| /* |
| * linux/arch/i386/kernel/time.c |
| * |
| * Copyright (C) 1991, 1992, 1995 Linus Torvalds |
| * |
| * This file contains the PC-specific time handling details: |
| * reading the RTC at bootup, etc.. |
| * 1994-07-02 Alan Modra |
| * fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime |
| * 1995-03-26 Markus Kuhn |
| * fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887 |
| * precision CMOS clock update |
| * 1996-05-03 Ingo Molnar |
| * fixed time warps in do_[slow|fast]_gettimeoffset() |
| * 1997-09-10 Updated NTP code according to technical memorandum Jan '96 |
| * "A Kernel Model for Precision Timekeeping" by Dave Mills |
| * 1998-09-05 (Various) |
| * More robust do_fast_gettimeoffset() algorithm implemented |
| * (works with APM, Cyrix 6x86MX and Centaur C6), |
| * monotonic gettimeofday() with fast_get_timeoffset(), |
| * drift-proof precision TSC calibration on boot |
| * (C. Scott Ananian <cananian@alumni.princeton.edu>, Andrew D. |
| * Balsa <andrebalsa@altern.org>, Philip Gladstone <philip@raptor.com>; |
| * ported from 2.0.35 Jumbo-9 by Michael Krause <m.krause@tu-harburg.de>). |
| * 1998-12-16 Andrea Arcangeli |
| * Fixed Jumbo-9 code in 2.1.131: do_gettimeofday was missing 1 jiffy |
| * because was not accounting lost_ticks. |
| * 1998-12-24 Copyright (C) 1998 Andrea Arcangeli |
| * Fixed a xtime SMP race (we need the xtime_lock rw spinlock to |
| * serialize accesses to xtime/lost_ticks). |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/time.h> |
| #include <linux/delay.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <linux/module.h> |
| #include <linux/sysdev.h> |
| #include <linux/bcd.h> |
| #include <linux/efi.h> |
| #include <linux/mca.h> |
| |
| #include <asm/io.h> |
| #include <asm/smp.h> |
| #include <asm/irq.h> |
| #include <asm/msr.h> |
| #include <asm/delay.h> |
| #include <asm/mpspec.h> |
| #include <asm/uaccess.h> |
| #include <asm/processor.h> |
| #include <asm/timer.h> |
| |
| #include "mach_time.h" |
| |
| #include <linux/timex.h> |
| #include <linux/config.h> |
| |
| #include <asm/hpet.h> |
| |
| #include <asm/arch_hooks.h> |
| |
| #include "io_ports.h" |
| |
| #include <asm/i8259.h> |
| |
| int pit_latch_buggy; /* extern */ |
| |
| #include "do_timer.h" |
| |
| u64 jiffies_64 = INITIAL_JIFFIES; |
| |
| EXPORT_SYMBOL(jiffies_64); |
| |
| unsigned int cpu_khz; /* Detected as we calibrate the TSC */ |
| EXPORT_SYMBOL(cpu_khz); |
| |
| extern unsigned long wall_jiffies; |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| |
| #include <asm/i8253.h> |
| |
| DEFINE_SPINLOCK(i8253_lock); |
| EXPORT_SYMBOL(i8253_lock); |
| |
| struct timer_opts *cur_timer __read_mostly = &timer_none; |
| |
| /* |
| * This is a special lock that is owned by the CPU and holds the index |
| * register we are working with. It is required for NMI access to the |
| * CMOS/RTC registers. See include/asm-i386/mc146818rtc.h for details. |
| */ |
| volatile unsigned long cmos_lock = 0; |
| EXPORT_SYMBOL(cmos_lock); |
| |
| /* Routines for accessing the CMOS RAM/RTC. */ |
| unsigned char rtc_cmos_read(unsigned char addr) |
| { |
| unsigned char val; |
| lock_cmos_prefix(addr); |
| outb_p(addr, RTC_PORT(0)); |
| val = inb_p(RTC_PORT(1)); |
| lock_cmos_suffix(addr); |
| return val; |
| } |
| EXPORT_SYMBOL(rtc_cmos_read); |
| |
| void rtc_cmos_write(unsigned char val, unsigned char addr) |
| { |
| lock_cmos_prefix(addr); |
| outb_p(addr, RTC_PORT(0)); |
| outb_p(val, RTC_PORT(1)); |
| lock_cmos_suffix(addr); |
| } |
| EXPORT_SYMBOL(rtc_cmos_write); |
| |
| /* |
| * This version of gettimeofday has microsecond resolution |
| * and better than microsecond precision on fast x86 machines with TSC. |
| */ |
| void do_gettimeofday(struct timeval *tv) |
| { |
| unsigned long seq; |
| unsigned long usec, sec; |
| unsigned long max_ntp_tick; |
| |
| do { |
| unsigned long lost; |
| |
| seq = read_seqbegin(&xtime_lock); |
| |
| usec = cur_timer->get_offset(); |
| lost = jiffies - wall_jiffies; |
| |
| /* |
| * If time_adjust is negative then NTP is slowing the clock |
| * so make sure not to go into next possible interval. |
| * Better to lose some accuracy than have time go backwards.. |
| */ |
| if (unlikely(time_adjust < 0)) { |
| max_ntp_tick = (USEC_PER_SEC / HZ) - tickadj; |
| usec = min(usec, max_ntp_tick); |
| |
| if (lost) |
| usec += lost * max_ntp_tick; |
| } |
| else if (unlikely(lost)) |
| usec += lost * (USEC_PER_SEC / HZ); |
| |
| sec = xtime.tv_sec; |
| usec += (xtime.tv_nsec / 1000); |
| } while (read_seqretry(&xtime_lock, seq)); |
| |
| while (usec >= 1000000) { |
| usec -= 1000000; |
| sec++; |
| } |
| |
| tv->tv_sec = sec; |
| tv->tv_usec = usec; |
| } |
| |
| EXPORT_SYMBOL(do_gettimeofday); |
| |
| int do_settimeofday(struct timespec *tv) |
| { |
| time_t wtm_sec, sec = tv->tv_sec; |
| long wtm_nsec, nsec = tv->tv_nsec; |
| |
| if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) |
| return -EINVAL; |
| |
| write_seqlock_irq(&xtime_lock); |
| /* |
| * This is revolting. We need to set "xtime" correctly. However, the |
| * value in this location is the value at the most recent update of |
| * wall time. Discover what correction gettimeofday() would have |
| * made, and then undo it! |
| */ |
| nsec -= cur_timer->get_offset() * NSEC_PER_USEC; |
| nsec -= (jiffies - wall_jiffies) * TICK_NSEC; |
| |
| wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); |
| wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); |
| |
| set_normalized_timespec(&xtime, sec, nsec); |
| set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); |
| |
| time_adjust = 0; /* stop active adjtime() */ |
| time_status |= STA_UNSYNC; |
| time_maxerror = NTP_PHASE_LIMIT; |
| time_esterror = NTP_PHASE_LIMIT; |
| write_sequnlock_irq(&xtime_lock); |
| clock_was_set(); |
| return 0; |
| } |
| |
| EXPORT_SYMBOL(do_settimeofday); |
| |
| static int set_rtc_mmss(unsigned long nowtime) |
| { |
| int retval; |
| |
| WARN_ON(irqs_disabled()); |
| |
| /* gets recalled with irq locally disabled */ |
| spin_lock_irq(&rtc_lock); |
| if (efi_enabled) |
| retval = efi_set_rtc_mmss(nowtime); |
| else |
| retval = mach_set_rtc_mmss(nowtime); |
| spin_unlock_irq(&rtc_lock); |
| |
| return retval; |
| } |
| |
| |
| int timer_ack; |
| |
| /* monotonic_clock(): returns # of nanoseconds passed since time_init() |
| * Note: This function is required to return accurate |
| * time even in the absence of multiple timer ticks. |
| */ |
| unsigned long long monotonic_clock(void) |
| { |
| return cur_timer->monotonic_clock(); |
| } |
| EXPORT_SYMBOL(monotonic_clock); |
| |
| #if defined(CONFIG_SMP) && defined(CONFIG_FRAME_POINTER) |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| if (in_lock_functions(pc)) |
| return *(unsigned long *)(regs->ebp + 4); |
| |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| #endif |
| |
| /* |
| * timer_interrupt() needs to keep up the real-time clock, |
| * as well as call the "do_timer()" routine every clocktick |
| */ |
| static inline void do_timer_interrupt(int irq, void *dev_id, |
| struct pt_regs *regs) |
| { |
| #ifdef CONFIG_X86_IO_APIC |
| if (timer_ack) { |
| /* |
| * Subtle, when I/O APICs are used we have to ack timer IRQ |
| * manually to reset the IRR bit for do_slow_gettimeoffset(). |
| * This will also deassert NMI lines for the watchdog if run |
| * on an 82489DX-based system. |
| */ |
| spin_lock(&i8259A_lock); |
| outb(0x0c, PIC_MASTER_OCW3); |
| /* Ack the IRQ; AEOI will end it automatically. */ |
| inb(PIC_MASTER_POLL); |
| spin_unlock(&i8259A_lock); |
| } |
| #endif |
| |
| do_timer_interrupt_hook(regs); |
| |
| |
| if (MCA_bus) { |
| /* The PS/2 uses level-triggered interrupts. You can't |
| turn them off, nor would you want to (any attempt to |
| enable edge-triggered interrupts usually gets intercepted by a |
| special hardware circuit). Hence we have to acknowledge |
| the timer interrupt. Through some incredibly stupid |
| design idea, the reset for IRQ 0 is done by setting the |
| high bit of the PPI port B (0x61). Note that some PS/2s, |
| notably the 55SX, work fine if this is removed. */ |
| |
| irq = inb_p( 0x61 ); /* read the current state */ |
| outb_p( irq|0x80, 0x61 ); /* reset the IRQ */ |
| } |
| } |
| |
| /* |
| * This is the same as the above, except we _also_ save the current |
| * Time Stamp Counter value at the time of the timer interrupt, so that |
| * we later on can estimate the time of day more exactly. |
| */ |
| irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| /* |
| * Here we are in the timer irq handler. We just have irqs locally |
| * disabled but we don't know if the timer_bh is running on the other |
| * CPU. We need to avoid to SMP race with it. NOTE: we don' t need |
| * the irq version of write_lock because as just said we have irq |
| * locally disabled. -arca |
| */ |
| write_seqlock(&xtime_lock); |
| |
| cur_timer->mark_offset(); |
| |
| do_timer_interrupt(irq, NULL, regs); |
| |
| write_sequnlock(&xtime_lock); |
| return IRQ_HANDLED; |
| } |
| |
| /* not static: needed by APM */ |
| unsigned long get_cmos_time(void) |
| { |
| unsigned long retval; |
| |
| spin_lock(&rtc_lock); |
| |
| if (efi_enabled) |
| retval = efi_get_time(); |
| else |
| retval = mach_get_cmos_time(); |
| |
| spin_unlock(&rtc_lock); |
| |
| return retval; |
| } |
| EXPORT_SYMBOL(get_cmos_time); |
| |
| static void sync_cmos_clock(unsigned long dummy); |
| |
| static struct timer_list sync_cmos_timer = |
| TIMER_INITIALIZER(sync_cmos_clock, 0, 0); |
| |
| static void sync_cmos_clock(unsigned long dummy) |
| { |
| struct timeval now, next; |
| int fail = 1; |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update |
| * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be |
| * called as close as possible to 500 ms before the new second starts. |
| * This code is run on a timer. If the clock is set, that timer |
| * may not expire at the correct time. Thus, we adjust... |
| */ |
| if ((time_status & STA_UNSYNC) != 0) |
| /* |
| * Not synced, exit, do not restart a timer (if one is |
| * running, let it run out). |
| */ |
| return; |
| |
| do_gettimeofday(&now); |
| if (now.tv_usec >= USEC_AFTER - ((unsigned) TICK_SIZE) / 2 && |
| now.tv_usec <= USEC_BEFORE + ((unsigned) TICK_SIZE) / 2) |
| fail = set_rtc_mmss(now.tv_sec); |
| |
| next.tv_usec = USEC_AFTER - now.tv_usec; |
| if (next.tv_usec <= 0) |
| next.tv_usec += USEC_PER_SEC; |
| |
| if (!fail) |
| next.tv_sec = 659; |
| else |
| next.tv_sec = 0; |
| |
| if (next.tv_usec >= USEC_PER_SEC) { |
| next.tv_sec++; |
| next.tv_usec -= USEC_PER_SEC; |
| } |
| mod_timer(&sync_cmos_timer, jiffies + timeval_to_jiffies(&next)); |
| } |
| |
| void notify_arch_cmos_timer(void) |
| { |
| mod_timer(&sync_cmos_timer, jiffies + 1); |
| } |
| |
| static long clock_cmos_diff, sleep_start; |
| |
| static struct timer_opts *last_timer; |
| static int timer_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| /* |
| * Estimate time zone so that set_time can update the clock |
| */ |
| clock_cmos_diff = -get_cmos_time(); |
| clock_cmos_diff += get_seconds(); |
| sleep_start = get_cmos_time(); |
| last_timer = cur_timer; |
| cur_timer = &timer_none; |
| if (last_timer->suspend) |
| last_timer->suspend(state); |
| return 0; |
| } |
| |
| static int timer_resume(struct sys_device *dev) |
| { |
| unsigned long flags; |
| unsigned long sec; |
| unsigned long sleep_length; |
| |
| #ifdef CONFIG_HPET_TIMER |
| if (is_hpet_enabled()) |
| hpet_reenable(); |
| #endif |
| setup_pit_timer(); |
| sec = get_cmos_time() + clock_cmos_diff; |
| sleep_length = (get_cmos_time() - sleep_start) * HZ; |
| write_seqlock_irqsave(&xtime_lock, flags); |
| xtime.tv_sec = sec; |
| xtime.tv_nsec = 0; |
| write_sequnlock_irqrestore(&xtime_lock, flags); |
| jiffies += sleep_length; |
| wall_jiffies += sleep_length; |
| if (last_timer->resume) |
| last_timer->resume(); |
| cur_timer = last_timer; |
| last_timer = NULL; |
| return 0; |
| } |
| |
| static struct sysdev_class timer_sysclass = { |
| .resume = timer_resume, |
| .suspend = timer_suspend, |
| set_kset_name("timer"), |
| }; |
| |
| |
| /* XXX this driverfs stuff should probably go elsewhere later -john */ |
| static struct sys_device device_timer = { |
| .id = 0, |
| .cls = &timer_sysclass, |
| }; |
| |
| static int time_init_device(void) |
| { |
| int error = sysdev_class_register(&timer_sysclass); |
| if (!error) |
| error = sysdev_register(&device_timer); |
| return error; |
| } |
| |
| device_initcall(time_init_device); |
| |
| #ifdef CONFIG_HPET_TIMER |
| extern void (*late_time_init)(void); |
| /* Duplicate of time_init() below, with hpet_enable part added */ |
| static void __init hpet_time_init(void) |
| { |
| xtime.tv_sec = get_cmos_time(); |
| xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| if ((hpet_enable() >= 0) && hpet_use_timer) { |
| printk("Using HPET for base-timer\n"); |
| } |
| |
| cur_timer = select_timer(); |
| printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name); |
| |
| time_init_hook(); |
| } |
| #endif |
| |
| void __init time_init(void) |
| { |
| #ifdef CONFIG_HPET_TIMER |
| if (is_hpet_capable()) { |
| /* |
| * HPET initialization needs to do memory-mapped io. So, let |
| * us do a late initialization after mem_init(). |
| */ |
| late_time_init = hpet_time_init; |
| return; |
| } |
| #endif |
| xtime.tv_sec = get_cmos_time(); |
| xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ); |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| cur_timer = select_timer(); |
| printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name); |
| |
| time_init_hook(); |
| } |