| /* |
| * Kernel support for the ptrace() and syscall tracing interfaces. |
| * |
| * Copyright (C) 1999-2005 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| * |
| * Derived from the x86 and Alpha versions. |
| */ |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/mm.h> |
| #include <linux/errno.h> |
| #include <linux/ptrace.h> |
| #include <linux/smp_lock.h> |
| #include <linux/user.h> |
| #include <linux/security.h> |
| #include <linux/audit.h> |
| #include <linux/signal.h> |
| |
| #include <asm/pgtable.h> |
| #include <asm/processor.h> |
| #include <asm/ptrace_offsets.h> |
| #include <asm/rse.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| #include <asm/unwind.h> |
| #ifdef CONFIG_PERFMON |
| #include <asm/perfmon.h> |
| #endif |
| |
| #include "entry.h" |
| |
| /* |
| * Bits in the PSR that we allow ptrace() to change: |
| * be, up, ac, mfl, mfh (the user mask; five bits total) |
| * db (debug breakpoint fault; one bit) |
| * id (instruction debug fault disable; one bit) |
| * dd (data debug fault disable; one bit) |
| * ri (restart instruction; two bits) |
| * is (instruction set; one bit) |
| */ |
| #define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \ |
| | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) |
| |
| #define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */ |
| #define PFM_MASK MASK(38) |
| |
| #define PTRACE_DEBUG 0 |
| |
| #if PTRACE_DEBUG |
| # define dprintk(format...) printk(format) |
| # define inline |
| #else |
| # define dprintk(format...) |
| #endif |
| |
| /* Return TRUE if PT was created due to kernel-entry via a system-call. */ |
| |
| static inline int |
| in_syscall (struct pt_regs *pt) |
| { |
| return (long) pt->cr_ifs >= 0; |
| } |
| |
| /* |
| * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT |
| * bitset where bit i is set iff the NaT bit of register i is set. |
| */ |
| unsigned long |
| ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) |
| { |
| # define GET_BITS(first, last, unat) \ |
| ({ \ |
| unsigned long bit = ia64_unat_pos(&pt->r##first); \ |
| unsigned long nbits = (last - first + 1); \ |
| unsigned long mask = MASK(nbits) << first; \ |
| unsigned long dist; \ |
| if (bit < first) \ |
| dist = 64 + bit - first; \ |
| else \ |
| dist = bit - first; \ |
| ia64_rotr(unat, dist) & mask; \ |
| }) |
| unsigned long val; |
| |
| /* |
| * Registers that are stored consecutively in struct pt_regs |
| * can be handled in parallel. If the register order in |
| * struct_pt_regs changes, this code MUST be updated. |
| */ |
| val = GET_BITS( 1, 1, scratch_unat); |
| val |= GET_BITS( 2, 3, scratch_unat); |
| val |= GET_BITS(12, 13, scratch_unat); |
| val |= GET_BITS(14, 14, scratch_unat); |
| val |= GET_BITS(15, 15, scratch_unat); |
| val |= GET_BITS( 8, 11, scratch_unat); |
| val |= GET_BITS(16, 31, scratch_unat); |
| return val; |
| |
| # undef GET_BITS |
| } |
| |
| /* |
| * Set the NaT bits for the scratch registers according to NAT and |
| * return the resulting unat (assuming the scratch registers are |
| * stored in PT). |
| */ |
| unsigned long |
| ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) |
| { |
| # define PUT_BITS(first, last, nat) \ |
| ({ \ |
| unsigned long bit = ia64_unat_pos(&pt->r##first); \ |
| unsigned long nbits = (last - first + 1); \ |
| unsigned long mask = MASK(nbits) << first; \ |
| long dist; \ |
| if (bit < first) \ |
| dist = 64 + bit - first; \ |
| else \ |
| dist = bit - first; \ |
| ia64_rotl(nat & mask, dist); \ |
| }) |
| unsigned long scratch_unat; |
| |
| /* |
| * Registers that are stored consecutively in struct pt_regs |
| * can be handled in parallel. If the register order in |
| * struct_pt_regs changes, this code MUST be updated. |
| */ |
| scratch_unat = PUT_BITS( 1, 1, nat); |
| scratch_unat |= PUT_BITS( 2, 3, nat); |
| scratch_unat |= PUT_BITS(12, 13, nat); |
| scratch_unat |= PUT_BITS(14, 14, nat); |
| scratch_unat |= PUT_BITS(15, 15, nat); |
| scratch_unat |= PUT_BITS( 8, 11, nat); |
| scratch_unat |= PUT_BITS(16, 31, nat); |
| |
| return scratch_unat; |
| |
| # undef PUT_BITS |
| } |
| |
| #define IA64_MLX_TEMPLATE 0x2 |
| #define IA64_MOVL_OPCODE 6 |
| |
| void |
| ia64_increment_ip (struct pt_regs *regs) |
| { |
| unsigned long w0, ri = ia64_psr(regs)->ri + 1; |
| |
| if (ri > 2) { |
| ri = 0; |
| regs->cr_iip += 16; |
| } else if (ri == 2) { |
| get_user(w0, (char __user *) regs->cr_iip + 0); |
| if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { |
| /* |
| * rfi'ing to slot 2 of an MLX bundle causes |
| * an illegal operation fault. We don't want |
| * that to happen... |
| */ |
| ri = 0; |
| regs->cr_iip += 16; |
| } |
| } |
| ia64_psr(regs)->ri = ri; |
| } |
| |
| void |
| ia64_decrement_ip (struct pt_regs *regs) |
| { |
| unsigned long w0, ri = ia64_psr(regs)->ri - 1; |
| |
| if (ia64_psr(regs)->ri == 0) { |
| regs->cr_iip -= 16; |
| ri = 2; |
| get_user(w0, (char __user *) regs->cr_iip + 0); |
| if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { |
| /* |
| * rfi'ing to slot 2 of an MLX bundle causes |
| * an illegal operation fault. We don't want |
| * that to happen... |
| */ |
| ri = 1; |
| } |
| } |
| ia64_psr(regs)->ri = ri; |
| } |
| |
| /* |
| * This routine is used to read an rnat bits that are stored on the |
| * kernel backing store. Since, in general, the alignment of the user |
| * and kernel are different, this is not completely trivial. In |
| * essence, we need to construct the user RNAT based on up to two |
| * kernel RNAT values and/or the RNAT value saved in the child's |
| * pt_regs. |
| * |
| * user rbs |
| * |
| * +--------+ <-- lowest address |
| * | slot62 | |
| * +--------+ |
| * | rnat | 0x....1f8 |
| * +--------+ |
| * | slot00 | \ |
| * +--------+ | |
| * | slot01 | > child_regs->ar_rnat |
| * +--------+ | |
| * | slot02 | / kernel rbs |
| * +--------+ +--------+ |
| * <- child_regs->ar_bspstore | slot61 | <-- krbs |
| * +- - - - + +--------+ |
| * | slot62 | |
| * +- - - - + +--------+ |
| * | rnat | |
| * +- - - - + +--------+ |
| * vrnat | slot00 | |
| * +- - - - + +--------+ |
| * = = |
| * +--------+ |
| * | slot00 | \ |
| * +--------+ | |
| * | slot01 | > child_stack->ar_rnat |
| * +--------+ | |
| * | slot02 | / |
| * +--------+ |
| * <--- child_stack->ar_bspstore |
| * |
| * The way to think of this code is as follows: bit 0 in the user rnat |
| * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat |
| * value. The kernel rnat value holding this bit is stored in |
| * variable rnat0. rnat1 is loaded with the kernel rnat value that |
| * form the upper bits of the user rnat value. |
| * |
| * Boundary cases: |
| * |
| * o when reading the rnat "below" the first rnat slot on the kernel |
| * backing store, rnat0/rnat1 are set to 0 and the low order bits are |
| * merged in from pt->ar_rnat. |
| * |
| * o when reading the rnat "above" the last rnat slot on the kernel |
| * backing store, rnat0/rnat1 gets its value from sw->ar_rnat. |
| */ |
| static unsigned long |
| get_rnat (struct task_struct *task, struct switch_stack *sw, |
| unsigned long *krbs, unsigned long *urnat_addr, |
| unsigned long *urbs_end) |
| { |
| unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr; |
| unsigned long umask = 0, mask, m; |
| unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; |
| long num_regs, nbits; |
| struct pt_regs *pt; |
| |
| pt = task_pt_regs(task); |
| kbsp = (unsigned long *) sw->ar_bspstore; |
| ubspstore = (unsigned long *) pt->ar_bspstore; |
| |
| if (urbs_end < urnat_addr) |
| nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end); |
| else |
| nbits = 63; |
| mask = MASK(nbits); |
| /* |
| * First, figure out which bit number slot 0 in user-land maps |
| * to in the kernel rnat. Do this by figuring out how many |
| * register slots we're beyond the user's backingstore and |
| * then computing the equivalent address in kernel space. |
| */ |
| num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); |
| slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); |
| shift = ia64_rse_slot_num(slot0_kaddr); |
| rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); |
| rnat0_kaddr = rnat1_kaddr - 64; |
| |
| if (ubspstore + 63 > urnat_addr) { |
| /* some bits need to be merged in from pt->ar_rnat */ |
| umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; |
| urnat = (pt->ar_rnat & umask); |
| mask &= ~umask; |
| if (!mask) |
| return urnat; |
| } |
| |
| m = mask << shift; |
| if (rnat0_kaddr >= kbsp) |
| rnat0 = sw->ar_rnat; |
| else if (rnat0_kaddr > krbs) |
| rnat0 = *rnat0_kaddr; |
| urnat |= (rnat0 & m) >> shift; |
| |
| m = mask >> (63 - shift); |
| if (rnat1_kaddr >= kbsp) |
| rnat1 = sw->ar_rnat; |
| else if (rnat1_kaddr > krbs) |
| rnat1 = *rnat1_kaddr; |
| urnat |= (rnat1 & m) << (63 - shift); |
| return urnat; |
| } |
| |
| /* |
| * The reverse of get_rnat. |
| */ |
| static void |
| put_rnat (struct task_struct *task, struct switch_stack *sw, |
| unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat, |
| unsigned long *urbs_end) |
| { |
| unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m; |
| unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; |
| long num_regs, nbits; |
| struct pt_regs *pt; |
| unsigned long cfm, *urbs_kargs; |
| |
| pt = task_pt_regs(task); |
| kbsp = (unsigned long *) sw->ar_bspstore; |
| ubspstore = (unsigned long *) pt->ar_bspstore; |
| |
| urbs_kargs = urbs_end; |
| if (in_syscall(pt)) { |
| /* |
| * If entered via syscall, don't allow user to set rnat bits |
| * for syscall args. |
| */ |
| cfm = pt->cr_ifs; |
| urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f)); |
| } |
| |
| if (urbs_kargs >= urnat_addr) |
| nbits = 63; |
| else { |
| if ((urnat_addr - 63) >= urbs_kargs) |
| return; |
| nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs); |
| } |
| mask = MASK(nbits); |
| |
| /* |
| * First, figure out which bit number slot 0 in user-land maps |
| * to in the kernel rnat. Do this by figuring out how many |
| * register slots we're beyond the user's backingstore and |
| * then computing the equivalent address in kernel space. |
| */ |
| num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); |
| slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); |
| shift = ia64_rse_slot_num(slot0_kaddr); |
| rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); |
| rnat0_kaddr = rnat1_kaddr - 64; |
| |
| if (ubspstore + 63 > urnat_addr) { |
| /* some bits need to be place in pt->ar_rnat: */ |
| umask = MASK(ia64_rse_slot_num(ubspstore)) & mask; |
| pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask); |
| mask &= ~umask; |
| if (!mask) |
| return; |
| } |
| /* |
| * Note: Section 11.1 of the EAS guarantees that bit 63 of an |
| * rnat slot is ignored. so we don't have to clear it here. |
| */ |
| rnat0 = (urnat << shift); |
| m = mask << shift; |
| if (rnat0_kaddr >= kbsp) |
| sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m); |
| else if (rnat0_kaddr > krbs) |
| *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m)); |
| |
| rnat1 = (urnat >> (63 - shift)); |
| m = mask >> (63 - shift); |
| if (rnat1_kaddr >= kbsp) |
| sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m); |
| else if (rnat1_kaddr > krbs) |
| *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m)); |
| } |
| |
| static inline int |
| on_kernel_rbs (unsigned long addr, unsigned long bspstore, |
| unsigned long urbs_end) |
| { |
| unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *) |
| urbs_end); |
| return (addr >= bspstore && addr <= (unsigned long) rnat_addr); |
| } |
| |
| /* |
| * Read a word from the user-level backing store of task CHILD. ADDR |
| * is the user-level address to read the word from, VAL a pointer to |
| * the return value, and USER_BSP gives the end of the user-level |
| * backing store (i.e., it's the address that would be in ar.bsp after |
| * the user executed a "cover" instruction). |
| * |
| * This routine takes care of accessing the kernel register backing |
| * store for those registers that got spilled there. It also takes |
| * care of calculating the appropriate RNaT collection words. |
| */ |
| long |
| ia64_peek (struct task_struct *child, struct switch_stack *child_stack, |
| unsigned long user_rbs_end, unsigned long addr, long *val) |
| { |
| unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; |
| struct pt_regs *child_regs; |
| size_t copied; |
| long ret; |
| |
| urbs_end = (long *) user_rbs_end; |
| laddr = (unsigned long *) addr; |
| child_regs = task_pt_regs(child); |
| bspstore = (unsigned long *) child_regs->ar_bspstore; |
| krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; |
| if (on_kernel_rbs(addr, (unsigned long) bspstore, |
| (unsigned long) urbs_end)) |
| { |
| /* |
| * Attempt to read the RBS in an area that's actually |
| * on the kernel RBS => read the corresponding bits in |
| * the kernel RBS. |
| */ |
| rnat_addr = ia64_rse_rnat_addr(laddr); |
| ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end); |
| |
| if (laddr == rnat_addr) { |
| /* return NaT collection word itself */ |
| *val = ret; |
| return 0; |
| } |
| |
| if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { |
| /* |
| * It is implementation dependent whether the |
| * data portion of a NaT value gets saved on a |
| * st8.spill or RSE spill (e.g., see EAS 2.6, |
| * 4.4.4.6 Register Spill and Fill). To get |
| * consistent behavior across all possible |
| * IA-64 implementations, we return zero in |
| * this case. |
| */ |
| *val = 0; |
| return 0; |
| } |
| |
| if (laddr < urbs_end) { |
| /* |
| * The desired word is on the kernel RBS and |
| * is not a NaT. |
| */ |
| regnum = ia64_rse_num_regs(bspstore, laddr); |
| *val = *ia64_rse_skip_regs(krbs, regnum); |
| return 0; |
| } |
| } |
| copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); |
| if (copied != sizeof(ret)) |
| return -EIO; |
| *val = ret; |
| return 0; |
| } |
| |
| long |
| ia64_poke (struct task_struct *child, struct switch_stack *child_stack, |
| unsigned long user_rbs_end, unsigned long addr, long val) |
| { |
| unsigned long *bspstore, *krbs, regnum, *laddr; |
| unsigned long *urbs_end = (long *) user_rbs_end; |
| struct pt_regs *child_regs; |
| |
| laddr = (unsigned long *) addr; |
| child_regs = task_pt_regs(child); |
| bspstore = (unsigned long *) child_regs->ar_bspstore; |
| krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; |
| if (on_kernel_rbs(addr, (unsigned long) bspstore, |
| (unsigned long) urbs_end)) |
| { |
| /* |
| * Attempt to write the RBS in an area that's actually |
| * on the kernel RBS => write the corresponding bits |
| * in the kernel RBS. |
| */ |
| if (ia64_rse_is_rnat_slot(laddr)) |
| put_rnat(child, child_stack, krbs, laddr, val, |
| urbs_end); |
| else { |
| if (laddr < urbs_end) { |
| regnum = ia64_rse_num_regs(bspstore, laddr); |
| *ia64_rse_skip_regs(krbs, regnum) = val; |
| } |
| } |
| } else if (access_process_vm(child, addr, &val, sizeof(val), 1) |
| != sizeof(val)) |
| return -EIO; |
| return 0; |
| } |
| |
| /* |
| * Calculate the address of the end of the user-level register backing |
| * store. This is the address that would have been stored in ar.bsp |
| * if the user had executed a "cover" instruction right before |
| * entering the kernel. If CFMP is not NULL, it is used to return the |
| * "current frame mask" that was active at the time the kernel was |
| * entered. |
| */ |
| unsigned long |
| ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, |
| unsigned long *cfmp) |
| { |
| unsigned long *krbs, *bspstore, cfm = pt->cr_ifs; |
| long ndirty; |
| |
| krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; |
| bspstore = (unsigned long *) pt->ar_bspstore; |
| ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); |
| |
| if (in_syscall(pt)) |
| ndirty += (cfm & 0x7f); |
| else |
| cfm &= ~(1UL << 63); /* clear valid bit */ |
| |
| if (cfmp) |
| *cfmp = cfm; |
| return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); |
| } |
| |
| /* |
| * Synchronize (i.e, write) the RSE backing store living in kernel |
| * space to the VM of the CHILD task. SW and PT are the pointers to |
| * the switch_stack and pt_regs structures, respectively. |
| * USER_RBS_END is the user-level address at which the backing store |
| * ends. |
| */ |
| long |
| ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, |
| unsigned long user_rbs_start, unsigned long user_rbs_end) |
| { |
| unsigned long addr, val; |
| long ret; |
| |
| /* now copy word for word from kernel rbs to user rbs: */ |
| for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { |
| ret = ia64_peek(child, sw, user_rbs_end, addr, &val); |
| if (ret < 0) |
| return ret; |
| if (access_process_vm(child, addr, &val, sizeof(val), 1) |
| != sizeof(val)) |
| return -EIO; |
| } |
| return 0; |
| } |
| |
| static inline int |
| thread_matches (struct task_struct *thread, unsigned long addr) |
| { |
| unsigned long thread_rbs_end; |
| struct pt_regs *thread_regs; |
| |
| if (ptrace_check_attach(thread, 0) < 0) |
| /* |
| * If the thread is not in an attachable state, we'll |
| * ignore it. The net effect is that if ADDR happens |
| * to overlap with the portion of the thread's |
| * register backing store that is currently residing |
| * on the thread's kernel stack, then ptrace() may end |
| * up accessing a stale value. But if the thread |
| * isn't stopped, that's a problem anyhow, so we're |
| * doing as well as we can... |
| */ |
| return 0; |
| |
| thread_regs = task_pt_regs(thread); |
| thread_rbs_end = ia64_get_user_rbs_end(thread, thread_regs, NULL); |
| if (!on_kernel_rbs(addr, thread_regs->ar_bspstore, thread_rbs_end)) |
| return 0; |
| |
| return 1; /* looks like we've got a winner */ |
| } |
| |
| /* |
| * GDB apparently wants to be able to read the register-backing store |
| * of any thread when attached to a given process. If we are peeking |
| * or poking an address that happens to reside in the kernel-backing |
| * store of another thread, we need to attach to that thread, because |
| * otherwise we end up accessing stale data. |
| * |
| * task_list_lock must be read-locked before calling this routine! |
| */ |
| static struct task_struct * |
| find_thread_for_addr (struct task_struct *child, unsigned long addr) |
| { |
| struct task_struct *p; |
| struct mm_struct *mm; |
| struct list_head *this, *next; |
| int mm_users; |
| |
| if (!(mm = get_task_mm(child))) |
| return child; |
| |
| /* -1 because of our get_task_mm(): */ |
| mm_users = atomic_read(&mm->mm_users) - 1; |
| if (mm_users <= 1) |
| goto out; /* not multi-threaded */ |
| |
| /* |
| * Traverse the current process' children list. Every task that |
| * one attaches to becomes a child. And it is only attached children |
| * of the debugger that are of interest (ptrace_check_attach checks |
| * for this). |
| */ |
| list_for_each_safe(this, next, ¤t->children) { |
| p = list_entry(this, struct task_struct, sibling); |
| if (p->tgid != child->tgid) |
| continue; |
| if (thread_matches(p, addr)) { |
| child = p; |
| goto out; |
| } |
| } |
| |
| out: |
| mmput(mm); |
| return child; |
| } |
| |
| /* |
| * Write f32-f127 back to task->thread.fph if it has been modified. |
| */ |
| inline void |
| ia64_flush_fph (struct task_struct *task) |
| { |
| struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); |
| |
| /* |
| * Prevent migrating this task while |
| * we're fiddling with the FPU state |
| */ |
| preempt_disable(); |
| if (ia64_is_local_fpu_owner(task) && psr->mfh) { |
| psr->mfh = 0; |
| task->thread.flags |= IA64_THREAD_FPH_VALID; |
| ia64_save_fpu(&task->thread.fph[0]); |
| } |
| preempt_enable(); |
| } |
| |
| /* |
| * Sync the fph state of the task so that it can be manipulated |
| * through thread.fph. If necessary, f32-f127 are written back to |
| * thread.fph or, if the fph state hasn't been used before, thread.fph |
| * is cleared to zeroes. Also, access to f32-f127 is disabled to |
| * ensure that the task picks up the state from thread.fph when it |
| * executes again. |
| */ |
| void |
| ia64_sync_fph (struct task_struct *task) |
| { |
| struct ia64_psr *psr = ia64_psr(task_pt_regs(task)); |
| |
| ia64_flush_fph(task); |
| if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { |
| task->thread.flags |= IA64_THREAD_FPH_VALID; |
| memset(&task->thread.fph, 0, sizeof(task->thread.fph)); |
| } |
| ia64_drop_fpu(task); |
| psr->dfh = 1; |
| } |
| |
| static int |
| access_fr (struct unw_frame_info *info, int regnum, int hi, |
| unsigned long *data, int write_access) |
| { |
| struct ia64_fpreg fpval; |
| int ret; |
| |
| ret = unw_get_fr(info, regnum, &fpval); |
| if (ret < 0) |
| return ret; |
| |
| if (write_access) { |
| fpval.u.bits[hi] = *data; |
| ret = unw_set_fr(info, regnum, fpval); |
| } else |
| *data = fpval.u.bits[hi]; |
| return ret; |
| } |
| |
| /* |
| * Change the machine-state of CHILD such that it will return via the normal |
| * kernel exit-path, rather than the syscall-exit path. |
| */ |
| static void |
| convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt, |
| unsigned long cfm) |
| { |
| struct unw_frame_info info, prev_info; |
| unsigned long ip, sp, pr; |
| |
| unw_init_from_blocked_task(&info, child); |
| while (1) { |
| prev_info = info; |
| if (unw_unwind(&info) < 0) |
| return; |
| |
| unw_get_sp(&info, &sp); |
| if ((long)((unsigned long)child + IA64_STK_OFFSET - sp) |
| < IA64_PT_REGS_SIZE) { |
| dprintk("ptrace.%s: ran off the top of the kernel " |
| "stack\n", __FUNCTION__); |
| return; |
| } |
| if (unw_get_pr (&prev_info, &pr) < 0) { |
| unw_get_rp(&prev_info, &ip); |
| dprintk("ptrace.%s: failed to read " |
| "predicate register (ip=0x%lx)\n", |
| __FUNCTION__, ip); |
| return; |
| } |
| if (unw_is_intr_frame(&info) |
| && (pr & (1UL << PRED_USER_STACK))) |
| break; |
| } |
| |
| /* |
| * Note: at the time of this call, the target task is blocked |
| * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL |
| * (aka, "pLvSys") we redirect execution from |
| * .work_pending_syscall_end to .work_processed_kernel. |
| */ |
| unw_get_pr(&prev_info, &pr); |
| pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL)); |
| pr |= (1UL << PRED_NON_SYSCALL); |
| unw_set_pr(&prev_info, pr); |
| |
| pt->cr_ifs = (1UL << 63) | cfm; |
| /* |
| * Clear the memory that is NOT written on syscall-entry to |
| * ensure we do not leak kernel-state to user when execution |
| * resumes. |
| */ |
| pt->r2 = 0; |
| pt->r3 = 0; |
| pt->r14 = 0; |
| memset(&pt->r16, 0, 16*8); /* clear r16-r31 */ |
| memset(&pt->f6, 0, 6*16); /* clear f6-f11 */ |
| pt->b7 = 0; |
| pt->ar_ccv = 0; |
| pt->ar_csd = 0; |
| pt->ar_ssd = 0; |
| } |
| |
| static int |
| access_nat_bits (struct task_struct *child, struct pt_regs *pt, |
| struct unw_frame_info *info, |
| unsigned long *data, int write_access) |
| { |
| unsigned long regnum, nat_bits, scratch_unat, dummy = 0; |
| char nat = 0; |
| |
| if (write_access) { |
| nat_bits = *data; |
| scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); |
| if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) { |
| dprintk("ptrace: failed to set ar.unat\n"); |
| return -1; |
| } |
| for (regnum = 4; regnum <= 7; ++regnum) { |
| unw_get_gr(info, regnum, &dummy, &nat); |
| unw_set_gr(info, regnum, dummy, |
| (nat_bits >> regnum) & 1); |
| } |
| } else { |
| if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) { |
| dprintk("ptrace: failed to read ar.unat\n"); |
| return -1; |
| } |
| nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); |
| for (regnum = 4; regnum <= 7; ++regnum) { |
| unw_get_gr(info, regnum, &dummy, &nat); |
| nat_bits |= (nat != 0) << regnum; |
| } |
| *data = nat_bits; |
| } |
| return 0; |
| } |
| |
| static int |
| access_uarea (struct task_struct *child, unsigned long addr, |
| unsigned long *data, int write_access) |
| { |
| unsigned long *ptr, regnum, urbs_end, rnat_addr, cfm; |
| struct switch_stack *sw; |
| struct pt_regs *pt; |
| # define pt_reg_addr(pt, reg) ((void *) \ |
| ((unsigned long) (pt) \ |
| + offsetof(struct pt_regs, reg))) |
| |
| |
| pt = task_pt_regs(child); |
| sw = (struct switch_stack *) (child->thread.ksp + 16); |
| |
| if ((addr & 0x7) != 0) { |
| dprintk("ptrace: unaligned register address 0x%lx\n", addr); |
| return -1; |
| } |
| |
| if (addr < PT_F127 + 16) { |
| /* accessing fph */ |
| if (write_access) |
| ia64_sync_fph(child); |
| else |
| ia64_flush_fph(child); |
| ptr = (unsigned long *) |
| ((unsigned long) &child->thread.fph + addr); |
| } else if ((addr >= PT_F10) && (addr < PT_F11 + 16)) { |
| /* scratch registers untouched by kernel (saved in pt_regs) */ |
| ptr = pt_reg_addr(pt, f10) + (addr - PT_F10); |
| } else if (addr >= PT_F12 && addr < PT_F15 + 16) { |
| /* |
| * Scratch registers untouched by kernel (saved in |
| * switch_stack). |
| */ |
| ptr = (unsigned long *) ((long) sw |
| + (addr - PT_NAT_BITS - 32)); |
| } else if (addr < PT_AR_LC + 8) { |
| /* preserved state: */ |
| struct unw_frame_info info; |
| char nat = 0; |
| int ret; |
| |
| unw_init_from_blocked_task(&info, child); |
| if (unw_unwind_to_user(&info) < 0) |
| return -1; |
| |
| switch (addr) { |
| case PT_NAT_BITS: |
| return access_nat_bits(child, pt, &info, |
| data, write_access); |
| |
| case PT_R4: case PT_R5: case PT_R6: case PT_R7: |
| if (write_access) { |
| /* read NaT bit first: */ |
| unsigned long dummy; |
| |
| ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, |
| &dummy, &nat); |
| if (ret < 0) |
| return ret; |
| } |
| return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, |
| &nat, write_access); |
| |
| case PT_B1: case PT_B2: case PT_B3: |
| case PT_B4: case PT_B5: |
| return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, |
| write_access); |
| |
| case PT_AR_EC: |
| return unw_access_ar(&info, UNW_AR_EC, data, |
| write_access); |
| |
| case PT_AR_LC: |
| return unw_access_ar(&info, UNW_AR_LC, data, |
| write_access); |
| |
| default: |
| if (addr >= PT_F2 && addr < PT_F5 + 16) |
| return access_fr(&info, (addr - PT_F2)/16 + 2, |
| (addr & 8) != 0, data, |
| write_access); |
| else if (addr >= PT_F16 && addr < PT_F31 + 16) |
| return access_fr(&info, |
| (addr - PT_F16)/16 + 16, |
| (addr & 8) != 0, |
| data, write_access); |
| else { |
| dprintk("ptrace: rejecting access to register " |
| "address 0x%lx\n", addr); |
| return -1; |
| } |
| } |
| } else if (addr < PT_F9+16) { |
| /* scratch state */ |
| switch (addr) { |
| case PT_AR_BSP: |
| /* |
| * By convention, we use PT_AR_BSP to refer to |
| * the end of the user-level backing store. |
| * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) |
| * to get the real value of ar.bsp at the time |
| * the kernel was entered. |
| * |
| * Furthermore, when changing the contents of |
| * PT_AR_BSP (or PT_CFM) we MUST copy any |
| * users-level stacked registers that are |
| * stored on the kernel stack back to |
| * user-space because otherwise, we might end |
| * up clobbering kernel stacked registers. |
| * Also, if this happens while the task is |
| * blocked in a system call, which convert the |
| * state such that the non-system-call exit |
| * path is used. This ensures that the proper |
| * state will be picked up when resuming |
| * execution. However, it *also* means that |
| * once we write PT_AR_BSP/PT_CFM, it won't be |
| * possible to modify the syscall arguments of |
| * the pending system call any longer. This |
| * shouldn't be an issue because modifying |
| * PT_AR_BSP/PT_CFM generally implies that |
| * we're either abandoning the pending system |
| * call or that we defer it's re-execution |
| * (e.g., due to GDB doing an inferior |
| * function call). |
| */ |
| urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); |
| if (write_access) { |
| if (*data != urbs_end) { |
| if (ia64_sync_user_rbs(child, sw, |
| pt->ar_bspstore, |
| urbs_end) < 0) |
| return -1; |
| if (in_syscall(pt)) |
| convert_to_non_syscall(child, |
| pt, |
| cfm); |
| /* |
| * Simulate user-level write |
| * of ar.bsp: |
| */ |
| pt->loadrs = 0; |
| pt->ar_bspstore = *data; |
| } |
| } else |
| *data = urbs_end; |
| return 0; |
| |
| case PT_CFM: |
| urbs_end = ia64_get_user_rbs_end(child, pt, &cfm); |
| if (write_access) { |
| if (((cfm ^ *data) & PFM_MASK) != 0) { |
| if (ia64_sync_user_rbs(child, sw, |
| pt->ar_bspstore, |
| urbs_end) < 0) |
| return -1; |
| if (in_syscall(pt)) |
| convert_to_non_syscall(child, |
| pt, |
| cfm); |
| pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK) |
| | (*data & PFM_MASK)); |
| } |
| } else |
| *data = cfm; |
| return 0; |
| |
| case PT_CR_IPSR: |
| if (write_access) { |
| unsigned long tmp = *data; |
| /* psr.ri==3 is a reserved value: SDM 2:25 */ |
| if ((tmp & IA64_PSR_RI) == IA64_PSR_RI) |
| tmp &= ~IA64_PSR_RI; |
| pt->cr_ipsr = ((tmp & IPSR_MASK) |
| | (pt->cr_ipsr & ~IPSR_MASK)); |
| } else |
| *data = (pt->cr_ipsr & IPSR_MASK); |
| return 0; |
| |
| case PT_AR_RSC: |
| if (write_access) |
| pt->ar_rsc = *data | (3 << 2); /* force PL3 */ |
| else |
| *data = pt->ar_rsc; |
| return 0; |
| |
| case PT_AR_RNAT: |
| urbs_end = ia64_get_user_rbs_end(child, pt, NULL); |
| rnat_addr = (long) ia64_rse_rnat_addr((long *) |
| urbs_end); |
| if (write_access) |
| return ia64_poke(child, sw, urbs_end, |
| rnat_addr, *data); |
| else |
| return ia64_peek(child, sw, urbs_end, |
| rnat_addr, data); |
| |
| case PT_R1: |
| ptr = pt_reg_addr(pt, r1); |
| break; |
| case PT_R2: case PT_R3: |
| ptr = pt_reg_addr(pt, r2) + (addr - PT_R2); |
| break; |
| case PT_R8: case PT_R9: case PT_R10: case PT_R11: |
| ptr = pt_reg_addr(pt, r8) + (addr - PT_R8); |
| break; |
| case PT_R12: case PT_R13: |
| ptr = pt_reg_addr(pt, r12) + (addr - PT_R12); |
| break; |
| case PT_R14: |
| ptr = pt_reg_addr(pt, r14); |
| break; |
| case PT_R15: |
| ptr = pt_reg_addr(pt, r15); |
| break; |
| case PT_R16: case PT_R17: case PT_R18: case PT_R19: |
| case PT_R20: case PT_R21: case PT_R22: case PT_R23: |
| case PT_R24: case PT_R25: case PT_R26: case PT_R27: |
| case PT_R28: case PT_R29: case PT_R30: case PT_R31: |
| ptr = pt_reg_addr(pt, r16) + (addr - PT_R16); |
| break; |
| case PT_B0: |
| ptr = pt_reg_addr(pt, b0); |
| break; |
| case PT_B6: |
| ptr = pt_reg_addr(pt, b6); |
| break; |
| case PT_B7: |
| ptr = pt_reg_addr(pt, b7); |
| break; |
| case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8: |
| case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8: |
| ptr = pt_reg_addr(pt, f6) + (addr - PT_F6); |
| break; |
| case PT_AR_BSPSTORE: |
| ptr = pt_reg_addr(pt, ar_bspstore); |
| break; |
| case PT_AR_UNAT: |
| ptr = pt_reg_addr(pt, ar_unat); |
| break; |
| case PT_AR_PFS: |
| ptr = pt_reg_addr(pt, ar_pfs); |
| break; |
| case PT_AR_CCV: |
| ptr = pt_reg_addr(pt, ar_ccv); |
| break; |
| case PT_AR_FPSR: |
| ptr = pt_reg_addr(pt, ar_fpsr); |
| break; |
| case PT_CR_IIP: |
| ptr = pt_reg_addr(pt, cr_iip); |
| break; |
| case PT_PR: |
| ptr = pt_reg_addr(pt, pr); |
| break; |
| /* scratch register */ |
| |
| default: |
| /* disallow accessing anything else... */ |
| dprintk("ptrace: rejecting access to register " |
| "address 0x%lx\n", addr); |
| return -1; |
| } |
| } else if (addr <= PT_AR_SSD) { |
| ptr = pt_reg_addr(pt, ar_csd) + (addr - PT_AR_CSD); |
| } else { |
| /* access debug registers */ |
| |
| if (addr >= PT_IBR) { |
| regnum = (addr - PT_IBR) >> 3; |
| ptr = &child->thread.ibr[0]; |
| } else { |
| regnum = (addr - PT_DBR) >> 3; |
| ptr = &child->thread.dbr[0]; |
| } |
| |
| if (regnum >= 8) { |
| dprintk("ptrace: rejecting access to register " |
| "address 0x%lx\n", addr); |
| return -1; |
| } |
| #ifdef CONFIG_PERFMON |
| /* |
| * Check if debug registers are used by perfmon. This |
| * test must be done once we know that we can do the |
| * operation, i.e. the arguments are all valid, but |
| * before we start modifying the state. |
| * |
| * Perfmon needs to keep a count of how many processes |
| * are trying to modify the debug registers for system |
| * wide monitoring sessions. |
| * |
| * We also include read access here, because they may |
| * cause the PMU-installed debug register state |
| * (dbr[], ibr[]) to be reset. The two arrays are also |
| * used by perfmon, but we do not use |
| * IA64_THREAD_DBG_VALID. The registers are restored |
| * by the PMU context switch code. |
| */ |
| if (pfm_use_debug_registers(child)) return -1; |
| #endif |
| |
| if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { |
| child->thread.flags |= IA64_THREAD_DBG_VALID; |
| memset(child->thread.dbr, 0, |
| sizeof(child->thread.dbr)); |
| memset(child->thread.ibr, 0, |
| sizeof(child->thread.ibr)); |
| } |
| |
| ptr += regnum; |
| |
| if ((regnum & 1) && write_access) { |
| /* don't let the user set kernel-level breakpoints: */ |
| *ptr = *data & ~(7UL << 56); |
| return 0; |
| } |
| } |
| if (write_access) |
| *ptr = *data; |
| else |
| *data = *ptr; |
| return 0; |
| } |
| |
| static long |
| ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) |
| { |
| unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val; |
| struct unw_frame_info info; |
| struct ia64_fpreg fpval; |
| struct switch_stack *sw; |
| struct pt_regs *pt; |
| long ret, retval = 0; |
| char nat = 0; |
| int i; |
| |
| if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs))) |
| return -EIO; |
| |
| pt = task_pt_regs(child); |
| sw = (struct switch_stack *) (child->thread.ksp + 16); |
| unw_init_from_blocked_task(&info, child); |
| if (unw_unwind_to_user(&info) < 0) { |
| return -EIO; |
| } |
| |
| if (((unsigned long) ppr & 0x7) != 0) { |
| dprintk("ptrace:unaligned register address %p\n", ppr); |
| return -EIO; |
| } |
| |
| if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0 |
| || access_uarea(child, PT_AR_EC, &ec, 0) < 0 |
| || access_uarea(child, PT_AR_LC, &lc, 0) < 0 |
| || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0 |
| || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0 |
| || access_uarea(child, PT_CFM, &cfm, 0) |
| || access_uarea(child, PT_NAT_BITS, &nat_bits, 0)) |
| return -EIO; |
| |
| /* control regs */ |
| |
| retval |= __put_user(pt->cr_iip, &ppr->cr_iip); |
| retval |= __put_user(psr, &ppr->cr_ipsr); |
| |
| /* app regs */ |
| |
| retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); |
| retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]); |
| retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); |
| retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); |
| retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); |
| retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); |
| |
| retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]); |
| retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]); |
| retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]); |
| retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]); |
| retval |= __put_user(cfm, &ppr->cfm); |
| |
| /* gr1-gr3 */ |
| |
| retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long)); |
| retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2); |
| |
| /* gr4-gr7 */ |
| |
| for (i = 4; i < 8; i++) { |
| if (unw_access_gr(&info, i, &val, &nat, 0) < 0) |
| return -EIO; |
| retval |= __put_user(val, &ppr->gr[i]); |
| } |
| |
| /* gr8-gr11 */ |
| |
| retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4); |
| |
| /* gr12-gr15 */ |
| |
| retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2); |
| retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long)); |
| retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long)); |
| |
| /* gr16-gr31 */ |
| |
| retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16); |
| |
| /* b0 */ |
| |
| retval |= __put_user(pt->b0, &ppr->br[0]); |
| |
| /* b1-b5 */ |
| |
| for (i = 1; i < 6; i++) { |
| if (unw_access_br(&info, i, &val, 0) < 0) |
| return -EIO; |
| __put_user(val, &ppr->br[i]); |
| } |
| |
| /* b6-b7 */ |
| |
| retval |= __put_user(pt->b6, &ppr->br[6]); |
| retval |= __put_user(pt->b7, &ppr->br[7]); |
| |
| /* fr2-fr5 */ |
| |
| for (i = 2; i < 6; i++) { |
| if (unw_get_fr(&info, i, &fpval) < 0) |
| return -EIO; |
| retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); |
| } |
| |
| /* fr6-fr11 */ |
| |
| retval |= __copy_to_user(&ppr->fr[6], &pt->f6, |
| sizeof(struct ia64_fpreg) * 6); |
| |
| /* fp scratch regs(12-15) */ |
| |
| retval |= __copy_to_user(&ppr->fr[12], &sw->f12, |
| sizeof(struct ia64_fpreg) * 4); |
| |
| /* fr16-fr31 */ |
| |
| for (i = 16; i < 32; i++) { |
| if (unw_get_fr(&info, i, &fpval) < 0) |
| return -EIO; |
| retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval)); |
| } |
| |
| /* fph */ |
| |
| ia64_flush_fph(child); |
| retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph, |
| sizeof(ppr->fr[32]) * 96); |
| |
| /* preds */ |
| |
| retval |= __put_user(pt->pr, &ppr->pr); |
| |
| /* nat bits */ |
| |
| retval |= __put_user(nat_bits, &ppr->nat); |
| |
| ret = retval ? -EIO : 0; |
| return ret; |
| } |
| |
| static long |
| ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr) |
| { |
| unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0; |
| struct unw_frame_info info; |
| struct switch_stack *sw; |
| struct ia64_fpreg fpval; |
| struct pt_regs *pt; |
| long ret, retval = 0; |
| int i; |
| |
| memset(&fpval, 0, sizeof(fpval)); |
| |
| if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs))) |
| return -EIO; |
| |
| pt = task_pt_regs(child); |
| sw = (struct switch_stack *) (child->thread.ksp + 16); |
| unw_init_from_blocked_task(&info, child); |
| if (unw_unwind_to_user(&info) < 0) { |
| return -EIO; |
| } |
| |
| if (((unsigned long) ppr & 0x7) != 0) { |
| dprintk("ptrace:unaligned register address %p\n", ppr); |
| return -EIO; |
| } |
| |
| /* control regs */ |
| |
| retval |= __get_user(pt->cr_iip, &ppr->cr_iip); |
| retval |= __get_user(psr, &ppr->cr_ipsr); |
| |
| /* app regs */ |
| |
| retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]); |
| retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]); |
| retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]); |
| retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]); |
| retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]); |
| retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]); |
| |
| retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]); |
| retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]); |
| retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]); |
| retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]); |
| retval |= __get_user(cfm, &ppr->cfm); |
| |
| /* gr1-gr3 */ |
| |
| retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long)); |
| retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2); |
| |
| /* gr4-gr7 */ |
| |
| for (i = 4; i < 8; i++) { |
| retval |= __get_user(val, &ppr->gr[i]); |
| /* NaT bit will be set via PT_NAT_BITS: */ |
| if (unw_set_gr(&info, i, val, 0) < 0) |
| return -EIO; |
| } |
| |
| /* gr8-gr11 */ |
| |
| retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4); |
| |
| /* gr12-gr15 */ |
| |
| retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2); |
| retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long)); |
| retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long)); |
| |
| /* gr16-gr31 */ |
| |
| retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16); |
| |
| /* b0 */ |
| |
| retval |= __get_user(pt->b0, &ppr->br[0]); |
| |
| /* b1-b5 */ |
| |
| for (i = 1; i < 6; i++) { |
| retval |= __get_user(val, &ppr->br[i]); |
| unw_set_br(&info, i, val); |
| } |
| |
| /* b6-b7 */ |
| |
| retval |= __get_user(pt->b6, &ppr->br[6]); |
| retval |= __get_user(pt->b7, &ppr->br[7]); |
| |
| /* fr2-fr5 */ |
| |
| for (i = 2; i < 6; i++) { |
| retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval)); |
| if (unw_set_fr(&info, i, fpval) < 0) |
| return -EIO; |
| } |
| |
| /* fr6-fr11 */ |
| |
| retval |= __copy_from_user(&pt->f6, &ppr->fr[6], |
| sizeof(ppr->fr[6]) * 6); |
| |
| /* fp scratch regs(12-15) */ |
| |
| retval |= __copy_from_user(&sw->f12, &ppr->fr[12], |
| sizeof(ppr->fr[12]) * 4); |
| |
| /* fr16-fr31 */ |
| |
| for (i = 16; i < 32; i++) { |
| retval |= __copy_from_user(&fpval, &ppr->fr[i], |
| sizeof(fpval)); |
| if (unw_set_fr(&info, i, fpval) < 0) |
| return -EIO; |
| } |
| |
| /* fph */ |
| |
| ia64_sync_fph(child); |
| retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32], |
| sizeof(ppr->fr[32]) * 96); |
| |
| /* preds */ |
| |
| retval |= __get_user(pt->pr, &ppr->pr); |
| |
| /* nat bits */ |
| |
| retval |= __get_user(nat_bits, &ppr->nat); |
| |
| retval |= access_uarea(child, PT_CR_IPSR, &psr, 1); |
| retval |= access_uarea(child, PT_AR_RSC, &rsc, 1); |
| retval |= access_uarea(child, PT_AR_EC, &ec, 1); |
| retval |= access_uarea(child, PT_AR_LC, &lc, 1); |
| retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1); |
| retval |= access_uarea(child, PT_AR_BSP, &bsp, 1); |
| retval |= access_uarea(child, PT_CFM, &cfm, 1); |
| retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1); |
| |
| ret = retval ? -EIO : 0; |
| return ret; |
| } |
| |
| /* |
| * Called by kernel/ptrace.c when detaching.. |
| * |
| * Make sure the single step bit is not set. |
| */ |
| void |
| ptrace_disable (struct task_struct *child) |
| { |
| struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child)); |
| |
| /* make sure the single step/taken-branch trap bits are not set: */ |
| clear_tsk_thread_flag(child, TIF_SINGLESTEP); |
| child_psr->ss = 0; |
| child_psr->tb = 0; |
| } |
| |
| asmlinkage long |
| sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data) |
| { |
| struct pt_regs *pt; |
| unsigned long urbs_end, peek_or_poke; |
| struct task_struct *child; |
| struct switch_stack *sw; |
| long ret; |
| |
| lock_kernel(); |
| ret = -EPERM; |
| if (request == PTRACE_TRACEME) { |
| ret = ptrace_traceme(); |
| goto out; |
| } |
| |
| peek_or_poke = (request == PTRACE_PEEKTEXT |
| || request == PTRACE_PEEKDATA |
| || request == PTRACE_POKETEXT |
| || request == PTRACE_POKEDATA); |
| ret = -ESRCH; |
| read_lock(&tasklist_lock); |
| { |
| child = find_task_by_pid(pid); |
| if (child) { |
| if (peek_or_poke) |
| child = find_thread_for_addr(child, addr); |
| get_task_struct(child); |
| } |
| } |
| read_unlock(&tasklist_lock); |
| if (!child) |
| goto out; |
| ret = -EPERM; |
| if (pid == 1) /* no messing around with init! */ |
| goto out_tsk; |
| |
| if (request == PTRACE_ATTACH) { |
| ret = ptrace_attach(child); |
| goto out_tsk; |
| } |
| |
| ret = ptrace_check_attach(child, request == PTRACE_KILL); |
| if (ret < 0) |
| goto out_tsk; |
| |
| pt = task_pt_regs(child); |
| sw = (struct switch_stack *) (child->thread.ksp + 16); |
| |
| switch (request) { |
| case PTRACE_PEEKTEXT: |
| case PTRACE_PEEKDATA: |
| /* read word at location addr */ |
| urbs_end = ia64_get_user_rbs_end(child, pt, NULL); |
| ret = ia64_peek(child, sw, urbs_end, addr, &data); |
| if (ret == 0) { |
| ret = data; |
| /* ensure "ret" is not mistaken as an error code: */ |
| force_successful_syscall_return(); |
| } |
| goto out_tsk; |
| |
| case PTRACE_POKETEXT: |
| case PTRACE_POKEDATA: |
| /* write the word at location addr */ |
| urbs_end = ia64_get_user_rbs_end(child, pt, NULL); |
| ret = ia64_poke(child, sw, urbs_end, addr, data); |
| goto out_tsk; |
| |
| case PTRACE_PEEKUSR: |
| /* read the word at addr in the USER area */ |
| if (access_uarea(child, addr, &data, 0) < 0) { |
| ret = -EIO; |
| goto out_tsk; |
| } |
| ret = data; |
| /* ensure "ret" is not mistaken as an error code */ |
| force_successful_syscall_return(); |
| goto out_tsk; |
| |
| case PTRACE_POKEUSR: |
| /* write the word at addr in the USER area */ |
| if (access_uarea(child, addr, &data, 1) < 0) { |
| ret = -EIO; |
| goto out_tsk; |
| } |
| ret = 0; |
| goto out_tsk; |
| |
| case PTRACE_OLD_GETSIGINFO: |
| /* for backwards-compatibility */ |
| ret = ptrace_request(child, PTRACE_GETSIGINFO, addr, data); |
| goto out_tsk; |
| |
| case PTRACE_OLD_SETSIGINFO: |
| /* for backwards-compatibility */ |
| ret = ptrace_request(child, PTRACE_SETSIGINFO, addr, data); |
| goto out_tsk; |
| |
| case PTRACE_SYSCALL: |
| /* continue and stop at next (return from) syscall */ |
| case PTRACE_CONT: |
| /* restart after signal. */ |
| ret = -EIO; |
| if (!valid_signal(data)) |
| goto out_tsk; |
| if (request == PTRACE_SYSCALL) |
| set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| else |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| child->exit_code = data; |
| |
| /* |
| * Make sure the single step/taken-branch trap bits |
| * are not set: |
| */ |
| clear_tsk_thread_flag(child, TIF_SINGLESTEP); |
| ia64_psr(pt)->ss = 0; |
| ia64_psr(pt)->tb = 0; |
| |
| wake_up_process(child); |
| ret = 0; |
| goto out_tsk; |
| |
| case PTRACE_KILL: |
| /* |
| * Make the child exit. Best I can do is send it a |
| * sigkill. Perhaps it should be put in the status |
| * that it wants to exit. |
| */ |
| if (child->exit_state == EXIT_ZOMBIE) |
| /* already dead */ |
| goto out_tsk; |
| child->exit_code = SIGKILL; |
| |
| ptrace_disable(child); |
| wake_up_process(child); |
| ret = 0; |
| goto out_tsk; |
| |
| case PTRACE_SINGLESTEP: |
| /* let child execute for one instruction */ |
| case PTRACE_SINGLEBLOCK: |
| ret = -EIO; |
| if (!valid_signal(data)) |
| goto out_tsk; |
| |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| set_tsk_thread_flag(child, TIF_SINGLESTEP); |
| if (request == PTRACE_SINGLESTEP) { |
| ia64_psr(pt)->ss = 1; |
| } else { |
| ia64_psr(pt)->tb = 1; |
| } |
| child->exit_code = data; |
| |
| /* give it a chance to run. */ |
| wake_up_process(child); |
| ret = 0; |
| goto out_tsk; |
| |
| case PTRACE_DETACH: |
| /* detach a process that was attached. */ |
| clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); |
| ret = ptrace_detach(child, data); |
| goto out_tsk; |
| |
| case PTRACE_GETREGS: |
| ret = ptrace_getregs(child, |
| (struct pt_all_user_regs __user *) data); |
| goto out_tsk; |
| |
| case PTRACE_SETREGS: |
| ret = ptrace_setregs(child, |
| (struct pt_all_user_regs __user *) data); |
| goto out_tsk; |
| |
| default: |
| ret = ptrace_request(child, request, addr, data); |
| goto out_tsk; |
| } |
| out_tsk: |
| put_task_struct(child); |
| out: |
| unlock_kernel(); |
| return ret; |
| } |
| |
| |
| static void |
| syscall_trace (void) |
| { |
| /* |
| * The 0x80 provides a way for the tracing parent to |
| * distinguish between a syscall stop and SIGTRAP delivery. |
| */ |
| ptrace_notify(SIGTRAP |
| | ((current->ptrace & PT_TRACESYSGOOD) ? 0x80 : 0)); |
| |
| /* |
| * This isn't the same as continuing with a signal, but it |
| * will do for normal use. strace only continues with a |
| * signal if the stopping signal is not SIGTRAP. -brl |
| */ |
| if (current->exit_code) { |
| send_sig(current->exit_code, current, 1); |
| current->exit_code = 0; |
| } |
| } |
| |
| /* "asmlinkage" so the input arguments are preserved... */ |
| |
| asmlinkage void |
| syscall_trace_enter (long arg0, long arg1, long arg2, long arg3, |
| long arg4, long arg5, long arg6, long arg7, |
| struct pt_regs regs) |
| { |
| if (test_thread_flag(TIF_SYSCALL_TRACE) |
| && (current->ptrace & PT_PTRACED)) |
| syscall_trace(); |
| |
| if (unlikely(current->audit_context)) { |
| long syscall; |
| int arch; |
| |
| if (IS_IA32_PROCESS(®s)) { |
| syscall = regs.r1; |
| arch = AUDIT_ARCH_I386; |
| } else { |
| syscall = regs.r15; |
| arch = AUDIT_ARCH_IA64; |
| } |
| |
| audit_syscall_entry(arch, syscall, arg0, arg1, arg2, arg3); |
| } |
| |
| } |
| |
| /* "asmlinkage" so the input arguments are preserved... */ |
| |
| asmlinkage void |
| syscall_trace_leave (long arg0, long arg1, long arg2, long arg3, |
| long arg4, long arg5, long arg6, long arg7, |
| struct pt_regs regs) |
| { |
| if (unlikely(current->audit_context)) { |
| int success = AUDITSC_RESULT(regs.r10); |
| long result = regs.r8; |
| |
| if (success != AUDITSC_SUCCESS) |
| result = -result; |
| audit_syscall_exit(success, result); |
| } |
| |
| if ((test_thread_flag(TIF_SYSCALL_TRACE) |
| || test_thread_flag(TIF_SINGLESTEP)) |
| && (current->ptrace & PT_PTRACED)) |
| syscall_trace(); |
| } |