq4802_regs + 0x00); |
| writeb(min, bq4802_regs + 0x02); |
| writeb(hrs, bq4802_regs + 0x04); |
| writeb(day, bq4802_regs + 0x06); |
| writeb(mon, bq4802_regs + 0x09); |
| writeb(yrs, bq4802_regs + 0x0a); |
| writeb(century, bq4802_regs + 0x0f); |
| |
| writeb(val, bq4802_regs + 0x0e); |
| |
| return 0; |
| } |
| |
| struct mini_rtc_ops { |
| void (*get_rtc_time)(struct rtc_time *); |
| int (*set_rtc_time)(struct rtc_time *); |
| }; |
| |
| static struct mini_rtc_ops starfire_rtc_ops = { |
| .get_rtc_time = starfire_get_rtc_time, |
| .set_rtc_time = starfire_set_rtc_time, |
| }; |
| |
| static struct mini_rtc_ops hypervisor_rtc_ops = { |
| .get_rtc_time = hypervisor_get_rtc_time, |
| .set_rtc_time = hypervisor_set_rtc_time, |
| }; |
| |
| static struct mini_rtc_ops bq4802_rtc_ops = { |
| .get_rtc_time = bq4802_get_rtc_time, |
| .set_rtc_time = bq4802_set_rtc_time, |
| }; |
| |
| static struct mini_rtc_ops *mini_rtc_ops; |
| |
| static inline void mini_get_rtc_time(struct rtc_time *time) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| mini_rtc_ops->get_rtc_time(time); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| } |
| |
| static inline int mini_set_rtc_time(struct rtc_time *time) |
| { |
| unsigned long flags; |
| int err; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| err = mini_rtc_ops->set_rtc_time(time); |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| return err; |
| } |
| |
| static int mini_rtc_ioctl(struct inode *inode, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct rtc_time wtime; |
| void __user *argp = (void __user *)arg; |
| |
| switch (cmd) { |
| |
| case RTC_PLL_GET: |
| return -EINVAL; |
| |
| case RTC_PLL_SET: |
| return -EINVAL; |
| |
| case RTC_UIE_OFF: /* disable ints from RTC updates. */ |
| return 0; |
| |
| case RTC_UIE_ON: /* enable ints for RTC updates. */ |
| return -EINVAL; |
| |
| case RTC_RD_TIME: /* Read the time/date from RTC */ |
| /* this doesn't get week-day, who cares */ |
| memset(&wtime, 0, sizeof(wtime)); |
| mini_get_rtc_time(&wtime); |
| |
| return copy_to_user(argp, &wtime, sizeof(wtime)) ? -EFAULT : 0; |
| |
| case RTC_SET_TIME: /* Set the RTC */ |
| { |
| int year, days; |
| |
| if (!capable(CAP_SYS_TIME)) |
| return -EACCES; |
| |
| if (copy_from_user(&wtime, argp, sizeof(wtime))) |
| return -EFAULT; |
| |
| year = wtime.tm_year + 1900; |
| days = month_days[wtime.tm_mon] + |
| ((wtime.tm_mon == 1) && leapyear(year)); |
| |
| if ((wtime.tm_mon < 0 || wtime.tm_mon > 11) || |
| (wtime.tm_mday < 1)) |
| return -EINVAL; |
| |
| if (wtime.tm_mday < 0 || wtime.tm_mday > days) |
| return -EINVAL; |
| |
| if (wtime.tm_hour < 0 || wtime.tm_hour >= 24 || |
| wtime.tm_min < 0 || wtime.tm_min >= 60 || |
| wtime.tm_sec < 0 || wtime.tm_sec >= 60) |
| return -EINVAL; |
| |
| return mini_set_rtc_time(&wtime); |
| } |
| } |
| |
| return -EINVAL; |
| } |
| |
| static int mini_rtc_open(struct inode *inode, struct file *file) |
| { |
| if (mini_rtc_status & RTC_IS_OPEN) |
| return -EBUSY; |
| |
| mini_rtc_status |= RTC_IS_OPEN; |
| |
| return 0; |
| } |
| |
| static int mini_rtc_release(struct inode *inode, struct file *file) |
| { |
| mini_rtc_status &= ~RTC_IS_OPEN; |
| return 0; |
| } |
| |
| |
| static const struct file_operations mini_rtc_fops = { |
| .owner = THIS_MODULE, |
| .ioctl = mini_rtc_ioctl, |
| .open = mini_rtc_open, |
| .release = mini_rtc_release, |
| }; |
| |
| static struct miscdevice rtc_mini_dev = |
| { |
| .minor = RTC_MINOR, |
| .name = "rtc", |
| .fops = &mini_rtc_fops, |
| }; |
| |
| static int __init rtc_mini_init(void) |
| { |
| int retval; |
| |
| if (tlb_type == hypervisor) |
| mini_rtc_ops = &hypervisor_rtc_ops; |
| else if (this_is_starfire) |
| mini_rtc_ops = &starfire_rtc_ops; |
| else if (bq4802_regs) |
| mini_rtc_ops = &bq4802_rtc_ops; |
| else |
| return -ENODEV; |
| |
| printk(KERN_INFO "Mini RTC Driver\n"); |
| |
| retval = misc_register(&rtc_mini_dev); |
| if (retval < 0) |
| return retval; |
| |
| return 0; |
| } |
| |
| static void __exit rtc_mini_exit(void) |
| { |
| misc_deregister(&rtc_mini_dev); |
| } |
| |
| |
| module_init(rtc_mini_init); |
| module_exit(rtc_mini_exit); |