| /* |
| * Copyright (C) 1994 Linus Torvalds |
| * |
| * Pentium III FXSR, SSE support |
| * General FPU state handling cleanups |
| * Gareth Hughes <gareth@valinux.com>, May 2000 |
| * x86-64 work by Andi Kleen 2002 |
| */ |
| |
| #ifndef _ASM_X86_FPU_INTERNAL_H |
| #define _ASM_X86_FPU_INTERNAL_H |
| |
| #include <linux/regset.h> |
| #include <linux/compat.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| |
| #include <asm/user.h> |
| #include <asm/fpu/api.h> |
| #include <asm/fpu/xstate.h> |
| |
| #ifdef CONFIG_X86_64 |
| # include <asm/sigcontext32.h> |
| # include <asm/user32.h> |
| struct ksignal; |
| int ia32_setup_rt_frame(int sig, struct ksignal *ksig, |
| compat_sigset_t *set, struct pt_regs *regs); |
| int ia32_setup_frame(int sig, struct ksignal *ksig, |
| compat_sigset_t *set, struct pt_regs *regs); |
| #else |
| # define user_i387_ia32_struct user_i387_struct |
| # define user32_fxsr_struct user_fxsr_struct |
| # define ia32_setup_frame __setup_frame |
| # define ia32_setup_rt_frame __setup_rt_frame |
| #endif |
| |
| #define MXCSR_DEFAULT 0x1f80 |
| |
| extern unsigned int mxcsr_feature_mask; |
| extern void fpu__init_cpu(void); |
| extern void eager_fpu_init(void); |
| |
| extern void fpu__init_system_xstate(void); |
| extern void fpu__init_cpu_xstate(void); |
| extern void fpu__init_system(struct cpuinfo_x86 *c); |
| |
| extern void fpu__activate_curr(struct fpu *fpu); |
| extern void fpstate_init(struct fpu *fpu); |
| extern void fpu__clear(struct task_struct *tsk); |
| |
| extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); |
| extern void fpu__restore(void); |
| extern void fpu__init_check_bugs(void); |
| extern void fpu__resume_cpu(void); |
| |
| DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx); |
| |
| extern void convert_from_fxsr(struct user_i387_ia32_struct *env, |
| struct task_struct *tsk); |
| extern void convert_to_fxsr(struct task_struct *tsk, |
| const struct user_i387_ia32_struct *env); |
| |
| extern user_regset_active_fn regset_fpregs_active, regset_xregset_fpregs_active; |
| extern user_regset_get_fn fpregs_get, xfpregs_get, fpregs_soft_get, |
| xstateregs_get; |
| extern user_regset_set_fn fpregs_set, xfpregs_set, fpregs_soft_set, |
| xstateregs_set; |
| |
| /* |
| * xstateregs_active == regset_fpregs_active. Please refer to the comment |
| * at the definition of regset_fpregs_active. |
| */ |
| #define xstateregs_active regset_fpregs_active |
| |
| #ifdef CONFIG_MATH_EMULATION |
| extern void finit_soft_fpu(struct i387_soft_struct *soft); |
| #else |
| static inline void finit_soft_fpu(struct i387_soft_struct *soft) {} |
| #endif |
| |
| /* |
| * Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx, |
| * on this CPU. |
| * |
| * This will disable any lazy FPU state restore of the current FPU state, |
| * but if the current thread owns the FPU, it will still be saved by. |
| */ |
| static inline void __cpu_disable_lazy_restore(unsigned int cpu) |
| { |
| per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL; |
| } |
| |
| static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu) |
| { |
| return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu; |
| } |
| |
| static inline int is_ia32_compat_frame(void) |
| { |
| return config_enabled(CONFIG_IA32_EMULATION) && |
| test_thread_flag(TIF_IA32); |
| } |
| |
| static inline int is_ia32_frame(void) |
| { |
| return config_enabled(CONFIG_X86_32) || is_ia32_compat_frame(); |
| } |
| |
| static inline int is_x32_frame(void) |
| { |
| return config_enabled(CONFIG_X86_X32_ABI) && test_thread_flag(TIF_X32); |
| } |
| |
| #define X87_FSW_ES (1 << 7) /* Exception Summary */ |
| |
| static __always_inline __pure bool use_eager_fpu(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_EAGER_FPU); |
| } |
| |
| static __always_inline __pure bool use_xsaveopt(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_XSAVEOPT); |
| } |
| |
| static __always_inline __pure bool use_xsave(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_XSAVE); |
| } |
| |
| static __always_inline __pure bool use_fxsr(void) |
| { |
| return static_cpu_has_safe(X86_FEATURE_FXSR); |
| } |
| |
| static inline void fx_finit(struct i387_fxsave_struct *fx) |
| { |
| fx->cwd = 0x37f; |
| fx->mxcsr = MXCSR_DEFAULT; |
| } |
| |
| extern void fpstate_sanitize_xstate(struct fpu *fpu); |
| |
| #define user_insn(insn, output, input...) \ |
| ({ \ |
| int err; \ |
| asm volatile(ASM_STAC "\n" \ |
| "1:" #insn "\n\t" \ |
| "2: " ASM_CLAC "\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl $-1,%[err]\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err), output \ |
| : "0"(0), input); \ |
| err; \ |
| }) |
| |
| #define check_insn(insn, output, input...) \ |
| ({ \ |
| int err; \ |
| asm volatile("1:" #insn "\n\t" \ |
| "2:\n" \ |
| ".section .fixup,\"ax\"\n" \ |
| "3: movl $-1,%[err]\n" \ |
| " jmp 2b\n" \ |
| ".previous\n" \ |
| _ASM_EXTABLE(1b, 3b) \ |
| : [err] "=r" (err), output \ |
| : "0"(0), input); \ |
| err; \ |
| }) |
| |
| static inline int fsave_user(struct i387_fsave_struct __user *fx) |
| { |
| return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx)); |
| } |
| |
| static inline int fxsave_user(struct i387_fxsave_struct __user *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx)); |
| |
| /* See comment in fpu_fxsave() below. */ |
| return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx)); |
| } |
| |
| static inline int fxrstor_checking(struct i387_fxsave_struct *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| |
| /* See comment in fpu_fxsave() below. */ |
| return check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), |
| "m" (*fx)); |
| } |
| |
| static inline int fxrstor_user(struct i387_fxsave_struct __user *fx) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| |
| /* See comment in fpu_fxsave() below. */ |
| return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), |
| "m" (*fx)); |
| } |
| |
| static inline int frstor_checking(struct i387_fsave_struct *fx) |
| { |
| return check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } |
| |
| static inline int frstor_user(struct i387_fsave_struct __user *fx) |
| { |
| return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx)); |
| } |
| |
| static inline void fpu_fxsave(struct fpu *fpu) |
| { |
| if (config_enabled(CONFIG_X86_32)) |
| asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave)); |
| else if (config_enabled(CONFIG_AS_FXSAVEQ)) |
| asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave)); |
| else { |
| /* Using "rex64; fxsave %0" is broken because, if the memory |
| * operand uses any extended registers for addressing, a second |
| * REX prefix will be generated (to the assembler, rex64 |
| * followed by semicolon is a separate instruction), and hence |
| * the 64-bitness is lost. |
| * |
| * Using "fxsaveq %0" would be the ideal choice, but is only |
| * supported starting with gas 2.16. |
| * |
| * Using, as a workaround, the properly prefixed form below |
| * isn't accepted by any binutils version so far released, |
| * complaining that the same type of prefix is used twice if |
| * an extended register is needed for addressing (fix submitted |
| * to mainline 2005-11-21). |
| * |
| * asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave)); |
| * |
| * This, however, we can work around by forcing the compiler to |
| * select an addressing mode that doesn't require extended |
| * registers. |
| */ |
| asm volatile( "rex64/fxsave (%[fx])" |
| : "=m" (fpu->state.fxsave) |
| : [fx] "R" (&fpu->state.fxsave)); |
| } |
| } |
| |
| /* |
| * These must be called with preempt disabled. Returns |
| * 'true' if the FPU state is still intact and we can |
| * keep registers active. |
| * |
| * The legacy FNSAVE instruction cleared all FPU state |
| * unconditionally, so registers are essentially destroyed. |
| * Modern FPU state can be kept in registers, if there are |
| * no pending FP exceptions. |
| */ |
| static inline int copy_fpregs_to_fpstate(struct fpu *fpu) |
| { |
| if (likely(use_xsave())) { |
| xsave_state(&fpu->state.xsave); |
| return 1; |
| } |
| |
| if (likely(use_fxsr())) { |
| fpu_fxsave(fpu); |
| return 1; |
| } |
| |
| /* |
| * Legacy FPU register saving, FNSAVE always clears FPU registers, |
| * so we have to mark them inactive: |
| */ |
| asm volatile("fnsave %[fx]; fwait" : [fx] "=m" (fpu->state.fsave)); |
| |
| return 0; |
| } |
| |
| extern void fpu__save(struct fpu *fpu); |
| |
| static inline int fpu_restore_checking(struct fpu *fpu) |
| { |
| if (use_xsave()) |
| return fpu_xrstor_checking(&fpu->state.xsave); |
| else if (use_fxsr()) |
| return fxrstor_checking(&fpu->state.fxsave); |
| else |
| return frstor_checking(&fpu->state.fsave); |
| } |
| |
| static inline int restore_fpu_checking(struct fpu *fpu) |
| { |
| /* |
| * AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is |
| * pending. Clear the x87 state here by setting it to fixed values. |
| * "m" is a random variable that should be in L1. |
| */ |
| if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) { |
| asm volatile( |
| "fnclex\n\t" |
| "emms\n\t" |
| "fildl %P[addr]" /* set F?P to defined value */ |
| : : [addr] "m" (fpu->fpregs_active)); |
| } |
| |
| return fpu_restore_checking(fpu); |
| } |
| |
| /* |
| * Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation' |
| * idiom, which is then paired with the sw-flag (fpregs_active) later on: |
| */ |
| |
| static inline void __fpregs_activate_hw(void) |
| { |
| if (!use_eager_fpu()) |
| clts(); |
| } |
| |
| static inline void __fpregs_deactivate_hw(void) |
| { |
| if (!use_eager_fpu()) |
| stts(); |
| } |
| |
| /* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */ |
| static inline void __fpregs_deactivate(struct fpu *fpu) |
| { |
| fpu->fpregs_active = 0; |
| this_cpu_write(fpu_fpregs_owner_ctx, NULL); |
| } |
| |
| /* Must be paired with a 'clts' (fpregs_activate_hw()) before! */ |
| static inline void __fpregs_activate(struct fpu *fpu) |
| { |
| fpu->fpregs_active = 1; |
| this_cpu_write(fpu_fpregs_owner_ctx, fpu); |
| } |
| |
| /* |
| * The question "does this thread have fpu access?" |
| * is slightly racy, since preemption could come in |
| * and revoke it immediately after the test. |
| * |
| * However, even in that very unlikely scenario, |
| * we can just assume we have FPU access - typically |
| * to save the FP state - we'll just take a #NM |
| * fault and get the FPU access back. |
| */ |
| static inline int fpregs_active(void) |
| { |
| return current->thread.fpu.fpregs_active; |
| } |
| |
| /* |
| * Encapsulate the CR0.TS handling together with the |
| * software flag. |
| * |
| * These generally need preemption protection to work, |
| * do try to avoid using these on their own. |
| */ |
| static inline void fpregs_activate(struct fpu *fpu) |
| { |
| __fpregs_activate_hw(); |
| __fpregs_activate(fpu); |
| } |
| |
| static inline void fpregs_deactivate(struct fpu *fpu) |
| { |
| __fpregs_deactivate(fpu); |
| __fpregs_deactivate_hw(); |
| } |
| |
| /* |
| * Drops current FPU state: deactivates the fpregs and |
| * the fpstate. NOTE: it still leaves previous contents |
| * in the fpregs in the eager-FPU case. |
| * |
| * This function can be used in cases where we know that |
| * a state-restore is coming: either an explicit one, |
| * or a reschedule. |
| */ |
| static inline void fpu__drop(struct fpu *fpu) |
| { |
| preempt_disable(); |
| fpu->counter = 0; |
| |
| if (fpu->fpregs_active) { |
| /* Ignore delayed exceptions from user space */ |
| asm volatile("1: fwait\n" |
| "2:\n" |
| _ASM_EXTABLE(1b, 2b)); |
| fpregs_deactivate(fpu); |
| } |
| |
| fpu->fpstate_active = 0; |
| |
| preempt_enable(); |
| } |
| |
| static inline void restore_init_xstate(void) |
| { |
| if (use_xsave()) |
| xrstor_state(&init_xstate_ctx, -1); |
| else |
| fxrstor_checking(&init_xstate_ctx.i387); |
| } |
| |
| /* |
| * Reset the FPU state back to init state. |
| */ |
| static inline void fpu__reset(struct fpu *fpu) |
| { |
| if (!use_eager_fpu()) |
| fpu__drop(fpu); |
| else |
| restore_init_xstate(); |
| } |
| |
| /* |
| * Definitions for the eXtended Control Register instructions |
| */ |
| |
| #define XCR_XFEATURE_ENABLED_MASK 0x00000000 |
| |
| static inline u64 xgetbv(u32 index) |
| { |
| u32 eax, edx; |
| |
| asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */ |
| : "=a" (eax), "=d" (edx) |
| : "c" (index)); |
| return eax + ((u64)edx << 32); |
| } |
| |
| static inline void xsetbv(u32 index, u64 value) |
| { |
| u32 eax = value; |
| u32 edx = value >> 32; |
| |
| asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */ |
| : : "a" (eax), "d" (edx), "c" (index)); |
| } |
| |
| /* |
| * FPU state switching for scheduling. |
| * |
| * This is a two-stage process: |
| * |
| * - switch_fpu_prepare() saves the old state and |
| * sets the new state of the CR0.TS bit. This is |
| * done within the context of the old process. |
| * |
| * - switch_fpu_finish() restores the new state as |
| * necessary. |
| */ |
| typedef struct { int preload; } fpu_switch_t; |
| |
| static inline fpu_switch_t |
| switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu) |
| { |
| fpu_switch_t fpu; |
| |
| /* |
| * If the task has used the math, pre-load the FPU on xsave processors |
| * or if the past 5 consecutive context-switches used math. |
| */ |
| fpu.preload = new_fpu->fpstate_active && |
| (use_eager_fpu() || new_fpu->counter > 5); |
| |
| if (old_fpu->fpregs_active) { |
| if (!copy_fpregs_to_fpstate(old_fpu)) |
| old_fpu->last_cpu = -1; |
| else |
| old_fpu->last_cpu = cpu; |
| |
| /* But leave fpu_fpregs_owner_ctx! */ |
| old_fpu->fpregs_active = 0; |
| |
| /* Don't change CR0.TS if we just switch! */ |
| if (fpu.preload) { |
| new_fpu->counter++; |
| __fpregs_activate(new_fpu); |
| prefetch(&new_fpu->state); |
| } else { |
| __fpregs_deactivate_hw(); |
| } |
| } else { |
| old_fpu->counter = 0; |
| old_fpu->last_cpu = -1; |
| if (fpu.preload) { |
| new_fpu->counter++; |
| if (fpu_want_lazy_restore(new_fpu, cpu)) |
| fpu.preload = 0; |
| else |
| prefetch(&new_fpu->state); |
| fpregs_activate(new_fpu); |
| } |
| } |
| return fpu; |
| } |
| |
| /* |
| * By the time this gets called, we've already cleared CR0.TS and |
| * given the process the FPU if we are going to preload the FPU |
| * state - all we need to do is to conditionally restore the register |
| * state itself. |
| */ |
| static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch) |
| { |
| if (fpu_switch.preload) { |
| if (unlikely(restore_fpu_checking(new_fpu))) |
| fpu__reset(new_fpu); |
| } |
| } |
| |
| /* |
| * Signal frame handlers... |
| */ |
| extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fx, int size); |
| extern int __restore_xstate_sig(void __user *buf, void __user *fx, int size); |
| |
| static inline int xstate_sigframe_size(void) |
| { |
| return use_xsave() ? xstate_size + FP_XSTATE_MAGIC2_SIZE : xstate_size; |
| } |
| |
| static inline int restore_xstate_sig(void __user *buf, int ia32_frame) |
| { |
| void __user *buf_fx = buf; |
| int size = xstate_sigframe_size(); |
| |
| if (ia32_frame && use_fxsr()) { |
| buf_fx = buf + sizeof(struct i387_fsave_struct); |
| size += sizeof(struct i387_fsave_struct); |
| } |
| |
| return __restore_xstate_sig(buf, buf_fx, size); |
| } |
| |
| /* |
| * Needs to be preemption-safe. |
| * |
| * NOTE! user_fpu_begin() must be used only immediately before restoring |
| * the save state. It does not do any saving/restoring on its own. In |
| * lazy FPU mode, it is just an optimization to avoid a #NM exception, |
| * the task can lose the FPU right after preempt_enable(). |
| */ |
| static inline void user_fpu_begin(void) |
| { |
| struct fpu *fpu = ¤t->thread.fpu; |
| |
| preempt_disable(); |
| if (!fpregs_active()) |
| fpregs_activate(fpu); |
| preempt_enable(); |
| } |
| |
| /* |
| * i387 state interaction |
| */ |
| static inline unsigned short get_fpu_cwd(struct task_struct *tsk) |
| { |
| if (cpu_has_fxsr) { |
| return tsk->thread.fpu.state.fxsave.cwd; |
| } else { |
| return (unsigned short)tsk->thread.fpu.state.fsave.cwd; |
| } |
| } |
| |
| static inline unsigned short get_fpu_swd(struct task_struct *tsk) |
| { |
| if (cpu_has_fxsr) { |
| return tsk->thread.fpu.state.fxsave.swd; |
| } else { |
| return (unsigned short)tsk->thread.fpu.state.fsave.swd; |
| } |
| } |
| |
| static inline unsigned short get_fpu_mxcsr(struct task_struct *tsk) |
| { |
| if (cpu_has_xmm) { |
| return tsk->thread.fpu.state.fxsave.mxcsr; |
| } else { |
| return MXCSR_DEFAULT; |
| } |
| } |
| |
| extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu); |
| |
| static inline unsigned long |
| alloc_mathframe(unsigned long sp, int ia32_frame, unsigned long *buf_fx, |
| unsigned long *size) |
| { |
| unsigned long frame_size = xstate_sigframe_size(); |
| |
| *buf_fx = sp = round_down(sp - frame_size, 64); |
| if (ia32_frame && use_fxsr()) { |
| frame_size += sizeof(struct i387_fsave_struct); |
| sp -= sizeof(struct i387_fsave_struct); |
| } |
| |
| *size = frame_size; |
| return sp; |
| } |
| |
| #endif /* _ASM_X86_FPU_INTERNAL_H */ |