| /* |
| * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces |
| * |
| * Copyright 2005-2008 Analog Devices Inc. |
| * |
| * Licensed under the GPL-2 or later. |
| */ |
| |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/spinlock.h> |
| #include <linux/delay.h> |
| #include <linux/ptrace.h> /* for linux pt_regs struct */ |
| #include <linux/kgdb.h> |
| #include <linux/console.h> |
| #include <linux/init.h> |
| #include <linux/errno.h> |
| #include <linux/irq.h> |
| #include <linux/uaccess.h> |
| #include <asm/system.h> |
| #include <asm/traps.h> |
| #include <asm/blackfin.h> |
| #include <asm/dma.h> |
| |
| /* Put the error code here just in case the user cares. */ |
| int gdb_bfin_errcode; |
| /* Likewise, the vector number here (since GDB only gets the signal |
| number through the usual means, and that's not very specific). */ |
| int gdb_bfin_vector = -1; |
| |
| #if KGDB_MAX_NO_CPUS != 8 |
| #error change the definition of slavecpulocks |
| #endif |
| |
| #define IN_MEM(addr, size, l1_addr, l1_size) \ |
| ({ \ |
| unsigned long __addr = (unsigned long)(addr); \ |
| (l1_size && __addr >= l1_addr && __addr + (size) <= l1_addr + l1_size); \ |
| }) |
| #define ASYNC_BANK_SIZE \ |
| (ASYNC_BANK0_SIZE + ASYNC_BANK1_SIZE + \ |
| ASYNC_BANK2_SIZE + ASYNC_BANK3_SIZE) |
| |
| void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs) |
| { |
| gdb_regs[BFIN_R0] = regs->r0; |
| gdb_regs[BFIN_R1] = regs->r1; |
| gdb_regs[BFIN_R2] = regs->r2; |
| gdb_regs[BFIN_R3] = regs->r3; |
| gdb_regs[BFIN_R4] = regs->r4; |
| gdb_regs[BFIN_R5] = regs->r5; |
| gdb_regs[BFIN_R6] = regs->r6; |
| gdb_regs[BFIN_R7] = regs->r7; |
| gdb_regs[BFIN_P0] = regs->p0; |
| gdb_regs[BFIN_P1] = regs->p1; |
| gdb_regs[BFIN_P2] = regs->p2; |
| gdb_regs[BFIN_P3] = regs->p3; |
| gdb_regs[BFIN_P4] = regs->p4; |
| gdb_regs[BFIN_P5] = regs->p5; |
| gdb_regs[BFIN_SP] = regs->reserved; |
| gdb_regs[BFIN_FP] = regs->fp; |
| gdb_regs[BFIN_I0] = regs->i0; |
| gdb_regs[BFIN_I1] = regs->i1; |
| gdb_regs[BFIN_I2] = regs->i2; |
| gdb_regs[BFIN_I3] = regs->i3; |
| gdb_regs[BFIN_M0] = regs->m0; |
| gdb_regs[BFIN_M1] = regs->m1; |
| gdb_regs[BFIN_M2] = regs->m2; |
| gdb_regs[BFIN_M3] = regs->m3; |
| gdb_regs[BFIN_B0] = regs->b0; |
| gdb_regs[BFIN_B1] = regs->b1; |
| gdb_regs[BFIN_B2] = regs->b2; |
| gdb_regs[BFIN_B3] = regs->b3; |
| gdb_regs[BFIN_L0] = regs->l0; |
| gdb_regs[BFIN_L1] = regs->l1; |
| gdb_regs[BFIN_L2] = regs->l2; |
| gdb_regs[BFIN_L3] = regs->l3; |
| gdb_regs[BFIN_A0_DOT_X] = regs->a0x; |
| gdb_regs[BFIN_A0_DOT_W] = regs->a0w; |
| gdb_regs[BFIN_A1_DOT_X] = regs->a1x; |
| gdb_regs[BFIN_A1_DOT_W] = regs->a1w; |
| gdb_regs[BFIN_ASTAT] = regs->astat; |
| gdb_regs[BFIN_RETS] = regs->rets; |
| gdb_regs[BFIN_LC0] = regs->lc0; |
| gdb_regs[BFIN_LT0] = regs->lt0; |
| gdb_regs[BFIN_LB0] = regs->lb0; |
| gdb_regs[BFIN_LC1] = regs->lc1; |
| gdb_regs[BFIN_LT1] = regs->lt1; |
| gdb_regs[BFIN_LB1] = regs->lb1; |
| gdb_regs[BFIN_CYCLES] = 0; |
| gdb_regs[BFIN_CYCLES2] = 0; |
| gdb_regs[BFIN_USP] = regs->usp; |
| gdb_regs[BFIN_SEQSTAT] = regs->seqstat; |
| gdb_regs[BFIN_SYSCFG] = regs->syscfg; |
| gdb_regs[BFIN_RETI] = regs->pc; |
| gdb_regs[BFIN_RETX] = regs->retx; |
| gdb_regs[BFIN_RETN] = regs->retn; |
| gdb_regs[BFIN_RETE] = regs->rete; |
| gdb_regs[BFIN_PC] = regs->pc; |
| gdb_regs[BFIN_CC] = 0; |
| gdb_regs[BFIN_EXTRA1] = 0; |
| gdb_regs[BFIN_EXTRA2] = 0; |
| gdb_regs[BFIN_EXTRA3] = 0; |
| gdb_regs[BFIN_IPEND] = regs->ipend; |
| } |
| |
| /* |
| * Extracts ebp, esp and eip values understandable by gdb from the values |
| * saved by switch_to. |
| * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp |
| * prior to entering switch_to is 8 greater then the value that is saved. |
| * If switch_to changes, change following code appropriately. |
| */ |
| void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p) |
| { |
| gdb_regs[BFIN_SP] = p->thread.ksp; |
| gdb_regs[BFIN_PC] = p->thread.pc; |
| gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat; |
| } |
| |
| void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs) |
| { |
| regs->r0 = gdb_regs[BFIN_R0]; |
| regs->r1 = gdb_regs[BFIN_R1]; |
| regs->r2 = gdb_regs[BFIN_R2]; |
| regs->r3 = gdb_regs[BFIN_R3]; |
| regs->r4 = gdb_regs[BFIN_R4]; |
| regs->r5 = gdb_regs[BFIN_R5]; |
| regs->r6 = gdb_regs[BFIN_R6]; |
| regs->r7 = gdb_regs[BFIN_R7]; |
| regs->p0 = gdb_regs[BFIN_P0]; |
| regs->p1 = gdb_regs[BFIN_P1]; |
| regs->p2 = gdb_regs[BFIN_P2]; |
| regs->p3 = gdb_regs[BFIN_P3]; |
| regs->p4 = gdb_regs[BFIN_P4]; |
| regs->p5 = gdb_regs[BFIN_P5]; |
| regs->fp = gdb_regs[BFIN_FP]; |
| regs->i0 = gdb_regs[BFIN_I0]; |
| regs->i1 = gdb_regs[BFIN_I1]; |
| regs->i2 = gdb_regs[BFIN_I2]; |
| regs->i3 = gdb_regs[BFIN_I3]; |
| regs->m0 = gdb_regs[BFIN_M0]; |
| regs->m1 = gdb_regs[BFIN_M1]; |
| regs->m2 = gdb_regs[BFIN_M2]; |
| regs->m3 = gdb_regs[BFIN_M3]; |
| regs->b0 = gdb_regs[BFIN_B0]; |
| regs->b1 = gdb_regs[BFIN_B1]; |
| regs->b2 = gdb_regs[BFIN_B2]; |
| regs->b3 = gdb_regs[BFIN_B3]; |
| regs->l0 = gdb_regs[BFIN_L0]; |
| regs->l1 = gdb_regs[BFIN_L1]; |
| regs->l2 = gdb_regs[BFIN_L2]; |
| regs->l3 = gdb_regs[BFIN_L3]; |
| regs->a0x = gdb_regs[BFIN_A0_DOT_X]; |
| regs->a0w = gdb_regs[BFIN_A0_DOT_W]; |
| regs->a1x = gdb_regs[BFIN_A1_DOT_X]; |
| regs->a1w = gdb_regs[BFIN_A1_DOT_W]; |
| regs->rets = gdb_regs[BFIN_RETS]; |
| regs->lc0 = gdb_regs[BFIN_LC0]; |
| regs->lt0 = gdb_regs[BFIN_LT0]; |
| regs->lb0 = gdb_regs[BFIN_LB0]; |
| regs->lc1 = gdb_regs[BFIN_LC1]; |
| regs->lt1 = gdb_regs[BFIN_LT1]; |
| regs->lb1 = gdb_regs[BFIN_LB1]; |
| regs->usp = gdb_regs[BFIN_USP]; |
| regs->syscfg = gdb_regs[BFIN_SYSCFG]; |
| regs->retx = gdb_regs[BFIN_PC]; |
| regs->retn = gdb_regs[BFIN_RETN]; |
| regs->rete = gdb_regs[BFIN_RETE]; |
| regs->pc = gdb_regs[BFIN_PC]; |
| |
| #if 0 /* can't change these */ |
| regs->astat = gdb_regs[BFIN_ASTAT]; |
| regs->seqstat = gdb_regs[BFIN_SEQSTAT]; |
| regs->ipend = gdb_regs[BFIN_IPEND]; |
| #endif |
| } |
| |
| struct hw_breakpoint { |
| unsigned int occupied:1; |
| unsigned int skip:1; |
| unsigned int enabled:1; |
| unsigned int type:1; |
| unsigned int dataacc:2; |
| unsigned short count; |
| unsigned int addr; |
| } breakinfo[HW_WATCHPOINT_NUM]; |
| |
| int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type) |
| { |
| int breakno; |
| int bfin_type; |
| int dataacc = 0; |
| |
| switch (type) { |
| case BP_HARDWARE_BREAKPOINT: |
| bfin_type = TYPE_INST_WATCHPOINT; |
| break; |
| case BP_WRITE_WATCHPOINT: |
| dataacc = 1; |
| bfin_type = TYPE_DATA_WATCHPOINT; |
| break; |
| case BP_READ_WATCHPOINT: |
| dataacc = 2; |
| bfin_type = TYPE_DATA_WATCHPOINT; |
| break; |
| case BP_ACCESS_WATCHPOINT: |
| dataacc = 3; |
| bfin_type = TYPE_DATA_WATCHPOINT; |
| break; |
| default: |
| return -ENOSPC; |
| } |
| |
| /* Becasue hardware data watchpoint impelemented in current |
| * Blackfin can not trigger an exception event as the hardware |
| * instrction watchpoint does, we ignaore all data watch point here. |
| * They can be turned on easily after future blackfin design |
| * supports this feature. |
| */ |
| for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++) |
| if (bfin_type == breakinfo[breakno].type |
| && !breakinfo[breakno].occupied) { |
| breakinfo[breakno].occupied = 1; |
| breakinfo[breakno].skip = 0; |
| breakinfo[breakno].enabled = 1; |
| breakinfo[breakno].addr = addr; |
| breakinfo[breakno].dataacc = dataacc; |
| breakinfo[breakno].count = 0; |
| return 0; |
| } |
| |
| return -ENOSPC; |
| } |
| |
| int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type) |
| { |
| int breakno; |
| int bfin_type; |
| |
| switch (type) { |
| case BP_HARDWARE_BREAKPOINT: |
| bfin_type = TYPE_INST_WATCHPOINT; |
| break; |
| case BP_WRITE_WATCHPOINT: |
| case BP_READ_WATCHPOINT: |
| case BP_ACCESS_WATCHPOINT: |
| bfin_type = TYPE_DATA_WATCHPOINT; |
| break; |
| default: |
| return 0; |
| } |
| for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) |
| if (bfin_type == breakinfo[breakno].type |
| && breakinfo[breakno].occupied |
| && breakinfo[breakno].addr == addr) { |
| breakinfo[breakno].occupied = 0; |
| breakinfo[breakno].enabled = 0; |
| } |
| |
| return 0; |
| } |
| |
| void bfin_remove_all_hw_break(void) |
| { |
| int breakno; |
| |
| memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM); |
| |
| for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++) |
| breakinfo[breakno].type = TYPE_INST_WATCHPOINT; |
| for (; breakno < HW_WATCHPOINT_NUM; breakno++) |
| breakinfo[breakno].type = TYPE_DATA_WATCHPOINT; |
| } |
| |
| void bfin_correct_hw_break(void) |
| { |
| int breakno; |
| unsigned int wpiactl = 0; |
| unsigned int wpdactl = 0; |
| int enable_wp = 0; |
| |
| for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) |
| if (breakinfo[breakno].enabled) { |
| enable_wp = 1; |
| |
| switch (breakno) { |
| case 0: |
| wpiactl |= WPIAEN0|WPICNTEN0; |
| bfin_write_WPIA0(breakinfo[breakno].addr); |
| bfin_write_WPIACNT0(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 1: |
| wpiactl |= WPIAEN1|WPICNTEN1; |
| bfin_write_WPIA1(breakinfo[breakno].addr); |
| bfin_write_WPIACNT1(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 2: |
| wpiactl |= WPIAEN2|WPICNTEN2; |
| bfin_write_WPIA2(breakinfo[breakno].addr); |
| bfin_write_WPIACNT2(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 3: |
| wpiactl |= WPIAEN3|WPICNTEN3; |
| bfin_write_WPIA3(breakinfo[breakno].addr); |
| bfin_write_WPIACNT3(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 4: |
| wpiactl |= WPIAEN4|WPICNTEN4; |
| bfin_write_WPIA4(breakinfo[breakno].addr); |
| bfin_write_WPIACNT4(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 5: |
| wpiactl |= WPIAEN5|WPICNTEN5; |
| bfin_write_WPIA5(breakinfo[breakno].addr); |
| bfin_write_WPIACNT5(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 6: |
| wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0; |
| wpdactl |= breakinfo[breakno].dataacc |
| << WPDACC0_OFFSET; |
| bfin_write_WPDA0(breakinfo[breakno].addr); |
| bfin_write_WPDACNT0(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| case 7: |
| wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1; |
| wpdactl |= breakinfo[breakno].dataacc |
| << WPDACC1_OFFSET; |
| bfin_write_WPDA1(breakinfo[breakno].addr); |
| bfin_write_WPDACNT1(breakinfo[breakno].count |
| + breakinfo->skip); |
| break; |
| } |
| } |
| |
| /* Should enable WPPWR bit first before set any other |
| * WPIACTL and WPDACTL bits */ |
| if (enable_wp) { |
| bfin_write_WPIACTL(WPPWR); |
| CSYNC(); |
| bfin_write_WPIACTL(wpiactl|WPPWR); |
| bfin_write_WPDACTL(wpdactl); |
| CSYNC(); |
| } |
| } |
| |
| void kgdb_disable_hw_debug(struct pt_regs *regs) |
| { |
| /* Disable hardware debugging while we are in kgdb */ |
| bfin_write_WPIACTL(0); |
| bfin_write_WPDACTL(0); |
| CSYNC(); |
| } |
| |
| #ifdef CONFIG_SMP |
| void kgdb_passive_cpu_callback(void *info) |
| { |
| kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs()); |
| } |
| |
| void kgdb_roundup_cpus(unsigned long flags) |
| { |
| smp_call_function(kgdb_passive_cpu_callback, NULL, 0); |
| } |
| |
| void kgdb_roundup_cpu(int cpu, unsigned long flags) |
| { |
| smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0); |
| } |
| #endif |
| |
| void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code) |
| { |
| /* Master processor is completely in the debugger */ |
| gdb_bfin_vector = eVector; |
| gdb_bfin_errcode = err_code; |
| } |
| |
| int kgdb_arch_handle_exception(int vector, int signo, |
| int err_code, char *remcom_in_buffer, |
| char *remcom_out_buffer, |
| struct pt_regs *regs) |
| { |
| long addr; |
| char *ptr; |
| int newPC; |
| int i; |
| |
| switch (remcom_in_buffer[0]) { |
| case 'c': |
| case 's': |
| if (kgdb_contthread && kgdb_contthread != current) { |
| strcpy(remcom_out_buffer, "E00"); |
| break; |
| } |
| |
| kgdb_contthread = NULL; |
| |
| /* try to read optional parameter, pc unchanged if no parm */ |
| ptr = &remcom_in_buffer[1]; |
| if (kgdb_hex2long(&ptr, &addr)) { |
| regs->retx = addr; |
| } |
| newPC = regs->retx; |
| |
| /* clear the trace bit */ |
| regs->syscfg &= 0xfffffffe; |
| |
| /* set the trace bit if we're stepping */ |
| if (remcom_in_buffer[0] == 's') { |
| regs->syscfg |= 0x1; |
| kgdb_single_step = regs->ipend; |
| kgdb_single_step >>= 6; |
| for (i = 10; i > 0; i--, kgdb_single_step >>= 1) |
| if (kgdb_single_step & 1) |
| break; |
| /* i indicate event priority of current stopped instruction |
| * user space instruction is 0, IVG15 is 1, IVTMR is 10. |
| * kgdb_single_step > 0 means in single step mode |
| */ |
| kgdb_single_step = i + 1; |
| } |
| |
| bfin_correct_hw_break(); |
| |
| return 0; |
| } /* switch */ |
| return -1; /* this means that we do not want to exit from the handler */ |
| } |
| |
| struct kgdb_arch arch_kgdb_ops = { |
| .gdb_bpt_instr = {0xa1}, |
| #ifdef CONFIG_SMP |
| .flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP, |
| #else |
| .flags = KGDB_HW_BREAKPOINT, |
| #endif |
| .set_hw_breakpoint = bfin_set_hw_break, |
| .remove_hw_breakpoint = bfin_remove_hw_break, |
| .remove_all_hw_break = bfin_remove_all_hw_break, |
| .correct_hw_break = bfin_correct_hw_break, |
| }; |
| |
| static int hex(char ch) |
| { |
| if ((ch >= 'a') && (ch <= 'f')) |
| return ch - 'a' + 10; |
| if ((ch >= '0') && (ch <= '9')) |
| return ch - '0'; |
| if ((ch >= 'A') && (ch <= 'F')) |
| return ch - 'A' + 10; |
| return -1; |
| } |
| |
| static int validate_memory_access_address(unsigned long addr, int size) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (size < 0) |
| return EFAULT; |
| if (addr >= 0x1000 && (addr + size) <= physical_mem_end) |
| return 0; |
| if (addr >= SYSMMR_BASE) |
| return 0; |
| if (IN_MEM(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE)) |
| return 0; |
| if (cpu == 0) { |
| if (IN_MEM(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH)) |
| return 0; |
| if (IN_MEM(addr, size, L1_CODE_START, L1_CODE_LENGTH)) |
| return 0; |
| if (IN_MEM(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH)) |
| return 0; |
| if (IN_MEM(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH)) |
| return 0; |
| #ifdef CONFIG_SMP |
| } else if (cpu == 1) { |
| if (IN_MEM(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH)) |
| return 0; |
| if (IN_MEM(addr, size, COREB_L1_CODE_START, L1_CODE_LENGTH)) |
| return 0; |
| if (IN_MEM(addr, size, COREB_L1_DATA_A_START, L1_DATA_A_LENGTH)) |
| return 0; |
| if (IN_MEM(addr, size, COREB_L1_DATA_B_START, L1_DATA_B_LENGTH)) |
| return 0; |
| #endif |
| } |
| |
| if (IN_MEM(addr, size, L2_START, L2_LENGTH)) |
| return 0; |
| |
| return EFAULT; |
| } |
| |
| /* |
| * Convert the memory pointed to by mem into hex, placing result in buf. |
| * Return a pointer to the last char put in buf (null). May return an error. |
| */ |
| int kgdb_mem2hex(char *mem, char *buf, int count) |
| { |
| char *tmp; |
| int err = 0; |
| unsigned char *pch; |
| unsigned short mmr16; |
| unsigned long mmr32; |
| int cpu = raw_smp_processor_id(); |
| |
| if (validate_memory_access_address((unsigned long)mem, count)) |
| return EFAULT; |
| |
| /* |
| * We use the upper half of buf as an intermediate buffer for the |
| * raw memory copy. Hex conversion will work against this one. |
| */ |
| tmp = buf + count; |
| |
| if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ |
| switch (count) { |
| case 2: |
| if ((unsigned int)mem % 2 == 0) { |
| mmr16 = *(unsigned short *)mem; |
| pch = (unsigned char *)&mmr16; |
| *tmp++ = *pch++; |
| *tmp++ = *pch++; |
| tmp -= 2; |
| } else |
| err = EFAULT; |
| break; |
| case 4: |
| if ((unsigned int)mem % 4 == 0) { |
| mmr32 = *(unsigned long *)mem; |
| pch = (unsigned char *)&mmr32; |
| *tmp++ = *pch++; |
| *tmp++ = *pch++; |
| *tmp++ = *pch++; |
| *tmp++ = *pch++; |
| tmp -= 4; |
| } else |
| err = EFAULT; |
| break; |
| default: |
| err = EFAULT; |
| } |
| } else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH)) |
| #ifdef CONFIG_SMP |
| || (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH)) |
| #endif |
| ) { |
| /* access L1 instruction SRAM*/ |
| if (dma_memcpy(tmp, mem, count) == NULL) |
| err = EFAULT; |
| } else |
| err = probe_kernel_read(tmp, mem, count); |
| |
| if (!err) { |
| while (count > 0) { |
| buf = pack_hex_byte(buf, *tmp); |
| tmp++; |
| count--; |
| } |
| |
| *buf = 0; |
| } |
| |
| return err; |
| } |
| |
| /* |
| * Copy the binary array pointed to by buf into mem. Fix $, #, and |
| * 0x7d escaped with 0x7d. Return a pointer to the character after |
| * the last byte written. |
| */ |
| int kgdb_ebin2mem(char *buf, char *mem, int count) |
| { |
| char *tmp_old; |
| char *tmp_new; |
| unsigned short *mmr16; |
| unsigned long *mmr32; |
| int err = 0; |
| int size = 0; |
| int cpu = raw_smp_processor_id(); |
| |
| tmp_old = tmp_new = buf; |
| |
| while (count-- > 0) { |
| if (*tmp_old == 0x7d) |
| *tmp_new = *(++tmp_old) ^ 0x20; |
| else |
| *tmp_new = *tmp_old; |
| tmp_new++; |
| tmp_old++; |
| size++; |
| } |
| |
| if (validate_memory_access_address((unsigned long)mem, size)) |
| return EFAULT; |
| |
| if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ |
| switch (size) { |
| case 2: |
| if ((unsigned int)mem % 2 == 0) { |
| mmr16 = (unsigned short *)buf; |
| *(unsigned short *)mem = *mmr16; |
| } else |
| return EFAULT; |
| break; |
| case 4: |
| if ((unsigned int)mem % 4 == 0) { |
| mmr32 = (unsigned long *)buf; |
| *(unsigned long *)mem = *mmr32; |
| } else |
| return EFAULT; |
| break; |
| default: |
| return EFAULT; |
| } |
| } else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH)) |
| #ifdef CONFIG_SMP |
| || (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH)) |
| #endif |
| ) { |
| /* access L1 instruction SRAM */ |
| if (dma_memcpy(mem, buf, size) == NULL) |
| err = EFAULT; |
| } else |
| err = probe_kernel_write(mem, buf, size); |
| |
| return err; |
| } |
| |
| /* |
| * Convert the hex array pointed to by buf into binary to be placed in mem. |
| * Return a pointer to the character AFTER the last byte written. |
| * May return an error. |
| */ |
| int kgdb_hex2mem(char *buf, char *mem, int count) |
| { |
| char *tmp_raw; |
| char *tmp_hex; |
| unsigned short *mmr16; |
| unsigned long *mmr32; |
| int cpu = raw_smp_processor_id(); |
| |
| if (validate_memory_access_address((unsigned long)mem, count)) |
| return EFAULT; |
| |
| /* |
| * We use the upper half of buf as an intermediate buffer for the |
| * raw memory that is converted from hex. |
| */ |
| tmp_raw = buf + count * 2; |
| |
| tmp_hex = tmp_raw - 1; |
| while (tmp_hex >= buf) { |
| tmp_raw--; |
| *tmp_raw = hex(*tmp_hex--); |
| *tmp_raw |= hex(*tmp_hex--) << 4; |
| } |
| |
| if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/ |
| switch (count) { |
| case 2: |
| if ((unsigned int)mem % 2 == 0) { |
| mmr16 = (unsigned short *)tmp_raw; |
| *(unsigned short *)mem = *mmr16; |
| } else |
| return EFAULT; |
| break; |
| case 4: |
| if ((unsigned int)mem % 4 == 0) { |
| mmr32 = (unsigned long *)tmp_raw; |
| *(unsigned long *)mem = *mmr32; |
| } else |
| return EFAULT; |
| break; |
| default: |
| return EFAULT; |
| } |
| } else if ((cpu == 0 && IN_MEM(mem, count, L1_CODE_START, L1_CODE_LENGTH)) |
| #ifdef CONFIG_SMP |
| || (cpu == 1 && IN_MEM(mem, count, COREB_L1_CODE_START, L1_CODE_LENGTH)) |
| #endif |
| ) { |
| /* access L1 instruction SRAM */ |
| if (dma_memcpy(mem, tmp_raw, count) == NULL) |
| return EFAULT; |
| } else |
| return probe_kernel_write(mem, tmp_raw, count); |
| return 0; |
| } |
| |
| int kgdb_validate_break_address(unsigned long addr) |
| { |
| int cpu = raw_smp_processor_id(); |
| |
| if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end) |
| return 0; |
| if (IN_MEM(addr, BREAK_INSTR_SIZE, ASYNC_BANK0_BASE, ASYNC_BANK_SIZE)) |
| return 0; |
| if (cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) |
| return 0; |
| #ifdef CONFIG_SMP |
| else if (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH)) |
| return 0; |
| #endif |
| if (IN_MEM(addr, BREAK_INSTR_SIZE, L2_START, L2_LENGTH)) |
| return 0; |
| |
| return EFAULT; |
| } |
| |
| int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr) |
| { |
| int err; |
| int cpu = raw_smp_processor_id(); |
| |
| if ((cpu == 0 && IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) |
| #ifdef CONFIG_SMP |
| || (cpu == 1 && IN_MEM(addr, BREAK_INSTR_SIZE, COREB_L1_CODE_START, L1_CODE_LENGTH)) |
| #endif |
| ) { |
| /* access L1 instruction SRAM */ |
| if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE) |
| == NULL) |
| return -EFAULT; |
| |
| if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr, |
| BREAK_INSTR_SIZE) == NULL) |
| return -EFAULT; |
| |
| return 0; |
| } else { |
| err = probe_kernel_read(saved_instr, (char *)addr, |
| BREAK_INSTR_SIZE); |
| if (err) |
| return err; |
| |
| return probe_kernel_write((char *)addr, |
| arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE); |
| } |
| } |
| |
| int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle) |
| { |
| if (IN_MEM(addr, BREAK_INSTR_SIZE, L1_CODE_START, L1_CODE_LENGTH)) { |
| /* access L1 instruction SRAM */ |
| if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL) |
| return -EFAULT; |
| |
| return 0; |
| } else |
| return probe_kernel_write((char *)addr, |
| (char *)bundle, BREAK_INSTR_SIZE); |
| } |
| |
| int kgdb_arch_init(void) |
| { |
| kgdb_single_step = 0; |
| |
| bfin_remove_all_hw_break(); |
| return 0; |
| } |
| |
| void kgdb_arch_exit(void) |
| { |
| } |