| /* |
| * Arch specific cpu topology information |
| * |
| * Copyright (C) 2016, ARM Ltd. |
| * Written by: Juri Lelli, ARM Ltd. |
| * |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * Released under the GPLv2 only. |
| * SPDX-License-Identifier: GPL-2.0 |
| */ |
| |
| #include <linux/acpi.h> |
| #include <linux/arch_topology.h> |
| #include <linux/cpu.h> |
| #include <linux/cpufreq.h> |
| #include <linux/device.h> |
| #include <linux/of.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include <linux/sched/topology.h> |
| #include <linux/sched/energy.h> |
| #include <linux/cpuset.h> |
| |
| DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE; |
| DEFINE_PER_CPU(unsigned long, max_cpu_freq); |
| DEFINE_PER_CPU(unsigned long, max_freq_scale) = SCHED_CAPACITY_SCALE; |
| |
| void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq, |
| unsigned long max_freq) |
| { |
| unsigned long scale; |
| int i; |
| |
| scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| |
| for_each_cpu(i, cpus) { |
| per_cpu(freq_scale, i) = scale; |
| per_cpu(max_cpu_freq, i) = max_freq; |
| } |
| } |
| |
| void arch_set_max_freq_scale(struct cpumask *cpus, |
| unsigned long policy_max_freq) |
| { |
| unsigned long scale, max_freq; |
| int cpu = cpumask_first(cpus); |
| |
| if (cpu > nr_cpu_ids) |
| return; |
| |
| max_freq = per_cpu(max_cpu_freq, cpu); |
| if (!max_freq) |
| return; |
| |
| scale = (policy_max_freq << SCHED_CAPACITY_SHIFT) / max_freq; |
| |
| for_each_cpu(cpu, cpus) |
| per_cpu(max_freq_scale, cpu) = scale; |
| } |
| |
| static DEFINE_MUTEX(cpu_scale_mutex); |
| DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE; |
| |
| void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity) |
| { |
| per_cpu(cpu_scale, cpu) = capacity; |
| } |
| |
| static ssize_t cpu_capacity_show(struct device *dev, |
| struct device_attribute *attr, |
| char *buf) |
| { |
| struct cpu *cpu = container_of(dev, struct cpu, dev); |
| |
| return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id)); |
| } |
| |
| static void update_topology_flags_workfn(struct work_struct *work); |
| static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn); |
| |
| void topology_update(void) |
| { |
| if (topology_detect_flags()) |
| schedule_work(&update_topology_flags_work); |
| } |
| |
| static ssize_t cpu_capacity_store(struct device *dev, |
| struct device_attribute *attr, |
| const char *buf, |
| size_t count) |
| { |
| struct cpu *cpu = container_of(dev, struct cpu, dev); |
| int this_cpu = cpu->dev.id; |
| int i; |
| unsigned long new_capacity; |
| ssize_t ret; |
| cpumask_var_t mask; |
| |
| if (!count) |
| return 0; |
| |
| ret = kstrtoul(buf, 0, &new_capacity); |
| if (ret) |
| return ret; |
| if (new_capacity > SCHED_CAPACITY_SCALE) |
| return -EINVAL; |
| |
| mutex_lock(&cpu_scale_mutex); |
| |
| if (new_capacity < SCHED_CAPACITY_SCALE) { |
| int highest_score_cpu = 0; |
| |
| if (!alloc_cpumask_var(&mask, GFP_KERNEL)) { |
| mutex_unlock(&cpu_scale_mutex); |
| return -ENOMEM; |
| } |
| |
| cpumask_andnot(mask, cpu_online_mask, |
| topology_core_cpumask(this_cpu)); |
| |
| for_each_cpu(i, mask) { |
| if (topology_get_cpu_scale(NULL, i) == |
| SCHED_CAPACITY_SCALE) { |
| highest_score_cpu = 1; |
| break; |
| } |
| } |
| |
| free_cpumask_var(mask); |
| |
| if (!highest_score_cpu) { |
| mutex_unlock(&cpu_scale_mutex); |
| return -EINVAL; |
| } |
| } |
| |
| for_each_cpu(i, topology_core_cpumask(this_cpu)) |
| topology_set_cpu_scale(i, new_capacity); |
| mutex_unlock(&cpu_scale_mutex); |
| |
| if (topology_detect_flags()) |
| schedule_work(&update_topology_flags_work); |
| |
| return count; |
| } |
| |
| static DEVICE_ATTR_RW(cpu_capacity); |
| |
| static int register_cpu_capacity_sysctl(void) |
| { |
| int i; |
| struct device *cpu; |
| |
| for_each_possible_cpu(i) { |
| cpu = get_cpu_device(i); |
| if (!cpu) { |
| pr_err("%s: too early to get CPU%d device!\n", |
| __func__, i); |
| continue; |
| } |
| device_create_file(cpu, &dev_attr_cpu_capacity); |
| } |
| |
| return 0; |
| } |
| subsys_initcall(register_cpu_capacity_sysctl); |
| |
| enum asym_cpucap_type { no_asym, asym_thread, asym_core, asym_cluster, asym_die }; |
| static enum asym_cpucap_type asym_cpucap = no_asym; |
| enum share_cap_type { no_share_cap, share_cap_thread, share_cap_core, share_cap_cluster, share_cap_die}; |
| static enum share_cap_type share_cap = no_share_cap; |
| |
| #ifdef CONFIG_CPU_FREQ |
| int detect_share_cap_flag(void) |
| { |
| int cpu; |
| enum share_cap_type share_cap_level = no_share_cap; |
| struct cpufreq_policy *policy; |
| |
| for_each_possible_cpu(cpu) { |
| policy = cpufreq_cpu_get(cpu); |
| |
| if (!policy) |
| return 0; |
| |
| if (cpumask_equal(topology_sibling_cpumask(cpu), |
| policy->related_cpus)) { |
| share_cap_level = share_cap_thread; |
| continue; |
| } |
| |
| if (cpumask_equal(topology_core_cpumask(cpu), |
| policy->related_cpus)) { |
| share_cap_level = share_cap_core; |
| continue; |
| } |
| |
| if (cpumask_equal(topology_cluster_cpumask(cpu), |
| policy->related_cpus)) { |
| share_cap_level = share_cap_cluster; |
| continue; |
| } |
| |
| if (cpumask_equal(cpu_cpu_mask(cpu), |
| policy->related_cpus)) { |
| share_cap_level = share_cap_die; |
| continue; |
| } |
| } |
| |
| if (share_cap != share_cap_level) { |
| share_cap = share_cap_level; |
| return 1; |
| } |
| |
| return 0; |
| } |
| #else |
| int detect_share_cap_flag(void) { return 0; } |
| #endif |
| |
| /* |
| * Walk cpu topology to determine sched_domain flags. |
| * |
| * SD_ASYM_CPUCAPACITY: Indicates the lowest level that spans all cpu |
| * capacities found in the system for all cpus, i.e. the flag is set |
| * at the same level for all systems. The current algorithm implements |
| * this by looking for higher capacities, which doesn't work for all |
| * conceivable topology, but don't complicate things until it is |
| * necessary. |
| */ |
| int topology_detect_flags(void) |
| { |
| unsigned long max_capacity, capacity; |
| enum asym_cpucap_type asym_level = no_asym; |
| int cpu, die_cpu, core, thread, flags_changed = 0; |
| |
| for_each_possible_cpu(cpu) { |
| max_capacity = 0; |
| |
| if (asym_level >= asym_thread) |
| goto check_core; |
| |
| for_each_cpu(thread, topology_sibling_cpumask(cpu)) { |
| capacity = topology_get_cpu_scale(NULL, thread); |
| |
| if (capacity > max_capacity) { |
| if (max_capacity != 0) |
| asym_level = asym_thread; |
| |
| max_capacity = capacity; |
| } |
| } |
| |
| check_core: |
| if (asym_level >= asym_core) |
| goto check_cluster; |
| |
| for_each_cpu(core, topology_core_cpumask(cpu)) { |
| capacity = topology_get_cpu_scale(NULL, core); |
| |
| if (capacity > max_capacity) { |
| if (max_capacity != 0) |
| asym_level = asym_core; |
| |
| max_capacity = capacity; |
| } |
| } |
| check_cluster: |
| if (asym_level >= asym_cluster) |
| goto check_die; |
| |
| for_each_cpu(core, topology_cluster_cpumask(cpu)) { |
| capacity = topology_get_cpu_scale(NULL, core); |
| |
| if (capacity > max_capacity) { |
| if (max_capacity != 0) |
| asym_level = asym_cluster; |
| |
| max_capacity = capacity; |
| } |
| } |
| check_die: |
| for_each_possible_cpu(die_cpu) { |
| capacity = topology_get_cpu_scale(NULL, die_cpu); |
| |
| if (capacity > max_capacity) { |
| if (max_capacity != 0) { |
| asym_level = asym_die; |
| goto done; |
| } |
| } |
| } |
| } |
| |
| done: |
| if (asym_cpucap != asym_level) { |
| asym_cpucap = asym_level; |
| flags_changed = 1; |
| pr_debug("topology flag change detected\n"); |
| } |
| |
| if (detect_share_cap_flag()) |
| flags_changed = 1; |
| |
| return flags_changed; |
| } |
| |
| int topology_smt_flags(void) |
| { |
| int flags = 0; |
| |
| if (asym_cpucap == asym_thread) |
| flags |= SD_ASYM_CPUCAPACITY; |
| |
| if (share_cap == share_cap_thread) |
| flags |= SD_SHARE_CAP_STATES; |
| |
| return flags; |
| } |
| |
| int topology_core_flags(void) |
| { |
| int flags = 0; |
| |
| if (asym_cpucap == asym_core) |
| flags |= SD_ASYM_CPUCAPACITY; |
| |
| if (share_cap == share_cap_core) |
| flags |= SD_SHARE_CAP_STATES; |
| |
| return flags; |
| } |
| |
| int topology_cluster_flags(void) |
| { |
| int flags = SD_ASYM_CPUCAPACITY; |
| |
| if (share_cap == share_cap_cluster) |
| flags |= SD_SHARE_CAP_STATES; |
| |
| return flags; |
| } |
| |
| int topology_cpu_flags(void) |
| { |
| int flags = SD_ASYM_CPUCAPACITY; |
| |
| if (share_cap == share_cap_die) |
| flags |= SD_SHARE_CAP_STATES; |
| |
| return flags; |
| } |
| |
| static int update_topology = 0; |
| |
| int topology_update_cpu_topology(void) |
| { |
| return update_topology; |
| } |
| |
| /* |
| * Updating the sched_domains can't be done directly from cpufreq callbacks |
| * due to locking, so queue the work for later. |
| */ |
| static void update_topology_flags_workfn(struct work_struct *work) |
| { |
| update_topology = 1; |
| rebuild_sched_domains(); |
| pr_debug("sched_domain hierarchy rebuilt, flags updated\n"); |
| update_topology = 0; |
| } |
| |
| static u32 capacity_scale; |
| static u32 *raw_capacity; |
| |
| static int __init free_raw_capacity(void) |
| { |
| kfree(raw_capacity); |
| raw_capacity = NULL; |
| |
| return 0; |
| } |
| |
| void topology_normalize_cpu_scale(void) |
| { |
| u64 capacity; |
| int cpu; |
| |
| if (!raw_capacity) |
| return; |
| |
| pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale); |
| mutex_lock(&cpu_scale_mutex); |
| for_each_possible_cpu(cpu) { |
| capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT) |
| / capacity_scale; |
| topology_set_cpu_scale(cpu, capacity); |
| pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu raw_capacity=%u\n", |
| cpu, topology_get_cpu_scale(NULL, cpu), |
| raw_capacity[cpu]); |
| } |
| mutex_unlock(&cpu_scale_mutex); |
| } |
| |
| bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu) |
| { |
| static bool cap_parsing_failed; |
| int ret; |
| u32 cpu_capacity; |
| |
| if (cap_parsing_failed) |
| return false; |
| |
| ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz", |
| &cpu_capacity); |
| if (!ret) { |
| if (!raw_capacity) { |
| raw_capacity = kcalloc(num_possible_cpus(), |
| sizeof(*raw_capacity), |
| GFP_KERNEL); |
| if (!raw_capacity) { |
| pr_err("cpu_capacity: failed to allocate memory for raw capacities\n"); |
| cap_parsing_failed = true; |
| return false; |
| } |
| } |
| capacity_scale = max(cpu_capacity, capacity_scale); |
| raw_capacity[cpu] = cpu_capacity; |
| pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n", |
| cpu_node, raw_capacity[cpu]); |
| } else { |
| if (raw_capacity) { |
| pr_err("cpu_capacity: missing %pOF raw capacity\n", |
| cpu_node); |
| pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n"); |
| } |
| cap_parsing_failed = true; |
| free_raw_capacity(); |
| } |
| |
| return !ret; |
| } |
| |
| #ifdef CONFIG_CPU_FREQ |
| static cpumask_var_t cpus_to_visit; |
| static void parsing_done_workfn(struct work_struct *work); |
| static DECLARE_WORK(parsing_done_work, parsing_done_workfn); |
| |
| static int |
| init_cpu_capacity_callback(struct notifier_block *nb, |
| unsigned long val, |
| void *data) |
| { |
| struct cpufreq_policy *policy = data; |
| int cpu; |
| |
| if (!raw_capacity) |
| return 0; |
| |
| if (val != CPUFREQ_NOTIFY) |
| return 0; |
| |
| pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n", |
| cpumask_pr_args(policy->related_cpus), |
| cpumask_pr_args(cpus_to_visit)); |
| |
| cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus); |
| |
| for_each_cpu(cpu, policy->related_cpus) { |
| raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) * |
| policy->cpuinfo.max_freq / 1000UL; |
| capacity_scale = max(raw_capacity[cpu], capacity_scale); |
| } |
| |
| if (cpumask_empty(cpus_to_visit)) { |
| topology_normalize_cpu_scale(); |
| init_sched_energy_costs(); |
| if (topology_detect_flags()) |
| schedule_work(&update_topology_flags_work); |
| free_raw_capacity(); |
| pr_debug("cpu_capacity: parsing done\n"); |
| schedule_work(&parsing_done_work); |
| } |
| |
| return 0; |
| } |
| |
| static struct notifier_block init_cpu_capacity_notifier = { |
| .notifier_call = init_cpu_capacity_callback, |
| }; |
| |
| static int __init register_cpufreq_notifier(void) |
| { |
| int ret; |
| |
| /* |
| * on ACPI-based systems we need to use the default cpu capacity |
| * until we have the necessary code to parse the cpu capacity, so |
| * skip registering cpufreq notifier. |
| */ |
| if (!acpi_disabled || !raw_capacity) |
| return -EINVAL; |
| |
| if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) { |
| pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n"); |
| return -ENOMEM; |
| } |
| |
| cpumask_copy(cpus_to_visit, cpu_possible_mask); |
| |
| #ifndef CONFIG_SIMPLIFIED_ENERGY_MODEL |
| ret = cpufreq_register_notifier(&init_cpu_capacity_notifier, |
| CPUFREQ_POLICY_NOTIFIER); |
| |
| if (ret) |
| free_cpumask_var(cpus_to_visit); |
| #endif |
| |
| return ret; |
| } |
| core_initcall(register_cpufreq_notifier); |
| |
| static void parsing_done_workfn(struct work_struct *work) |
| { |
| cpufreq_unregister_notifier(&init_cpu_capacity_notifier, |
| CPUFREQ_POLICY_NOTIFIER); |
| free_cpumask_var(cpus_to_visit); |
| } |
| |
| #else |
| core_initcall(free_raw_capacity); |
| #endif |