| /* |
| * WaveLAN ISA driver |
| * |
| * Jean II - HPLB '96 |
| * |
| * Reorganisation and extension of the driver. |
| * Original copyright follows (also see the end of this file). |
| * See wavelan.p.h for details. |
| * |
| * |
| * |
| * AT&T GIS (nee NCR) WaveLAN card: |
| * An Ethernet-like radio transceiver |
| * controlled by an Intel 82586 coprocessor. |
| */ |
| |
| #include "wavelan.p.h" /* Private header */ |
| |
| /************************* MISC SUBROUTINES **************************/ |
| /* |
| * Subroutines which won't fit in one of the following category |
| * (WaveLAN modem or i82586) |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Translate irq number to PSA irq parameter |
| */ |
| static u8 wv_irq_to_psa(int irq) |
| { |
| if (irq < 0 || irq >= ARRAY_SIZE(irqvals)) |
| return 0; |
| |
| return irqvals[irq]; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Translate PSA irq parameter to irq number |
| */ |
| static int __init wv_psa_to_irq(u8 irqval) |
| { |
| int irq; |
| |
| for (irq = 0; irq < ARRAY_SIZE(irqvals); irq++) |
| if (irqvals[irq] == irqval) |
| return irq; |
| |
| return -1; |
| } |
| |
| #ifdef STRUCT_CHECK |
| /*------------------------------------------------------------------*/ |
| /* |
| * Sanity routine to verify the sizes of the various WaveLAN interface |
| * structures. |
| */ |
| static char *wv_struct_check(void) |
| { |
| #define SC(t,s,n) if (sizeof(t) != s) return(n); |
| |
| SC(psa_t, PSA_SIZE, "psa_t"); |
| SC(mmw_t, MMW_SIZE, "mmw_t"); |
| SC(mmr_t, MMR_SIZE, "mmr_t"); |
| SC(ha_t, HA_SIZE, "ha_t"); |
| |
| #undef SC |
| |
| return ((char *) NULL); |
| } /* wv_struct_check */ |
| #endif /* STRUCT_CHECK */ |
| |
| /********************* HOST ADAPTER SUBROUTINES *********************/ |
| /* |
| * Useful subroutines to manage the WaveLAN ISA interface |
| * |
| * One major difference with the PCMCIA hardware (except the port mapping) |
| * is that we have to keep the state of the Host Control Register |
| * because of the interrupt enable & bus size flags. |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Read from card's Host Adaptor Status Register. |
| */ |
| static inline u16 hasr_read(unsigned long ioaddr) |
| { |
| return (inw(HASR(ioaddr))); |
| } /* hasr_read */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Write to card's Host Adapter Command Register. |
| */ |
| static inline void hacr_write(unsigned long ioaddr, u16 hacr) |
| { |
| outw(hacr, HACR(ioaddr)); |
| } /* hacr_write */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Write to card's Host Adapter Command Register. Include a delay for |
| * those times when it is needed. |
| */ |
| static void hacr_write_slow(unsigned long ioaddr, u16 hacr) |
| { |
| hacr_write(ioaddr, hacr); |
| /* delay might only be needed sometimes */ |
| mdelay(1); |
| } /* hacr_write_slow */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Set the channel attention bit. |
| */ |
| static inline void set_chan_attn(unsigned long ioaddr, u16 hacr) |
| { |
| hacr_write(ioaddr, hacr | HACR_CA); |
| } /* set_chan_attn */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Reset, and then set host adaptor into default mode. |
| */ |
| static inline void wv_hacr_reset(unsigned long ioaddr) |
| { |
| hacr_write_slow(ioaddr, HACR_RESET); |
| hacr_write(ioaddr, HACR_DEFAULT); |
| } /* wv_hacr_reset */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Set the I/O transfer over the ISA bus to 8-bit mode |
| */ |
| static inline void wv_16_off(unsigned long ioaddr, u16 hacr) |
| { |
| hacr &= ~HACR_16BITS; |
| hacr_write(ioaddr, hacr); |
| } /* wv_16_off */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Set the I/O transfer over the ISA bus to 8-bit mode |
| */ |
| static inline void wv_16_on(unsigned long ioaddr, u16 hacr) |
| { |
| hacr |= HACR_16BITS; |
| hacr_write(ioaddr, hacr); |
| } /* wv_16_on */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Disable interrupts on the WaveLAN hardware. |
| * (called by wv_82586_stop()) |
| */ |
| static inline void wv_ints_off(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| |
| lp->hacr &= ~HACR_INTRON; |
| hacr_write(ioaddr, lp->hacr); |
| } /* wv_ints_off */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Enable interrupts on the WaveLAN hardware. |
| * (called by wv_hw_reset()) |
| */ |
| static inline void wv_ints_on(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| |
| lp->hacr |= HACR_INTRON; |
| hacr_write(ioaddr, lp->hacr); |
| } /* wv_ints_on */ |
| |
| /******************* MODEM MANAGEMENT SUBROUTINES *******************/ |
| /* |
| * Useful subroutines to manage the modem of the WaveLAN |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Read the Parameter Storage Area from the WaveLAN card's memory |
| */ |
| /* |
| * Read bytes from the PSA. |
| */ |
| static void psa_read(unsigned long ioaddr, u16 hacr, int o, /* offset in PSA */ |
| u8 * b, /* buffer to fill */ |
| int n) |
| { /* size to read */ |
| wv_16_off(ioaddr, hacr); |
| |
| while (n-- > 0) { |
| outw(o, PIOR2(ioaddr)); |
| o++; |
| *b++ = inb(PIOP2(ioaddr)); |
| } |
| |
| wv_16_on(ioaddr, hacr); |
| } /* psa_read */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Write the Parameter Storage Area to the WaveLAN card's memory. |
| */ |
| static void psa_write(unsigned long ioaddr, u16 hacr, int o, /* Offset in PSA */ |
| u8 * b, /* Buffer in memory */ |
| int n) |
| { /* Length of buffer */ |
| int count = 0; |
| |
| wv_16_off(ioaddr, hacr); |
| |
| while (n-- > 0) { |
| outw(o, PIOR2(ioaddr)); |
| o++; |
| |
| outb(*b, PIOP2(ioaddr)); |
| b++; |
| |
| /* Wait for the memory to finish its write cycle */ |
| count = 0; |
| while ((count++ < 100) && |
| (hasr_read(ioaddr) & HASR_PSA_BUSY)) mdelay(1); |
| } |
| |
| wv_16_on(ioaddr, hacr); |
| } /* psa_write */ |
| |
| #ifdef SET_PSA_CRC |
| /*------------------------------------------------------------------*/ |
| /* |
| * Calculate the PSA CRC |
| * Thanks to Valster, Nico <NVALSTER@wcnd.nl.lucent.com> for the code |
| * NOTE: By specifying a length including the CRC position the |
| * returned value should be zero. (i.e. a correct checksum in the PSA) |
| * |
| * The Windows drivers don't use the CRC, but the AP and the PtP tool |
| * depend on it. |
| */ |
| static u16 psa_crc(u8 * psa, /* The PSA */ |
| int size) |
| { /* Number of short for CRC */ |
| int byte_cnt; /* Loop on the PSA */ |
| u16 crc_bytes = 0; /* Data in the PSA */ |
| int bit_cnt; /* Loop on the bits of the short */ |
| |
| for (byte_cnt = 0; byte_cnt < size; byte_cnt++) { |
| crc_bytes ^= psa[byte_cnt]; /* Its an xor */ |
| |
| for (bit_cnt = 1; bit_cnt < 9; bit_cnt++) { |
| if (crc_bytes & 0x0001) |
| crc_bytes = (crc_bytes >> 1) ^ 0xA001; |
| else |
| crc_bytes >>= 1; |
| } |
| } |
| |
| return crc_bytes; |
| } /* psa_crc */ |
| #endif /* SET_PSA_CRC */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * update the checksum field in the Wavelan's PSA |
| */ |
| static void update_psa_checksum(struct net_device * dev, unsigned long ioaddr, u16 hacr) |
| { |
| #ifdef SET_PSA_CRC |
| psa_t psa; |
| u16 crc; |
| |
| /* read the parameter storage area */ |
| psa_read(ioaddr, hacr, 0, (unsigned char *) &psa, sizeof(psa)); |
| |
| /* update the checksum */ |
| crc = psa_crc((unsigned char *) &psa, |
| sizeof(psa) - sizeof(psa.psa_crc[0]) - |
| sizeof(psa.psa_crc[1]) |
| - sizeof(psa.psa_crc_status)); |
| |
| psa.psa_crc[0] = crc & 0xFF; |
| psa.psa_crc[1] = (crc & 0xFF00) >> 8; |
| |
| /* Write it ! */ |
| psa_write(ioaddr, hacr, (char *) &psa.psa_crc - (char *) &psa, |
| (unsigned char *) &psa.psa_crc, 2); |
| |
| #ifdef DEBUG_IOCTL_INFO |
| printk(KERN_DEBUG "%s: update_psa_checksum(): crc = 0x%02x%02x\n", |
| dev->name, psa.psa_crc[0], psa.psa_crc[1]); |
| |
| /* Check again (luxury !) */ |
| crc = psa_crc((unsigned char *) &psa, |
| sizeof(psa) - sizeof(psa.psa_crc_status)); |
| |
| if (crc != 0) |
| printk(KERN_WARNING |
| "%s: update_psa_checksum(): CRC does not agree with PSA data (even after recalculating)\n", |
| dev->name); |
| #endif /* DEBUG_IOCTL_INFO */ |
| #endif /* SET_PSA_CRC */ |
| } /* update_psa_checksum */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Write 1 byte to the MMC. |
| */ |
| static void mmc_out(unsigned long ioaddr, u16 o, u8 d) |
| { |
| int count = 0; |
| |
| /* Wait for MMC to go idle */ |
| while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY)) |
| udelay(10); |
| |
| outw((u16) (((u16) d << 8) | (o << 1) | 1), MMCR(ioaddr)); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Routine to write bytes to the Modem Management Controller. |
| * We start at the end because it is the way it should be! |
| */ |
| static void mmc_write(unsigned long ioaddr, u8 o, u8 * b, int n) |
| { |
| o += n; |
| b += n; |
| |
| while (n-- > 0) |
| mmc_out(ioaddr, --o, *(--b)); |
| } /* mmc_write */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Read a byte from the MMC. |
| * Optimised version for 1 byte, avoid using memory. |
| */ |
| static u8 mmc_in(unsigned long ioaddr, u16 o) |
| { |
| int count = 0; |
| |
| while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY)) |
| udelay(10); |
| outw(o << 1, MMCR(ioaddr)); |
| |
| while ((count++ < 100) && (inw(HASR(ioaddr)) & HASR_MMC_BUSY)) |
| udelay(10); |
| return (u8) (inw(MMCR(ioaddr)) >> 8); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Routine to read bytes from the Modem Management Controller. |
| * The implementation is complicated by a lack of address lines, |
| * which prevents decoding of the low-order bit. |
| * (code has just been moved in the above function) |
| * We start at the end because it is the way it should be! |
| */ |
| static inline void mmc_read(unsigned long ioaddr, u8 o, u8 * b, int n) |
| { |
| o += n; |
| b += n; |
| |
| while (n-- > 0) |
| *(--b) = mmc_in(ioaddr, --o); |
| } /* mmc_read */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Get the type of encryption available. |
| */ |
| static inline int mmc_encr(unsigned long ioaddr) |
| { /* I/O port of the card */ |
| int temp; |
| |
| temp = mmc_in(ioaddr, mmroff(0, mmr_des_avail)); |
| if ((temp != MMR_DES_AVAIL_DES) && (temp != MMR_DES_AVAIL_AES)) |
| return 0; |
| else |
| return temp; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wait for the frequency EEPROM to complete a command. |
| * I hope this one will be optimally inlined. |
| */ |
| static inline void fee_wait(unsigned long ioaddr, /* I/O port of the card */ |
| int delay, /* Base delay to wait for */ |
| int number) |
| { /* Number of time to wait */ |
| int count = 0; /* Wait only a limited time */ |
| |
| while ((count++ < number) && |
| (mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & |
| MMR_FEE_STATUS_BUSY)) udelay(delay); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Read bytes from the Frequency EEPROM (frequency select cards). |
| */ |
| static void fee_read(unsigned long ioaddr, /* I/O port of the card */ |
| u16 o, /* destination offset */ |
| u16 * b, /* data buffer */ |
| int n) |
| { /* number of registers */ |
| b += n; /* Position at the end of the area */ |
| |
| /* Write the address */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1); |
| |
| /* Loop on all buffer */ |
| while (n-- > 0) { |
| /* Write the read command */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), |
| MMW_FEE_CTRL_READ); |
| |
| /* Wait until EEPROM is ready (should be quick). */ |
| fee_wait(ioaddr, 10, 100); |
| |
| /* Read the value. */ |
| *--b = ((mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)) << 8) | |
| mmc_in(ioaddr, mmroff(0, mmr_fee_data_l))); |
| } |
| } |
| |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Write bytes from the Frequency EEPROM (frequency select cards). |
| * This is a bit complicated, because the frequency EEPROM has to |
| * be unprotected and the write enabled. |
| * Jean II |
| */ |
| static void fee_write(unsigned long ioaddr, /* I/O port of the card */ |
| u16 o, /* destination offset */ |
| u16 * b, /* data buffer */ |
| int n) |
| { /* number of registers */ |
| b += n; /* Position at the end of the area. */ |
| |
| #ifdef EEPROM_IS_PROTECTED /* disabled */ |
| #ifdef DOESNT_SEEM_TO_WORK /* disabled */ |
| /* Ask to read the protected register */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRREAD); |
| |
| fee_wait(ioaddr, 10, 100); |
| |
| /* Read the protected register. */ |
| printk("Protected 2: %02X-%02X\n", |
| mmc_in(ioaddr, mmroff(0, mmr_fee_data_h)), |
| mmc_in(ioaddr, mmroff(0, mmr_fee_data_l))); |
| #endif /* DOESNT_SEEM_TO_WORK */ |
| |
| /* Enable protected register. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PREN); |
| |
| fee_wait(ioaddr, 10, 100); |
| |
| /* Unprotect area. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE); |
| #ifdef DOESNT_SEEM_TO_WORK /* disabled */ |
| /* or use: */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRCLEAR); |
| #endif /* DOESNT_SEEM_TO_WORK */ |
| |
| fee_wait(ioaddr, 10, 100); |
| #endif /* EEPROM_IS_PROTECTED */ |
| |
| /* Write enable. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_EN); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WREN); |
| |
| fee_wait(ioaddr, 10, 100); |
| |
| /* Write the EEPROM address. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), o + n - 1); |
| |
| /* Loop on all buffer */ |
| while (n-- > 0) { |
| /* Write the value. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_data_h), (*--b) >> 8); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_data_l), *b & 0xFF); |
| |
| /* Write the write command. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), |
| MMW_FEE_CTRL_WRITE); |
| |
| /* WaveLAN documentation says to wait at least 10 ms for EEBUSY = 0 */ |
| mdelay(10); |
| fee_wait(ioaddr, 10, 100); |
| } |
| |
| /* Write disable. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), MMW_FEE_ADDR_DS); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_WDS); |
| |
| fee_wait(ioaddr, 10, 100); |
| |
| #ifdef EEPROM_IS_PROTECTED /* disabled */ |
| /* Reprotect EEPROM. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x00); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), MMW_FEE_CTRL_PRWRITE); |
| |
| fee_wait(ioaddr, 10, 100); |
| #endif /* EEPROM_IS_PROTECTED */ |
| } |
| |
| /************************ I82586 SUBROUTINES *************************/ |
| /* |
| * Useful subroutines to manage the Ethernet controller |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Read bytes from the on-board RAM. |
| * Why does inlining this function make it fail? |
| */ |
| static /*inline */ void obram_read(unsigned long ioaddr, |
| u16 o, u8 * b, int n) |
| { |
| outw(o, PIOR1(ioaddr)); |
| insw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Write bytes to the on-board RAM. |
| */ |
| static inline void obram_write(unsigned long ioaddr, u16 o, u8 * b, int n) |
| { |
| outw(o, PIOR1(ioaddr)); |
| outsw(PIOP1(ioaddr), (unsigned short *) b, (n + 1) >> 1); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Acknowledge the reading of the status issued by the i82586. |
| */ |
| static void wv_ack(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| u16 scb_cs; |
| int i; |
| |
| obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| scb_cs &= SCB_ST_INT; |
| |
| if (scb_cs == 0) |
| return; |
| |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| for (i = 1000; i > 0; i--) { |
| obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| if (scb_cs == 0) |
| break; |
| |
| udelay(10); |
| } |
| udelay(100); |
| |
| #ifdef DEBUG_CONFIG_ERROR |
| if (i <= 0) |
| printk(KERN_INFO |
| "%s: wv_ack(): board not accepting command.\n", |
| dev->name); |
| #endif |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Set channel attention bit and busy wait until command has |
| * completed, then acknowledge completion of the command. |
| */ |
| static int wv_synchronous_cmd(struct net_device * dev, const char *str) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| u16 scb_cmd; |
| ach_t cb; |
| int i; |
| |
| scb_cmd = SCB_CMD_CUC & SCB_CMD_CUC_GO; |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cmd, sizeof(scb_cmd)); |
| |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| for (i = 1000; i > 0; i--) { |
| obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, |
| sizeof(cb)); |
| if (cb.ac_status & AC_SFLD_C) |
| break; |
| |
| udelay(10); |
| } |
| udelay(100); |
| |
| if (i <= 0 || !(cb.ac_status & AC_SFLD_OK)) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO "%s: %s failed; status = 0x%x\n", |
| dev->name, str, cb.ac_status); |
| #endif |
| #ifdef DEBUG_I82586_SHOW |
| wv_scb_show(ioaddr); |
| #endif |
| return -1; |
| } |
| |
| /* Ack the status */ |
| wv_ack(dev); |
| |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Configuration commands completion interrupt. |
| * Check if done, and if OK. |
| */ |
| static int |
| wv_config_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp) |
| { |
| unsigned short mcs_addr; |
| unsigned short status; |
| int ret; |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: ->wv_config_complete()\n", dev->name); |
| #endif |
| |
| mcs_addr = lp->tx_first_in_use + sizeof(ac_tx_t) + sizeof(ac_nop_t) |
| + sizeof(tbd_t) + sizeof(ac_cfg_t) + sizeof(ac_ias_t); |
| |
| /* Read the status of the last command (set mc list). */ |
| obram_read(ioaddr, acoff(mcs_addr, ac_status), |
| (unsigned char *) &status, sizeof(status)); |
| |
| /* If not completed -> exit */ |
| if ((status & AC_SFLD_C) == 0) |
| ret = 0; /* Not ready to be scrapped */ |
| else { |
| #ifdef DEBUG_CONFIG_ERROR |
| unsigned short cfg_addr; |
| unsigned short ias_addr; |
| |
| /* Check mc_config command */ |
| if ((status & AC_SFLD_OK) != AC_SFLD_OK) |
| printk(KERN_INFO |
| "%s: wv_config_complete(): set_multicast_address failed; status = 0x%x\n", |
| dev->name, status); |
| |
| /* check ia-config command */ |
| ias_addr = mcs_addr - sizeof(ac_ias_t); |
| obram_read(ioaddr, acoff(ias_addr, ac_status), |
| (unsigned char *) &status, sizeof(status)); |
| if ((status & AC_SFLD_OK) != AC_SFLD_OK) |
| printk(KERN_INFO |
| "%s: wv_config_complete(): set_MAC_address failed; status = 0x%x\n", |
| dev->name, status); |
| |
| /* Check config command. */ |
| cfg_addr = ias_addr - sizeof(ac_cfg_t); |
| obram_read(ioaddr, acoff(cfg_addr, ac_status), |
| (unsigned char *) &status, sizeof(status)); |
| if ((status & AC_SFLD_OK) != AC_SFLD_OK) |
| printk(KERN_INFO |
| "%s: wv_config_complete(): configure failed; status = 0x%x\n", |
| dev->name, status); |
| #endif /* DEBUG_CONFIG_ERROR */ |
| |
| ret = 1; /* Ready to be scrapped */ |
| } |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: <-wv_config_complete() - %d\n", dev->name, |
| ret); |
| #endif |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Command completion interrupt. |
| * Reclaim as many freed tx buffers as we can. |
| * (called in wavelan_interrupt()). |
| * Note : the spinlock is already grabbed for us. |
| */ |
| static int wv_complete(struct net_device * dev, unsigned long ioaddr, net_local * lp) |
| { |
| int nreaped = 0; |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: ->wv_complete()\n", dev->name); |
| #endif |
| |
| /* Loop on all the transmit buffers */ |
| while (lp->tx_first_in_use != I82586NULL) { |
| unsigned short tx_status; |
| |
| /* Read the first transmit buffer */ |
| obram_read(ioaddr, acoff(lp->tx_first_in_use, ac_status), |
| (unsigned char *) &tx_status, |
| sizeof(tx_status)); |
| |
| /* If not completed -> exit */ |
| if ((tx_status & AC_SFLD_C) == 0) |
| break; |
| |
| /* Hack for reconfiguration */ |
| if (tx_status == 0xFFFF) |
| if (!wv_config_complete(dev, ioaddr, lp)) |
| break; /* Not completed */ |
| |
| /* We now remove this buffer */ |
| nreaped++; |
| --lp->tx_n_in_use; |
| |
| /* |
| if (lp->tx_n_in_use > 0) |
| printk("%c", "0123456789abcdefghijk"[lp->tx_n_in_use]); |
| */ |
| |
| /* Was it the last one? */ |
| if (lp->tx_n_in_use <= 0) |
| lp->tx_first_in_use = I82586NULL; |
| else { |
| /* Next one in the chain */ |
| lp->tx_first_in_use += TXBLOCKZ; |
| if (lp->tx_first_in_use >= |
| OFFSET_CU + |
| NTXBLOCKS * TXBLOCKZ) lp->tx_first_in_use -= |
| NTXBLOCKS * TXBLOCKZ; |
| } |
| |
| /* Hack for reconfiguration */ |
| if (tx_status == 0xFFFF) |
| continue; |
| |
| /* Now, check status of the finished command */ |
| if (tx_status & AC_SFLD_OK) { |
| int ncollisions; |
| |
| lp->stats.tx_packets++; |
| ncollisions = tx_status & AC_SFLD_MAXCOL; |
| lp->stats.collisions += ncollisions; |
| #ifdef DEBUG_TX_INFO |
| if (ncollisions > 0) |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx completed after %d collisions.\n", |
| dev->name, ncollisions); |
| #endif |
| } else { |
| lp->stats.tx_errors++; |
| if (tx_status & AC_SFLD_S10) { |
| lp->stats.tx_carrier_errors++; |
| #ifdef DEBUG_TX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx error: no CS.\n", |
| dev->name); |
| #endif |
| } |
| if (tx_status & AC_SFLD_S9) { |
| lp->stats.tx_carrier_errors++; |
| #ifdef DEBUG_TX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx error: lost CTS.\n", |
| dev->name); |
| #endif |
| } |
| if (tx_status & AC_SFLD_S8) { |
| lp->stats.tx_fifo_errors++; |
| #ifdef DEBUG_TX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx error: slow DMA.\n", |
| dev->name); |
| #endif |
| } |
| if (tx_status & AC_SFLD_S6) { |
| lp->stats.tx_heartbeat_errors++; |
| #ifdef DEBUG_TX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx error: heart beat.\n", |
| dev->name); |
| #endif |
| } |
| if (tx_status & AC_SFLD_S5) { |
| lp->stats.tx_aborted_errors++; |
| #ifdef DEBUG_TX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx error: too many collisions.\n", |
| dev->name); |
| #endif |
| } |
| } |
| |
| #ifdef DEBUG_TX_INFO |
| printk(KERN_DEBUG |
| "%s: wv_complete(): tx completed, tx_status 0x%04x\n", |
| dev->name, tx_status); |
| #endif |
| } |
| |
| #ifdef DEBUG_INTERRUPT_INFO |
| if (nreaped > 1) |
| printk(KERN_DEBUG "%s: wv_complete(): reaped %d\n", |
| dev->name, nreaped); |
| #endif |
| |
| /* |
| * Inform upper layers. |
| */ |
| if (lp->tx_n_in_use < NTXBLOCKS - 1) { |
| netif_wake_queue(dev); |
| } |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: <-wv_complete()\n", dev->name); |
| #endif |
| return nreaped; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Reconfigure the i82586, or at least ask for it. |
| * Because wv_82586_config uses a transmission buffer, we must do it |
| * when we are sure that there is one left, so we do it now |
| * or in wavelan_packet_xmit() (I can't find any better place, |
| * wavelan_interrupt is not an option), so you may experience |
| * delays sometimes. |
| */ |
| static void wv_82586_reconfig(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long flags; |
| |
| /* Arm the flag, will be cleard in wv_82586_config() */ |
| lp->reconfig_82586 = 1; |
| |
| /* Check if we can do it now ! */ |
| if((netif_running(dev)) && !(netif_queue_stopped(dev))) { |
| spin_lock_irqsave(&lp->spinlock, flags); |
| /* May fail */ |
| wv_82586_config(dev); |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| } |
| else { |
| #ifdef DEBUG_CONFIG_INFO |
| printk(KERN_DEBUG |
| "%s: wv_82586_reconfig(): delayed (state = %lX)\n", |
| dev->name, dev->state); |
| #endif |
| } |
| } |
| |
| /********************* DEBUG & INFO SUBROUTINES *********************/ |
| /* |
| * This routine is used in the code to show information for debugging. |
| * Most of the time, it dumps the contents of hardware structures. |
| */ |
| |
| #ifdef DEBUG_PSA_SHOW |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print the formatted contents of the Parameter Storage Area. |
| */ |
| static void wv_psa_show(psa_t * p) |
| { |
| printk(KERN_DEBUG "##### WaveLAN PSA contents: #####\n"); |
| printk(KERN_DEBUG "psa_io_base_addr_1: 0x%02X %02X %02X %02X\n", |
| p->psa_io_base_addr_1, |
| p->psa_io_base_addr_2, |
| p->psa_io_base_addr_3, p->psa_io_base_addr_4); |
| printk(KERN_DEBUG "psa_rem_boot_addr_1: 0x%02X %02X %02X\n", |
| p->psa_rem_boot_addr_1, |
| p->psa_rem_boot_addr_2, p->psa_rem_boot_addr_3); |
| printk(KERN_DEBUG "psa_holi_params: 0x%02x, ", p->psa_holi_params); |
| printk("psa_int_req_no: %d\n", p->psa_int_req_no); |
| #ifdef DEBUG_SHOW_UNUSED |
| printk(KERN_DEBUG |
| "psa_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
| p->psa_unused0[0], p->psa_unused0[1], p->psa_unused0[2], |
| p->psa_unused0[3], p->psa_unused0[4], p->psa_unused0[5], |
| p->psa_unused0[6]); |
| #endif /* DEBUG_SHOW_UNUSED */ |
| printk(KERN_DEBUG |
| "psa_univ_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| p->psa_univ_mac_addr[0], p->psa_univ_mac_addr[1], |
| p->psa_univ_mac_addr[2], p->psa_univ_mac_addr[3], |
| p->psa_univ_mac_addr[4], p->psa_univ_mac_addr[5]); |
| printk(KERN_DEBUG |
| "psa_local_mac_addr[]: %02x:%02x:%02x:%02x:%02x:%02x\n", |
| p->psa_local_mac_addr[0], p->psa_local_mac_addr[1], |
| p->psa_local_mac_addr[2], p->psa_local_mac_addr[3], |
| p->psa_local_mac_addr[4], p->psa_local_mac_addr[5]); |
| printk(KERN_DEBUG "psa_univ_local_sel: %d, ", |
| p->psa_univ_local_sel); |
| printk("psa_comp_number: %d, ", p->psa_comp_number); |
| printk("psa_thr_pre_set: 0x%02x\n", p->psa_thr_pre_set); |
| printk(KERN_DEBUG "psa_feature_select/decay_prm: 0x%02x, ", |
| p->psa_feature_select); |
| printk("psa_subband/decay_update_prm: %d\n", p->psa_subband); |
| printk(KERN_DEBUG "psa_quality_thr: 0x%02x, ", p->psa_quality_thr); |
| printk("psa_mod_delay: 0x%02x\n", p->psa_mod_delay); |
| printk(KERN_DEBUG "psa_nwid: 0x%02x%02x, ", p->psa_nwid[0], |
| p->psa_nwid[1]); |
| printk("psa_nwid_select: %d\n", p->psa_nwid_select); |
| printk(KERN_DEBUG "psa_encryption_select: %d, ", |
| p->psa_encryption_select); |
| printk |
| ("psa_encryption_key[]: %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x\n", |
| p->psa_encryption_key[0], p->psa_encryption_key[1], |
| p->psa_encryption_key[2], p->psa_encryption_key[3], |
| p->psa_encryption_key[4], p->psa_encryption_key[5], |
| p->psa_encryption_key[6], p->psa_encryption_key[7]); |
| printk(KERN_DEBUG "psa_databus_width: %d\n", p->psa_databus_width); |
| printk(KERN_DEBUG "psa_call_code/auto_squelch: 0x%02x, ", |
| p->psa_call_code[0]); |
| printk |
| ("psa_call_code[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
| p->psa_call_code[0], p->psa_call_code[1], p->psa_call_code[2], |
| p->psa_call_code[3], p->psa_call_code[4], p->psa_call_code[5], |
| p->psa_call_code[6], p->psa_call_code[7]); |
| #ifdef DEBUG_SHOW_UNUSED |
| printk(KERN_DEBUG "psa_reserved[]: %02X:%02X:%02X:%02X\n", |
| p->psa_reserved[0], |
| p->psa_reserved[1], p->psa_reserved[2], p->psa_reserved[3]); |
| #endif /* DEBUG_SHOW_UNUSED */ |
| printk(KERN_DEBUG "psa_conf_status: %d, ", p->psa_conf_status); |
| printk("psa_crc: 0x%02x%02x, ", p->psa_crc[0], p->psa_crc[1]); |
| printk("psa_crc_status: 0x%02x\n", p->psa_crc_status); |
| } /* wv_psa_show */ |
| #endif /* DEBUG_PSA_SHOW */ |
| |
| #ifdef DEBUG_MMC_SHOW |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print the formatted status of the Modem Management Controller. |
| * This function needs to be completed. |
| */ |
| static void wv_mmc_show(struct net_device * dev) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; |
| mmr_t m; |
| |
| /* Basic check */ |
| if (hasr_read(ioaddr) & HASR_NO_CLK) { |
| printk(KERN_WARNING |
| "%s: wv_mmc_show: modem not connected\n", |
| dev->name); |
| return; |
| } |
| |
| /* Read the mmc */ |
| mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); |
| mmc_read(ioaddr, 0, (u8 *) & m, sizeof(m)); |
| mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); |
| |
| /* Don't forget to update statistics */ |
| lp->wstats.discard.nwid += |
| (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l; |
| |
| printk(KERN_DEBUG "##### WaveLAN modem status registers: #####\n"); |
| #ifdef DEBUG_SHOW_UNUSED |
| printk(KERN_DEBUG |
| "mmc_unused0[]: %02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n", |
| m.mmr_unused0[0], m.mmr_unused0[1], m.mmr_unused0[2], |
| m.mmr_unused0[3], m.mmr_unused0[4], m.mmr_unused0[5], |
| m.mmr_unused0[6], m.mmr_unused0[7]); |
| #endif /* DEBUG_SHOW_UNUSED */ |
| printk(KERN_DEBUG "Encryption algorithm: %02X - Status: %02X\n", |
| m.mmr_des_avail, m.mmr_des_status); |
| #ifdef DEBUG_SHOW_UNUSED |
| printk(KERN_DEBUG "mmc_unused1[]: %02X:%02X:%02X:%02X:%02X\n", |
| m.mmr_unused1[0], |
| m.mmr_unused1[1], |
| m.mmr_unused1[2], m.mmr_unused1[3], m.mmr_unused1[4]); |
| #endif /* DEBUG_SHOW_UNUSED */ |
| printk(KERN_DEBUG "dce_status: 0x%x [%s%s%s%s]\n", |
| m.mmr_dce_status, |
| (m. |
| mmr_dce_status & MMR_DCE_STATUS_RX_BUSY) ? |
| "energy detected," : "", |
| (m. |
| mmr_dce_status & MMR_DCE_STATUS_LOOPT_IND) ? |
| "loop test indicated," : "", |
| (m. |
| mmr_dce_status & MMR_DCE_STATUS_TX_BUSY) ? |
| "transmitter on," : "", |
| (m. |
| mmr_dce_status & MMR_DCE_STATUS_JBR_EXPIRED) ? |
| "jabber timer expired," : ""); |
| printk(KERN_DEBUG "Dsp ID: %02X\n", m.mmr_dsp_id); |
| #ifdef DEBUG_SHOW_UNUSED |
| printk(KERN_DEBUG "mmc_unused2[]: %02X:%02X\n", |
| m.mmr_unused2[0], m.mmr_unused2[1]); |
| #endif /* DEBUG_SHOW_UNUSED */ |
| printk(KERN_DEBUG "# correct_nwid: %d, # wrong_nwid: %d\n", |
| (m.mmr_correct_nwid_h << 8) | m.mmr_correct_nwid_l, |
| (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l); |
| printk(KERN_DEBUG "thr_pre_set: 0x%x [current signal %s]\n", |
| m.mmr_thr_pre_set & MMR_THR_PRE_SET, |
| (m. |
| mmr_thr_pre_set & MMR_THR_PRE_SET_CUR) ? "above" : |
| "below"); |
| printk(KERN_DEBUG "signal_lvl: %d [%s], ", |
| m.mmr_signal_lvl & MMR_SIGNAL_LVL, |
| (m. |
| mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) ? "new msg" : |
| "no new msg"); |
| printk("silence_lvl: %d [%s], ", |
| m.mmr_silence_lvl & MMR_SILENCE_LVL, |
| (m. |
| mmr_silence_lvl & MMR_SILENCE_LVL_VALID) ? "update done" : |
| "no new update"); |
| printk("sgnl_qual: 0x%x [%s]\n", m.mmr_sgnl_qual & MMR_SGNL_QUAL, |
| (m. |
| mmr_sgnl_qual & MMR_SGNL_QUAL_ANT) ? "Antenna 1" : |
| "Antenna 0"); |
| #ifdef DEBUG_SHOW_UNUSED |
| printk(KERN_DEBUG "netw_id_l: %x\n", m.mmr_netw_id_l); |
| #endif /* DEBUG_SHOW_UNUSED */ |
| } /* wv_mmc_show */ |
| #endif /* DEBUG_MMC_SHOW */ |
| |
| #ifdef DEBUG_I82586_SHOW |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print the last block of the i82586 memory. |
| */ |
| static void wv_scb_show(unsigned long ioaddr) |
| { |
| scb_t scb; |
| |
| obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb, |
| sizeof(scb)); |
| |
| printk(KERN_DEBUG "##### WaveLAN system control block: #####\n"); |
| |
| printk(KERN_DEBUG "status: "); |
| printk("stat 0x%x[%s%s%s%s] ", |
| (scb. |
| scb_status & (SCB_ST_CX | SCB_ST_FR | SCB_ST_CNA | |
| SCB_ST_RNR)) >> 12, |
| (scb. |
| scb_status & SCB_ST_CX) ? "command completion interrupt," : |
| "", (scb.scb_status & SCB_ST_FR) ? "frame received," : "", |
| (scb. |
| scb_status & SCB_ST_CNA) ? "command unit not active," : "", |
| (scb. |
| scb_status & SCB_ST_RNR) ? "receiving unit not ready," : |
| ""); |
| printk("cus 0x%x[%s%s%s] ", (scb.scb_status & SCB_ST_CUS) >> 8, |
| ((scb.scb_status & SCB_ST_CUS) == |
| SCB_ST_CUS_IDLE) ? "idle" : "", |
| ((scb.scb_status & SCB_ST_CUS) == |
| SCB_ST_CUS_SUSP) ? "suspended" : "", |
| ((scb.scb_status & SCB_ST_CUS) == |
| SCB_ST_CUS_ACTV) ? "active" : ""); |
| printk("rus 0x%x[%s%s%s%s]\n", (scb.scb_status & SCB_ST_RUS) >> 4, |
| ((scb.scb_status & SCB_ST_RUS) == |
| SCB_ST_RUS_IDLE) ? "idle" : "", |
| ((scb.scb_status & SCB_ST_RUS) == |
| SCB_ST_RUS_SUSP) ? "suspended" : "", |
| ((scb.scb_status & SCB_ST_RUS) == |
| SCB_ST_RUS_NRES) ? "no resources" : "", |
| ((scb.scb_status & SCB_ST_RUS) == |
| SCB_ST_RUS_RDY) ? "ready" : ""); |
| |
| printk(KERN_DEBUG "command: "); |
| printk("ack 0x%x[%s%s%s%s] ", |
| (scb. |
| scb_command & (SCB_CMD_ACK_CX | SCB_CMD_ACK_FR | |
| SCB_CMD_ACK_CNA | SCB_CMD_ACK_RNR)) >> 12, |
| (scb. |
| scb_command & SCB_CMD_ACK_CX) ? "ack cmd completion," : "", |
| (scb. |
| scb_command & SCB_CMD_ACK_FR) ? "ack frame received," : "", |
| (scb. |
| scb_command & SCB_CMD_ACK_CNA) ? "ack CU not active," : "", |
| (scb. |
| scb_command & SCB_CMD_ACK_RNR) ? "ack RU not ready," : ""); |
| printk("cuc 0x%x[%s%s%s%s%s] ", |
| (scb.scb_command & SCB_CMD_CUC) >> 8, |
| ((scb.scb_command & SCB_CMD_CUC) == |
| SCB_CMD_CUC_NOP) ? "nop" : "", |
| ((scb.scb_command & SCB_CMD_CUC) == |
| SCB_CMD_CUC_GO) ? "start cbl_offset" : "", |
| ((scb.scb_command & SCB_CMD_CUC) == |
| SCB_CMD_CUC_RES) ? "resume execution" : "", |
| ((scb.scb_command & SCB_CMD_CUC) == |
| SCB_CMD_CUC_SUS) ? "suspend execution" : "", |
| ((scb.scb_command & SCB_CMD_CUC) == |
| SCB_CMD_CUC_ABT) ? "abort execution" : ""); |
| printk("ruc 0x%x[%s%s%s%s%s]\n", |
| (scb.scb_command & SCB_CMD_RUC) >> 4, |
| ((scb.scb_command & SCB_CMD_RUC) == |
| SCB_CMD_RUC_NOP) ? "nop" : "", |
| ((scb.scb_command & SCB_CMD_RUC) == |
| SCB_CMD_RUC_GO) ? "start rfa_offset" : "", |
| ((scb.scb_command & SCB_CMD_RUC) == |
| SCB_CMD_RUC_RES) ? "resume reception" : "", |
| ((scb.scb_command & SCB_CMD_RUC) == |
| SCB_CMD_RUC_SUS) ? "suspend reception" : "", |
| ((scb.scb_command & SCB_CMD_RUC) == |
| SCB_CMD_RUC_ABT) ? "abort reception" : ""); |
| |
| printk(KERN_DEBUG "cbl_offset 0x%x ", scb.scb_cbl_offset); |
| printk("rfa_offset 0x%x\n", scb.scb_rfa_offset); |
| |
| printk(KERN_DEBUG "crcerrs %d ", scb.scb_crcerrs); |
| printk("alnerrs %d ", scb.scb_alnerrs); |
| printk("rscerrs %d ", scb.scb_rscerrs); |
| printk("ovrnerrs %d\n", scb.scb_ovrnerrs); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print the formatted status of the i82586's receive unit. |
| */ |
| static void wv_ru_show(struct net_device * dev) |
| { |
| /* net_local *lp = (net_local *) dev->priv; */ |
| |
| printk(KERN_DEBUG |
| "##### WaveLAN i82586 receiver unit status: #####\n"); |
| printk(KERN_DEBUG "ru:"); |
| /* |
| * Not implemented yet |
| */ |
| printk("\n"); |
| } /* wv_ru_show */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Display info about one control block of the i82586 memory. |
| */ |
| static void wv_cu_show_one(struct net_device * dev, net_local * lp, int i, u16 p) |
| { |
| unsigned long ioaddr; |
| ac_tx_t actx; |
| |
| ioaddr = dev->base_addr; |
| |
| printk("%d: 0x%x:", i, p); |
| |
| obram_read(ioaddr, p, (unsigned char *) &actx, sizeof(actx)); |
| printk(" status=0x%x,", actx.tx_h.ac_status); |
| printk(" command=0x%x,", actx.tx_h.ac_command); |
| |
| /* |
| { |
| tbd_t tbd; |
| |
| obram_read(ioaddr, actx.tx_tbd_offset, (unsigned char *)&tbd, sizeof(tbd)); |
| printk(" tbd_status=0x%x,", tbd.tbd_status); |
| } |
| */ |
| |
| printk("|"); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print status of the command unit of the i82586. |
| */ |
| static void wv_cu_show(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned int i; |
| u16 p; |
| |
| printk(KERN_DEBUG |
| "##### WaveLAN i82586 command unit status: #####\n"); |
| |
| printk(KERN_DEBUG); |
| for (i = 0, p = lp->tx_first_in_use; i < NTXBLOCKS; i++) { |
| wv_cu_show_one(dev, lp, i, p); |
| |
| p += TXBLOCKZ; |
| if (p >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) |
| p -= NTXBLOCKS * TXBLOCKZ; |
| } |
| printk("\n"); |
| } |
| #endif /* DEBUG_I82586_SHOW */ |
| |
| #ifdef DEBUG_DEVICE_SHOW |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print the formatted status of the WaveLAN PCMCIA device driver. |
| */ |
| static void wv_dev_show(struct net_device * dev) |
| { |
| printk(KERN_DEBUG "dev:"); |
| printk(" state=%lX,", dev->state); |
| printk(" trans_start=%ld,", dev->trans_start); |
| printk(" flags=0x%x,", dev->flags); |
| printk("\n"); |
| } /* wv_dev_show */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Print the formatted status of the WaveLAN PCMCIA device driver's |
| * private information. |
| */ |
| static void wv_local_show(struct net_device * dev) |
| { |
| net_local *lp; |
| |
| lp = (net_local *) dev->priv; |
| |
| printk(KERN_DEBUG "local:"); |
| printk(" tx_n_in_use=%d,", lp->tx_n_in_use); |
| printk(" hacr=0x%x,", lp->hacr); |
| printk(" rx_head=0x%x,", lp->rx_head); |
| printk(" rx_last=0x%x,", lp->rx_last); |
| printk(" tx_first_free=0x%x,", lp->tx_first_free); |
| printk(" tx_first_in_use=0x%x,", lp->tx_first_in_use); |
| printk("\n"); |
| } /* wv_local_show */ |
| #endif /* DEBUG_DEVICE_SHOW */ |
| |
| #if defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) |
| /*------------------------------------------------------------------*/ |
| /* |
| * Dump packet header (and content if necessary) on the screen |
| */ |
| static inline void wv_packet_info(u8 * p, /* Packet to dump */ |
| int length, /* Length of the packet */ |
| char *msg1, /* Name of the device */ |
| char *msg2) |
| { /* Name of the function */ |
| int i; |
| int maxi; |
| |
| printk(KERN_DEBUG |
| "%s: %s(): dest %02X:%02X:%02X:%02X:%02X:%02X, length %d\n", |
| msg1, msg2, p[0], p[1], p[2], p[3], p[4], p[5], length); |
| printk(KERN_DEBUG |
| "%s: %s(): src %02X:%02X:%02X:%02X:%02X:%02X, type 0x%02X%02X\n", |
| msg1, msg2, p[6], p[7], p[8], p[9], p[10], p[11], p[12], |
| p[13]); |
| |
| #ifdef DEBUG_PACKET_DUMP |
| |
| printk(KERN_DEBUG "data=\""); |
| |
| if ((maxi = length) > DEBUG_PACKET_DUMP) |
| maxi = DEBUG_PACKET_DUMP; |
| for (i = 14; i < maxi; i++) |
| if (p[i] >= ' ' && p[i] <= '~') |
| printk(" %c", p[i]); |
| else |
| printk("%02X", p[i]); |
| if (maxi < length) |
| printk(".."); |
| printk("\"\n"); |
| printk(KERN_DEBUG "\n"); |
| #endif /* DEBUG_PACKET_DUMP */ |
| } |
| #endif /* defined(DEBUG_RX_INFO) || defined(DEBUG_TX_INFO) */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This is the information which is displayed by the driver at startup. |
| * There are lots of flags for configuring it to your liking. |
| */ |
| static void wv_init_info(struct net_device * dev) |
| { |
| short ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; |
| psa_t psa; |
| int i; |
| |
| /* Read the parameter storage area */ |
| psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa)); |
| |
| #ifdef DEBUG_PSA_SHOW |
| wv_psa_show(&psa); |
| #endif |
| #ifdef DEBUG_MMC_SHOW |
| wv_mmc_show(dev); |
| #endif |
| #ifdef DEBUG_I82586_SHOW |
| wv_cu_show(dev); |
| #endif |
| |
| #ifdef DEBUG_BASIC_SHOW |
| /* Now, let's go for the basic stuff. */ |
| printk(KERN_NOTICE "%s: WaveLAN at %#x,", dev->name, ioaddr); |
| for (i = 0; i < WAVELAN_ADDR_SIZE; i++) |
| printk("%s%02X", (i == 0) ? " " : ":", dev->dev_addr[i]); |
| printk(", IRQ %d", dev->irq); |
| |
| /* Print current network ID. */ |
| if (psa.psa_nwid_select) |
| printk(", nwid 0x%02X-%02X", psa.psa_nwid[0], |
| psa.psa_nwid[1]); |
| else |
| printk(", nwid off"); |
| |
| /* If 2.00 card */ |
| if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & |
| (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { |
| unsigned short freq; |
| |
| /* Ask the EEPROM to read the frequency from the first area. */ |
| fee_read(ioaddr, 0x00, &freq, 1); |
| |
| /* Print frequency */ |
| printk(", 2.00, %ld", (freq >> 6) + 2400L); |
| |
| /* Hack! */ |
| if (freq & 0x20) |
| printk(".5"); |
| } else { |
| printk(", PC"); |
| switch (psa.psa_comp_number) { |
| case PSA_COMP_PC_AT_915: |
| case PSA_COMP_PC_AT_2400: |
| printk("-AT"); |
| break; |
| case PSA_COMP_PC_MC_915: |
| case PSA_COMP_PC_MC_2400: |
| printk("-MC"); |
| break; |
| case PSA_COMP_PCMCIA_915: |
| printk("MCIA"); |
| break; |
| default: |
| printk("?"); |
| } |
| printk(", "); |
| switch (psa.psa_subband) { |
| case PSA_SUBBAND_915: |
| printk("915"); |
| break; |
| case PSA_SUBBAND_2425: |
| printk("2425"); |
| break; |
| case PSA_SUBBAND_2460: |
| printk("2460"); |
| break; |
| case PSA_SUBBAND_2484: |
| printk("2484"); |
| break; |
| case PSA_SUBBAND_2430_5: |
| printk("2430.5"); |
| break; |
| default: |
| printk("?"); |
| } |
| } |
| |
| printk(" MHz\n"); |
| #endif /* DEBUG_BASIC_SHOW */ |
| |
| #ifdef DEBUG_VERSION_SHOW |
| /* Print version information */ |
| printk(KERN_NOTICE "%s", version); |
| #endif |
| } /* wv_init_info */ |
| |
| /********************* IOCTL, STATS & RECONFIG *********************/ |
| /* |
| * We found here routines that are called by Linux on different |
| * occasions after the configuration and not for transmitting data |
| * These may be called when the user use ifconfig, /proc/net/dev |
| * or wireless extensions |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Get the current Ethernet statistics. This may be called with the |
| * card open or closed. |
| * Used when the user read /proc/net/dev |
| */ |
| static en_stats *wavelan_get_stats(struct net_device * dev) |
| { |
| #ifdef DEBUG_IOCTL_TRACE |
| printk(KERN_DEBUG "%s: <>wavelan_get_stats()\n", dev->name); |
| #endif |
| |
| return (&((net_local *) dev->priv)->stats); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Set or clear the multicast filter for this adaptor. |
| * num_addrs == -1 Promiscuous mode, receive all packets |
| * num_addrs == 0 Normal mode, clear multicast list |
| * num_addrs > 0 Multicast mode, receive normal and MC packets, |
| * and do best-effort filtering. |
| */ |
| static void wavelan_set_multicast_list(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| |
| #ifdef DEBUG_IOCTL_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_set_multicast_list()\n", |
| dev->name); |
| #endif |
| |
| #ifdef DEBUG_IOCTL_INFO |
| printk(KERN_DEBUG |
| "%s: wavelan_set_multicast_list(): setting Rx mode %02X to %d addresses.\n", |
| dev->name, dev->flags, dev->mc_count); |
| #endif |
| |
| /* Are we asking for promiscuous mode, |
| * or all multicast addresses (we don't have that!) |
| * or too many multicast addresses for the hardware filter? */ |
| if ((dev->flags & IFF_PROMISC) || |
| (dev->flags & IFF_ALLMULTI) || |
| (dev->mc_count > I82586_MAX_MULTICAST_ADDRESSES)) { |
| /* |
| * Enable promiscuous mode: receive all packets. |
| */ |
| if (!lp->promiscuous) { |
| lp->promiscuous = 1; |
| lp->mc_count = 0; |
| |
| wv_82586_reconfig(dev); |
| |
| /* Tell the kernel that we are doing a really bad job. */ |
| dev->flags |= IFF_PROMISC; |
| } |
| } else |
| /* Are there multicast addresses to send? */ |
| if (dev->mc_list != (struct dev_mc_list *) NULL) { |
| /* |
| * Disable promiscuous mode, but receive all packets |
| * in multicast list |
| */ |
| #ifdef MULTICAST_AVOID |
| if (lp->promiscuous || (dev->mc_count != lp->mc_count)) |
| #endif |
| { |
| lp->promiscuous = 0; |
| lp->mc_count = dev->mc_count; |
| |
| wv_82586_reconfig(dev); |
| } |
| } else { |
| /* |
| * Switch to normal mode: disable promiscuous mode and |
| * clear the multicast list. |
| */ |
| if (lp->promiscuous || lp->mc_count == 0) { |
| lp->promiscuous = 0; |
| lp->mc_count = 0; |
| |
| wv_82586_reconfig(dev); |
| } |
| } |
| #ifdef DEBUG_IOCTL_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_set_multicast_list()\n", |
| dev->name); |
| #endif |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This function doesn't exist. |
| * (Note : it was a nice way to test the reconfigure stuff...) |
| */ |
| #ifdef SET_MAC_ADDRESS |
| static int wavelan_set_mac_address(struct net_device * dev, void *addr) |
| { |
| struct sockaddr *mac = addr; |
| |
| /* Copy the address. */ |
| memcpy(dev->dev_addr, mac->sa_data, WAVELAN_ADDR_SIZE); |
| |
| /* Reconfigure the beast. */ |
| wv_82586_reconfig(dev); |
| |
| return 0; |
| } |
| #endif /* SET_MAC_ADDRESS */ |
| |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Frequency setting (for hardware capable of it) |
| * It's a bit complicated and you don't really want to look into it. |
| * (called in wavelan_ioctl) |
| */ |
| static int wv_set_frequency(unsigned long ioaddr, /* I/O port of the card */ |
| iw_freq * frequency) |
| { |
| const int BAND_NUM = 10; /* Number of bands */ |
| long freq = 0L; /* offset to 2.4 GHz in .5 MHz */ |
| #ifdef DEBUG_IOCTL_INFO |
| int i; |
| #endif |
| |
| /* Setting by frequency */ |
| /* Theoretically, you may set any frequency between |
| * the two limits with a 0.5 MHz precision. In practice, |
| * I don't want you to have trouble with local regulations. |
| */ |
| if ((frequency->e == 1) && |
| (frequency->m >= (int) 2.412e8) |
| && (frequency->m <= (int) 2.487e8)) { |
| freq = ((frequency->m / 10000) - 24000L) / 5; |
| } |
| |
| /* Setting by channel (same as wfreqsel) */ |
| /* Warning: each channel is 22 MHz wide, so some of the channels |
| * will interfere. */ |
| if ((frequency->e == 0) && (frequency->m < BAND_NUM)) { |
| /* Get frequency offset. */ |
| freq = channel_bands[frequency->m] >> 1; |
| } |
| |
| /* Verify that the frequency is allowed. */ |
| if (freq != 0L) { |
| u16 table[10]; /* Authorized frequency table */ |
| |
| /* Read the frequency table. */ |
| fee_read(ioaddr, 0x71, table, 10); |
| |
| #ifdef DEBUG_IOCTL_INFO |
| printk(KERN_DEBUG "Frequency table: "); |
| for (i = 0; i < 10; i++) { |
| printk(" %04X", table[i]); |
| } |
| printk("\n"); |
| #endif |
| |
| /* Look in the table to see whether the frequency is allowed. */ |
| if (!(table[9 - ((freq - 24) / 16)] & |
| (1 << ((freq - 24) % 16)))) return -EINVAL; /* not allowed */ |
| } else |
| return -EINVAL; |
| |
| /* if we get a usable frequency */ |
| if (freq != 0L) { |
| unsigned short area[16]; |
| unsigned short dac[2]; |
| unsigned short area_verify[16]; |
| unsigned short dac_verify[2]; |
| /* Corresponding gain (in the power adjust value table) |
| * See AT&T WaveLAN Data Manual, REF 407-024689/E, page 3-8 |
| * and WCIN062D.DOC, page 6.2.9. */ |
| unsigned short power_limit[] = { 40, 80, 120, 160, 0 }; |
| int power_band = 0; /* Selected band */ |
| unsigned short power_adjust; /* Correct value */ |
| |
| /* Search for the gain. */ |
| power_band = 0; |
| while ((freq > power_limit[power_band]) && |
| (power_limit[++power_band] != 0)); |
| |
| /* Read the first area. */ |
| fee_read(ioaddr, 0x00, area, 16); |
| |
| /* Read the DAC. */ |
| fee_read(ioaddr, 0x60, dac, 2); |
| |
| /* Read the new power adjust value. */ |
| fee_read(ioaddr, 0x6B - (power_band >> 1), &power_adjust, |
| 1); |
| if (power_band & 0x1) |
| power_adjust >>= 8; |
| else |
| power_adjust &= 0xFF; |
| |
| #ifdef DEBUG_IOCTL_INFO |
| printk(KERN_DEBUG "WaveLAN EEPROM Area 1: "); |
| for (i = 0; i < 16; i++) { |
| printk(" %04X", area[i]); |
| } |
| printk("\n"); |
| |
| printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n", |
| dac[0], dac[1]); |
| #endif |
| |
| /* Frequency offset (for info only) */ |
| area[0] = ((freq << 5) & 0xFFE0) | (area[0] & 0x1F); |
| |
| /* Receiver Principle main divider coefficient */ |
| area[3] = (freq >> 1) + 2400L - 352L; |
| area[2] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF); |
| |
| /* Transmitter Main divider coefficient */ |
| area[13] = (freq >> 1) + 2400L; |
| area[12] = ((freq & 0x1) << 4) | (area[2] & 0xFFEF); |
| |
| /* Other parts of the area are flags, bit streams or unused. */ |
| |
| /* Set the value in the DAC. */ |
| dac[1] = ((power_adjust >> 1) & 0x7F) | (dac[1] & 0xFF80); |
| dac[0] = ((power_adjust & 0x1) << 4) | (dac[0] & 0xFFEF); |
| |
| /* Write the first area. */ |
| fee_write(ioaddr, 0x00, area, 16); |
| |
| /* Write the DAC. */ |
| fee_write(ioaddr, 0x60, dac, 2); |
| |
| /* We now should verify here that the writing of the EEPROM went OK. */ |
| |
| /* Reread the first area. */ |
| fee_read(ioaddr, 0x00, area_verify, 16); |
| |
| /* Reread the DAC. */ |
| fee_read(ioaddr, 0x60, dac_verify, 2); |
| |
| /* Compare. */ |
| if (memcmp(area, area_verify, 16 * 2) || |
| memcmp(dac, dac_verify, 2 * 2)) { |
| #ifdef DEBUG_IOCTL_ERROR |
| printk(KERN_INFO |
| "WaveLAN: wv_set_frequency: unable to write new frequency to EEPROM(?).\n"); |
| #endif |
| return -EOPNOTSUPP; |
| } |
| |
| /* We must download the frequency parameters to the |
| * synthesizers (from the EEPROM - area 1) |
| * Note: as the EEPROM is automatically decremented, we set the end |
| * if the area... */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x0F); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), |
| MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD); |
| |
| /* Wait until the download is finished. */ |
| fee_wait(ioaddr, 100, 100); |
| |
| /* We must now download the power adjust value (gain) to |
| * the synthesizers (from the EEPROM - area 7 - DAC). */ |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_addr), 0x61); |
| mmc_out(ioaddr, mmwoff(0, mmw_fee_ctrl), |
| MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD); |
| |
| /* Wait for the download to finish. */ |
| fee_wait(ioaddr, 100, 100); |
| |
| #ifdef DEBUG_IOCTL_INFO |
| /* Verification of what we have done */ |
| |
| printk(KERN_DEBUG "WaveLAN EEPROM Area 1: "); |
| for (i = 0; i < 16; i++) { |
| printk(" %04X", area_verify[i]); |
| } |
| printk("\n"); |
| |
| printk(KERN_DEBUG "WaveLAN EEPROM DAC: %04X %04X\n", |
| dac_verify[0], dac_verify[1]); |
| #endif |
| |
| return 0; |
| } else |
| return -EINVAL; /* Bah, never get there... */ |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Give the list of available frequencies. |
| */ |
| static int wv_frequency_list(unsigned long ioaddr, /* I/O port of the card */ |
| iw_freq * list, /* List of frequencies to fill */ |
| int max) |
| { /* Maximum number of frequencies */ |
| u16 table[10]; /* Authorized frequency table */ |
| long freq = 0L; /* offset to 2.4 GHz in .5 MHz + 12 MHz */ |
| int i; /* index in the table */ |
| int c = 0; /* Channel number */ |
| |
| /* Read the frequency table. */ |
| fee_read(ioaddr, 0x71 /* frequency table */ , table, 10); |
| |
| /* Check all frequencies. */ |
| i = 0; |
| for (freq = 0; freq < 150; freq++) |
| /* Look in the table if the frequency is allowed */ |
| if (table[9 - (freq / 16)] & (1 << (freq % 16))) { |
| /* Compute approximate channel number */ |
| while ((c < ARRAY_SIZE(channel_bands)) && |
| (((channel_bands[c] >> 1) - 24) < freq)) |
| c++; |
| list[i].i = c; /* Set the list index */ |
| |
| /* put in the list */ |
| list[i].m = (((freq + 24) * 5) + 24000L) * 10000; |
| list[i++].e = 1; |
| |
| /* Check number. */ |
| if (i >= max) |
| return (i); |
| } |
| |
| return (i); |
| } |
| |
| #ifdef IW_WIRELESS_SPY |
| /*------------------------------------------------------------------*/ |
| /* |
| * Gather wireless spy statistics: for each packet, compare the source |
| * address with our list, and if they match, get the statistics. |
| * Sorry, but this function really needs the wireless extensions. |
| */ |
| static inline void wl_spy_gather(struct net_device * dev, |
| u8 * mac, /* MAC address */ |
| u8 * stats) /* Statistics to gather */ |
| { |
| struct iw_quality wstats; |
| |
| wstats.qual = stats[2] & MMR_SGNL_QUAL; |
| wstats.level = stats[0] & MMR_SIGNAL_LVL; |
| wstats.noise = stats[1] & MMR_SILENCE_LVL; |
| wstats.updated = 0x7; |
| |
| /* Update spy records */ |
| wireless_spy_update(dev, mac, &wstats); |
| } |
| #endif /* IW_WIRELESS_SPY */ |
| |
| #ifdef HISTOGRAM |
| /*------------------------------------------------------------------*/ |
| /* |
| * This function calculates a histogram of the signal level. |
| * As the noise is quite constant, it's like doing it on the SNR. |
| * We have defined a set of interval (lp->his_range), and each time |
| * the level goes in that interval, we increment the count (lp->his_sum). |
| * With this histogram you may detect if one WaveLAN is really weak, |
| * or you may also calculate the mean and standard deviation of the level. |
| */ |
| static inline void wl_his_gather(struct net_device * dev, u8 * stats) |
| { /* Statistics to gather */ |
| net_local *lp = (net_local *) dev->priv; |
| u8 level = stats[0] & MMR_SIGNAL_LVL; |
| int i; |
| |
| /* Find the correct interval. */ |
| i = 0; |
| while ((i < (lp->his_number - 1)) |
| && (level >= lp->his_range[i++])); |
| |
| /* Increment interval counter. */ |
| (lp->his_sum[i])++; |
| } |
| #endif /* HISTOGRAM */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : get protocol name |
| */ |
| static int wavelan_get_name(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| strcpy(wrqu->name, "WaveLAN"); |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : set NWID |
| */ |
| static int wavelan_set_nwid(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| mm_t m; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Set NWID in WaveLAN. */ |
| if (!wrqu->nwid.disabled) { |
| /* Set NWID in psa */ |
| psa.psa_nwid[0] = (wrqu->nwid.value & 0xFF00) >> 8; |
| psa.psa_nwid[1] = wrqu->nwid.value & 0xFF; |
| psa.psa_nwid_select = 0x01; |
| psa_write(ioaddr, lp->hacr, |
| (char *) psa.psa_nwid - (char *) &psa, |
| (unsigned char *) psa.psa_nwid, 3); |
| |
| /* Set NWID in mmc. */ |
| m.w.mmw_netw_id_l = psa.psa_nwid[1]; |
| m.w.mmw_netw_id_h = psa.psa_nwid[0]; |
| mmc_write(ioaddr, |
| (char *) &m.w.mmw_netw_id_l - |
| (char *) &m, |
| (unsigned char *) &m.w.mmw_netw_id_l, 2); |
| mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), 0x00); |
| } else { |
| /* Disable NWID in the psa. */ |
| psa.psa_nwid_select = 0x00; |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_nwid_select - |
| (char *) &psa, |
| (unsigned char *) &psa.psa_nwid_select, |
| 1); |
| |
| /* Disable NWID in the mmc (no filtering). */ |
| mmc_out(ioaddr, mmwoff(0, mmw_loopt_sel), |
| MMW_LOOPT_SEL_DIS_NWID); |
| } |
| /* update the Wavelan checksum */ |
| update_psa_checksum(dev, ioaddr, lp->hacr); |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : get NWID |
| */ |
| static int wavelan_get_nwid(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Read the NWID. */ |
| psa_read(ioaddr, lp->hacr, |
| (char *) psa.psa_nwid - (char *) &psa, |
| (unsigned char *) psa.psa_nwid, 3); |
| wrqu->nwid.value = (psa.psa_nwid[0] << 8) + psa.psa_nwid[1]; |
| wrqu->nwid.disabled = !(psa.psa_nwid_select); |
| wrqu->nwid.fixed = 1; /* Superfluous */ |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : set frequency |
| */ |
| static int wavelan_set_freq(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| unsigned long flags; |
| int ret; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */ |
| if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & |
| (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) |
| ret = wv_set_frequency(ioaddr, &(wrqu->freq)); |
| else |
| ret = -EOPNOTSUPP; |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : get frequency |
| */ |
| static int wavelan_get_freq(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). |
| * Does it work for everybody, especially old cards? */ |
| if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & |
| (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { |
| unsigned short freq; |
| |
| /* Ask the EEPROM to read the frequency from the first area. */ |
| fee_read(ioaddr, 0x00, &freq, 1); |
| wrqu->freq.m = ((freq >> 5) * 5 + 24000L) * 10000; |
| wrqu->freq.e = 1; |
| } else { |
| psa_read(ioaddr, lp->hacr, |
| (char *) &psa.psa_subband - (char *) &psa, |
| (unsigned char *) &psa.psa_subband, 1); |
| |
| if (psa.psa_subband <= 4) { |
| wrqu->freq.m = fixed_bands[psa.psa_subband]; |
| wrqu->freq.e = (psa.psa_subband != 0); |
| } else |
| ret = -EOPNOTSUPP; |
| } |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : set level threshold |
| */ |
| static int wavelan_set_sens(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Set the level threshold. */ |
| /* We should complain loudly if wrqu->sens.fixed = 0, because we |
| * can't set auto mode... */ |
| psa.psa_thr_pre_set = wrqu->sens.value & 0x3F; |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_thr_pre_set - (char *) &psa, |
| (unsigned char *) &psa.psa_thr_pre_set, 1); |
| /* update the Wavelan checksum */ |
| update_psa_checksum(dev, ioaddr, lp->hacr); |
| mmc_out(ioaddr, mmwoff(0, mmw_thr_pre_set), |
| psa.psa_thr_pre_set); |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : get level threshold |
| */ |
| static int wavelan_get_sens(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Read the level threshold. */ |
| psa_read(ioaddr, lp->hacr, |
| (char *) &psa.psa_thr_pre_set - (char *) &psa, |
| (unsigned char *) &psa.psa_thr_pre_set, 1); |
| wrqu->sens.value = psa.psa_thr_pre_set & 0x3F; |
| wrqu->sens.fixed = 1; |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : set encryption key |
| */ |
| static int wavelan_set_encode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| unsigned long flags; |
| psa_t psa; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Check if capable of encryption */ |
| if (!mmc_encr(ioaddr)) { |
| ret = -EOPNOTSUPP; |
| } |
| |
| /* Check the size of the key */ |
| if((wrqu->encoding.length != 8) && (wrqu->encoding.length != 0)) { |
| ret = -EINVAL; |
| } |
| |
| if(!ret) { |
| /* Basic checking... */ |
| if (wrqu->encoding.length == 8) { |
| /* Copy the key in the driver */ |
| memcpy(psa.psa_encryption_key, extra, |
| wrqu->encoding.length); |
| psa.psa_encryption_select = 1; |
| |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_encryption_select - |
| (char *) &psa, |
| (unsigned char *) &psa. |
| psa_encryption_select, 8 + 1); |
| |
| mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), |
| MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE); |
| mmc_write(ioaddr, mmwoff(0, mmw_encr_key), |
| (unsigned char *) &psa. |
| psa_encryption_key, 8); |
| } |
| |
| /* disable encryption */ |
| if (wrqu->encoding.flags & IW_ENCODE_DISABLED) { |
| psa.psa_encryption_select = 0; |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_encryption_select - |
| (char *) &psa, |
| (unsigned char *) &psa. |
| psa_encryption_select, 1); |
| |
| mmc_out(ioaddr, mmwoff(0, mmw_encr_enable), 0); |
| } |
| /* update the Wavelan checksum */ |
| update_psa_checksum(dev, ioaddr, lp->hacr); |
| } |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : get encryption key |
| */ |
| static int wavelan_get_encode(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Check if encryption is available */ |
| if (!mmc_encr(ioaddr)) { |
| ret = -EOPNOTSUPP; |
| } else { |
| /* Read the encryption key */ |
| psa_read(ioaddr, lp->hacr, |
| (char *) &psa.psa_encryption_select - |
| (char *) &psa, |
| (unsigned char *) &psa. |
| psa_encryption_select, 1 + 8); |
| |
| /* encryption is enabled ? */ |
| if (psa.psa_encryption_select) |
| wrqu->encoding.flags = IW_ENCODE_ENABLED; |
| else |
| wrqu->encoding.flags = IW_ENCODE_DISABLED; |
| wrqu->encoding.flags |= mmc_encr(ioaddr); |
| |
| /* Copy the key to the user buffer */ |
| wrqu->encoding.length = 8; |
| memcpy(extra, psa.psa_encryption_key, wrqu->encoding.length); |
| } |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Handler : get range info |
| */ |
| static int wavelan_get_range(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| struct iw_range *range = (struct iw_range *) extra; |
| unsigned long flags; |
| int ret = 0; |
| |
| /* Set the length (very important for backward compatibility) */ |
| wrqu->data.length = sizeof(struct iw_range); |
| |
| /* Set all the info we don't care or don't know about to zero */ |
| memset(range, 0, sizeof(struct iw_range)); |
| |
| /* Set the Wireless Extension versions */ |
| range->we_version_compiled = WIRELESS_EXT; |
| range->we_version_source = 9; |
| |
| /* Set information in the range struct. */ |
| range->throughput = 1.6 * 1000 * 1000; /* don't argue on this ! */ |
| range->min_nwid = 0x0000; |
| range->max_nwid = 0xFFFF; |
| |
| range->sensitivity = 0x3F; |
| range->max_qual.qual = MMR_SGNL_QUAL; |
| range->max_qual.level = MMR_SIGNAL_LVL; |
| range->max_qual.noise = MMR_SILENCE_LVL; |
| range->avg_qual.qual = MMR_SGNL_QUAL; /* Always max */ |
| /* Need to get better values for those two */ |
| range->avg_qual.level = 30; |
| range->avg_qual.noise = 8; |
| |
| range->num_bitrates = 1; |
| range->bitrate[0] = 2000000; /* 2 Mb/s */ |
| |
| /* Event capability (kernel + driver) */ |
| range->event_capa[0] = (IW_EVENT_CAPA_MASK(0x8B02) | |
| IW_EVENT_CAPA_MASK(0x8B04)); |
| range->event_capa[1] = IW_EVENT_CAPA_K_1; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable). */ |
| if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & |
| (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { |
| range->num_channels = 10; |
| range->num_frequency = wv_frequency_list(ioaddr, range->freq, |
| IW_MAX_FREQUENCIES); |
| } else |
| range->num_channels = range->num_frequency = 0; |
| |
| /* Encryption supported ? */ |
| if (mmc_encr(ioaddr)) { |
| range->encoding_size[0] = 8; /* DES = 64 bits key */ |
| range->num_encoding_sizes = 1; |
| range->max_encoding_tokens = 1; /* Only one key possible */ |
| } else { |
| range->num_encoding_sizes = 0; |
| range->max_encoding_tokens = 0; |
| } |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Private Handler : set quality threshold |
| */ |
| static int wavelan_set_qthr(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| psa.psa_quality_thr = *(extra) & 0x0F; |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_quality_thr - (char *) &psa, |
| (unsigned char *) &psa.psa_quality_thr, 1); |
| /* update the Wavelan checksum */ |
| update_psa_checksum(dev, ioaddr, lp->hacr); |
| mmc_out(ioaddr, mmwoff(0, mmw_quality_thr), |
| psa.psa_quality_thr); |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Private Handler : get quality threshold |
| */ |
| static int wavelan_get_qthr(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| psa_t psa; |
| unsigned long flags; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| psa_read(ioaddr, lp->hacr, |
| (char *) &psa.psa_quality_thr - (char *) &psa, |
| (unsigned char *) &psa.psa_quality_thr, 1); |
| *(extra) = psa.psa_quality_thr & 0x0F; |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| return 0; |
| } |
| |
| #ifdef HISTOGRAM |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Private Handler : set histogram |
| */ |
| static int wavelan_set_histo(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| |
| /* Check the number of intervals. */ |
| if (wrqu->data.length > 16) { |
| return(-E2BIG); |
| } |
| |
| /* Disable histo while we copy the addresses. |
| * As we don't disable interrupts, we need to do this */ |
| lp->his_number = 0; |
| |
| /* Are there ranges to copy? */ |
| if (wrqu->data.length > 0) { |
| /* Copy interval ranges to the driver */ |
| memcpy(lp->his_range, extra, wrqu->data.length); |
| |
| { |
| int i; |
| printk(KERN_DEBUG "Histo :"); |
| for(i = 0; i < wrqu->data.length; i++) |
| printk(" %d", lp->his_range[i]); |
| printk("\n"); |
| } |
| |
| /* Reset result structure. */ |
| memset(lp->his_sum, 0x00, sizeof(long) * 16); |
| } |
| |
| /* Now we can set the number of ranges */ |
| lp->his_number = wrqu->data.length; |
| |
| return(0); |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Wireless Private Handler : get histogram |
| */ |
| static int wavelan_get_histo(struct net_device *dev, |
| struct iw_request_info *info, |
| union iwreq_data *wrqu, |
| char *extra) |
| { |
| net_local *lp = (net_local *) dev->priv; /* lp is not unused */ |
| |
| /* Set the number of intervals. */ |
| wrqu->data.length = lp->his_number; |
| |
| /* Give back the distribution statistics */ |
| if(lp->his_number > 0) |
| memcpy(extra, lp->his_sum, sizeof(long) * lp->his_number); |
| |
| return(0); |
| } |
| #endif /* HISTOGRAM */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Structures to export the Wireless Handlers |
| */ |
| |
| static const iw_handler wavelan_handler[] = |
| { |
| NULL, /* SIOCSIWNAME */ |
| wavelan_get_name, /* SIOCGIWNAME */ |
| wavelan_set_nwid, /* SIOCSIWNWID */ |
| wavelan_get_nwid, /* SIOCGIWNWID */ |
| wavelan_set_freq, /* SIOCSIWFREQ */ |
| wavelan_get_freq, /* SIOCGIWFREQ */ |
| NULL, /* SIOCSIWMODE */ |
| NULL, /* SIOCGIWMODE */ |
| wavelan_set_sens, /* SIOCSIWSENS */ |
| wavelan_get_sens, /* SIOCGIWSENS */ |
| NULL, /* SIOCSIWRANGE */ |
| wavelan_get_range, /* SIOCGIWRANGE */ |
| NULL, /* SIOCSIWPRIV */ |
| NULL, /* SIOCGIWPRIV */ |
| NULL, /* SIOCSIWSTATS */ |
| NULL, /* SIOCGIWSTATS */ |
| iw_handler_set_spy, /* SIOCSIWSPY */ |
| iw_handler_get_spy, /* SIOCGIWSPY */ |
| iw_handler_set_thrspy, /* SIOCSIWTHRSPY */ |
| iw_handler_get_thrspy, /* SIOCGIWTHRSPY */ |
| NULL, /* SIOCSIWAP */ |
| NULL, /* SIOCGIWAP */ |
| NULL, /* -- hole -- */ |
| NULL, /* SIOCGIWAPLIST */ |
| NULL, /* -- hole -- */ |
| NULL, /* -- hole -- */ |
| NULL, /* SIOCSIWESSID */ |
| NULL, /* SIOCGIWESSID */ |
| NULL, /* SIOCSIWNICKN */ |
| NULL, /* SIOCGIWNICKN */ |
| NULL, /* -- hole -- */ |
| NULL, /* -- hole -- */ |
| NULL, /* SIOCSIWRATE */ |
| NULL, /* SIOCGIWRATE */ |
| NULL, /* SIOCSIWRTS */ |
| NULL, /* SIOCGIWRTS */ |
| NULL, /* SIOCSIWFRAG */ |
| NULL, /* SIOCGIWFRAG */ |
| NULL, /* SIOCSIWTXPOW */ |
| NULL, /* SIOCGIWTXPOW */ |
| NULL, /* SIOCSIWRETRY */ |
| NULL, /* SIOCGIWRETRY */ |
| /* Bummer ! Why those are only at the end ??? */ |
| wavelan_set_encode, /* SIOCSIWENCODE */ |
| wavelan_get_encode, /* SIOCGIWENCODE */ |
| }; |
| |
| static const iw_handler wavelan_private_handler[] = |
| { |
| wavelan_set_qthr, /* SIOCIWFIRSTPRIV */ |
| wavelan_get_qthr, /* SIOCIWFIRSTPRIV + 1 */ |
| #ifdef HISTOGRAM |
| wavelan_set_histo, /* SIOCIWFIRSTPRIV + 2 */ |
| wavelan_get_histo, /* SIOCIWFIRSTPRIV + 3 */ |
| #endif /* HISTOGRAM */ |
| }; |
| |
| static const struct iw_priv_args wavelan_private_args[] = { |
| /*{ cmd, set_args, get_args, name } */ |
| { SIOCSIPQTHR, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, 0, "setqualthr" }, |
| { SIOCGIPQTHR, 0, IW_PRIV_TYPE_BYTE | IW_PRIV_SIZE_FIXED | 1, "getqualthr" }, |
| { SIOCSIPHISTO, IW_PRIV_TYPE_BYTE | 16, 0, "sethisto" }, |
| { SIOCGIPHISTO, 0, IW_PRIV_TYPE_INT | 16, "gethisto" }, |
| }; |
| |
| static const struct iw_handler_def wavelan_handler_def = |
| { |
| .num_standard = sizeof(wavelan_handler)/sizeof(iw_handler), |
| .num_private = sizeof(wavelan_private_handler)/sizeof(iw_handler), |
| .num_private_args = sizeof(wavelan_private_args)/sizeof(struct iw_priv_args), |
| .standard = wavelan_handler, |
| .private = wavelan_private_handler, |
| .private_args = wavelan_private_args, |
| .get_wireless_stats = wavelan_get_wireless_stats, |
| }; |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Get wireless statistics. |
| * Called by /proc/net/wireless |
| */ |
| static iw_stats *wavelan_get_wireless_stats(struct net_device * dev) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; |
| mmr_t m; |
| iw_stats *wstats; |
| unsigned long flags; |
| |
| #ifdef DEBUG_IOCTL_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_get_wireless_stats()\n", |
| dev->name); |
| #endif |
| |
| /* Check */ |
| if (lp == (net_local *) NULL) |
| return (iw_stats *) NULL; |
| |
| /* Disable interrupts and save flags. */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| wstats = &lp->wstats; |
| |
| /* Get data from the mmc. */ |
| mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); |
| |
| mmc_read(ioaddr, mmroff(0, mmr_dce_status), &m.mmr_dce_status, 1); |
| mmc_read(ioaddr, mmroff(0, mmr_wrong_nwid_l), &m.mmr_wrong_nwid_l, |
| 2); |
| mmc_read(ioaddr, mmroff(0, mmr_thr_pre_set), &m.mmr_thr_pre_set, |
| 4); |
| |
| mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); |
| |
| /* Copy data to wireless stuff. */ |
| wstats->status = m.mmr_dce_status & MMR_DCE_STATUS; |
| wstats->qual.qual = m.mmr_sgnl_qual & MMR_SGNL_QUAL; |
| wstats->qual.level = m.mmr_signal_lvl & MMR_SIGNAL_LVL; |
| wstats->qual.noise = m.mmr_silence_lvl & MMR_SILENCE_LVL; |
| wstats->qual.updated = (((m. mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 7) |
| | ((m.mmr_signal_lvl & MMR_SIGNAL_LVL_VALID) >> 6) |
| | ((m.mmr_silence_lvl & MMR_SILENCE_LVL_VALID) >> 5)); |
| wstats->discard.nwid += (m.mmr_wrong_nwid_h << 8) | m.mmr_wrong_nwid_l; |
| wstats->discard.code = 0L; |
| wstats->discard.misc = 0L; |
| |
| /* Enable interrupts and restore flags. */ |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| #ifdef DEBUG_IOCTL_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_get_wireless_stats()\n", |
| dev->name); |
| #endif |
| return &lp->wstats; |
| } |
| |
| /************************* PACKET RECEPTION *************************/ |
| /* |
| * This part deals with receiving the packets. |
| * The interrupt handler gets an interrupt when a packet has been |
| * successfully received and calls this part. |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This routine does the actual copying of data (including the Ethernet |
| * header structure) from the WaveLAN card to an sk_buff chain that |
| * will be passed up to the network interface layer. NOTE: we |
| * currently don't handle trailer protocols (neither does the rest of |
| * the network interface), so if that is needed, it will (at least in |
| * part) be added here. The contents of the receive ring buffer are |
| * copied to a message chain that is then passed to the kernel. |
| * |
| * Note: if any errors occur, the packet is "dropped on the floor". |
| * (called by wv_packet_rcv()) |
| */ |
| static void |
| wv_packet_read(struct net_device * dev, u16 buf_off, int sksize) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| struct sk_buff *skb; |
| |
| #ifdef DEBUG_RX_TRACE |
| printk(KERN_DEBUG "%s: ->wv_packet_read(0x%X, %d)\n", |
| dev->name, buf_off, sksize); |
| #endif |
| |
| /* Allocate buffer for the data */ |
| if ((skb = dev_alloc_skb(sksize)) == (struct sk_buff *) NULL) { |
| #ifdef DEBUG_RX_ERROR |
| printk(KERN_INFO |
| "%s: wv_packet_read(): could not alloc_skb(%d, GFP_ATOMIC).\n", |
| dev->name, sksize); |
| #endif |
| lp->stats.rx_dropped++; |
| return; |
| } |
| |
| /* Copy the packet to the buffer. */ |
| obram_read(ioaddr, buf_off, skb_put(skb, sksize), sksize); |
| skb->protocol = eth_type_trans(skb, dev); |
| |
| #ifdef DEBUG_RX_INFO |
| wv_packet_info(skb->mac.raw, sksize, dev->name, "wv_packet_read"); |
| #endif /* DEBUG_RX_INFO */ |
| |
| /* Statistics-gathering and associated stuff. |
| * It seem a bit messy with all the define, but it's really |
| * simple... */ |
| if ( |
| #ifdef IW_WIRELESS_SPY /* defined in iw_handler.h */ |
| (lp->spy_data.spy_number > 0) || |
| #endif /* IW_WIRELESS_SPY */ |
| #ifdef HISTOGRAM |
| (lp->his_number > 0) || |
| #endif /* HISTOGRAM */ |
| 0) { |
| u8 stats[3]; /* signal level, noise level, signal quality */ |
| |
| /* Read signal level, silence level and signal quality bytes */ |
| /* Note: in the PCMCIA hardware, these are part of the frame. |
| * It seems that for the ISA hardware, it's nowhere to be |
| * found in the frame, so I'm obliged to do this (it has a |
| * side effect on /proc/net/wireless). |
| * Any ideas? |
| */ |
| mmc_out(ioaddr, mmwoff(0, mmw_freeze), 1); |
| mmc_read(ioaddr, mmroff(0, mmr_signal_lvl), stats, 3); |
| mmc_out(ioaddr, mmwoff(0, mmw_freeze), 0); |
| |
| #ifdef DEBUG_RX_INFO |
| printk(KERN_DEBUG |
| "%s: wv_packet_read(): Signal level %d/63, Silence level %d/63, signal quality %d/16\n", |
| dev->name, stats[0] & 0x3F, stats[1] & 0x3F, |
| stats[2] & 0x0F); |
| #endif |
| |
| /* Spying stuff */ |
| #ifdef IW_WIRELESS_SPY |
| wl_spy_gather(dev, skb->mac.raw + WAVELAN_ADDR_SIZE, |
| stats); |
| #endif /* IW_WIRELESS_SPY */ |
| #ifdef HISTOGRAM |
| wl_his_gather(dev, stats); |
| #endif /* HISTOGRAM */ |
| } |
| |
| /* |
| * Hand the packet to the network module. |
| */ |
| netif_rx(skb); |
| |
| /* Keep statistics up to date */ |
| dev->last_rx = jiffies; |
| lp->stats.rx_packets++; |
| lp->stats.rx_bytes += sksize; |
| |
| #ifdef DEBUG_RX_TRACE |
| printk(KERN_DEBUG "%s: <-wv_packet_read()\n", dev->name); |
| #endif |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Transfer as many packets as we can |
| * from the device RAM. |
| * (called in wavelan_interrupt()). |
| * Note : the spinlock is already grabbed for us. |
| */ |
| static void wv_receive(struct net_device * dev) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; |
| fd_t fd; |
| rbd_t rbd; |
| int nreaped = 0; |
| |
| #ifdef DEBUG_RX_TRACE |
| printk(KERN_DEBUG "%s: ->wv_receive()\n", dev->name); |
| #endif |
| |
| /* Loop on each received packet. */ |
| for (;;) { |
| obram_read(ioaddr, lp->rx_head, (unsigned char *) &fd, |
| sizeof(fd)); |
| |
| /* Note about the status : |
| * It start up to be 0 (the value we set). Then, when the RU |
| * grab the buffer to prepare for reception, it sets the |
| * FD_STATUS_B flag. When the RU has finished receiving the |
| * frame, it clears FD_STATUS_B, set FD_STATUS_C to indicate |
| * completion and set the other flags to indicate the eventual |
| * errors. FD_STATUS_OK indicates that the reception was OK. |
| */ |
| |
| /* If the current frame is not complete, we have reached the end. */ |
| if ((fd.fd_status & FD_STATUS_C) != FD_STATUS_C) |
| break; /* This is how we exit the loop. */ |
| |
| nreaped++; |
| |
| /* Check whether frame was correctly received. */ |
| if ((fd.fd_status & FD_STATUS_OK) == FD_STATUS_OK) { |
| /* Does the frame contain a pointer to the data? Let's check. */ |
| if (fd.fd_rbd_offset != I82586NULL) { |
| /* Read the receive buffer descriptor */ |
| obram_read(ioaddr, fd.fd_rbd_offset, |
| (unsigned char *) &rbd, |
| sizeof(rbd)); |
| |
| #ifdef DEBUG_RX_ERROR |
| if ((rbd.rbd_status & RBD_STATUS_EOF) != |
| RBD_STATUS_EOF) printk(KERN_INFO |
| "%s: wv_receive(): missing EOF flag.\n", |
| dev->name); |
| |
| if ((rbd.rbd_status & RBD_STATUS_F) != |
| RBD_STATUS_F) printk(KERN_INFO |
| "%s: wv_receive(): missing F flag.\n", |
| dev->name); |
| #endif /* DEBUG_RX_ERROR */ |
| |
| /* Read the packet and transmit to Linux */ |
| wv_packet_read(dev, rbd.rbd_bufl, |
| rbd. |
| rbd_status & |
| RBD_STATUS_ACNT); |
| } |
| #ifdef DEBUG_RX_ERROR |
| else /* if frame has no data */ |
| printk(KERN_INFO |
| "%s: wv_receive(): frame has no data.\n", |
| dev->name); |
| #endif |
| } else { /* If reception was no successful */ |
| |
| lp->stats.rx_errors++; |
| |
| #ifdef DEBUG_RX_INFO |
| printk(KERN_DEBUG |
| "%s: wv_receive(): frame not received successfully (%X).\n", |
| dev->name, fd.fd_status); |
| #endif |
| |
| #ifdef DEBUG_RX_ERROR |
| if ((fd.fd_status & FD_STATUS_S6) != 0) |
| printk(KERN_INFO |
| "%s: wv_receive(): no EOF flag.\n", |
| dev->name); |
| #endif |
| |
| if ((fd.fd_status & FD_STATUS_S7) != 0) { |
| lp->stats.rx_length_errors++; |
| #ifdef DEBUG_RX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_receive(): frame too short.\n", |
| dev->name); |
| #endif |
| } |
| |
| if ((fd.fd_status & FD_STATUS_S8) != 0) { |
| lp->stats.rx_over_errors++; |
| #ifdef DEBUG_RX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_receive(): rx DMA overrun.\n", |
| dev->name); |
| #endif |
| } |
| |
| if ((fd.fd_status & FD_STATUS_S9) != 0) { |
| lp->stats.rx_fifo_errors++; |
| #ifdef DEBUG_RX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_receive(): ran out of resources.\n", |
| dev->name); |
| #endif |
| } |
| |
| if ((fd.fd_status & FD_STATUS_S10) != 0) { |
| lp->stats.rx_frame_errors++; |
| #ifdef DEBUG_RX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_receive(): alignment error.\n", |
| dev->name); |
| #endif |
| } |
| |
| if ((fd.fd_status & FD_STATUS_S11) != 0) { |
| lp->stats.rx_crc_errors++; |
| #ifdef DEBUG_RX_FAIL |
| printk(KERN_DEBUG |
| "%s: wv_receive(): CRC error.\n", |
| dev->name); |
| #endif |
| } |
| } |
| |
| fd.fd_status = 0; |
| obram_write(ioaddr, fdoff(lp->rx_head, fd_status), |
| (unsigned char *) &fd.fd_status, |
| sizeof(fd.fd_status)); |
| |
| fd.fd_command = FD_COMMAND_EL; |
| obram_write(ioaddr, fdoff(lp->rx_head, fd_command), |
| (unsigned char *) &fd.fd_command, |
| sizeof(fd.fd_command)); |
| |
| fd.fd_command = 0; |
| obram_write(ioaddr, fdoff(lp->rx_last, fd_command), |
| (unsigned char *) &fd.fd_command, |
| sizeof(fd.fd_command)); |
| |
| lp->rx_last = lp->rx_head; |
| lp->rx_head = fd.fd_link_offset; |
| } /* for(;;) -> loop on all frames */ |
| |
| #ifdef DEBUG_RX_INFO |
| if (nreaped > 1) |
| printk(KERN_DEBUG "%s: wv_receive(): reaped %d\n", |
| dev->name, nreaped); |
| #endif |
| #ifdef DEBUG_RX_TRACE |
| printk(KERN_DEBUG "%s: <-wv_receive()\n", dev->name); |
| #endif |
| } |
| |
| /*********************** PACKET TRANSMISSION ***********************/ |
| /* |
| * This part deals with sending packets through the WaveLAN. |
| * |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This routine fills in the appropriate registers and memory |
| * locations on the WaveLAN card and starts the card off on |
| * the transmit. |
| * |
| * The principle: |
| * Each block contains a transmit command, a NOP command, |
| * a transmit block descriptor and a buffer. |
| * The CU read the transmit block which point to the tbd, |
| * read the tbd and the content of the buffer. |
| * When it has finish with it, it goes to the next command |
| * which in our case is the NOP. The NOP points on itself, |
| * so the CU stop here. |
| * When we add the next block, we modify the previous nop |
| * to make it point on the new tx command. |
| * Simple, isn't it ? |
| * |
| * (called in wavelan_packet_xmit()) |
| */ |
| static int wv_packet_write(struct net_device * dev, void *buf, short length) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| unsigned short txblock; |
| unsigned short txpred; |
| unsigned short tx_addr; |
| unsigned short nop_addr; |
| unsigned short tbd_addr; |
| unsigned short buf_addr; |
| ac_tx_t tx; |
| ac_nop_t nop; |
| tbd_t tbd; |
| int clen = length; |
| unsigned long flags; |
| |
| #ifdef DEBUG_TX_TRACE |
| printk(KERN_DEBUG "%s: ->wv_packet_write(%d)\n", dev->name, |
| length); |
| #endif |
| |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Check nothing bad has happened */ |
| if (lp->tx_n_in_use == (NTXBLOCKS - 1)) { |
| #ifdef DEBUG_TX_ERROR |
| printk(KERN_INFO "%s: wv_packet_write(): Tx queue full.\n", |
| dev->name); |
| #endif |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| return 1; |
| } |
| |
| /* Calculate addresses of next block and previous block. */ |
| txblock = lp->tx_first_free; |
| txpred = txblock - TXBLOCKZ; |
| if (txpred < OFFSET_CU) |
| txpred += NTXBLOCKS * TXBLOCKZ; |
| lp->tx_first_free += TXBLOCKZ; |
| if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) |
| lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ; |
| |
| lp->tx_n_in_use++; |
| |
| /* Calculate addresses of the different parts of the block. */ |
| tx_addr = txblock; |
| nop_addr = tx_addr + sizeof(tx); |
| tbd_addr = nop_addr + sizeof(nop); |
| buf_addr = tbd_addr + sizeof(tbd); |
| |
| /* |
| * Transmit command |
| */ |
| tx.tx_h.ac_status = 0; |
| obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status), |
| (unsigned char *) &tx.tx_h.ac_status, |
| sizeof(tx.tx_h.ac_status)); |
| |
| /* |
| * NOP command |
| */ |
| nop.nop_h.ac_status = 0; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), |
| (unsigned char *) &nop.nop_h.ac_status, |
| sizeof(nop.nop_h.ac_status)); |
| nop.nop_h.ac_link = nop_addr; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), |
| (unsigned char *) &nop.nop_h.ac_link, |
| sizeof(nop.nop_h.ac_link)); |
| |
| /* |
| * Transmit buffer descriptor |
| */ |
| tbd.tbd_status = TBD_STATUS_EOF | (TBD_STATUS_ACNT & clen); |
| tbd.tbd_next_bd_offset = I82586NULL; |
| tbd.tbd_bufl = buf_addr; |
| tbd.tbd_bufh = 0; |
| obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, sizeof(tbd)); |
| |
| /* |
| * Data |
| */ |
| obram_write(ioaddr, buf_addr, buf, length); |
| |
| /* |
| * Overwrite the predecessor NOP link |
| * so that it points to this txblock. |
| */ |
| nop_addr = txpred + sizeof(tx); |
| nop.nop_h.ac_status = 0; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), |
| (unsigned char *) &nop.nop_h.ac_status, |
| sizeof(nop.nop_h.ac_status)); |
| nop.nop_h.ac_link = txblock; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), |
| (unsigned char *) &nop.nop_h.ac_link, |
| sizeof(nop.nop_h.ac_link)); |
| |
| /* Make sure the watchdog will keep quiet for a while */ |
| dev->trans_start = jiffies; |
| |
| /* Keep stats up to date. */ |
| lp->stats.tx_bytes += length; |
| |
| if (lp->tx_first_in_use == I82586NULL) |
| lp->tx_first_in_use = txblock; |
| |
| if (lp->tx_n_in_use < NTXBLOCKS - 1) |
| netif_wake_queue(dev); |
| |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| #ifdef DEBUG_TX_INFO |
| wv_packet_info((u8 *) buf, length, dev->name, |
| "wv_packet_write"); |
| #endif /* DEBUG_TX_INFO */ |
| |
| #ifdef DEBUG_TX_TRACE |
| printk(KERN_DEBUG "%s: <-wv_packet_write()\n", dev->name); |
| #endif |
| |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This routine is called when we want to send a packet (NET3 callback) |
| * In this routine, we check if the harware is ready to accept |
| * the packet. We also prevent reentrance. Then we call the function |
| * to send the packet. |
| */ |
| static int wavelan_packet_xmit(struct sk_buff *skb, struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long flags; |
| char data[ETH_ZLEN]; |
| |
| #ifdef DEBUG_TX_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_packet_xmit(0x%X)\n", dev->name, |
| (unsigned) skb); |
| #endif |
| |
| /* |
| * Block a timer-based transmit from overlapping. |
| * In other words, prevent reentering this routine. |
| */ |
| netif_stop_queue(dev); |
| |
| /* If somebody has asked to reconfigure the controller, |
| * we can do it now. |
| */ |
| if (lp->reconfig_82586) { |
| spin_lock_irqsave(&lp->spinlock, flags); |
| wv_82586_config(dev); |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| /* Check that we can continue */ |
| if (lp->tx_n_in_use == (NTXBLOCKS - 1)) |
| return 1; |
| } |
| #ifdef DEBUG_TX_ERROR |
| if (skb->next) |
| printk(KERN_INFO "skb has next\n"); |
| #endif |
| |
| /* Do we need some padding? */ |
| /* Note : on wireless the propagation time is in the order of 1us, |
| * and we don't have the Ethernet specific requirement of beeing |
| * able to detect collisions, therefore in theory we don't really |
| * need to pad. Jean II */ |
| if (skb->len < ETH_ZLEN) { |
| memset(data, 0, ETH_ZLEN); |
| memcpy(data, skb->data, skb->len); |
| /* Write packet on the card */ |
| if(wv_packet_write(dev, data, ETH_ZLEN)) |
| return 1; /* We failed */ |
| } |
| else if(wv_packet_write(dev, skb->data, skb->len)) |
| return 1; /* We failed */ |
| |
| |
| dev_kfree_skb(skb); |
| |
| #ifdef DEBUG_TX_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_packet_xmit()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*********************** HARDWARE CONFIGURATION ***********************/ |
| /* |
| * This part does the real job of starting and configuring the hardware. |
| */ |
| |
| /*--------------------------------------------------------------------*/ |
| /* |
| * Routine to initialize the Modem Management Controller. |
| * (called by wv_hw_reset()) |
| */ |
| static int wv_mmc_init(struct net_device * dev) |
| { |
| unsigned long ioaddr = dev->base_addr; |
| net_local *lp = (net_local *) dev->priv; |
| psa_t psa; |
| mmw_t m; |
| int configured; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_mmc_init()\n", dev->name); |
| #endif |
| |
| /* Read the parameter storage area. */ |
| psa_read(ioaddr, lp->hacr, 0, (unsigned char *) &psa, sizeof(psa)); |
| |
| #ifdef USE_PSA_CONFIG |
| configured = psa.psa_conf_status & 1; |
| #else |
| configured = 0; |
| #endif |
| |
| /* Is the PSA is not configured */ |
| if (!configured) { |
| /* User will be able to configure NWID later (with iwconfig). */ |
| psa.psa_nwid[0] = 0; |
| psa.psa_nwid[1] = 0; |
| |
| /* no NWID checking since NWID is not set */ |
| psa.psa_nwid_select = 0; |
| |
| /* Disable encryption */ |
| psa.psa_encryption_select = 0; |
| |
| /* Set to standard values: |
| * 0x04 for AT, |
| * 0x01 for MCA, |
| * 0x04 for PCMCIA and 2.00 card (AT&T 407-024689/E document) |
| */ |
| if (psa.psa_comp_number & 1) |
| psa.psa_thr_pre_set = 0x01; |
| else |
| psa.psa_thr_pre_set = 0x04; |
| psa.psa_quality_thr = 0x03; |
| |
| /* It is configured */ |
| psa.psa_conf_status |= 1; |
| |
| #ifdef USE_PSA_CONFIG |
| /* Write the psa. */ |
| psa_write(ioaddr, lp->hacr, |
| (char *) psa.psa_nwid - (char *) &psa, |
| (unsigned char *) psa.psa_nwid, 4); |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_thr_pre_set - (char *) &psa, |
| (unsigned char *) &psa.psa_thr_pre_set, 1); |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_quality_thr - (char *) &psa, |
| (unsigned char *) &psa.psa_quality_thr, 1); |
| psa_write(ioaddr, lp->hacr, |
| (char *) &psa.psa_conf_status - (char *) &psa, |
| (unsigned char *) &psa.psa_conf_status, 1); |
| /* update the Wavelan checksum */ |
| update_psa_checksum(dev, ioaddr, lp->hacr); |
| #endif |
| } |
| |
| /* Zero the mmc structure. */ |
| memset(&m, 0x00, sizeof(m)); |
| |
| /* Copy PSA info to the mmc. */ |
| m.mmw_netw_id_l = psa.psa_nwid[1]; |
| m.mmw_netw_id_h = psa.psa_nwid[0]; |
| |
| if (psa.psa_nwid_select & 1) |
| m.mmw_loopt_sel = 0x00; |
| else |
| m.mmw_loopt_sel = MMW_LOOPT_SEL_DIS_NWID; |
| |
| memcpy(&m.mmw_encr_key, &psa.psa_encryption_key, |
| sizeof(m.mmw_encr_key)); |
| |
| if (psa.psa_encryption_select) |
| m.mmw_encr_enable = |
| MMW_ENCR_ENABLE_EN | MMW_ENCR_ENABLE_MODE; |
| else |
| m.mmw_encr_enable = 0; |
| |
| m.mmw_thr_pre_set = psa.psa_thr_pre_set & 0x3F; |
| m.mmw_quality_thr = psa.psa_quality_thr & 0x0F; |
| |
| /* |
| * Set default modem control parameters. |
| * See NCR document 407-0024326 Rev. A. |
| */ |
| m.mmw_jabber_enable = 0x01; |
| m.mmw_freeze = 0; |
| m.mmw_anten_sel = MMW_ANTEN_SEL_ALG_EN; |
| m.mmw_ifs = 0x20; |
| m.mmw_mod_delay = 0x04; |
| m.mmw_jam_time = 0x38; |
| |
| m.mmw_des_io_invert = 0; |
| m.mmw_decay_prm = 0; |
| m.mmw_decay_updat_prm = 0; |
| |
| /* Write all info to MMC. */ |
| mmc_write(ioaddr, 0, (u8 *) & m, sizeof(m)); |
| |
| /* The following code starts the modem of the 2.00 frequency |
| * selectable cards at power on. It's not strictly needed for the |
| * following boots. |
| * The original patch was by Joe Finney for the PCMCIA driver, but |
| * I've cleaned it up a bit and added documentation. |
| * Thanks to Loeke Brederveld from Lucent for the info. |
| */ |
| |
| /* Attempt to recognise 2.00 cards (2.4 GHz frequency selectable) |
| * Does it work for everybody, especially old cards? */ |
| /* Note: WFREQSEL verifies that it is able to read a sensible |
| * frequency from EEPROM (address 0x00) and that MMR_FEE_STATUS_ID |
| * is 0xA (Xilinx version) or 0xB (Ariadne version). |
| * My test is more crude but does work. */ |
| if (!(mmc_in(ioaddr, mmroff(0, mmr_fee_status)) & |
| (MMR_FEE_STATUS_DWLD | MMR_FEE_STATUS_BUSY))) { |
| /* We must download the frequency parameters to the |
| * synthesizers (from the EEPROM - area 1) |
| * Note: as the EEPROM is automatically decremented, we set the end |
| * if the area... */ |
| m.mmw_fee_addr = 0x0F; |
| m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD; |
| mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m, |
| (unsigned char *) &m.mmw_fee_ctrl, 2); |
| |
| /* Wait until the download is finished. */ |
| fee_wait(ioaddr, 100, 100); |
| |
| #ifdef DEBUG_CONFIG_INFO |
| /* The frequency was in the last word downloaded. */ |
| mmc_read(ioaddr, (char *) &m.mmw_fee_data_l - (char *) &m, |
| (unsigned char *) &m.mmw_fee_data_l, 2); |
| |
| /* Print some info for the user. */ |
| printk(KERN_DEBUG |
| "%s: WaveLAN 2.00 recognised (frequency select). Current frequency = %ld\n", |
| dev->name, |
| ((m. |
| mmw_fee_data_h << 4) | (m.mmw_fee_data_l >> 4)) * |
| 5 / 2 + 24000L); |
| #endif |
| |
| /* We must now download the power adjust value (gain) to |
| * the synthesizers (from the EEPROM - area 7 - DAC). */ |
| m.mmw_fee_addr = 0x61; |
| m.mmw_fee_ctrl = MMW_FEE_CTRL_READ | MMW_FEE_CTRL_DWLD; |
| mmc_write(ioaddr, (char *) &m.mmw_fee_ctrl - (char *) &m, |
| (unsigned char *) &m.mmw_fee_ctrl, 2); |
| |
| /* Wait until the download is finished. */ |
| } |
| /* if 2.00 card */ |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_mmc_init()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Construct the fd and rbd structures. |
| * Start the receive unit. |
| * (called by wv_hw_reset()) |
| */ |
| static int wv_ru_start(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| u16 scb_cs; |
| fd_t fd; |
| rbd_t rbd; |
| u16 rx; |
| u16 rx_next; |
| int i; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_ru_start()\n", dev->name); |
| #endif |
| |
| obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| if ((scb_cs & SCB_ST_RUS) == SCB_ST_RUS_RDY) |
| return 0; |
| |
| lp->rx_head = OFFSET_RU; |
| |
| for (i = 0, rx = lp->rx_head; i < NRXBLOCKS; i++, rx = rx_next) { |
| rx_next = |
| (i == NRXBLOCKS - 1) ? lp->rx_head : rx + RXBLOCKZ; |
| |
| fd.fd_status = 0; |
| fd.fd_command = (i == NRXBLOCKS - 1) ? FD_COMMAND_EL : 0; |
| fd.fd_link_offset = rx_next; |
| fd.fd_rbd_offset = rx + sizeof(fd); |
| obram_write(ioaddr, rx, (unsigned char *) &fd, sizeof(fd)); |
| |
| rbd.rbd_status = 0; |
| rbd.rbd_next_rbd_offset = I82586NULL; |
| rbd.rbd_bufl = rx + sizeof(fd) + sizeof(rbd); |
| rbd.rbd_bufh = 0; |
| rbd.rbd_el_size = RBD_EL | (RBD_SIZE & MAXDATAZ); |
| obram_write(ioaddr, rx + sizeof(fd), |
| (unsigned char *) &rbd, sizeof(rbd)); |
| |
| lp->rx_last = rx; |
| } |
| |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_rfa_offset), |
| (unsigned char *) &lp->rx_head, sizeof(lp->rx_head)); |
| |
| scb_cs = SCB_CMD_RUC_GO; |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| for (i = 1000; i > 0; i--) { |
| obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| if (scb_cs == 0) |
| break; |
| |
| udelay(10); |
| } |
| |
| if (i <= 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_ru_start(): board not accepting command.\n", |
| dev->name); |
| #endif |
| return -1; |
| } |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_ru_start()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Initialise the transmit blocks. |
| * Start the command unit executing the NOP |
| * self-loop of the first transmit block. |
| * |
| * Here we create the list of send buffers used to transmit packets |
| * between the PC and the command unit. For each buffer, we create a |
| * buffer descriptor (pointing on the buffer), a transmit command |
| * (pointing to the buffer descriptor) and a NOP command. |
| * The transmit command is linked to the NOP, and the NOP to itself. |
| * When we will have finished executing the transmit command, we will |
| * then loop on the NOP. By releasing the NOP link to a new command, |
| * we may send another buffer. |
| * |
| * (called by wv_hw_reset()) |
| */ |
| static int wv_cu_start(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| int i; |
| u16 txblock; |
| u16 first_nop; |
| u16 scb_cs; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_cu_start()\n", dev->name); |
| #endif |
| |
| lp->tx_first_free = OFFSET_CU; |
| lp->tx_first_in_use = I82586NULL; |
| |
| for (i = 0, txblock = OFFSET_CU; |
| i < NTXBLOCKS; i++, txblock += TXBLOCKZ) { |
| ac_tx_t tx; |
| ac_nop_t nop; |
| tbd_t tbd; |
| unsigned short tx_addr; |
| unsigned short nop_addr; |
| unsigned short tbd_addr; |
| unsigned short buf_addr; |
| |
| tx_addr = txblock; |
| nop_addr = tx_addr + sizeof(tx); |
| tbd_addr = nop_addr + sizeof(nop); |
| buf_addr = tbd_addr + sizeof(tbd); |
| |
| tx.tx_h.ac_status = 0; |
| tx.tx_h.ac_command = acmd_transmit | AC_CFLD_I; |
| tx.tx_h.ac_link = nop_addr; |
| tx.tx_tbd_offset = tbd_addr; |
| obram_write(ioaddr, tx_addr, (unsigned char *) &tx, |
| sizeof(tx)); |
| |
| nop.nop_h.ac_status = 0; |
| nop.nop_h.ac_command = acmd_nop; |
| nop.nop_h.ac_link = nop_addr; |
| obram_write(ioaddr, nop_addr, (unsigned char *) &nop, |
| sizeof(nop)); |
| |
| tbd.tbd_status = TBD_STATUS_EOF; |
| tbd.tbd_next_bd_offset = I82586NULL; |
| tbd.tbd_bufl = buf_addr; |
| tbd.tbd_bufh = 0; |
| obram_write(ioaddr, tbd_addr, (unsigned char *) &tbd, |
| sizeof(tbd)); |
| } |
| |
| first_nop = |
| OFFSET_CU + (NTXBLOCKS - 1) * TXBLOCKZ + sizeof(ac_tx_t); |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_cbl_offset), |
| (unsigned char *) &first_nop, sizeof(first_nop)); |
| |
| scb_cs = SCB_CMD_CUC_GO; |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| for (i = 1000; i > 0; i--) { |
| obram_read(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cs, sizeof(scb_cs)); |
| if (scb_cs == 0) |
| break; |
| |
| udelay(10); |
| } |
| |
| if (i <= 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_cu_start(): board not accepting command.\n", |
| dev->name); |
| #endif |
| return -1; |
| } |
| |
| lp->tx_n_in_use = 0; |
| netif_start_queue(dev); |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_cu_start()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This routine does a standard configuration of the WaveLAN |
| * controller (i82586). |
| * |
| * It initialises the scp, iscp and scb structure |
| * The first two are just pointers to the next. |
| * The last one is used for basic configuration and for basic |
| * communication (interrupt status). |
| * |
| * (called by wv_hw_reset()) |
| */ |
| static int wv_82586_start(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| scp_t scp; /* system configuration pointer */ |
| iscp_t iscp; /* intermediate scp */ |
| scb_t scb; /* system control block */ |
| ach_t cb; /* Action command header */ |
| u8 zeroes[512]; |
| int i; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_82586_start()\n", dev->name); |
| #endif |
| |
| /* |
| * Clear the onboard RAM. |
| */ |
| memset(&zeroes[0], 0x00, sizeof(zeroes)); |
| for (i = 0; i < I82586_MEMZ; i += sizeof(zeroes)) |
| obram_write(ioaddr, i, &zeroes[0], sizeof(zeroes)); |
| |
| /* |
| * Construct the command unit structures: |
| * scp, iscp, scb, cb. |
| */ |
| memset(&scp, 0x00, sizeof(scp)); |
| scp.scp_sysbus = SCP_SY_16BBUS; |
| scp.scp_iscpl = OFFSET_ISCP; |
| obram_write(ioaddr, OFFSET_SCP, (unsigned char *) &scp, |
| sizeof(scp)); |
| |
| memset(&iscp, 0x00, sizeof(iscp)); |
| iscp.iscp_busy = 1; |
| iscp.iscp_offset = OFFSET_SCB; |
| obram_write(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp, |
| sizeof(iscp)); |
| |
| /* Our first command is to reset the i82586. */ |
| memset(&scb, 0x00, sizeof(scb)); |
| scb.scb_command = SCB_CMD_RESET; |
| scb.scb_cbl_offset = OFFSET_CU; |
| scb.scb_rfa_offset = OFFSET_RU; |
| obram_write(ioaddr, OFFSET_SCB, (unsigned char *) &scb, |
| sizeof(scb)); |
| |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| /* Wait for command to finish. */ |
| for (i = 1000; i > 0; i--) { |
| obram_read(ioaddr, OFFSET_ISCP, (unsigned char *) &iscp, |
| sizeof(iscp)); |
| |
| if (iscp.iscp_busy == (unsigned short) 0) |
| break; |
| |
| udelay(10); |
| } |
| |
| if (i <= 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wv_82586_start(): iscp_busy timeout.\n", |
| dev->name); |
| #endif |
| return -1; |
| } |
| |
| /* Check command completion. */ |
| for (i = 15; i > 0; i--) { |
| obram_read(ioaddr, OFFSET_SCB, (unsigned char *) &scb, |
| sizeof(scb)); |
| |
| if (scb.scb_status == (SCB_ST_CX | SCB_ST_CNA)) |
| break; |
| |
| udelay(10); |
| } |
| |
| if (i <= 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wv_82586_start(): status: expected 0x%02x, got 0x%02x.\n", |
| dev->name, SCB_ST_CX | SCB_ST_CNA, scb.scb_status); |
| #endif |
| return -1; |
| } |
| |
| wv_ack(dev); |
| |
| /* Set the action command header. */ |
| memset(&cb, 0x00, sizeof(cb)); |
| cb.ac_command = AC_CFLD_EL | (AC_CFLD_CMD & acmd_diagnose); |
| cb.ac_link = OFFSET_CU; |
| obram_write(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb)); |
| |
| if (wv_synchronous_cmd(dev, "diag()") == -1) |
| return -1; |
| |
| obram_read(ioaddr, OFFSET_CU, (unsigned char *) &cb, sizeof(cb)); |
| if (cb.ac_status & AC_SFLD_FAIL) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wv_82586_start(): i82586 Self Test failed.\n", |
| dev->name); |
| #endif |
| return -1; |
| } |
| #ifdef DEBUG_I82586_SHOW |
| wv_scb_show(ioaddr); |
| #endif |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_82586_start()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This routine does a standard configuration of the WaveLAN |
| * controller (i82586). |
| * |
| * This routine is a violent hack. We use the first free transmit block |
| * to make our configuration. In the buffer area, we create the three |
| * configuration commands (linked). We make the previous NOP point to |
| * the beginning of the buffer instead of the tx command. After, we go |
| * as usual to the NOP command. |
| * Note that only the last command (mc_set) will generate an interrupt. |
| * |
| * (called by wv_hw_reset(), wv_82586_reconfig(), wavelan_packet_xmit()) |
| */ |
| static void wv_82586_config(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| unsigned short txblock; |
| unsigned short txpred; |
| unsigned short tx_addr; |
| unsigned short nop_addr; |
| unsigned short tbd_addr; |
| unsigned short cfg_addr; |
| unsigned short ias_addr; |
| unsigned short mcs_addr; |
| ac_tx_t tx; |
| ac_nop_t nop; |
| ac_cfg_t cfg; /* Configure action */ |
| ac_ias_t ias; /* IA-setup action */ |
| ac_mcs_t mcs; /* Multicast setup */ |
| struct dev_mc_list *dmi; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_82586_config()\n", dev->name); |
| #endif |
| |
| /* Check nothing bad has happened */ |
| if (lp->tx_n_in_use == (NTXBLOCKS - 1)) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO "%s: wv_82586_config(): Tx queue full.\n", |
| dev->name); |
| #endif |
| return; |
| } |
| |
| /* Calculate addresses of next block and previous block. */ |
| txblock = lp->tx_first_free; |
| txpred = txblock - TXBLOCKZ; |
| if (txpred < OFFSET_CU) |
| txpred += NTXBLOCKS * TXBLOCKZ; |
| lp->tx_first_free += TXBLOCKZ; |
| if (lp->tx_first_free >= OFFSET_CU + NTXBLOCKS * TXBLOCKZ) |
| lp->tx_first_free -= NTXBLOCKS * TXBLOCKZ; |
| |
| lp->tx_n_in_use++; |
| |
| /* Calculate addresses of the different parts of the block. */ |
| tx_addr = txblock; |
| nop_addr = tx_addr + sizeof(tx); |
| tbd_addr = nop_addr + sizeof(nop); |
| cfg_addr = tbd_addr + sizeof(tbd_t); /* beginning of the buffer */ |
| ias_addr = cfg_addr + sizeof(cfg); |
| mcs_addr = ias_addr + sizeof(ias); |
| |
| /* |
| * Transmit command |
| */ |
| tx.tx_h.ac_status = 0xFFFF; /* Fake completion value */ |
| obram_write(ioaddr, toff(ac_tx_t, tx_addr, tx_h.ac_status), |
| (unsigned char *) &tx.tx_h.ac_status, |
| sizeof(tx.tx_h.ac_status)); |
| |
| /* |
| * NOP command |
| */ |
| nop.nop_h.ac_status = 0; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), |
| (unsigned char *) &nop.nop_h.ac_status, |
| sizeof(nop.nop_h.ac_status)); |
| nop.nop_h.ac_link = nop_addr; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), |
| (unsigned char *) &nop.nop_h.ac_link, |
| sizeof(nop.nop_h.ac_link)); |
| |
| /* Create a configure action. */ |
| memset(&cfg, 0x00, sizeof(cfg)); |
| |
| /* |
| * For Linux we invert AC_CFG_ALOC() so as to conform |
| * to the way that net packets reach us from above. |
| * (See also ac_tx_t.) |
| * |
| * Updated from Wavelan Manual WCIN085B |
| */ |
| cfg.cfg_byte_cnt = |
| AC_CFG_BYTE_CNT(sizeof(ac_cfg_t) - sizeof(ach_t)); |
| cfg.cfg_fifolim = AC_CFG_FIFOLIM(4); |
| cfg.cfg_byte8 = AC_CFG_SAV_BF(1) | AC_CFG_SRDY(0); |
| cfg.cfg_byte9 = AC_CFG_ELPBCK(0) | |
| AC_CFG_ILPBCK(0) | |
| AC_CFG_PRELEN(AC_CFG_PLEN_2) | |
| AC_CFG_ALOC(1) | AC_CFG_ADDRLEN(WAVELAN_ADDR_SIZE); |
| cfg.cfg_byte10 = AC_CFG_BOFMET(1) | |
| AC_CFG_ACR(6) | AC_CFG_LINPRIO(0); |
| cfg.cfg_ifs = 0x20; |
| cfg.cfg_slotl = 0x0C; |
| cfg.cfg_byte13 = AC_CFG_RETRYNUM(15) | AC_CFG_SLTTMHI(0); |
| cfg.cfg_byte14 = AC_CFG_FLGPAD(0) | |
| AC_CFG_BTSTF(0) | |
| AC_CFG_CRC16(0) | |
| AC_CFG_NCRC(0) | |
| AC_CFG_TNCRS(1) | |
| AC_CFG_MANCH(0) | |
| AC_CFG_BCDIS(0) | AC_CFG_PRM(lp->promiscuous); |
| cfg.cfg_byte15 = AC_CFG_ICDS(0) | |
| AC_CFG_CDTF(0) | AC_CFG_ICSS(0) | AC_CFG_CSTF(0); |
| /* |
| cfg.cfg_min_frm_len = AC_CFG_MNFRM(64); |
| */ |
| cfg.cfg_min_frm_len = AC_CFG_MNFRM(8); |
| |
| cfg.cfg_h.ac_command = (AC_CFLD_CMD & acmd_configure); |
| cfg.cfg_h.ac_link = ias_addr; |
| obram_write(ioaddr, cfg_addr, (unsigned char *) &cfg, sizeof(cfg)); |
| |
| /* Set up the MAC address */ |
| memset(&ias, 0x00, sizeof(ias)); |
| ias.ias_h.ac_command = (AC_CFLD_CMD & acmd_ia_setup); |
| ias.ias_h.ac_link = mcs_addr; |
| memcpy(&ias.ias_addr[0], (unsigned char *) &dev->dev_addr[0], |
| sizeof(ias.ias_addr)); |
| obram_write(ioaddr, ias_addr, (unsigned char *) &ias, sizeof(ias)); |
| |
| /* Initialize adapter's Ethernet multicast addresses */ |
| memset(&mcs, 0x00, sizeof(mcs)); |
| mcs.mcs_h.ac_command = AC_CFLD_I | (AC_CFLD_CMD & acmd_mc_setup); |
| mcs.mcs_h.ac_link = nop_addr; |
| mcs.mcs_cnt = WAVELAN_ADDR_SIZE * lp->mc_count; |
| obram_write(ioaddr, mcs_addr, (unsigned char *) &mcs, sizeof(mcs)); |
| |
| /* Any address to set? */ |
| if (lp->mc_count) { |
| for (dmi = dev->mc_list; dmi; dmi = dmi->next) |
| outsw(PIOP1(ioaddr), (u16 *) dmi->dmi_addr, |
| WAVELAN_ADDR_SIZE >> 1); |
| |
| #ifdef DEBUG_CONFIG_INFO |
| printk(KERN_DEBUG |
| "%s: wv_82586_config(): set %d multicast addresses:\n", |
| dev->name, lp->mc_count); |
| for (dmi = dev->mc_list; dmi; dmi = dmi->next) |
| printk(KERN_DEBUG |
| " %02x:%02x:%02x:%02x:%02x:%02x\n", |
| dmi->dmi_addr[0], dmi->dmi_addr[1], |
| dmi->dmi_addr[2], dmi->dmi_addr[3], |
| dmi->dmi_addr[4], dmi->dmi_addr[5]); |
| #endif |
| } |
| |
| /* |
| * Overwrite the predecessor NOP link |
| * so that it points to the configure action. |
| */ |
| nop_addr = txpred + sizeof(tx); |
| nop.nop_h.ac_status = 0; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_status), |
| (unsigned char *) &nop.nop_h.ac_status, |
| sizeof(nop.nop_h.ac_status)); |
| nop.nop_h.ac_link = cfg_addr; |
| obram_write(ioaddr, toff(ac_nop_t, nop_addr, nop_h.ac_link), |
| (unsigned char *) &nop.nop_h.ac_link, |
| sizeof(nop.nop_h.ac_link)); |
| |
| /* Job done, clear the flag */ |
| lp->reconfig_82586 = 0; |
| |
| if (lp->tx_first_in_use == I82586NULL) |
| lp->tx_first_in_use = txblock; |
| |
| if (lp->tx_n_in_use == (NTXBLOCKS - 1)) |
| netif_stop_queue(dev); |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_82586_config()\n", dev->name); |
| #endif |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * This routine, called by wavelan_close(), gracefully stops the |
| * WaveLAN controller (i82586). |
| * (called by wavelan_close()) |
| */ |
| static void wv_82586_stop(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| u16 scb_cmd; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_82586_stop()\n", dev->name); |
| #endif |
| |
| /* Suspend both command unit and receive unit. */ |
| scb_cmd = |
| (SCB_CMD_CUC & SCB_CMD_CUC_SUS) | (SCB_CMD_RUC & |
| SCB_CMD_RUC_SUS); |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &scb_cmd, sizeof(scb_cmd)); |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| /* No more interrupts */ |
| wv_ints_off(dev); |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_82586_stop()\n", dev->name); |
| #endif |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Totally reset the WaveLAN and restart it. |
| * Performs the following actions: |
| * 1. A power reset (reset DMA) |
| * 2. Initialize the radio modem (using wv_mmc_init) |
| * 3. Reset & Configure LAN controller (using wv_82586_start) |
| * 4. Start the LAN controller's command unit |
| * 5. Start the LAN controller's receive unit |
| * (called by wavelan_interrupt(), wavelan_watchdog() & wavelan_open()) |
| */ |
| static int wv_hw_reset(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long ioaddr = dev->base_addr; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: ->wv_hw_reset(dev=0x%x)\n", dev->name, |
| (unsigned int) dev); |
| #endif |
| |
| /* Increase the number of resets done. */ |
| lp->nresets++; |
| |
| wv_hacr_reset(ioaddr); |
| lp->hacr = HACR_DEFAULT; |
| |
| if ((wv_mmc_init(dev) < 0) || (wv_82586_start(dev) < 0)) |
| return -1; |
| |
| /* Enable the card to send interrupts. */ |
| wv_ints_on(dev); |
| |
| /* Start card functions */ |
| if (wv_cu_start(dev) < 0) |
| return -1; |
| |
| /* Setup the controller and parameters */ |
| wv_82586_config(dev); |
| |
| /* Finish configuration with the receive unit */ |
| if (wv_ru_start(dev) < 0) |
| return -1; |
| |
| #ifdef DEBUG_CONFIG_TRACE |
| printk(KERN_DEBUG "%s: <-wv_hw_reset()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Check if there is a WaveLAN at the specific base address. |
| * As a side effect, this reads the MAC address. |
| * (called in wavelan_probe() and init_module()) |
| */ |
| static int wv_check_ioaddr(unsigned long ioaddr, u8 * mac) |
| { |
| int i; /* Loop counter */ |
| |
| /* Check if the base address if available. */ |
| if (!request_region(ioaddr, sizeof(ha_t), "wavelan probe")) |
| return -EBUSY; /* ioaddr already used */ |
| |
| /* Reset host interface */ |
| wv_hacr_reset(ioaddr); |
| |
| /* Read the MAC address from the parameter storage area. */ |
| psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_univ_mac_addr), |
| mac, 6); |
| |
| release_region(ioaddr, sizeof(ha_t)); |
| |
| /* |
| * Check the first three octets of the address for the manufacturer's code. |
| * Note: if this can't find your WaveLAN card, you've got a |
| * non-NCR/AT&T/Lucent ISA card. See wavelan.p.h for detail on |
| * how to configure your card. |
| */ |
| for (i = 0; i < (sizeof(MAC_ADDRESSES) / sizeof(char) / 3); i++) |
| if ((mac[0] == MAC_ADDRESSES[i][0]) && |
| (mac[1] == MAC_ADDRESSES[i][1]) && |
| (mac[2] == MAC_ADDRESSES[i][2])) |
| return 0; |
| |
| #ifdef DEBUG_CONFIG_INFO |
| printk(KERN_WARNING |
| "WaveLAN (0x%3X): your MAC address might be %02X:%02X:%02X.\n", |
| ioaddr, mac[0], mac[1], mac[2]); |
| #endif |
| return -ENODEV; |
| } |
| |
| /************************ INTERRUPT HANDLING ************************/ |
| |
| /* |
| * This function is the interrupt handler for the WaveLAN card. This |
| * routine will be called whenever: |
| */ |
| static irqreturn_t wavelan_interrupt(int irq, void *dev_id) |
| { |
| struct net_device *dev; |
| unsigned long ioaddr; |
| net_local *lp; |
| u16 hasr; |
| u16 status; |
| u16 ack_cmd; |
| |
| dev = dev_id; |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_interrupt()\n", dev->name); |
| #endif |
| |
| lp = (net_local *) dev->priv; |
| ioaddr = dev->base_addr; |
| |
| #ifdef DEBUG_INTERRUPT_INFO |
| /* Check state of our spinlock */ |
| if(spin_is_locked(&lp->spinlock)) |
| printk(KERN_DEBUG |
| "%s: wavelan_interrupt(): spinlock is already locked !!!\n", |
| dev->name); |
| #endif |
| |
| /* Prevent reentrancy. We need to do that because we may have |
| * multiple interrupt handler running concurrently. |
| * It is safe because interrupts are disabled before acquiring |
| * the spinlock. */ |
| spin_lock(&lp->spinlock); |
| |
| /* We always had spurious interrupts at startup, but lately I |
| * saw them comming *between* the request_irq() and the |
| * spin_lock_irqsave() in wavelan_open(), so the spinlock |
| * protection is no enough. |
| * So, we also check lp->hacr that will tell us is we enabled |
| * irqs or not (see wv_ints_on()). |
| * We can't use netif_running(dev) because we depend on the |
| * proper processing of the irq generated during the config. */ |
| |
| /* Which interrupt it is ? */ |
| hasr = hasr_read(ioaddr); |
| |
| #ifdef DEBUG_INTERRUPT_INFO |
| printk(KERN_INFO |
| "%s: wavelan_interrupt(): hasr 0x%04x; hacr 0x%04x.\n", |
| dev->name, hasr, lp->hacr); |
| #endif |
| |
| /* Check modem interrupt */ |
| if ((hasr & HASR_MMC_INTR) && (lp->hacr & HACR_MMC_INT_ENABLE)) { |
| u8 dce_status; |
| |
| /* |
| * Interrupt from the modem management controller. |
| * This will clear it -- ignored for now. |
| */ |
| mmc_read(ioaddr, mmroff(0, mmr_dce_status), &dce_status, |
| sizeof(dce_status)); |
| |
| #ifdef DEBUG_INTERRUPT_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_interrupt(): unexpected mmc interrupt: status 0x%04x.\n", |
| dev->name, dce_status); |
| #endif |
| } |
| |
| /* Check if not controller interrupt */ |
| if (((hasr & HASR_82586_INTR) == 0) || |
| ((lp->hacr & HACR_82586_INT_ENABLE) == 0)) { |
| #ifdef DEBUG_INTERRUPT_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_interrupt(): interrupt not coming from i82586 - hasr 0x%04x.\n", |
| dev->name, hasr); |
| #endif |
| spin_unlock (&lp->spinlock); |
| return IRQ_NONE; |
| } |
| |
| /* Read interrupt data. */ |
| obram_read(ioaddr, scboff(OFFSET_SCB, scb_status), |
| (unsigned char *) &status, sizeof(status)); |
| |
| /* |
| * Acknowledge the interrupt(s). |
| */ |
| ack_cmd = status & SCB_ST_INT; |
| obram_write(ioaddr, scboff(OFFSET_SCB, scb_command), |
| (unsigned char *) &ack_cmd, sizeof(ack_cmd)); |
| set_chan_attn(ioaddr, lp->hacr); |
| |
| #ifdef DEBUG_INTERRUPT_INFO |
| printk(KERN_DEBUG "%s: wavelan_interrupt(): status 0x%04x.\n", |
| dev->name, status); |
| #endif |
| |
| /* Command completed. */ |
| if ((status & SCB_ST_CX) == SCB_ST_CX) { |
| #ifdef DEBUG_INTERRUPT_INFO |
| printk(KERN_DEBUG |
| "%s: wavelan_interrupt(): command completed.\n", |
| dev->name); |
| #endif |
| wv_complete(dev, ioaddr, lp); |
| } |
| |
| /* Frame received. */ |
| if ((status & SCB_ST_FR) == SCB_ST_FR) { |
| #ifdef DEBUG_INTERRUPT_INFO |
| printk(KERN_DEBUG |
| "%s: wavelan_interrupt(): received packet.\n", |
| dev->name); |
| #endif |
| wv_receive(dev); |
| } |
| |
| /* Check the state of the command unit. */ |
| if (((status & SCB_ST_CNA) == SCB_ST_CNA) || |
| (((status & SCB_ST_CUS) != SCB_ST_CUS_ACTV) && |
| (netif_running(dev)))) { |
| #ifdef DEBUG_INTERRUPT_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_interrupt(): CU inactive -- restarting\n", |
| dev->name); |
| #endif |
| wv_hw_reset(dev); |
| } |
| |
| /* Check the state of the command unit. */ |
| if (((status & SCB_ST_RNR) == SCB_ST_RNR) || |
| (((status & SCB_ST_RUS) != SCB_ST_RUS_RDY) && |
| (netif_running(dev)))) { |
| #ifdef DEBUG_INTERRUPT_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_interrupt(): RU not ready -- restarting\n", |
| dev->name); |
| #endif |
| wv_hw_reset(dev); |
| } |
| |
| /* Release spinlock */ |
| spin_unlock (&lp->spinlock); |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_interrupt()\n", dev->name); |
| #endif |
| return IRQ_HANDLED; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Watchdog: when we start a transmission, a timer is set for us in the |
| * kernel. If the transmission completes, this timer is disabled. If |
| * the timer expires, we are called and we try to unlock the hardware. |
| */ |
| static void wavelan_watchdog(struct net_device * dev) |
| { |
| net_local * lp = (net_local *)dev->priv; |
| u_long ioaddr = dev->base_addr; |
| unsigned long flags; |
| unsigned int nreaped; |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_watchdog()\n", dev->name); |
| #endif |
| |
| #ifdef DEBUG_INTERRUPT_ERROR |
| printk(KERN_INFO "%s: wavelan_watchdog: watchdog timer expired\n", |
| dev->name); |
| #endif |
| |
| /* Check that we came here for something */ |
| if (lp->tx_n_in_use <= 0) { |
| return; |
| } |
| |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| /* Try to see if some buffers are not free (in case we missed |
| * an interrupt */ |
| nreaped = wv_complete(dev, ioaddr, lp); |
| |
| #ifdef DEBUG_INTERRUPT_INFO |
| printk(KERN_DEBUG |
| "%s: wavelan_watchdog(): %d reaped, %d remain.\n", |
| dev->name, nreaped, lp->tx_n_in_use); |
| #endif |
| |
| #ifdef DEBUG_PSA_SHOW |
| { |
| psa_t psa; |
| psa_read(dev, 0, (unsigned char *) &psa, sizeof(psa)); |
| wv_psa_show(&psa); |
| } |
| #endif |
| #ifdef DEBUG_MMC_SHOW |
| wv_mmc_show(dev); |
| #endif |
| #ifdef DEBUG_I82586_SHOW |
| wv_cu_show(dev); |
| #endif |
| |
| /* If no buffer has been freed */ |
| if (nreaped == 0) { |
| #ifdef DEBUG_INTERRUPT_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_watchdog(): cleanup failed, trying reset\n", |
| dev->name); |
| #endif |
| wv_hw_reset(dev); |
| } |
| |
| /* At this point, we should have some free Tx buffer ;-) */ |
| if (lp->tx_n_in_use < NTXBLOCKS - 1) |
| netif_wake_queue(dev); |
| |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| #ifdef DEBUG_INTERRUPT_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_watchdog()\n", dev->name); |
| #endif |
| } |
| |
| /********************* CONFIGURATION CALLBACKS *********************/ |
| /* |
| * Here are the functions called by the Linux networking code (NET3) |
| * for initialization, configuration and deinstallations of the |
| * WaveLAN ISA hardware. |
| */ |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Configure and start up the WaveLAN PCMCIA adaptor. |
| * Called by NET3 when it "opens" the device. |
| */ |
| static int wavelan_open(struct net_device * dev) |
| { |
| net_local * lp = (net_local *)dev->priv; |
| unsigned long flags; |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_open(dev=0x%x)\n", dev->name, |
| (unsigned int) dev); |
| #endif |
| |
| /* Check irq */ |
| if (dev->irq == 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_WARNING "%s: wavelan_open(): no IRQ\n", |
| dev->name); |
| #endif |
| return -ENXIO; |
| } |
| |
| if (request_irq(dev->irq, &wavelan_interrupt, 0, "WaveLAN", dev) != 0) |
| { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_WARNING "%s: wavelan_open(): invalid IRQ\n", |
| dev->name); |
| #endif |
| return -EAGAIN; |
| } |
| |
| spin_lock_irqsave(&lp->spinlock, flags); |
| |
| if (wv_hw_reset(dev) != -1) { |
| netif_start_queue(dev); |
| } else { |
| free_irq(dev->irq, dev); |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_open(): impossible to start the card\n", |
| dev->name); |
| #endif |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| return -EAGAIN; |
| } |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_open()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Shut down the WaveLAN ISA card. |
| * Called by NET3 when it "closes" the device. |
| */ |
| static int wavelan_close(struct net_device * dev) |
| { |
| net_local *lp = (net_local *) dev->priv; |
| unsigned long flags; |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_close(dev=0x%x)\n", dev->name, |
| (unsigned int) dev); |
| #endif |
| |
| netif_stop_queue(dev); |
| |
| /* |
| * Flush the Tx and disable Rx. |
| */ |
| spin_lock_irqsave(&lp->spinlock, flags); |
| wv_82586_stop(dev); |
| spin_unlock_irqrestore(&lp->spinlock, flags); |
| |
| free_irq(dev->irq, dev); |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_close()\n", dev->name); |
| #endif |
| return 0; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Probe an I/O address, and if the WaveLAN is there configure the |
| * device structure |
| * (called by wavelan_probe() and via init_module()). |
| */ |
| static int __init wavelan_config(struct net_device *dev, unsigned short ioaddr) |
| { |
| u8 irq_mask; |
| int irq; |
| net_local *lp; |
| mac_addr mac; |
| int err; |
| |
| if (!request_region(ioaddr, sizeof(ha_t), "wavelan")) |
| return -EADDRINUSE; |
| |
| err = wv_check_ioaddr(ioaddr, mac); |
| if (err) |
| goto out; |
| |
| memcpy(dev->dev_addr, mac, 6); |
| |
| dev->base_addr = ioaddr; |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: ->wavelan_config(dev=0x%x, ioaddr=0x%lx)\n", |
| dev->name, (unsigned int) dev, ioaddr); |
| #endif |
| |
| /* Check IRQ argument on command line. */ |
| if (dev->irq != 0) { |
| irq_mask = wv_irq_to_psa(dev->irq); |
| |
| if (irq_mask == 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_WARNING |
| "%s: wavelan_config(): invalid IRQ %d ignored.\n", |
| dev->name, dev->irq); |
| #endif |
| dev->irq = 0; |
| } else { |
| #ifdef DEBUG_CONFIG_INFO |
| printk(KERN_DEBUG |
| "%s: wavelan_config(): changing IRQ to %d\n", |
| dev->name, dev->irq); |
| #endif |
| psa_write(ioaddr, HACR_DEFAULT, |
| psaoff(0, psa_int_req_no), &irq_mask, 1); |
| /* update the Wavelan checksum */ |
| update_psa_checksum(dev, ioaddr, HACR_DEFAULT); |
| wv_hacr_reset(ioaddr); |
| } |
| } |
| |
| psa_read(ioaddr, HACR_DEFAULT, psaoff(0, psa_int_req_no), |
| &irq_mask, 1); |
| if ((irq = wv_psa_to_irq(irq_mask)) == -1) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_INFO |
| "%s: wavelan_config(): could not wavelan_map_irq(%d).\n", |
| dev->name, irq_mask); |
| #endif |
| err = -EAGAIN; |
| goto out; |
| } |
| |
| dev->irq = irq; |
| |
| dev->mem_start = 0x0000; |
| dev->mem_end = 0x0000; |
| dev->if_port = 0; |
| |
| /* Initialize device structures */ |
| memset(dev->priv, 0, sizeof(net_local)); |
| lp = (net_local *) dev->priv; |
| |
| /* Back link to the device structure. */ |
| lp->dev = dev; |
| /* Add the device at the beginning of the linked list. */ |
| lp->next = wavelan_list; |
| wavelan_list = lp; |
| |
| lp->hacr = HACR_DEFAULT; |
| |
| /* Multicast stuff */ |
| lp->promiscuous = 0; |
| lp->mc_count = 0; |
| |
| /* Init spinlock */ |
| spin_lock_init(&lp->spinlock); |
| |
| SET_MODULE_OWNER(dev); |
| dev->open = wavelan_open; |
| dev->stop = wavelan_close; |
| dev->hard_start_xmit = wavelan_packet_xmit; |
| dev->get_stats = wavelan_get_stats; |
| dev->set_multicast_list = &wavelan_set_multicast_list; |
| dev->tx_timeout = &wavelan_watchdog; |
| dev->watchdog_timeo = WATCHDOG_JIFFIES; |
| #ifdef SET_MAC_ADDRESS |
| dev->set_mac_address = &wavelan_set_mac_address; |
| #endif /* SET_MAC_ADDRESS */ |
| |
| dev->wireless_handlers = &wavelan_handler_def; |
| lp->wireless_data.spy_data = &lp->spy_data; |
| dev->wireless_data = &lp->wireless_data; |
| |
| dev->mtu = WAVELAN_MTU; |
| |
| /* Display nice information. */ |
| wv_init_info(dev); |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_config()\n", dev->name); |
| #endif |
| return 0; |
| out: |
| release_region(ioaddr, sizeof(ha_t)); |
| return err; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Check for a network adaptor of this type. Return '0' iff one |
| * exists. There seem to be different interpretations of |
| * the initial value of dev->base_addr. |
| * We follow the example in drivers/net/ne.c. |
| * (called in "Space.c") |
| */ |
| struct net_device * __init wavelan_probe(int unit) |
| { |
| struct net_device *dev; |
| short base_addr; |
| int def_irq; |
| int i; |
| int r = 0; |
| |
| #ifdef STRUCT_CHECK |
| if (wv_struct_check() != (char *) NULL) { |
| printk(KERN_WARNING |
| "%s: wavelan_probe(): structure/compiler botch: \"%s\"\n", |
| dev->name, wv_struct_check()); |
| return -ENODEV; |
| } |
| #endif /* STRUCT_CHECK */ |
| |
| dev = alloc_etherdev(sizeof(net_local)); |
| if (!dev) |
| return ERR_PTR(-ENOMEM); |
| |
| sprintf(dev->name, "eth%d", unit); |
| netdev_boot_setup_check(dev); |
| base_addr = dev->base_addr; |
| def_irq = dev->irq; |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG |
| "%s: ->wavelan_probe(dev=%p (base_addr=0x%x))\n", |
| dev->name, dev, (unsigned int) dev->base_addr); |
| #endif |
| |
| /* Don't probe at all. */ |
| if (base_addr < 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_WARNING |
| "%s: wavelan_probe(): invalid base address\n", |
| dev->name); |
| #endif |
| r = -ENXIO; |
| } else if (base_addr > 0x100) { /* Check a single specified location. */ |
| r = wavelan_config(dev, base_addr); |
| #ifdef DEBUG_CONFIG_INFO |
| if (r != 0) |
| printk(KERN_DEBUG |
| "%s: wavelan_probe(): no device at specified base address (0x%X) or address already in use\n", |
| dev->name, base_addr); |
| #endif |
| |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG "%s: <-wavelan_probe()\n", dev->name); |
| #endif |
| } else { /* Scan all possible addresses of the WaveLAN hardware. */ |
| for (i = 0; i < ARRAY_SIZE(iobase); i++) { |
| dev->irq = def_irq; |
| if (wavelan_config(dev, iobase[i]) == 0) { |
| #ifdef DEBUG_CALLBACK_TRACE |
| printk(KERN_DEBUG |
| "%s: <-wavelan_probe()\n", |
| dev->name); |
| #endif |
| break; |
| } |
| } |
| if (i == ARRAY_SIZE(iobase)) |
| r = -ENODEV; |
| } |
| if (r) |
| goto out; |
| r = register_netdev(dev); |
| if (r) |
| goto out1; |
| return dev; |
| out1: |
| release_region(dev->base_addr, sizeof(ha_t)); |
| wavelan_list = wavelan_list->next; |
| out: |
| free_netdev(dev); |
| return ERR_PTR(r); |
| } |
| |
| /****************************** MODULE ******************************/ |
| /* |
| * Module entry point: insertion and removal |
| */ |
| |
| #ifdef MODULE |
| /*------------------------------------------------------------------*/ |
| /* |
| * Insertion of the module |
| * I'm now quite proud of the multi-device support. |
| */ |
| int __init init_module(void) |
| { |
| int ret = -EIO; /* Return error if no cards found */ |
| int i; |
| |
| #ifdef DEBUG_MODULE_TRACE |
| printk(KERN_DEBUG "-> init_module()\n"); |
| #endif |
| |
| /* If probing is asked */ |
| if (io[0] == 0) { |
| #ifdef DEBUG_CONFIG_ERROR |
| printk(KERN_WARNING |
| "WaveLAN init_module(): doing device probing (bad !)\n"); |
| printk(KERN_WARNING |
| "Specify base addresses while loading module to correct the problem\n"); |
| #endif |
| |
| /* Copy the basic set of address to be probed. */ |
| for (i = 0; i < ARRAY_SIZE(iobase); i++) |
| io[i] = iobase[i]; |
| } |
| |
| |
| /* Loop on all possible base addresses. */ |
| i = -1; |
| while ((io[++i] != 0) && (i < ARRAY_SIZE(io))) { |
| struct net_device *dev = alloc_etherdev(sizeof(net_local)); |
| if (!dev) |
| break; |
| if (name[i]) |
| strcpy(dev->name, name[i]); /* Copy name */ |
| dev->base_addr = io[i]; |
| dev->irq = irq[i]; |
| |
| /* Check if there is something at this base address. */ |
| if (wavelan_config(dev, io[i]) == 0) { |
| if (register_netdev(dev) != 0) { |
| release_region(dev->base_addr, sizeof(ha_t)); |
| wavelan_list = wavelan_list->next; |
| } else { |
| ret = 0; |
| continue; |
| } |
| } |
| free_netdev(dev); |
| } |
| |
| #ifdef DEBUG_CONFIG_ERROR |
| if (!wavelan_list) |
| printk(KERN_WARNING |
| "WaveLAN init_module(): no device found\n"); |
| #endif |
| |
| #ifdef DEBUG_MODULE_TRACE |
| printk(KERN_DEBUG "<- init_module()\n"); |
| #endif |
| return ret; |
| } |
| |
| /*------------------------------------------------------------------*/ |
| /* |
| * Removal of the module |
| */ |
| void cleanup_module(void) |
| { |
| #ifdef DEBUG_MODULE_TRACE |
| printk(KERN_DEBUG "-> cleanup_module()\n"); |
| #endif |
| |
| /* Loop on all devices and release them. */ |
| while (wavelan_list) { |
| struct net_device *dev = wavelan_list->dev; |
| |
| #ifdef DEBUG_CONFIG_INFO |
| printk(KERN_DEBUG |
| "%s: cleanup_module(): removing device at 0x%x\n", |
| dev->name, (unsigned int) dev); |
| #endif |
| unregister_netdev(dev); |
| |
| release_region(dev->base_addr, sizeof(ha_t)); |
| wavelan_list = wavelan_list->next; |
| |
| free_netdev(dev); |
| } |
| |
| #ifdef DEBUG_MODULE_TRACE |
| printk(KERN_DEBUG "<- cleanup_module()\n"); |
| #endif |
| } |
| #endif /* MODULE */ |
| MODULE_LICENSE("GPL"); |
| |
| /* |
| * This software may only be used and distributed |
| * according to the terms of the GNU General Public License. |
| * |
| * This software was developed as a component of the |
| * Linux operating system. |
| * It is based on other device drivers and information |
| * either written or supplied by: |
| * Ajay Bakre (bakre@paul.rutgers.edu), |
| * Donald Becker (becker@scyld.com), |
| * Loeke Brederveld (Loeke.Brederveld@Utrecht.NCR.com), |
| * Anders Klemets (klemets@it.kth.se), |
| * Vladimir V. Kolpakov (w@stier.koenig.ru), |
| * Marc Meertens (Marc.Meertens@Utrecht.NCR.com), |
| * Pauline Middelink (middelin@polyware.iaf.nl), |
| * Robert Morris (rtm@das.harvard.edu), |
| * Jean Tourrilhes (jt@hplb.hpl.hp.com), |
| * Girish Welling (welling@paul.rutgers.edu), |
| * |
| * Thanks go also to: |
| * James Ashton (jaa101@syseng.anu.edu.au), |
| * Alan Cox (alan@redhat.com), |
| * Allan Creighton (allanc@cs.usyd.edu.au), |
| * Matthew Geier (matthew@cs.usyd.edu.au), |
| * Remo di Giovanni (remo@cs.usyd.edu.au), |
| * Eckhard Grah (grah@wrcs1.urz.uni-wuppertal.de), |
| * Vipul Gupta (vgupta@cs.binghamton.edu), |
| * Mark Hagan (mhagan@wtcpost.daytonoh.NCR.COM), |
| * Tim Nicholson (tim@cs.usyd.edu.au), |
| * Ian Parkin (ian@cs.usyd.edu.au), |
| * John Rosenberg (johnr@cs.usyd.edu.au), |
| * George Rossi (george@phm.gov.au), |
| * Arthur Scott (arthur@cs.usyd.edu.au), |
| * Peter Storey, |
| * for their assistance and advice. |
| * |
| * Please send bug reports, updates, comments to: |
| * |
| * Bruce Janson Email: bruce@cs.usyd.edu.au |
| * Basser Department of Computer Science Phone: +61-2-9351-3423 |
| * University of Sydney, N.S.W., 2006, AUSTRALIA Fax: +61-2-9351-3838 |
| */ |