| /* Copyright (c) 2017 Covalent IO, Inc. http://covalent.io |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of version 2 of the GNU General Public |
| * License as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| */ |
| |
| /* A BPF sock_map is used to store sock objects. This is primarly used |
| * for doing socket redirect with BPF helper routines. |
| * |
| * A sock map may have BPF programs attached to it, currently a program |
| * used to parse packets and a program to provide a verdict and redirect |
| * decision on the packet are supported. Any programs attached to a sock |
| * map are inherited by sock objects when they are added to the map. If |
| * no BPF programs are attached the sock object may only be used for sock |
| * redirect. |
| * |
| * A sock object may be in multiple maps, but can only inherit a single |
| * parse or verdict program. If adding a sock object to a map would result |
| * in having multiple parsing programs the update will return an EBUSY error. |
| * |
| * For reference this program is similar to devmap used in XDP context |
| * reviewing these together may be useful. For an example please review |
| * ./samples/bpf/sockmap/. |
| */ |
| #include <linux/bpf.h> |
| #include <net/sock.h> |
| #include <linux/filter.h> |
| #include <linux/errno.h> |
| #include <linux/file.h> |
| #include <linux/kernel.h> |
| #include <linux/net.h> |
| #include <linux/skbuff.h> |
| #include <linux/workqueue.h> |
| #include <linux/list.h> |
| #include <net/strparser.h> |
| #include <net/tcp.h> |
| |
| struct bpf_stab { |
| struct bpf_map map; |
| struct sock **sock_map; |
| struct bpf_prog *bpf_parse; |
| struct bpf_prog *bpf_verdict; |
| }; |
| |
| enum smap_psock_state { |
| SMAP_TX_RUNNING, |
| }; |
| |
| struct smap_psock_map_entry { |
| struct list_head list; |
| struct sock **entry; |
| }; |
| |
| struct smap_psock { |
| struct rcu_head rcu; |
| /* refcnt is used inside sk_callback_lock */ |
| u32 refcnt; |
| |
| /* datapath variables */ |
| struct sk_buff_head rxqueue; |
| bool strp_enabled; |
| |
| /* datapath error path cache across tx work invocations */ |
| int save_rem; |
| int save_off; |
| struct sk_buff *save_skb; |
| |
| struct strparser strp; |
| struct bpf_prog *bpf_parse; |
| struct bpf_prog *bpf_verdict; |
| struct list_head maps; |
| |
| /* Back reference used when sock callback trigger sockmap operations */ |
| struct sock *sock; |
| unsigned long state; |
| |
| struct work_struct tx_work; |
| struct work_struct gc_work; |
| |
| void (*save_data_ready)(struct sock *sk); |
| void (*save_write_space)(struct sock *sk); |
| void (*save_state_change)(struct sock *sk); |
| }; |
| |
| static inline struct smap_psock *smap_psock_sk(const struct sock *sk) |
| { |
| return rcu_dereference_sk_user_data(sk); |
| } |
| |
| /* compute the linear packet data range [data, data_end) for skb when |
| * sk_skb type programs are in use. |
| */ |
| static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb) |
| { |
| TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb); |
| } |
| |
| enum __sk_action { |
| __SK_DROP = 0, |
| __SK_PASS, |
| __SK_REDIRECT, |
| }; |
| |
| static int smap_verdict_func(struct smap_psock *psock, struct sk_buff *skb) |
| { |
| struct bpf_prog *prog = READ_ONCE(psock->bpf_verdict); |
| int rc; |
| |
| if (unlikely(!prog)) |
| return __SK_DROP; |
| |
| skb_orphan(skb); |
| /* We need to ensure that BPF metadata for maps is also cleared |
| * when we orphan the skb so that we don't have the possibility |
| * to reference a stale map. |
| */ |
| TCP_SKB_CB(skb)->bpf.map = NULL; |
| skb->sk = psock->sock; |
| bpf_compute_data_end_sk_skb(skb); |
| preempt_disable(); |
| rc = (*prog->bpf_func)(skb, prog->insnsi); |
| preempt_enable(); |
| skb->sk = NULL; |
| |
| /* Moving return codes from UAPI namespace into internal namespace */ |
| return rc == SK_PASS ? |
| (TCP_SKB_CB(skb)->bpf.map ? __SK_REDIRECT : __SK_PASS) : |
| __SK_DROP; |
| } |
| |
| static void smap_do_verdict(struct smap_psock *psock, struct sk_buff *skb) |
| { |
| struct sock *sk; |
| int rc; |
| |
| rc = smap_verdict_func(psock, skb); |
| switch (rc) { |
| case __SK_REDIRECT: |
| sk = do_sk_redirect_map(skb); |
| if (likely(sk)) { |
| struct smap_psock *peer = smap_psock_sk(sk); |
| |
| if (likely(peer && |
| test_bit(SMAP_TX_RUNNING, &peer->state) && |
| !sock_flag(sk, SOCK_DEAD) && |
| sock_writeable(sk))) { |
| skb_set_owner_w(skb, sk); |
| skb_queue_tail(&peer->rxqueue, skb); |
| schedule_work(&peer->tx_work); |
| break; |
| } |
| } |
| /* Fall through and free skb otherwise */ |
| case __SK_DROP: |
| default: |
| kfree_skb(skb); |
| } |
| } |
| |
| static void smap_report_sk_error(struct smap_psock *psock, int err) |
| { |
| struct sock *sk = psock->sock; |
| |
| sk->sk_err = err; |
| sk->sk_error_report(sk); |
| } |
| |
| static void smap_release_sock(struct smap_psock *psock, struct sock *sock); |
| |
| /* Called with lock_sock(sk) held */ |
| static void smap_state_change(struct sock *sk) |
| { |
| struct smap_psock_map_entry *e, *tmp; |
| struct smap_psock *psock; |
| struct socket_wq *wq; |
| struct sock *osk; |
| |
| rcu_read_lock(); |
| |
| /* Allowing transitions into an established syn_recv states allows |
| * for early binding sockets to a smap object before the connection |
| * is established. |
| */ |
| switch (sk->sk_state) { |
| case TCP_SYN_SENT: |
| case TCP_SYN_RECV: |
| case TCP_ESTABLISHED: |
| break; |
| case TCP_CLOSE_WAIT: |
| case TCP_CLOSING: |
| case TCP_LAST_ACK: |
| case TCP_FIN_WAIT1: |
| case TCP_FIN_WAIT2: |
| case TCP_LISTEN: |
| break; |
| case TCP_CLOSE: |
| /* Only release if the map entry is in fact the sock in |
| * question. There is a case where the operator deletes |
| * the sock from the map, but the TCP sock is closed before |
| * the psock is detached. Use cmpxchg to verify correct |
| * sock is removed. |
| */ |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| break; |
| write_lock_bh(&sk->sk_callback_lock); |
| list_for_each_entry_safe(e, tmp, &psock->maps, list) { |
| osk = cmpxchg(e->entry, sk, NULL); |
| if (osk == sk) { |
| list_del(&e->list); |
| smap_release_sock(psock, sk); |
| } |
| } |
| write_unlock_bh(&sk->sk_callback_lock); |
| break; |
| default: |
| psock = smap_psock_sk(sk); |
| if (unlikely(!psock)) |
| break; |
| smap_report_sk_error(psock, EPIPE); |
| break; |
| } |
| |
| wq = rcu_dereference(sk->sk_wq); |
| if (skwq_has_sleeper(wq)) |
| wake_up_interruptible_all(&wq->wait); |
| rcu_read_unlock(); |
| } |
| |
| static void smap_read_sock_strparser(struct strparser *strp, |
| struct sk_buff *skb) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = container_of(strp, struct smap_psock, strp); |
| smap_do_verdict(psock, skb); |
| rcu_read_unlock(); |
| } |
| |
| /* Called with lock held on socket */ |
| static void smap_data_ready(struct sock *sk) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (likely(psock)) { |
| write_lock_bh(&sk->sk_callback_lock); |
| strp_data_ready(&psock->strp); |
| write_unlock_bh(&sk->sk_callback_lock); |
| } |
| rcu_read_unlock(); |
| } |
| |
| static void smap_tx_work(struct work_struct *w) |
| { |
| struct smap_psock *psock; |
| struct sk_buff *skb; |
| int rem, off, n; |
| |
| psock = container_of(w, struct smap_psock, tx_work); |
| |
| /* lock sock to avoid losing sk_socket at some point during loop */ |
| lock_sock(psock->sock); |
| if (psock->save_skb) { |
| skb = psock->save_skb; |
| rem = psock->save_rem; |
| off = psock->save_off; |
| psock->save_skb = NULL; |
| goto start; |
| } |
| |
| while ((skb = skb_dequeue(&psock->rxqueue))) { |
| rem = skb->len; |
| off = 0; |
| start: |
| do { |
| if (likely(psock->sock->sk_socket)) |
| n = skb_send_sock_locked(psock->sock, |
| skb, off, rem); |
| else |
| n = -EINVAL; |
| if (n <= 0) { |
| if (n == -EAGAIN) { |
| /* Retry when space is available */ |
| psock->save_skb = skb; |
| psock->save_rem = rem; |
| psock->save_off = off; |
| goto out; |
| } |
| /* Hard errors break pipe and stop xmit */ |
| smap_report_sk_error(psock, n ? -n : EPIPE); |
| clear_bit(SMAP_TX_RUNNING, &psock->state); |
| kfree_skb(skb); |
| goto out; |
| } |
| rem -= n; |
| off += n; |
| } while (rem); |
| kfree_skb(skb); |
| } |
| out: |
| release_sock(psock->sock); |
| } |
| |
| static void smap_write_space(struct sock *sk) |
| { |
| struct smap_psock *psock; |
| |
| rcu_read_lock(); |
| psock = smap_psock_sk(sk); |
| if (likely(psock && test_bit(SMAP_TX_RUNNING, &psock->state))) |
| schedule_work(&psock->tx_work); |
| rcu_read_unlock(); |
| } |
| |
| static void smap_stop_sock(struct smap_psock *psock, struct sock *sk) |
| { |
| if (!psock->strp_enabled) |
| return; |
| sk->sk_data_ready = psock->save_data_ready; |
| sk->sk_write_space = psock->save_write_space; |
| sk->sk_state_change = psock->save_state_change; |
| psock->save_data_ready = NULL; |
| psock->save_write_space = NULL; |
| psock->save_state_change = NULL; |
| strp_stop(&psock->strp); |
| psock->strp_enabled = false; |
| } |
| |
| static void smap_destroy_psock(struct rcu_head *rcu) |
| { |
| struct smap_psock *psock = container_of(rcu, |
| struct smap_psock, rcu); |
| |
| /* Now that a grace period has passed there is no longer |
| * any reference to this sock in the sockmap so we can |
| * destroy the psock, strparser, and bpf programs. But, |
| * because we use workqueue sync operations we can not |
| * do it in rcu context |
| */ |
| schedule_work(&psock->gc_work); |
| } |
| |
| static void smap_release_sock(struct smap_psock *psock, struct sock *sock) |
| { |
| psock->refcnt--; |
| if (psock->refcnt) |
| return; |
| |
| smap_stop_sock(psock, sock); |
| clear_bit(SMAP_TX_RUNNING, &psock->state); |
| rcu_assign_sk_user_data(sock, NULL); |
| call_rcu_sched(&psock->rcu, smap_destroy_psock); |
| } |
| |
| static int smap_parse_func_strparser(struct strparser *strp, |
| struct sk_buff *skb) |
| { |
| struct smap_psock *psock; |
| struct bpf_prog *prog; |
| int rc; |
| |
| rcu_read_lock(); |
| psock = container_of(strp, struct smap_psock, strp); |
| prog = READ_ONCE(psock->bpf_parse); |
| |
| if (unlikely(!prog)) { |
| rcu_read_unlock(); |
| return skb->len; |
| } |
| |
| /* Attach socket for bpf program to use if needed we can do this |
| * because strparser clones the skb before handing it to a upper |
| * layer, meaning skb_orphan has been called. We NULL sk on the |
| * way out to ensure we don't trigger a BUG_ON in skb/sk operations |
| * later and because we are not charging the memory of this skb to |
| * any socket yet. |
| */ |
| skb->sk = psock->sock; |
| bpf_compute_data_end_sk_skb(skb); |
| rc = (*prog->bpf_func)(skb, prog->insnsi); |
| skb->sk = NULL; |
| rcu_read_unlock(); |
| return rc; |
| } |
| |
| |
| static int smap_read_sock_done(struct strparser *strp, int err) |
| { |
| return err; |
| } |
| |
| static int smap_init_sock(struct smap_psock *psock, |
| struct sock *sk) |
| { |
| static const struct strp_callbacks cb = { |
| .rcv_msg = smap_read_sock_strparser, |
| .parse_msg = smap_parse_func_strparser, |
| .read_sock_done = smap_read_sock_done, |
| }; |
| |
| return strp_init(&psock->strp, sk, &cb); |
| } |
| |
| static void smap_init_progs(struct smap_psock *psock, |
| struct bpf_stab *stab, |
| struct bpf_prog *verdict, |
| struct bpf_prog *parse) |
| { |
| struct bpf_prog *orig_parse, *orig_verdict; |
| |
| orig_parse = xchg(&psock->bpf_parse, parse); |
| orig_verdict = xchg(&psock->bpf_verdict, verdict); |
| |
| if (orig_verdict) |
| bpf_prog_put(orig_verdict); |
| if (orig_parse) |
| bpf_prog_put(orig_parse); |
| } |
| |
| static void smap_start_sock(struct smap_psock *psock, struct sock *sk) |
| { |
| if (sk->sk_data_ready == smap_data_ready) |
| return; |
| psock->save_data_ready = sk->sk_data_ready; |
| psock->save_write_space = sk->sk_write_space; |
| psock->save_state_change = sk->sk_state_change; |
| sk->sk_data_ready = smap_data_ready; |
| sk->sk_write_space = smap_write_space; |
| sk->sk_state_change = smap_state_change; |
| psock->strp_enabled = true; |
| } |
| |
| static void sock_map_remove_complete(struct bpf_stab *stab) |
| { |
| bpf_map_area_free(stab->sock_map); |
| kfree(stab); |
| } |
| |
| static void smap_gc_work(struct work_struct *w) |
| { |
| struct smap_psock_map_entry *e, *tmp; |
| struct smap_psock *psock; |
| |
| psock = container_of(w, struct smap_psock, gc_work); |
| |
| /* no callback lock needed because we already detached sockmap ops */ |
| if (psock->strp_enabled) |
| strp_done(&psock->strp); |
| |
| cancel_work_sync(&psock->tx_work); |
| __skb_queue_purge(&psock->rxqueue); |
| |
| /* At this point all strparser and xmit work must be complete */ |
| if (psock->bpf_parse) |
| bpf_prog_put(psock->bpf_parse); |
| if (psock->bpf_verdict) |
| bpf_prog_put(psock->bpf_verdict); |
| |
| list_for_each_entry_safe(e, tmp, &psock->maps, list) { |
| list_del(&e->list); |
| kfree(e); |
| } |
| |
| sock_put(psock->sock); |
| kfree(psock); |
| } |
| |
| static struct smap_psock *smap_init_psock(struct sock *sock, |
| struct bpf_stab *stab) |
| { |
| struct smap_psock *psock; |
| |
| psock = kzalloc_node(sizeof(struct smap_psock), |
| GFP_ATOMIC | __GFP_NOWARN, |
| stab->map.numa_node); |
| if (!psock) |
| return ERR_PTR(-ENOMEM); |
| |
| psock->sock = sock; |
| skb_queue_head_init(&psock->rxqueue); |
| INIT_WORK(&psock->tx_work, smap_tx_work); |
| INIT_WORK(&psock->gc_work, smap_gc_work); |
| INIT_LIST_HEAD(&psock->maps); |
| psock->refcnt = 1; |
| |
| rcu_assign_sk_user_data(sock, psock); |
| sock_hold(sock); |
| return psock; |
| } |
| |
| static struct bpf_map *sock_map_alloc(union bpf_attr *attr) |
| { |
| struct bpf_stab *stab; |
| int err = -EINVAL; |
| u64 cost; |
| |
| if (!capable(CAP_NET_ADMIN)) |
| return ERR_PTR(-EPERM); |
| |
| /* check sanity of attributes */ |
| if (attr->max_entries == 0 || attr->key_size != 4 || |
| attr->value_size != 4 || attr->map_flags & ~BPF_F_NUMA_NODE) |
| return ERR_PTR(-EINVAL); |
| |
| if (attr->value_size > KMALLOC_MAX_SIZE) |
| return ERR_PTR(-E2BIG); |
| |
| stab = kzalloc(sizeof(*stab), GFP_USER); |
| if (!stab) |
| return ERR_PTR(-ENOMEM); |
| |
| /* mandatory map attributes */ |
| stab->map.map_type = attr->map_type; |
| stab->map.key_size = attr->key_size; |
| stab->map.value_size = attr->value_size; |
| stab->map.max_entries = attr->max_entries; |
| stab->map.map_flags = attr->map_flags; |
| stab->map.numa_node = bpf_map_attr_numa_node(attr); |
| |
| /* make sure page count doesn't overflow */ |
| cost = (u64) stab->map.max_entries * sizeof(struct sock *); |
| if (cost >= U32_MAX - PAGE_SIZE) |
| goto free_stab; |
| |
| stab->map.pages = round_up(cost, PAGE_SIZE) >> PAGE_SHIFT; |
| |
| /* if map size is larger than memlock limit, reject it early */ |
| err = bpf_map_precharge_memlock(stab->map.pages); |
| if (err) |
| goto free_stab; |
| |
| err = -ENOMEM; |
| stab->sock_map = bpf_map_area_alloc(stab->map.max_entries * |
| sizeof(struct sock *), |
| stab->map.numa_node); |
| if (!stab->sock_map) |
| goto free_stab; |
| |
| return &stab->map; |
| free_stab: |
| kfree(stab); |
| return ERR_PTR(err); |
| } |
| |
| static void smap_list_remove(struct smap_psock *psock, struct sock **entry) |
| { |
| struct smap_psock_map_entry *e, *tmp; |
| |
| list_for_each_entry_safe(e, tmp, &psock->maps, list) { |
| if (e->entry == entry) { |
| list_del(&e->list); |
| break; |
| } |
| } |
| } |
| |
| static void sock_map_free(struct bpf_map *map) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| int i; |
| |
| synchronize_rcu(); |
| |
| /* At this point no update, lookup or delete operations can happen. |
| * However, be aware we can still get a socket state event updates, |
| * and data ready callabacks that reference the psock from sk_user_data |
| * Also psock worker threads are still in-flight. So smap_release_sock |
| * will only free the psock after cancel_sync on the worker threads |
| * and a grace period expire to ensure psock is really safe to remove. |
| */ |
| rcu_read_lock(); |
| for (i = 0; i < stab->map.max_entries; i++) { |
| struct smap_psock *psock; |
| struct sock *sock; |
| |
| sock = xchg(&stab->sock_map[i], NULL); |
| if (!sock) |
| continue; |
| |
| write_lock_bh(&sock->sk_callback_lock); |
| psock = smap_psock_sk(sock); |
| /* This check handles a racing sock event that can get the |
| * sk_callback_lock before this case but after xchg happens |
| * causing the refcnt to hit zero and sock user data (psock) |
| * to be null and queued for garbage collection. |
| */ |
| if (likely(psock)) { |
| smap_list_remove(psock, &stab->sock_map[i]); |
| smap_release_sock(psock, sock); |
| } |
| write_unlock_bh(&sock->sk_callback_lock); |
| } |
| rcu_read_unlock(); |
| |
| sock_map_remove_complete(stab); |
| } |
| |
| static int sock_map_get_next_key(struct bpf_map *map, void *key, void *next_key) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| u32 i = key ? *(u32 *)key : U32_MAX; |
| u32 *next = (u32 *)next_key; |
| |
| if (i >= stab->map.max_entries) { |
| *next = 0; |
| return 0; |
| } |
| |
| if (i == stab->map.max_entries - 1) |
| return -ENOENT; |
| |
| *next = i + 1; |
| return 0; |
| } |
| |
| struct sock *__sock_map_lookup_elem(struct bpf_map *map, u32 key) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| |
| if (key >= map->max_entries) |
| return NULL; |
| |
| return READ_ONCE(stab->sock_map[key]); |
| } |
| |
| static int sock_map_delete_elem(struct bpf_map *map, void *key) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| struct smap_psock *psock; |
| int k = *(u32 *)key; |
| struct sock *sock; |
| |
| if (k >= map->max_entries) |
| return -EINVAL; |
| |
| sock = xchg(&stab->sock_map[k], NULL); |
| if (!sock) |
| return -EINVAL; |
| |
| write_lock_bh(&sock->sk_callback_lock); |
| psock = smap_psock_sk(sock); |
| if (!psock) |
| goto out; |
| |
| if (psock->bpf_parse) |
| smap_stop_sock(psock, sock); |
| smap_list_remove(psock, &stab->sock_map[k]); |
| smap_release_sock(psock, sock); |
| out: |
| write_unlock_bh(&sock->sk_callback_lock); |
| return 0; |
| } |
| |
| /* Locking notes: Concurrent updates, deletes, and lookups are allowed and are |
| * done inside rcu critical sections. This ensures on updates that the psock |
| * will not be released via smap_release_sock() until concurrent updates/deletes |
| * complete. All operations operate on sock_map using cmpxchg and xchg |
| * operations to ensure we do not get stale references. Any reads into the |
| * map must be done with READ_ONCE() because of this. |
| * |
| * A psock is destroyed via call_rcu and after any worker threads are cancelled |
| * and syncd so we are certain all references from the update/lookup/delete |
| * operations as well as references in the data path are no longer in use. |
| * |
| * Psocks may exist in multiple maps, but only a single set of parse/verdict |
| * programs may be inherited from the maps it belongs to. A reference count |
| * is kept with the total number of references to the psock from all maps. The |
| * psock will not be released until this reaches zero. The psock and sock |
| * user data data use the sk_callback_lock to protect critical data structures |
| * from concurrent access. This allows us to avoid two updates from modifying |
| * the user data in sock and the lock is required anyways for modifying |
| * callbacks, we simply increase its scope slightly. |
| * |
| * Rules to follow, |
| * - psock must always be read inside RCU critical section |
| * - sk_user_data must only be modified inside sk_callback_lock and read |
| * inside RCU critical section. |
| * - psock->maps list must only be read & modified inside sk_callback_lock |
| * - sock_map must use READ_ONCE and (cmp)xchg operations |
| * - BPF verdict/parse programs must use READ_ONCE and xchg operations |
| */ |
| static int sock_map_ctx_update_elem(struct bpf_sock_ops_kern *skops, |
| struct bpf_map *map, |
| void *key, u64 flags) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| struct smap_psock_map_entry *e = NULL; |
| struct bpf_prog *verdict, *parse; |
| struct sock *osock, *sock; |
| struct smap_psock *psock; |
| u32 i = *(u32 *)key; |
| int err; |
| |
| if (unlikely(flags > BPF_EXIST)) |
| return -EINVAL; |
| |
| if (unlikely(i >= stab->map.max_entries)) |
| return -E2BIG; |
| |
| sock = READ_ONCE(stab->sock_map[i]); |
| if (flags == BPF_EXIST && !sock) |
| return -ENOENT; |
| else if (flags == BPF_NOEXIST && sock) |
| return -EEXIST; |
| |
| sock = skops->sk; |
| |
| /* 1. If sock map has BPF programs those will be inherited by the |
| * sock being added. If the sock is already attached to BPF programs |
| * this results in an error. |
| */ |
| verdict = READ_ONCE(stab->bpf_verdict); |
| parse = READ_ONCE(stab->bpf_parse); |
| |
| if (parse && verdict) { |
| /* bpf prog refcnt may be zero if a concurrent attach operation |
| * removes the program after the above READ_ONCE() but before |
| * we increment the refcnt. If this is the case abort with an |
| * error. |
| */ |
| verdict = bpf_prog_inc_not_zero(stab->bpf_verdict); |
| if (IS_ERR(verdict)) |
| return PTR_ERR(verdict); |
| |
| parse = bpf_prog_inc_not_zero(stab->bpf_parse); |
| if (IS_ERR(parse)) { |
| bpf_prog_put(verdict); |
| return PTR_ERR(parse); |
| } |
| } |
| |
| write_lock_bh(&sock->sk_callback_lock); |
| psock = smap_psock_sk(sock); |
| |
| /* 2. Do not allow inheriting programs if psock exists and has |
| * already inherited programs. This would create confusion on |
| * which parser/verdict program is running. If no psock exists |
| * create one. Inside sk_callback_lock to ensure concurrent create |
| * doesn't update user data. |
| */ |
| if (psock) { |
| if (READ_ONCE(psock->bpf_parse) && parse) { |
| err = -EBUSY; |
| goto out_progs; |
| } |
| psock->refcnt++; |
| } else { |
| psock = smap_init_psock(sock, stab); |
| if (IS_ERR(psock)) { |
| err = PTR_ERR(psock); |
| goto out_progs; |
| } |
| |
| set_bit(SMAP_TX_RUNNING, &psock->state); |
| } |
| |
| e = kzalloc(sizeof(*e), GFP_ATOMIC | __GFP_NOWARN); |
| if (!e) { |
| err = -ENOMEM; |
| goto out_progs; |
| } |
| e->entry = &stab->sock_map[i]; |
| |
| /* 3. At this point we have a reference to a valid psock that is |
| * running. Attach any BPF programs needed. |
| */ |
| if (parse && verdict && !psock->strp_enabled) { |
| err = smap_init_sock(psock, sock); |
| if (err) |
| goto out_free; |
| smap_init_progs(psock, stab, verdict, parse); |
| smap_start_sock(psock, sock); |
| } |
| |
| /* 4. Place psock in sockmap for use and stop any programs on |
| * the old sock assuming its not the same sock we are replacing |
| * it with. Because we can only have a single set of programs if |
| * old_sock has a strp we can stop it. |
| */ |
| list_add_tail(&e->list, &psock->maps); |
| write_unlock_bh(&sock->sk_callback_lock); |
| |
| osock = xchg(&stab->sock_map[i], sock); |
| if (osock) { |
| struct smap_psock *opsock = smap_psock_sk(osock); |
| |
| write_lock_bh(&osock->sk_callback_lock); |
| if (osock != sock && parse) |
| smap_stop_sock(opsock, osock); |
| smap_list_remove(opsock, &stab->sock_map[i]); |
| smap_release_sock(opsock, osock); |
| write_unlock_bh(&osock->sk_callback_lock); |
| } |
| return 0; |
| out_free: |
| smap_release_sock(psock, sock); |
| out_progs: |
| if (verdict) |
| bpf_prog_put(verdict); |
| if (parse) |
| bpf_prog_put(parse); |
| write_unlock_bh(&sock->sk_callback_lock); |
| kfree(e); |
| return err; |
| } |
| |
| int sock_map_prog(struct bpf_map *map, struct bpf_prog *prog, u32 type) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| struct bpf_prog *orig; |
| |
| if (unlikely(map->map_type != BPF_MAP_TYPE_SOCKMAP)) |
| return -EINVAL; |
| |
| switch (type) { |
| case BPF_SK_SKB_STREAM_PARSER: |
| orig = xchg(&stab->bpf_parse, prog); |
| break; |
| case BPF_SK_SKB_STREAM_VERDICT: |
| orig = xchg(&stab->bpf_verdict, prog); |
| break; |
| default: |
| return -EOPNOTSUPP; |
| } |
| |
| if (orig) |
| bpf_prog_put(orig); |
| |
| return 0; |
| } |
| |
| static void *sock_map_lookup(struct bpf_map *map, void *key) |
| { |
| return NULL; |
| } |
| |
| static int sock_map_update_elem(struct bpf_map *map, |
| void *key, void *value, u64 flags) |
| { |
| struct bpf_sock_ops_kern skops; |
| u32 fd = *(u32 *)value; |
| struct socket *socket; |
| int err; |
| |
| socket = sockfd_lookup(fd, &err); |
| if (!socket) |
| return err; |
| |
| skops.sk = socket->sk; |
| if (!skops.sk) { |
| fput(socket->file); |
| return -EINVAL; |
| } |
| |
| if (skops.sk->sk_type != SOCK_STREAM || |
| skops.sk->sk_protocol != IPPROTO_TCP) { |
| fput(socket->file); |
| return -EOPNOTSUPP; |
| } |
| |
| err = sock_map_ctx_update_elem(&skops, map, key, flags); |
| fput(socket->file); |
| return err; |
| } |
| |
| static void sock_map_release(struct bpf_map *map, struct file *map_file) |
| { |
| struct bpf_stab *stab = container_of(map, struct bpf_stab, map); |
| struct bpf_prog *orig; |
| |
| orig = xchg(&stab->bpf_parse, NULL); |
| if (orig) |
| bpf_prog_put(orig); |
| orig = xchg(&stab->bpf_verdict, NULL); |
| if (orig) |
| bpf_prog_put(orig); |
| } |
| |
| const struct bpf_map_ops sock_map_ops = { |
| .map_alloc = sock_map_alloc, |
| .map_free = sock_map_free, |
| .map_lookup_elem = sock_map_lookup, |
| .map_get_next_key = sock_map_get_next_key, |
| .map_update_elem = sock_map_update_elem, |
| .map_delete_elem = sock_map_delete_elem, |
| .map_release = sock_map_release, |
| }; |
| |
| BPF_CALL_4(bpf_sock_map_update, struct bpf_sock_ops_kern *, bpf_sock, |
| struct bpf_map *, map, void *, key, u64, flags) |
| { |
| WARN_ON_ONCE(!rcu_read_lock_held()); |
| return sock_map_ctx_update_elem(bpf_sock, map, key, flags); |
| } |
| |
| const struct bpf_func_proto bpf_sock_map_update_proto = { |
| .func = bpf_sock_map_update, |
| .gpl_only = false, |
| .pkt_access = true, |
| .ret_type = RET_INTEGER, |
| .arg1_type = ARG_PTR_TO_CTX, |
| .arg2_type = ARG_CONST_MAP_PTR, |
| .arg3_type = ARG_PTR_TO_MAP_KEY, |
| .arg4_type = ARG_ANYTHING, |
| }; |