| /** |
| * eCryptfs: Linux filesystem encryption layer |
| * |
| * Copyright (C) 1997-2004 Erez Zadok |
| * Copyright (C) 2001-2004 Stony Brook University |
| * Copyright (C) 2004-2007 International Business Machines Corp. |
| * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> |
| * Michael C. Thompson <mcthomps@us.ibm.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of the |
| * License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA |
| * 02111-1307, USA. |
| */ |
| |
| #include <crypto/hash.h> |
| #include <crypto/skcipher.h> |
| #include <linux/fs.h> |
| #include <linux/mount.h> |
| #include <linux/pagemap.h> |
| #include <linux/random.h> |
| #include <linux/compiler.h> |
| #include <linux/key.h> |
| #include <linux/namei.h> |
| #include <linux/file.h> |
| #include <linux/scatterlist.h> |
| #include <linux/slab.h> |
| #include <asm/unaligned.h> |
| #ifdef CONFIG_CRYPTO_FIPS |
| #include <crypto/rng.h> |
| #endif |
| #include "ecryptfs_kernel.h" |
| |
| #define DECRYPT 0 |
| #define ENCRYPT 1 |
| #ifdef CONFIG_CRYPTO_FIPS |
| static struct crypto_rng *ecryptfs_crypto_rng; |
| |
| static int crypto_rng_init(void) |
| { |
| const int seed_len = 32; |
| char *seed = NULL; |
| int read_bytes = 0; |
| int get_bytes = 0; |
| int trialcount = 10; |
| int ret = 0; |
| |
| struct file *filp = NULL; |
| mm_segment_t oldfs; |
| |
| ecryptfs_crypto_rng = NULL; |
| seed = kmalloc(seed_len, GFP_KERNEL); |
| if (!seed) { |
| ecryptfs_printk(KERN_ERR, "Failed to get memory space for seed\n"); |
| ret = -1; |
| goto err_out; |
| } |
| |
| filp = filp_open("/dev/random", O_RDONLY, 0); |
| if (IS_ERR(filp)) { |
| ecryptfs_printk(KERN_ERR, "Failed to open /dev/random\n"); |
| ret = -1; |
| goto err_out; |
| } |
| |
| oldfs = get_fs(); |
| set_fs(KERNEL_DS); |
| memset((void *)seed, 0, seed_len); |
| |
| while (trialcount > 0) { |
| get_bytes = (int)filp->f_op->read(filp, &(seed[read_bytes]), seed_len-read_bytes, &filp->f_pos); |
| |
| if (get_bytes > 0) |
| read_bytes += get_bytes; |
| if (read_bytes != seed_len) |
| trialcount--; |
| else |
| break; |
| } |
| set_fs(oldfs); |
| |
| if (read_bytes != seed_len) { |
| ecryptfs_printk(KERN_ERR, |
| "Failed to get enough random bytes (read=%d/request=%d)\n", |
| read_bytes, seed_len); |
| ret = -1; |
| goto err_out; |
| } |
| |
| ecryptfs_crypto_rng = crypto_alloc_rng("stdrng", 0, 0); |
| if (IS_ERR(ecryptfs_crypto_rng)) { |
| ecryptfs_printk(KERN_ERR, "RNG allocateion fail \t Not Available: %ld\n", PTR_ERR(ecryptfs_crypto_rng)); |
| ret = -1; |
| goto err_out; |
| } |
| |
| ret = crypto_rng_reset(ecryptfs_crypto_rng, seed, seed_len); |
| |
| if (ret < 0) |
| ecryptfs_printk(KERN_ERR, "rng reset fail (%d)\n", ret); |
| |
| err_out: |
| if (seed) |
| kfree(seed); |
| if (filp) |
| filp_close(filp, NULL); |
| |
| return ret; |
| } |
| |
| static void crypto_rng_destroy(void) |
| { |
| crypto_free_rng(ecryptfs_crypto_rng); |
| ecryptfs_crypto_rng = NULL; |
| } |
| /** |
| |
| * crypto_cc_rng_get_bytes |
| * @data: Buffer to get random bytes |
| * @len: the lengh of random bytes |
| */ |
| static void crypto_cc_rng_get_bytes(u8 *data, unsigned int len) |
| { |
| int ret = 0; |
| |
| if (ecryptfs_crypto_rng == NULL || IS_ERR(ecryptfs_crypto_rng)) { |
| if (crypto_rng_init() < 0) { |
| ecryptfs_printk(KERN_ERR, "crypto_rng_init fail\n"); |
| crypto_rng_destroy(); |
| return; |
| } |
| } |
| |
| if (ecryptfs_crypto_rng == NULL || IS_ERR(ecryptfs_crypto_rng)) { |
| ecryptfs_printk(KERN_ERR, "rng generation is failed\n"); |
| } else { |
| if (data == NULL || IS_ERR(data)) { |
| ecryptfs_printk(KERN_ERR, "key buffer is wrong\n"); |
| crypto_rng_destroy(); |
| return; |
| } |
| |
| ret = crypto_rng_get_bytes(ecryptfs_crypto_rng, data, len); |
| if (ret < 0) { |
| ecryptfs_printk(KERN_ERR, "generate_random failed to generate random number (%d)\n", ret); |
| crypto_rng_destroy(); |
| } |
| } |
| } |
| #endif |
| |
| |
| /** |
| * ecryptfs_to_hex |
| * @dst: Buffer to take hex character representation of contents of |
| * src; must be at least of size (src_size * 2) |
| * @src: Buffer to be converted to a hex string representation |
| * @src_size: number of bytes to convert |
| */ |
| void ecryptfs_to_hex(char *dst, char *src, size_t src_size) |
| { |
| int x; |
| |
| for (x = 0; x < src_size; x++) |
| sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); |
| } |
| |
| /** |
| * ecryptfs_from_hex |
| * @dst: Buffer to take the bytes from src hex; must be at least of |
| * size (src_size / 2) |
| * @src: Buffer to be converted from a hex string representation to raw value |
| * @dst_size: size of dst buffer, or number of hex characters pairs to convert |
| */ |
| void ecryptfs_from_hex(char *dst, char *src, int dst_size) |
| { |
| int x; |
| char tmp[3] = { 0, }; |
| |
| for (x = 0; x < dst_size; x++) { |
| tmp[0] = src[x * 2]; |
| tmp[1] = src[x * 2 + 1]; |
| dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); |
| } |
| } |
| static int ecryptfs_hash_digest(struct crypto_shash *tfm, |
| char *src, int len, char *dst) |
| { |
| SHASH_DESC_ON_STACK(desc, tfm); |
| int err; |
| |
| desc->tfm = tfm; |
| desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP; |
| err = crypto_shash_digest(desc, src, len, dst); |
| shash_desc_zero(desc); |
| return err; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| /** |
| * ecryptfs_calculate_sha256 - calculates the sha256 of @src |
| * @dst: Pointer to 32 bytes of allocated memory |
| * @crypt_stat: Pointer to crypt_stat struct for the current inode |
| * @src: Data to be sha256'd |
| * @len: Length of @src |
| * |
| * Uses the allocated crypto context that crypt_stat references to |
| * generate the SHA256 sum of the contents of src. |
| */ |
| static int ecryptfs_calculate_sha256(char *dst, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| char *src, int len) |
| { |
| struct crypto_shash *tfm; |
| int rc = 0; |
| |
| tfm = crypt_stat->hash_tfm; |
| rc = ecryptfs_hash_digest(tfm, src, len, dst); |
| if (rc) { |
| printk(KERN_ERR |
| "%s: Error computing crypto hash; rc = [%d]\n", |
| __func__, rc); |
| } |
| return rc; |
| } |
| #endif |
| /** |
| * ecryptfs_calculate_md5 - calculates the md5 of @src |
| * @dst: Pointer to 16 bytes of allocated memory |
| * @crypt_stat: Pointer to crypt_stat struct for the current inode |
| * @src: Data to be md5'd |
| * @len: Length of @src |
| * |
| * Uses the allocated crypto context that crypt_stat references to |
| * generate the MD5 sum of the contents of src. |
| */ |
| static int ecryptfs_calculate_md5(char *dst, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| char *src, int len) |
| { |
| struct crypto_shash *tfm; |
| int rc = 0; |
| |
| tfm = crypt_stat->hash_tfm; |
| rc = ecryptfs_hash_digest(tfm, src, len, dst); |
| if (rc) { |
| printk(KERN_ERR |
| "%s: Error computing crypto hash; rc = [%d]\n", |
| __func__, rc); |
| goto out; |
| } |
| out: |
| return rc; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| static int ecryptfs_calculate_hash(char *dst, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| char *src, int len) |
| { |
| int rc = 0; |
| |
| if (crypt_stat->mount_crypt_stat->flags & ECRYPTFS_ENABLE_CC) |
| rc = ecryptfs_calculate_sha256(dst, crypt_stat, src, len); |
| else |
| rc = ecryptfs_calculate_md5(dst, crypt_stat, src, len); |
| |
| return rc; |
| } |
| #endif |
| static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, |
| char *cipher_name, |
| char *chaining_modifier) |
| { |
| int cipher_name_len = strlen(cipher_name); |
| int chaining_modifier_len = strlen(chaining_modifier); |
| int algified_name_len; |
| int rc; |
| |
| algified_name_len = (chaining_modifier_len + cipher_name_len + 3); |
| (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); |
| if (!(*algified_name)) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| snprintf((*algified_name), algified_name_len, "%s(%s)", |
| chaining_modifier, cipher_name); |
| rc = 0; |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_derive_iv |
| * @iv: destination for the derived iv vale |
| * @crypt_stat: Pointer to crypt_stat struct for the current inode |
| * @offset: Offset of the extent whose IV we are to derive |
| * |
| * Generate the initialization vector from the given root IV and page |
| * offset. |
| * |
| * Returns zero on success; non-zero on error. |
| */ |
| int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, |
| loff_t offset) |
| { |
| int rc = 0; |
| char src[ECRYPTFS_MAX_IV_BYTES + 16]; |
| #ifdef CONFIG_CRYPTO_FIPS |
| char *dst = NULL; |
| dst = kmalloc((crypt_stat->mount_crypt_stat->flags & ECRYPTFS_ENABLE_CC)?SHA256_HASH_SIZE:MD5_DIGEST_SIZE, GFP_KERNEL); |
| if (!dst) |
| goto out; |
| #else |
| char dst[MD5_DIGEST_SIZE]; |
| #endif |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, "root iv:\n"); |
| ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); |
| } |
| /* TODO: It is probably secure to just cast the least |
| * significant bits of the root IV into an unsigned long and |
| * add the offset to that rather than go through all this |
| * hashing business. -Halcrow */ |
| memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); |
| memset((src + crypt_stat->iv_bytes), 0, 16); |
| snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset); |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, "source:\n"); |
| ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (crypt_stat->mount_crypt_stat->flags & ECRYPTFS_ENABLE_CC) |
| rc = ecryptfs_calculate_hash(dst, crypt_stat, src, (crypt_stat->iv_bytes + 16)); |
| else |
| #endif |
| rc = ecryptfs_calculate_md5(dst, crypt_stat, src, |
| (crypt_stat->iv_bytes + 16)); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error attempting to compute " |
| "MD5 while generating IV for a page\n"); |
| goto out; |
| } |
| memcpy(iv, dst, crypt_stat->iv_bytes); |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); |
| ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); |
| } |
| out: |
| #ifdef CONFIG_CRYPTO_FIPS |
| kfree(dst); |
| #endif |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_init_crypt_stat |
| * @crypt_stat: Pointer to the crypt_stat struct to initialize. |
| * |
| * Initialize the crypt_stat structure. |
| */ |
| int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| struct crypto_shash *tfm; |
| int rc; |
| |
| tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0); |
| if (IS_ERR(tfm)) { |
| rc = PTR_ERR(tfm); |
| ecryptfs_printk(KERN_ERR, "Error attempting to " |
| "allocate crypto context; rc = [%d]\n", |
| rc); |
| return rc; |
| } |
| |
| memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); |
| INIT_LIST_HEAD(&crypt_stat->keysig_list); |
| mutex_init(&crypt_stat->keysig_list_mutex); |
| mutex_init(&crypt_stat->cs_mutex); |
| mutex_init(&crypt_stat->cs_tfm_mutex); |
| crypt_stat->hash_tfm = tfm; |
| crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; |
| |
| return 0; |
| } |
| |
| /** |
| * ecryptfs_destroy_crypt_stat |
| * @crypt_stat: Pointer to the crypt_stat struct to initialize. |
| * |
| * Releases all memory associated with a crypt_stat struct. |
| */ |
| void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| struct ecryptfs_key_sig *key_sig, *key_sig_tmp; |
| |
| crypto_free_skcipher(crypt_stat->tfm); |
| crypto_free_shash(crypt_stat->hash_tfm); |
| list_for_each_entry_safe(key_sig, key_sig_tmp, |
| &crypt_stat->keysig_list, crypt_stat_list) { |
| list_del(&key_sig->crypt_stat_list); |
| kmem_cache_free(ecryptfs_key_sig_cache, key_sig); |
| } |
| memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); |
| } |
| |
| void ecryptfs_destroy_mount_crypt_stat( |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
| { |
| struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp; |
| |
| if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED)) |
| return; |
| mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); |
| list_for_each_entry_safe(auth_tok, auth_tok_tmp, |
| &mount_crypt_stat->global_auth_tok_list, |
| mount_crypt_stat_list) { |
| list_del(&auth_tok->mount_crypt_stat_list); |
| if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID)) |
| key_put(auth_tok->global_auth_tok_key); |
| kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok); |
| } |
| mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); |
| memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); |
| } |
| |
| /** |
| * virt_to_scatterlist |
| * @addr: Virtual address |
| * @size: Size of data; should be an even multiple of the block size |
| * @sg: Pointer to scatterlist array; set to NULL to obtain only |
| * the number of scatterlist structs required in array |
| * @sg_size: Max array size |
| * |
| * Fills in a scatterlist array with page references for a passed |
| * virtual address. |
| * |
| * Returns the number of scatterlist structs in array used |
| */ |
| int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, |
| int sg_size) |
| { |
| int i = 0; |
| struct page *pg; |
| int offset; |
| int remainder_of_page; |
| |
| sg_init_table(sg, sg_size); |
| |
| while (size > 0 && i < sg_size) { |
| pg = virt_to_page(addr); |
| offset = offset_in_page(addr); |
| sg_set_page(&sg[i], pg, 0, offset); |
| remainder_of_page = PAGE_SIZE - offset; |
| if (size >= remainder_of_page) { |
| sg[i].length = remainder_of_page; |
| addr += remainder_of_page; |
| size -= remainder_of_page; |
| } else { |
| sg[i].length = size; |
| addr += size; |
| size = 0; |
| } |
| i++; |
| } |
| if (size > 0) |
| return -ENOMEM; |
| return i; |
| } |
| |
| struct extent_crypt_result { |
| struct completion completion; |
| int rc; |
| }; |
| |
| static void extent_crypt_complete(struct crypto_async_request *req, int rc) |
| { |
| struct extent_crypt_result *ecr = req->data; |
| |
| if (rc == -EINPROGRESS) |
| return; |
| |
| ecr->rc = rc; |
| complete(&ecr->completion); |
| } |
| |
| /** |
| * crypt_scatterlist |
| * @crypt_stat: Pointer to the crypt_stat struct to initialize. |
| * @dst_sg: Destination of the data after performing the crypto operation |
| * @src_sg: Data to be encrypted or decrypted |
| * @size: Length of data |
| * @iv: IV to use |
| * @op: ENCRYPT or DECRYPT to indicate the desired operation |
| * |
| * Returns the number of bytes encrypted or decrypted; negative value on error |
| */ |
| static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, |
| struct scatterlist *dst_sg, |
| struct scatterlist *src_sg, int size, |
| unsigned char *iv, int op) |
| { |
| struct skcipher_request *req = NULL; |
| struct extent_crypt_result ecr; |
| int rc = 0; |
| |
| BUG_ON(!crypt_stat || !crypt_stat->tfm |
| || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n", |
| crypt_stat->key_size); |
| ecryptfs_dump_hex(crypt_stat->key, |
| crypt_stat->key_size); |
| } |
| |
| init_completion(&ecr.completion); |
| |
| mutex_lock(&crypt_stat->cs_tfm_mutex); |
| req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS); |
| if (!req) { |
| mutex_unlock(&crypt_stat->cs_tfm_mutex); |
| rc = -ENOMEM; |
| goto out; |
| } |
| |
| skcipher_request_set_callback(req, |
| CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP, |
| extent_crypt_complete, &ecr); |
| /* Consider doing this once, when the file is opened */ |
| if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) { |
| rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key, |
| crypt_stat->key_size); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, |
| "Error setting key; rc = [%d]\n", |
| rc); |
| mutex_unlock(&crypt_stat->cs_tfm_mutex); |
| rc = -EINVAL; |
| goto out; |
| } |
| crypt_stat->flags |= ECRYPTFS_KEY_SET; |
| } |
| mutex_unlock(&crypt_stat->cs_tfm_mutex); |
| skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv); |
| rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) : |
| crypto_skcipher_decrypt(req); |
| if (rc == -EINPROGRESS || rc == -EBUSY) { |
| struct extent_crypt_result *ecr = req->base.data; |
| |
| wait_for_completion(&ecr->completion); |
| rc = ecr->rc; |
| reinit_completion(&ecr->completion); |
| } |
| out: |
| skcipher_request_free(req); |
| return rc; |
| } |
| |
| /** |
| * lower_offset_for_page |
| * |
| * Convert an eCryptfs page index into a lower byte offset |
| */ |
| static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat, |
| struct page *page) |
| { |
| return ecryptfs_lower_header_size(crypt_stat) + |
| ((loff_t)page->index << PAGE_SHIFT); |
| } |
| |
| /** |
| * crypt_extent |
| * @crypt_stat: crypt_stat containing cryptographic context for the |
| * encryption operation |
| * @dst_page: The page to write the result into |
| * @src_page: The page to read from |
| * @extent_offset: Page extent offset for use in generating IV |
| * @op: ENCRYPT or DECRYPT to indicate the desired operation |
| * |
| * Encrypts or decrypts one extent of data. |
| * |
| * Return zero on success; non-zero otherwise |
| */ |
| static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat, |
| struct page *dst_page, |
| struct page *src_page, |
| unsigned long extent_offset, int op) |
| { |
| pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index; |
| loff_t extent_base; |
| char extent_iv[ECRYPTFS_MAX_IV_BYTES]; |
| struct scatterlist src_sg, dst_sg; |
| size_t extent_size = crypt_stat->extent_size; |
| int rc; |
| |
| extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size)); |
| rc = ecryptfs_derive_iv(extent_iv, crypt_stat, |
| (extent_base + extent_offset)); |
| if (rc) { |
| ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for " |
| "extent [0x%.16llx]; rc = [%d]\n", |
| (unsigned long long)(extent_base + extent_offset), rc); |
| goto out; |
| } |
| |
| sg_init_table(&src_sg, 1); |
| sg_init_table(&dst_sg, 1); |
| |
| sg_set_page(&src_sg, src_page, extent_size, |
| extent_offset * extent_size); |
| sg_set_page(&dst_sg, dst_page, extent_size, |
| extent_offset * extent_size); |
| |
| rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size, |
| extent_iv, op); |
| if (rc < 0) { |
| printk(KERN_ERR "%s: Error attempting to crypt page with " |
| "page_index = [%ld], extent_offset = [%ld]; " |
| "rc = [%d]\n", __func__, page_index, extent_offset, rc); |
| goto out; |
| } |
| rc = 0; |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_encrypt_page |
| * @page: Page mapped from the eCryptfs inode for the file; contains |
| * decrypted content that needs to be encrypted (to a temporary |
| * page; not in place) and written out to the lower file |
| * |
| * Encrypt an eCryptfs page. This is done on a per-extent basis. Note |
| * that eCryptfs pages may straddle the lower pages -- for instance, |
| * if the file was created on a machine with an 8K page size |
| * (resulting in an 8K header), and then the file is copied onto a |
| * host with a 32K page size, then when reading page 0 of the eCryptfs |
| * file, 24K of page 0 of the lower file will be read and decrypted, |
| * and then 8K of page 1 of the lower file will be read and decrypted. |
| * |
| * Returns zero on success; negative on error |
| */ |
| int ecryptfs_encrypt_page(struct page *page) |
| { |
| struct inode *ecryptfs_inode; |
| struct ecryptfs_crypt_stat *crypt_stat; |
| char *enc_extent_virt; |
| struct page *enc_extent_page = NULL; |
| loff_t extent_offset; |
| loff_t lower_offset; |
| int rc = 0; |
| |
| ecryptfs_inode = page->mapping->host; |
| crypt_stat = |
| &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); |
| BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); |
| enc_extent_page = alloc_page(GFP_USER); |
| if (!enc_extent_page) { |
| rc = -ENOMEM; |
| ecryptfs_printk(KERN_ERR, "Error allocating memory for " |
| "encrypted extent\n"); |
| goto out; |
| } |
| |
| for (extent_offset = 0; |
| extent_offset < (PAGE_SIZE / crypt_stat->extent_size); |
| extent_offset++) { |
| rc = crypt_extent(crypt_stat, enc_extent_page, page, |
| extent_offset, ENCRYPT); |
| if (rc) { |
| printk(KERN_ERR "%s: Error encrypting extent; " |
| "rc = [%d]\n", __func__, rc); |
| goto out; |
| } |
| } |
| |
| lower_offset = lower_offset_for_page(crypt_stat, page); |
| enc_extent_virt = kmap(enc_extent_page); |
| rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset, |
| PAGE_SIZE); |
| kunmap(enc_extent_page); |
| if (rc < 0) { |
| ecryptfs_printk(KERN_ERR, |
| "Error attempting to write lower page; rc = [%d]\n", |
| rc); |
| goto out; |
| } |
| rc = 0; |
| out: |
| if (enc_extent_page) { |
| __free_page(enc_extent_page); |
| } |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_decrypt_page |
| * @page: Page mapped from the eCryptfs inode for the file; data read |
| * and decrypted from the lower file will be written into this |
| * page |
| * |
| * Decrypt an eCryptfs page. This is done on a per-extent basis. Note |
| * that eCryptfs pages may straddle the lower pages -- for instance, |
| * if the file was created on a machine with an 8K page size |
| * (resulting in an 8K header), and then the file is copied onto a |
| * host with a 32K page size, then when reading page 0 of the eCryptfs |
| * file, 24K of page 0 of the lower file will be read and decrypted, |
| * and then 8K of page 1 of the lower file will be read and decrypted. |
| * |
| * Returns zero on success; negative on error |
| */ |
| int ecryptfs_decrypt_page(struct page *page) |
| { |
| struct inode *ecryptfs_inode; |
| struct ecryptfs_crypt_stat *crypt_stat; |
| char *page_virt; |
| unsigned long extent_offset; |
| loff_t lower_offset; |
| int rc = 0; |
| |
| ecryptfs_inode = page->mapping->host; |
| crypt_stat = |
| &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat); |
| BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)); |
| |
| lower_offset = lower_offset_for_page(crypt_stat, page); |
| page_virt = kmap(page); |
| rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE, |
| ecryptfs_inode); |
| kunmap(page); |
| if (rc < 0) { |
| ecryptfs_printk(KERN_ERR, |
| "Error attempting to read lower page; rc = [%d]\n", |
| rc); |
| goto out; |
| } |
| |
| for (extent_offset = 0; |
| extent_offset < (PAGE_SIZE / crypt_stat->extent_size); |
| extent_offset++) { |
| rc = crypt_extent(crypt_stat, page, page, |
| extent_offset, DECRYPT); |
| if (rc) { |
| printk(KERN_ERR "%s: Error encrypting extent; " |
| "rc = [%d]\n", __func__, rc); |
| goto out; |
| } |
| } |
| out: |
| return rc; |
| } |
| |
| #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 |
| |
| /** |
| * ecryptfs_init_crypt_ctx |
| * @crypt_stat: Uninitialized crypt stats structure |
| * |
| * Initialize the crypto context. |
| * |
| * TODO: Performance: Keep a cache of initialized cipher contexts; |
| * only init if needed |
| */ |
| int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| char *full_alg_name; |
| int rc = -EINVAL; |
| |
| ecryptfs_printk(KERN_DEBUG, |
| "Initializing cipher [%s]; strlen = [%d]; " |
| "key_size_bits = [%zd]\n", |
| crypt_stat->cipher, (int)strlen(crypt_stat->cipher), |
| crypt_stat->key_size << 3); |
| mutex_lock(&crypt_stat->cs_tfm_mutex); |
| if (crypt_stat->tfm) { |
| rc = 0; |
| goto out_unlock; |
| } |
| rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, |
| crypt_stat->cipher, "cbc"); |
| if (rc) |
| goto out_unlock; |
| crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0); |
| if (IS_ERR(crypt_stat->tfm)) { |
| rc = PTR_ERR(crypt_stat->tfm); |
| crypt_stat->tfm = NULL; |
| ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " |
| "Error initializing cipher [%s]\n", |
| full_alg_name); |
| goto out_free; |
| } |
| crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| rc = 0; |
| out_free: |
| kfree(full_alg_name); |
| out_unlock: |
| mutex_unlock(&crypt_stat->cs_tfm_mutex); |
| return rc; |
| } |
| |
| static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| int extent_size_tmp; |
| |
| crypt_stat->extent_mask = 0xFFFFFFFF; |
| crypt_stat->extent_shift = 0; |
| if (crypt_stat->extent_size == 0) |
| return; |
| extent_size_tmp = crypt_stat->extent_size; |
| while ((extent_size_tmp & 0x01) == 0) { |
| extent_size_tmp >>= 1; |
| crypt_stat->extent_mask <<= 1; |
| crypt_stat->extent_shift++; |
| } |
| } |
| |
| void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| /* Default values; may be overwritten as we are parsing the |
| * packets. */ |
| crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; |
| set_extent_mask_and_shift(crypt_stat); |
| crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; |
| if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) |
| crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; |
| else { |
| if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) |
| crypt_stat->metadata_size = |
| ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; |
| else |
| crypt_stat->metadata_size = PAGE_SIZE; |
| } |
| } |
| |
| /** |
| * ecryptfs_compute_root_iv |
| * @crypt_stats |
| * |
| * On error, sets the root IV to all 0's. |
| */ |
| int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| int rc = 0; |
| #ifdef CONFIG_CRYPTO_FIPS |
| char *dst = NULL; |
| dst = kmalloc((crypt_stat->mount_crypt_stat->flags & ECRYPTFS_ENABLE_CC)?SHA256_HASH_SIZE:MD5_DIGEST_SIZE, GFP_KERNEL); |
| if (!dst) |
| goto out; |
| #else |
| char dst[MD5_DIGEST_SIZE]; |
| #endif |
| BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); |
| BUG_ON(crypt_stat->iv_bytes <= 0); |
| if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { |
| rc = -EINVAL; |
| ecryptfs_printk(KERN_WARNING, "Session key not valid; " |
| "cannot generate root IV\n"); |
| goto out; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (crypt_stat->mount_crypt_stat->flags & ECRYPTFS_ENABLE_CC) |
| rc = ecryptfs_calculate_sha256(dst, crypt_stat, crypt_stat->key, crypt_stat->key_size); |
| else |
| #endif |
| rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, crypt_stat->key_size); |
| |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error attempting to compute " |
| "MD5 while generating root IV\n"); |
| goto out; |
| } |
| memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); |
| out: |
| if (rc) { |
| memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); |
| crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| kfree(dst); |
| #endif |
| return rc; |
| } |
| static void get_random_key(u8 *data, unsigned int len) |
| { |
| #ifdef CONFIG_CRYPTO_FIPS |
| crypto_cc_rng_get_bytes(data, len); |
| #else |
| get_random_bytes(data, len); |
| #endif |
| } |
| static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| #ifdef CONFIG_CRYPTO_FIPS |
| crypto_cc_rng_get_bytes(crypt_stat->key, crypt_stat->key_size); |
| #else |
| get_random_bytes(crypt_stat->key, crypt_stat->key_size); |
| #endif |
| crypt_stat->flags |= ECRYPTFS_KEY_VALID; |
| ecryptfs_compute_root_iv(crypt_stat); |
| if (unlikely(ecryptfs_verbosity > 0)) { |
| ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); |
| ecryptfs_dump_hex(crypt_stat->key, |
| crypt_stat->key_size); |
| } |
| } |
| |
| /** |
| * ecryptfs_copy_mount_wide_flags_to_inode_flags |
| * @crypt_stat: The inode's cryptographic context |
| * @mount_crypt_stat: The mount point's cryptographic context |
| * |
| * This function propagates the mount-wide flags to individual inode |
| * flags. |
| */ |
| static void ecryptfs_copy_mount_wide_flags_to_inode_flags( |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
| { |
| if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) |
| crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; |
| if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) |
| crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; |
| if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) { |
| crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES; |
| if (mount_crypt_stat->flags |
| & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK) |
| crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK; |
| else if (mount_crypt_stat->flags |
| & ECRYPTFS_GLOBAL_ENCFN_USE_FEK) |
| crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK; |
| } |
| } |
| |
| static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs( |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
| { |
| struct ecryptfs_global_auth_tok *global_auth_tok; |
| int rc = 0; |
| |
| mutex_lock(&crypt_stat->keysig_list_mutex); |
| mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex); |
| |
| list_for_each_entry(global_auth_tok, |
| &mount_crypt_stat->global_auth_tok_list, |
| mount_crypt_stat_list) { |
| if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK) |
| continue; |
| rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig); |
| if (rc) { |
| printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc); |
| goto out; |
| } |
| } |
| |
| out: |
| mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex); |
| mutex_unlock(&crypt_stat->keysig_list_mutex); |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_set_default_crypt_stat_vals |
| * @crypt_stat: The inode's cryptographic context |
| * @mount_crypt_stat: The mount point's cryptographic context |
| * |
| * Default values in the event that policy does not override them. |
| */ |
| static void ecryptfs_set_default_crypt_stat_vals( |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
| { |
| ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, |
| mount_crypt_stat); |
| ecryptfs_set_default_sizes(crypt_stat); |
| strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); |
| crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; |
| crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); |
| crypt_stat->file_version = ECRYPTFS_FILE_VERSION; |
| crypt_stat->mount_crypt_stat = mount_crypt_stat; |
| } |
| |
| /** |
| * ecryptfs_new_file_context |
| * @ecryptfs_inode: The eCryptfs inode |
| * |
| * If the crypto context for the file has not yet been established, |
| * this is where we do that. Establishing a new crypto context |
| * involves the following decisions: |
| * - What cipher to use? |
| * - What set of authentication tokens to use? |
| * Here we just worry about getting enough information into the |
| * authentication tokens so that we know that they are available. |
| * We associate the available authentication tokens with the new file |
| * via the set of signatures in the crypt_stat struct. Later, when |
| * the headers are actually written out, we may again defer to |
| * userspace to perform the encryption of the session key; for the |
| * foreseeable future, this will be the case with public key packets. |
| * |
| * Returns zero on success; non-zero otherwise |
| */ |
| int ecryptfs_new_file_context(struct inode *ecryptfs_inode) |
| { |
| struct ecryptfs_crypt_stat *crypt_stat = |
| &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| &ecryptfs_superblock_to_private( |
| ecryptfs_inode->i_sb)->mount_crypt_stat; |
| int cipher_name_len; |
| int rc = 0; |
| |
| ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); |
| crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID); |
| ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, |
| mount_crypt_stat); |
| rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat, |
| mount_crypt_stat); |
| if (rc) { |
| printk(KERN_ERR "Error attempting to copy mount-wide key sigs " |
| "to the inode key sigs; rc = [%d]\n", rc); |
| goto out; |
| } |
| cipher_name_len = |
| strlen(mount_crypt_stat->global_default_cipher_name); |
| memcpy(crypt_stat->cipher, |
| mount_crypt_stat->global_default_cipher_name, |
| cipher_name_len); |
| crypt_stat->cipher[cipher_name_len] = '\0'; |
| crypt_stat->key_size = |
| mount_crypt_stat->global_default_cipher_key_size; |
| ecryptfs_generate_new_key(crypt_stat); |
| rc = ecryptfs_init_crypt_ctx(crypt_stat); |
| if (rc) |
| ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " |
| "context for cipher [%s]: rc = [%d]\n", |
| crypt_stat->cipher, rc); |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_validate_marker - check for the ecryptfs marker |
| * @data: The data block in which to check |
| * |
| * Returns zero if marker found; -EINVAL if not found |
| */ |
| static int ecryptfs_validate_marker(char *data) |
| { |
| u32 m_1, m_2; |
| |
| m_1 = get_unaligned_be32(data); |
| m_2 = get_unaligned_be32(data + 4); |
| if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) |
| return 0; |
| ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " |
| "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, |
| MAGIC_ECRYPTFS_MARKER); |
| ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " |
| "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); |
| return -EINVAL; |
| } |
| |
| struct ecryptfs_flag_map_elem { |
| u32 file_flag; |
| u32 local_flag; |
| }; |
| |
| /* Add support for additional flags by adding elements here. */ |
| static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { |
| {0x00000001, ECRYPTFS_ENABLE_HMAC}, |
| {0x00000002, ECRYPTFS_ENCRYPTED}, |
| {0x00000004, ECRYPTFS_METADATA_IN_XATTR}, |
| {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}, |
| {0x00000010, ECRYPTFS_SUPPORT_HMAC_KEY} |
| }; |
| |
| /** |
| * ecryptfs_process_flags |
| * @crypt_stat: The cryptographic context |
| * @page_virt: Source data to be parsed |
| * @bytes_read: Updated with the number of bytes read |
| * |
| * Returns zero on success; non-zero if the flag set is invalid |
| */ |
| static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, |
| char *page_virt, int *bytes_read) |
| { |
| int rc = 0; |
| int i; |
| u32 flags; |
| |
| flags = get_unaligned_be32(page_virt); |
| for (i = 0; i < ((sizeof(ecryptfs_flag_map) |
| / sizeof(struct ecryptfs_flag_map_elem))); i++) |
| if (flags & ecryptfs_flag_map[i].file_flag) { |
| crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; |
| } else |
| crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); |
| /* Version is in top 8 bits of the 32-bit flag vector */ |
| crypt_stat->file_version = ((flags >> 24) & 0xFF); |
| (*bytes_read) = 4; |
| return rc; |
| } |
| |
| /** |
| * write_ecryptfs_marker |
| * @page_virt: The pointer to in a page to begin writing the marker |
| * @written: Number of bytes written |
| * |
| * Marker = 0x3c81b7f5 |
| */ |
| static void write_ecryptfs_marker(char *page_virt, size_t *written) |
| { |
| u32 m_1, m_2; |
| |
| get_random_key((u8*)&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); |
| m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); |
| put_unaligned_be32(m_1, page_virt); |
| page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2); |
| put_unaligned_be32(m_2, page_virt); |
| (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; |
| } |
| |
| void ecryptfs_write_crypt_stat_flags(char *page_virt, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| size_t *written) |
| { |
| u32 flags = 0; |
| int i; |
| |
| for (i = 0; i < ((sizeof(ecryptfs_flag_map) |
| / sizeof(struct ecryptfs_flag_map_elem))); i++) |
| if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) |
| flags |= ecryptfs_flag_map[i].file_flag; |
| /* Version is in top 8 bits of the 32-bit flag vector */ |
| flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); |
| put_unaligned_be32(flags, page_virt); |
| (*written) = 4; |
| } |
| |
| struct ecryptfs_cipher_code_str_map_elem { |
| char cipher_str[16]; |
| u8 cipher_code; |
| }; |
| |
| /* Add support for additional ciphers by adding elements here. The |
| * cipher_code is whatever OpenPGP applications use to identify the |
| * ciphers. List in order of probability. */ |
| static struct ecryptfs_cipher_code_str_map_elem |
| ecryptfs_cipher_code_str_map[] = { |
| {"aes",RFC2440_CIPHER_AES_128 }, |
| {"blowfish", RFC2440_CIPHER_BLOWFISH}, |
| {"des3_ede", RFC2440_CIPHER_DES3_EDE}, |
| {"cast5", RFC2440_CIPHER_CAST_5}, |
| {"twofish", RFC2440_CIPHER_TWOFISH}, |
| {"cast6", RFC2440_CIPHER_CAST_6}, |
| {"aes", RFC2440_CIPHER_AES_192}, |
| {"aes", RFC2440_CIPHER_AES_256} |
| }; |
| |
| /** |
| * ecryptfs_code_for_cipher_string |
| * @cipher_name: The string alias for the cipher |
| * @key_bytes: Length of key in bytes; used for AES code selection |
| * |
| * Returns zero on no match, or the cipher code on match |
| */ |
| u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes) |
| { |
| int i; |
| u8 code = 0; |
| struct ecryptfs_cipher_code_str_map_elem *map = |
| ecryptfs_cipher_code_str_map; |
| |
| if (strcmp(cipher_name, "aes") == 0) { |
| switch (key_bytes) { |
| case 16: |
| code = RFC2440_CIPHER_AES_128; |
| break; |
| case 24: |
| code = RFC2440_CIPHER_AES_192; |
| break; |
| case 32: |
| code = RFC2440_CIPHER_AES_256; |
| } |
| } else { |
| for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) |
| if (strcmp(cipher_name, map[i].cipher_str) == 0) { |
| code = map[i].cipher_code; |
| break; |
| } |
| } |
| return code; |
| } |
| |
| /** |
| * ecryptfs_cipher_code_to_string |
| * @str: Destination to write out the cipher name |
| * @cipher_code: The code to convert to cipher name string |
| * |
| * Returns zero on success |
| */ |
| int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code) |
| { |
| int rc = 0; |
| int i; |
| |
| str[0] = '\0'; |
| for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) |
| if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) |
| strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); |
| if (str[0] == '\0') { |
| ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " |
| "[%d]\n", cipher_code); |
| rc = -EINVAL; |
| } |
| return rc; |
| } |
| |
| int ecryptfs_read_and_validate_header_region(struct inode *inode) |
| { |
| u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; |
| u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; |
| int rc; |
| |
| rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES, |
| inode); |
| if (rc < 0) |
| return rc; |
| else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) |
| return -EINVAL; |
| rc = ecryptfs_validate_marker(marker); |
| if (!rc) |
| ecryptfs_i_size_init(file_size, inode); |
| return rc; |
| } |
| |
| void |
| ecryptfs_write_header_metadata(char *virt, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| size_t *written) |
| { |
| u32 header_extent_size; |
| u16 num_header_extents_at_front; |
| |
| header_extent_size = (u32)crypt_stat->extent_size; |
| num_header_extents_at_front = |
| (u16)(crypt_stat->metadata_size / crypt_stat->extent_size); |
| put_unaligned_be32(header_extent_size, virt); |
| virt += 4; |
| put_unaligned_be16(num_header_extents_at_front, virt); |
| (*written) = 6; |
| } |
| |
| struct kmem_cache *ecryptfs_header_cache; |
| |
| /** |
| * ecryptfs_write_headers_virt |
| * @page_virt: The virtual address to write the headers to |
| * @max: The size of memory allocated at page_virt |
| * @size: Set to the number of bytes written by this function |
| * @crypt_stat: The cryptographic context |
| * @ecryptfs_dentry: The eCryptfs dentry |
| * |
| * Format version: 1 |
| * |
| * Header Extent: |
| * Octets 0-7: Unencrypted file size (big-endian) |
| * Octets 8-15: eCryptfs special marker |
| * Octets 16-19: Flags |
| * Octet 16: File format version number (between 0 and 255) |
| * Octets 17-18: Reserved |
| * Octet 19: Bit 1 (lsb): Reserved |
| * Bit 2: Encrypted? |
| * Bits 3-8: Reserved |
| * Octets 20-23: Header extent size (big-endian) |
| * Octets 24-25: Number of header extents at front of file |
| * (big-endian) |
| * Octet 26: Begin RFC 2440 authentication token packet set |
| * Data Extent 0: |
| * Lower data (CBC encrypted) |
| * Data Extent 1: |
| * Lower data (CBC encrypted) |
| * ... |
| * |
| * Returns zero on success |
| */ |
| static int ecryptfs_write_headers_virt(char *page_virt, size_t max, |
| size_t *size, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct dentry *ecryptfs_dentry) |
| { |
| int rc; |
| size_t written; |
| size_t offset; |
| #ifdef CONFIG_ECRYPTFS_FEK_INTEGRITY |
| crypt_stat->flags |= ECRYPTFS_ENABLE_HMAC; |
| crypt_stat->flags |= ECRYPTFS_SUPPORT_HMAC_KEY; |
| #endif |
| |
| offset = ECRYPTFS_FILE_SIZE_BYTES; |
| write_ecryptfs_marker((page_virt + offset), &written); |
| offset += written; |
| ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat, |
| &written); |
| offset += written; |
| ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, |
| &written); |
| offset += written; |
| rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, |
| ecryptfs_dentry, &written, |
| max - offset); |
| if (rc) |
| ecryptfs_printk(KERN_WARNING, "Error generating key packet " |
| "set; rc = [%d]\n", rc); |
| #ifdef CONFIG_ECRYPTFS_FEK_INTEGRITY |
| memcpy((page_virt + HASH_OFFSET), crypt_stat->hash, FEK_HASH_SIZE); |
| #endif |
| if (size) { |
| offset += written; |
| *size = offset; |
| } |
| return rc; |
| } |
| |
| static int |
| ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode, |
| char *virt, size_t virt_len) |
| { |
| int rc; |
| |
| rc = ecryptfs_write_lower(ecryptfs_inode, virt, |
| 0, virt_len); |
| if (rc < 0) |
| printk(KERN_ERR "%s: Error attempting to write header " |
| "information to lower file; rc = [%d]\n", __func__, rc); |
| else |
| rc = 0; |
| return rc; |
| } |
| |
| static int |
| ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, |
| struct inode *ecryptfs_inode, |
| char *page_virt, size_t size) |
| { |
| int rc; |
| |
| rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode, |
| ECRYPTFS_XATTR_NAME, page_virt, size, 0); |
| return rc; |
| } |
| |
| static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask, |
| unsigned int order) |
| { |
| struct page *page; |
| |
| page = alloc_pages(gfp_mask | __GFP_ZERO, order); |
| if (page) |
| return (unsigned long) page_address(page); |
| return 0; |
| } |
| |
| /** |
| * ecryptfs_write_metadata |
| * @ecryptfs_dentry: The eCryptfs dentry, which should be negative |
| * @ecryptfs_inode: The newly created eCryptfs inode |
| * |
| * Write the file headers out. This will likely involve a userspace |
| * callout, in which the session key is encrypted with one or more |
| * public keys and/or the passphrase necessary to do the encryption is |
| * retrieved via a prompt. Exactly what happens at this point should |
| * be policy-dependent. |
| * |
| * Returns zero on success; non-zero on error |
| */ |
| int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, |
| struct inode *ecryptfs_inode) |
| { |
| struct ecryptfs_crypt_stat *crypt_stat = |
| &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; |
| unsigned int order; |
| char *virt; |
| size_t virt_len; |
| size_t size = 0; |
| int rc = 0; |
| |
| if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { |
| if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { |
| printk(KERN_ERR "Key is invalid; bailing out\n"); |
| rc = -EINVAL; |
| goto out; |
| } |
| } else { |
| printk(KERN_WARNING "%s: Encrypted flag not set\n", |
| __func__); |
| rc = -EINVAL; |
| goto out; |
| } |
| virt_len = crypt_stat->metadata_size; |
| order = get_order(virt_len); |
| /* Released in this function */ |
| virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order); |
| if (!virt) { |
| printk(KERN_ERR "%s: Out of memory\n", __func__); |
| rc = -ENOMEM; |
| goto out; |
| } |
| /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */ |
| rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat, |
| ecryptfs_dentry); |
| if (unlikely(rc)) { |
| printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n", |
| __func__, rc); |
| goto out_free; |
| } |
| if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) |
| rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode, |
| virt, size); |
| else |
| rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt, |
| virt_len); |
| if (rc) { |
| printk(KERN_ERR "%s: Error writing metadata out to lower file; " |
| "rc = [%d]\n", __func__, rc); |
| goto out_free; |
| } |
| out_free: |
| free_pages((unsigned long)virt, order); |
| out: |
| return rc; |
| } |
| |
| #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 |
| #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 |
| static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, |
| char *virt, int *bytes_read, |
| int validate_header_size) |
| { |
| int rc = 0; |
| u32 header_extent_size; |
| u16 num_header_extents_at_front; |
| |
| header_extent_size = get_unaligned_be32(virt); |
| virt += sizeof(__be32); |
| num_header_extents_at_front = get_unaligned_be16(virt); |
| crypt_stat->metadata_size = (((size_t)num_header_extents_at_front |
| * (size_t)header_extent_size)); |
| (*bytes_read) = (sizeof(__be32) + sizeof(__be16)); |
| if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) |
| && (crypt_stat->metadata_size |
| < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { |
| rc = -EINVAL; |
| printk(KERN_WARNING "Invalid header size: [%zd]\n", |
| crypt_stat->metadata_size); |
| } |
| return rc; |
| } |
| |
| /** |
| * set_default_header_data |
| * @crypt_stat: The cryptographic context |
| * |
| * For version 0 file format; this function is only for backwards |
| * compatibility for files created with the prior versions of |
| * eCryptfs. |
| */ |
| static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) |
| { |
| crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; |
| } |
| |
| void ecryptfs_i_size_init(const char *page_virt, struct inode *inode) |
| { |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat; |
| struct ecryptfs_crypt_stat *crypt_stat; |
| u64 file_size; |
| |
| crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat; |
| mount_crypt_stat = |
| &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat; |
| if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) { |
| file_size = i_size_read(ecryptfs_inode_to_lower(inode)); |
| if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) |
| file_size += crypt_stat->metadata_size; |
| } else |
| file_size = get_unaligned_be64(page_virt); |
| i_size_write(inode, (loff_t)file_size); |
| crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED; |
| } |
| |
| /** |
| * ecryptfs_read_headers_virt |
| * @page_virt: The virtual address into which to read the headers |
| * @crypt_stat: The cryptographic context |
| * @ecryptfs_dentry: The eCryptfs dentry |
| * @validate_header_size: Whether to validate the header size while reading |
| * |
| * Read/parse the header data. The header format is detailed in the |
| * comment block for the ecryptfs_write_headers_virt() function. |
| * |
| * Returns zero on success |
| */ |
| static int ecryptfs_read_headers_virt(char *page_virt, |
| struct ecryptfs_crypt_stat *crypt_stat, |
| struct dentry *ecryptfs_dentry, |
| int validate_header_size) |
| { |
| int rc = 0; |
| int offset; |
| int bytes_read; |
| |
| ecryptfs_set_default_sizes(crypt_stat); |
| crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( |
| ecryptfs_dentry->d_sb)->mount_crypt_stat; |
| offset = ECRYPTFS_FILE_SIZE_BYTES; |
| rc = ecryptfs_validate_marker(page_virt + offset); |
| if (rc) |
| goto out; |
| if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED)) |
| ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry)); |
| offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; |
| rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), |
| &bytes_read); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); |
| goto out; |
| } |
| if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { |
| ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " |
| "file version [%d] is supported by this " |
| "version of eCryptfs\n", |
| crypt_stat->file_version, |
| ECRYPTFS_SUPPORTED_FILE_VERSION); |
| rc = -EINVAL; |
| goto out; |
| } |
| offset += bytes_read; |
| if (crypt_stat->file_version >= 1) { |
| rc = parse_header_metadata(crypt_stat, (page_virt + offset), |
| &bytes_read, validate_header_size); |
| if (rc) { |
| ecryptfs_printk(KERN_WARNING, "Error reading header " |
| "metadata; rc = [%d]\n", rc); |
| } |
| offset += bytes_read; |
| } else |
| set_default_header_data(crypt_stat); |
| #ifdef CONFIG_ECRYPTFS_FEK_INTEGRITY |
| if(crypt_stat->flags & ECRYPTFS_ENABLE_HMAC) { |
| memcpy(crypt_stat->hash, (page_virt + HASH_OFFSET), FEK_HASH_SIZE); |
| } |
| #endif |
| rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), |
| ecryptfs_dentry); |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_read_xattr_region |
| * @page_virt: The vitual address into which to read the xattr data |
| * @ecryptfs_inode: The eCryptfs inode |
| * |
| * Attempts to read the crypto metadata from the extended attribute |
| * region of the lower file. |
| * |
| * Returns zero on success; non-zero on error |
| */ |
| int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode) |
| { |
| struct dentry *lower_dentry = |
| ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry; |
| ssize_t size; |
| int rc = 0; |
| |
| size = ecryptfs_getxattr_lower(lower_dentry, |
| ecryptfs_inode_to_lower(ecryptfs_inode), |
| ECRYPTFS_XATTR_NAME, |
| page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); |
| if (size < 0) { |
| if (unlikely(ecryptfs_verbosity > 0)) |
| printk(KERN_INFO "Error attempting to read the [%s] " |
| "xattr from the lower file; return value = " |
| "[%zd]\n", ECRYPTFS_XATTR_NAME, size); |
| rc = -EINVAL; |
| goto out; |
| } |
| out: |
| return rc; |
| } |
| |
| int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry, |
| struct inode *inode) |
| { |
| u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES]; |
| u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES; |
| int rc; |
| |
| rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry), |
| ecryptfs_inode_to_lower(inode), |
| ECRYPTFS_XATTR_NAME, file_size, |
| ECRYPTFS_SIZE_AND_MARKER_BYTES); |
| if (rc < 0) |
| return rc; |
| else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES) |
| return -EINVAL; |
| rc = ecryptfs_validate_marker(marker); |
| if (!rc) |
| ecryptfs_i_size_init(file_size, inode); |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_read_metadata |
| * |
| * Common entry point for reading file metadata. From here, we could |
| * retrieve the header information from the header region of the file, |
| * the xattr region of the file, or some other repository that is |
| * stored separately from the file itself. The current implementation |
| * supports retrieving the metadata information from the file contents |
| * and from the xattr region. |
| * |
| * Returns zero if valid headers found and parsed; non-zero otherwise |
| */ |
| int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry) |
| { |
| int rc; |
| char *page_virt; |
| struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry); |
| struct ecryptfs_crypt_stat *crypt_stat = |
| &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat; |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| &ecryptfs_superblock_to_private( |
| ecryptfs_dentry->d_sb)->mount_crypt_stat; |
| |
| ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, |
| mount_crypt_stat); |
| /* Read the first page from the underlying file */ |
| page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER); |
| if (!page_virt) { |
| rc = -ENOMEM; |
| printk(KERN_ERR "%s: Unable to allocate page_virt\n", |
| __func__); |
| goto out; |
| } |
| rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size, |
| ecryptfs_inode); |
| if (rc >= 0) |
| rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, |
| ecryptfs_dentry, |
| ECRYPTFS_VALIDATE_HEADER_SIZE); |
| if (rc) { |
| /* metadata is not in the file header, so try xattrs */ |
| memset(page_virt, 0, PAGE_SIZE); |
| rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode); |
| if (rc) { |
| printk(KERN_DEBUG "Valid eCryptfs headers not found in " |
| "file header region or xattr region, inode %lu\n", |
| ecryptfs_inode->i_ino); |
| rc = -EINVAL; |
| goto out; |
| } |
| rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, |
| ecryptfs_dentry, |
| ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); |
| if (rc) { |
| printk(KERN_DEBUG "Valid eCryptfs headers not found in " |
| "file xattr region either, inode %lu\n", |
| ecryptfs_inode->i_ino); |
| rc = -EINVAL; |
| } |
| if (crypt_stat->mount_crypt_stat->flags |
| & ECRYPTFS_XATTR_METADATA_ENABLED) { |
| crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; |
| } else { |
| printk(KERN_WARNING "Attempt to access file with " |
| "crypto metadata only in the extended attribute " |
| "region, but eCryptfs was mounted without " |
| "xattr support enabled. eCryptfs will not treat " |
| "this like an encrypted file, inode %lu\n", |
| ecryptfs_inode->i_ino); |
| rc = -EINVAL; |
| } |
| } |
| out: |
| if (page_virt) { |
| memset(page_virt, 0, PAGE_SIZE); |
| kmem_cache_free(ecryptfs_header_cache, page_virt); |
| } |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_encrypt_filename - encrypt filename |
| * |
| * CBC-encrypts the filename. We do not want to encrypt the same |
| * filename with the same key and IV, which may happen with hard |
| * links, so we prepend random bits to each filename. |
| * |
| * Returns zero on success; non-zero otherwise |
| */ |
| static int |
| ecryptfs_encrypt_filename(struct ecryptfs_filename *filename, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
| { |
| int rc = 0; |
| |
| filename->encrypted_filename = NULL; |
| filename->encrypted_filename_size = 0; |
| if (mount_crypt_stat && (mount_crypt_stat->flags |
| & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { |
| size_t packet_size; |
| size_t remaining_bytes; |
| |
| rc = ecryptfs_write_tag_70_packet( |
| NULL, NULL, |
| &filename->encrypted_filename_size, |
| mount_crypt_stat, NULL, |
| filename->filename_size); |
| if (rc) { |
| printk(KERN_ERR "%s: Error attempting to get packet " |
| "size for tag 72; rc = [%d]\n", __func__, |
| rc); |
| filename->encrypted_filename_size = 0; |
| goto out; |
| } |
| filename->encrypted_filename = |
| kmalloc(filename->encrypted_filename_size, GFP_KERNEL); |
| if (!filename->encrypted_filename) { |
| printk(KERN_ERR "%s: Out of memory whilst attempting " |
| "to kmalloc [%zd] bytes\n", __func__, |
| filename->encrypted_filename_size); |
| rc = -ENOMEM; |
| goto out; |
| } |
| remaining_bytes = filename->encrypted_filename_size; |
| rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename, |
| &remaining_bytes, |
| &packet_size, |
| mount_crypt_stat, |
| filename->filename, |
| filename->filename_size); |
| if (rc) { |
| printk(KERN_ERR "%s: Error attempting to generate " |
| "tag 70 packet; rc = [%d]\n", __func__, |
| rc); |
| kfree(filename->encrypted_filename); |
| filename->encrypted_filename = NULL; |
| filename->encrypted_filename_size = 0; |
| goto out; |
| } |
| filename->encrypted_filename_size = packet_size; |
| } else { |
| printk(KERN_ERR "%s: No support for requested filename " |
| "encryption method in this release\n", __func__); |
| rc = -EOPNOTSUPP; |
| goto out; |
| } |
| out: |
| return rc; |
| } |
| |
| static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size, |
| const char *name, size_t name_size) |
| { |
| int rc = 0; |
| |
| (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL); |
| if (!(*copied_name)) { |
| rc = -ENOMEM; |
| goto out; |
| } |
| memcpy((void *)(*copied_name), (void *)name, name_size); |
| (*copied_name)[(name_size)] = '\0'; /* Only for convenience |
| * in printing out the |
| * string in debug |
| * messages */ |
| (*copied_name_size) = name_size; |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_process_key_cipher - Perform key cipher initialization. |
| * @key_tfm: Crypto context for key material, set by this function |
| * @cipher_name: Name of the cipher |
| * @key_size: Size of the key in bytes |
| * |
| * Returns zero on success. Any crypto_tfm structs allocated here |
| * should be released by other functions, such as on a superblock put |
| * event, regardless of whether this function succeeds for fails. |
| */ |
| #ifdef CONFIG_CRYPTO_FIPS |
| static int |
| ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, |
| char *cipher_name, size_t *key_size, u32 mount_flags) |
| #else |
| static int |
| ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm, |
| char *cipher_name, size_t *key_size) |
| #endif |
| { |
| char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; |
| char *full_alg_name = NULL; |
| int rc; |
| |
| *key_tfm = NULL; |
| if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { |
| rc = -EINVAL; |
| printk(KERN_ERR "Requested key size is [%zd] bytes; maximum " |
| "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); |
| goto out; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (mount_flags & ECRYPTFS_ENABLE_CC) |
| rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, |
| "cbc"); |
| else |
| #endif |
| rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, |
| "ecb"); |
| if (rc) |
| goto out; |
| *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); |
| if (IS_ERR(*key_tfm)) { |
| rc = PTR_ERR(*key_tfm); |
| printk(KERN_ERR "Unable to allocate crypto cipher with name " |
| "[%s]; rc = [%d]\n", full_alg_name, rc); |
| goto out; |
| } |
| crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); |
| if (*key_size == 0) |
| *key_size = crypto_skcipher_default_keysize(*key_tfm); |
| |
| get_random_key(dummy_key, *key_size); |
| rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size); |
| if (rc) { |
| printk(KERN_ERR "Error attempting to set key of size [%zd] for " |
| "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name, |
| rc); |
| rc = -EINVAL; |
| goto out; |
| } |
| out: |
| kfree(full_alg_name); |
| return rc; |
| } |
| |
| struct kmem_cache *ecryptfs_key_tfm_cache; |
| static struct list_head key_tfm_list; |
| struct mutex key_tfm_list_mutex; |
| |
| int __init ecryptfs_init_crypto(void) |
| { |
| mutex_init(&key_tfm_list_mutex); |
| INIT_LIST_HEAD(&key_tfm_list); |
| return 0; |
| } |
| |
| /** |
| * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list |
| * |
| * Called only at module unload time |
| */ |
| int ecryptfs_destroy_crypto(void) |
| { |
| struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp; |
| |
| mutex_lock(&key_tfm_list_mutex); |
| list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list, |
| key_tfm_list) { |
| list_del(&key_tfm->key_tfm_list); |
| crypto_free_skcipher(key_tfm->key_tfm); |
| kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm); |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| crypto_rng_destroy(); |
| #endif |
| mutex_unlock(&key_tfm_list_mutex); |
| return 0; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| int |
| ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, |
| size_t key_size, u32 mount_flags) |
| #else |
| int |
| ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name, |
| size_t key_size) |
| #endif |
| { |
| struct ecryptfs_key_tfm *tmp_tfm; |
| int rc = 0; |
| |
| BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); |
| |
| tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL); |
| if (key_tfm != NULL) |
| (*key_tfm) = tmp_tfm; |
| if (!tmp_tfm) { |
| rc = -ENOMEM; |
| printk(KERN_ERR "Error attempting to allocate from " |
| "ecryptfs_key_tfm_cache\n"); |
| goto out; |
| } |
| mutex_init(&tmp_tfm->key_tfm_mutex); |
| strncpy(tmp_tfm->cipher_name, cipher_name, |
| ECRYPTFS_MAX_CIPHER_NAME_SIZE); |
| tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0'; |
| tmp_tfm->key_size = key_size; |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (mount_flags & ECRYPTFS_ENABLE_CC) { |
| strncpy(tmp_tfm->cipher_mode, ECRYPTFS_AES_CBC_MODE, ECRYPTFS_MAX_CIPHER_MODE_SIZE+1); |
| } else { |
| strncpy(tmp_tfm->cipher_mode, ECRYPTFS_AES_ECB_MODE, ECRYPTFS_MAX_CIPHER_MODE_SIZE+1); |
| } |
| |
| rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, |
| tmp_tfm->cipher_name, |
| &tmp_tfm->key_size, |
| mount_flags); |
| #else |
| rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm, |
| tmp_tfm->cipher_name, |
| &tmp_tfm->key_size); |
| #endif |
| if (rc) { |
| printk(KERN_ERR "Error attempting to initialize key TFM " |
| "cipher with name = [%s]; rc = [%d]\n", |
| tmp_tfm->cipher_name, rc); |
| kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm); |
| if (key_tfm != NULL) |
| (*key_tfm) = NULL; |
| goto out; |
| } |
| list_add(&tmp_tfm->key_tfm_list, &key_tfm_list); |
| out: |
| return rc; |
| } |
| |
| /** |
| * ecryptfs_tfm_exists - Search for existing tfm for cipher_name. |
| * @cipher_name: the name of the cipher to search for |
| * @key_tfm: set to corresponding tfm if found |
| * |
| * Searches for cached key_tfm matching @cipher_name |
| * Must be called with &key_tfm_list_mutex held |
| * Returns 1 if found, with @key_tfm set |
| * Returns 0 if not found, with @key_tfm set to NULL |
| */ |
| #ifdef CONFIG_CRYPTO_FIPS |
| int ecryptfs_tfm_exists(char *cipher_name, char *cipher_mode, struct ecryptfs_key_tfm **key_tfm) |
| #else |
| int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm) |
| #endif |
| { |
| struct ecryptfs_key_tfm *tmp_key_tfm; |
| |
| BUG_ON(!mutex_is_locked(&key_tfm_list_mutex)); |
| |
| list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) { |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0 && |
| (strcmp(tmp_key_tfm->cipher_mode, cipher_mode) == 0)) { |
| if (key_tfm) |
| (*key_tfm) = tmp_key_tfm; |
| return 1; |
| } |
| #else |
| if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) { |
| if (key_tfm) |
| (*key_tfm) = tmp_key_tfm; |
| return 1; |
| } |
| #endif |
| } |
| if (key_tfm) |
| (*key_tfm) = NULL; |
| return 0; |
| } |
| |
| /** |
| * ecryptfs_get_tfm_and_mutex_for_cipher_name |
| * |
| * @tfm: set to cached tfm found, or new tfm created |
| * @tfm_mutex: set to mutex for cached tfm found, or new tfm created |
| * @cipher_name: the name of the cipher to search for and/or add |
| * |
| * Sets pointers to @tfm & @tfm_mutex matching @cipher_name. |
| * Searches for cached item first, and creates new if not found. |
| * Returns 0 on success, non-zero if adding new cipher failed |
| */ |
| #ifdef CONFIG_CRYPTO_FIPS |
| int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, |
| struct mutex **tfm_mutex, |
| char *cipher_name, u32 mount_flags) |
| #else |
| int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm, |
| struct mutex **tfm_mutex, |
| char *cipher_name) |
| #endif |
| { |
| struct ecryptfs_key_tfm *key_tfm; |
| int rc = 0; |
| #ifdef CONFIG_CRYPTO_FIPS |
| char cipher_mode[ECRYPTFS_MAX_CIPHER_MODE_SIZE+1] = {0,}; |
| #endif |
| |
| (*tfm) = NULL; |
| (*tfm_mutex) = NULL; |
| |
| mutex_lock(&key_tfm_list_mutex); |
| #ifdef CONFIG_CRYPTO_FIPS |
| if (mount_flags & ECRYPTFS_ENABLE_CC) { |
| strncpy(cipher_mode, ECRYPTFS_AES_CBC_MODE, ECRYPTFS_MAX_CIPHER_MODE_SIZE+1); |
| } else { |
| strncpy(cipher_mode, ECRYPTFS_AES_ECB_MODE, ECRYPTFS_MAX_CIPHER_MODE_SIZE+1); |
| } |
| |
| if (!ecryptfs_tfm_exists(cipher_name, cipher_mode, &key_tfm)) { |
| rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0, mount_flags); |
| if (rc) { |
| printk(KERN_ERR "Error adding new key_tfm to list; " |
| "rc = [%d]\n", rc); |
| goto out; |
| } |
| } |
| #else |
| if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) { |
| rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0); |
| if (rc) { |
| printk(KERN_ERR "Error adding new key_tfm to list; " |
| "rc = [%d]\n", rc); |
| goto out; |
| } |
| } |
| #endif |
| (*tfm) = key_tfm->key_tfm; |
| (*tfm_mutex) = &key_tfm->key_tfm_mutex; |
| out: |
| mutex_unlock(&key_tfm_list_mutex); |
| return rc; |
| } |
| |
| /* 64 characters forming a 6-bit target field */ |
| static unsigned char *portable_filename_chars = ("-.0123456789ABCD" |
| "EFGHIJKLMNOPQRST" |
| "UVWXYZabcdefghij" |
| "klmnopqrstuvwxyz"); |
| |
| /* We could either offset on every reverse map or just pad some 0x00's |
| * at the front here */ |
| static const unsigned char filename_rev_map[256] = { |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */ |
| 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */ |
| 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */ |
| 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */ |
| 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */ |
| 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */ |
| 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */ |
| 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */ |
| 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */ |
| 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */ |
| 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */ |
| 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */ |
| }; |
| |
| /** |
| * ecryptfs_encode_for_filename |
| * @dst: Destination location for encoded filename |
| * @dst_size: Size of the encoded filename in bytes |
| * @src: Source location for the filename to encode |
| * @src_size: Size of the source in bytes |
| */ |
| static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size, |
| unsigned char *src, size_t src_size) |
| { |
| size_t num_blocks; |
| size_t block_num = 0; |
| size_t dst_offset = 0; |
| unsigned char last_block[3]; |
| |
| if (src_size == 0) { |
| (*dst_size) = 0; |
| goto out; |
| } |
| num_blocks = (src_size / 3); |
| if ((src_size % 3) == 0) { |
| memcpy(last_block, (&src[src_size - 3]), 3); |
| } else { |
| num_blocks++; |
| last_block[2] = 0x00; |
| switch (src_size % 3) { |
| case 1: |
| last_block[0] = src[src_size - 1]; |
| last_block[1] = 0x00; |
| break; |
| case 2: |
| last_block[0] = src[src_size - 2]; |
| last_block[1] = src[src_size - 1]; |
| } |
| } |
| (*dst_size) = (num_blocks * 4); |
| if (!dst) |
| goto out; |
| while (block_num < num_blocks) { |
| unsigned char *src_block; |
| unsigned char dst_block[4]; |
| |
| if (block_num == (num_blocks - 1)) |
| src_block = last_block; |
| else |
| src_block = &src[block_num * 3]; |
| dst_block[0] = ((src_block[0] >> 2) & 0x3F); |
| dst_block[1] = (((src_block[0] << 4) & 0x30) |
| | ((src_block[1] >> 4) & 0x0F)); |
| dst_block[2] = (((src_block[1] << 2) & 0x3C) |
| | ((src_block[2] >> 6) & 0x03)); |
| dst_block[3] = (src_block[2] & 0x3F); |
| dst[dst_offset++] = portable_filename_chars[dst_block[0]]; |
| dst[dst_offset++] = portable_filename_chars[dst_block[1]]; |
| dst[dst_offset++] = portable_filename_chars[dst_block[2]]; |
| dst[dst_offset++] = portable_filename_chars[dst_block[3]]; |
| block_num++; |
| } |
| out: |
| return; |
| } |
| |
| static size_t ecryptfs_max_decoded_size(size_t encoded_size) |
| { |
| /* Not exact; conservatively long. Every block of 4 |
| * encoded characters decodes into a block of 3 |
| * decoded characters. This segment of code provides |
| * the caller with the maximum amount of allocated |
| * space that @dst will need to point to in a |
| * subsequent call. */ |
| return ((encoded_size + 1) * 3) / 4; |
| } |
| |
| /** |
| * ecryptfs_decode_from_filename |
| * @dst: If NULL, this function only sets @dst_size and returns. If |
| * non-NULL, this function decodes the encoded octets in @src |
| * into the memory that @dst points to. |
| * @dst_size: Set to the size of the decoded string. |
| * @src: The encoded set of octets to decode. |
| * @src_size: The size of the encoded set of octets to decode. |
| */ |
| static void |
| ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size, |
| const unsigned char *src, size_t src_size) |
| { |
| u8 current_bit_offset = 0; |
| size_t src_byte_offset = 0; |
| size_t dst_byte_offset = 0; |
| |
| if (dst == NULL) { |
| (*dst_size) = ecryptfs_max_decoded_size(src_size); |
| goto out; |
| } |
| while (src_byte_offset < src_size) { |
| unsigned char src_byte = |
| filename_rev_map[(int)src[src_byte_offset]]; |
| |
| switch (current_bit_offset) { |
| case 0: |
| dst[dst_byte_offset] = (src_byte << 2); |
| current_bit_offset = 6; |
| break; |
| case 6: |
| dst[dst_byte_offset++] |= (src_byte >> 4); |
| dst[dst_byte_offset] = ((src_byte & 0xF) |
| << 4); |
| current_bit_offset = 4; |
| break; |
| case 4: |
| dst[dst_byte_offset++] |= (src_byte >> 2); |
| dst[dst_byte_offset] = (src_byte << 6); |
| current_bit_offset = 2; |
| break; |
| case 2: |
| dst[dst_byte_offset++] |= (src_byte); |
| current_bit_offset = 0; |
| break; |
| } |
| src_byte_offset++; |
| } |
| (*dst_size) = dst_byte_offset; |
| out: |
| return; |
| } |
| |
| /** |
| * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text |
| * @crypt_stat: The crypt_stat struct associated with the file anem to encode |
| * @name: The plaintext name |
| * @length: The length of the plaintext |
| * @encoded_name: The encypted name |
| * |
| * Encrypts and encodes a filename into something that constitutes a |
| * valid filename for a filesystem, with printable characters. |
| * |
| * We assume that we have a properly initialized crypto context, |
| * pointed to by crypt_stat->tfm. |
| * |
| * Returns zero on success; non-zero on otherwise |
| */ |
| int ecryptfs_encrypt_and_encode_filename( |
| char **encoded_name, |
| size_t *encoded_name_size, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat, |
| const char *name, size_t name_size) |
| { |
| size_t encoded_name_no_prefix_size; |
| int rc = 0; |
| |
| (*encoded_name) = NULL; |
| (*encoded_name_size) = 0; |
| if (mount_crypt_stat && (mount_crypt_stat->flags |
| & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { |
| struct ecryptfs_filename *filename; |
| |
| filename = kzalloc(sizeof(*filename), GFP_KERNEL); |
| if (!filename) { |
| printk(KERN_ERR "%s: Out of memory whilst attempting " |
| "to kzalloc [%zd] bytes\n", __func__, |
| sizeof(*filename)); |
| rc = -ENOMEM; |
| goto out; |
| } |
| filename->filename = (char *)name; |
| filename->filename_size = name_size; |
| rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat); |
| if (rc) { |
| printk(KERN_ERR "%s: Error attempting to encrypt " |
| "filename; rc = [%d]\n", __func__, rc); |
| kfree(filename); |
| goto out; |
| } |
| ecryptfs_encode_for_filename( |
| NULL, &encoded_name_no_prefix_size, |
| filename->encrypted_filename, |
| filename->encrypted_filename_size); |
| if (mount_crypt_stat |
| && (mount_crypt_stat->flags |
| & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) |
| (*encoded_name_size) = |
| (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE |
| + encoded_name_no_prefix_size); |
| else |
| (*encoded_name_size) = |
| (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE |
| + encoded_name_no_prefix_size); |
| (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL); |
| if (!(*encoded_name)) { |
| printk(KERN_ERR "%s: Out of memory whilst attempting " |
| "to kzalloc [%zd] bytes\n", __func__, |
| (*encoded_name_size)); |
| rc = -ENOMEM; |
| kfree(filename->encrypted_filename); |
| kfree(filename); |
| goto out; |
| } |
| if (mount_crypt_stat |
| && (mount_crypt_stat->flags |
| & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) { |
| memcpy((*encoded_name), |
| ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, |
| ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE); |
| ecryptfs_encode_for_filename( |
| ((*encoded_name) |
| + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE), |
| &encoded_name_no_prefix_size, |
| filename->encrypted_filename, |
| filename->encrypted_filename_size); |
| (*encoded_name_size) = |
| (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE |
| + encoded_name_no_prefix_size); |
| (*encoded_name)[(*encoded_name_size)] = '\0'; |
| } else { |
| rc = -EOPNOTSUPP; |
| } |
| if (rc) { |
| printk(KERN_ERR "%s: Error attempting to encode " |
| "encrypted filename; rc = [%d]\n", __func__, |
| rc); |
| kfree((*encoded_name)); |
| (*encoded_name) = NULL; |
| (*encoded_name_size) = 0; |
| } |
| kfree(filename->encrypted_filename); |
| kfree(filename); |
| } else { |
| rc = ecryptfs_copy_filename(encoded_name, |
| encoded_name_size, |
| name, name_size); |
| } |
| out: |
| return rc; |
| } |
| |
| static bool is_dot_dotdot(const char *name, size_t name_size) |
| { |
| if (name_size == 1 && name[0] == '.') |
| return true; |
| else if (name_size == 2 && name[0] == '.' && name[1] == '.') |
| return true; |
| |
| return false; |
| } |
| |
| /** |
| * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext |
| * @plaintext_name: The plaintext name |
| * @plaintext_name_size: The plaintext name size |
| * @ecryptfs_dir_dentry: eCryptfs directory dentry |
| * @name: The filename in cipher text |
| * @name_size: The cipher text name size |
| * |
| * Decrypts and decodes the filename. |
| * |
| * Returns zero on error; non-zero otherwise |
| */ |
| int ecryptfs_decode_and_decrypt_filename(char **plaintext_name, |
| size_t *plaintext_name_size, |
| struct super_block *sb, |
| const char *name, size_t name_size) |
| { |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat = |
| &ecryptfs_superblock_to_private(sb)->mount_crypt_stat; |
| char *decoded_name; |
| size_t decoded_name_size; |
| size_t packet_size; |
| int rc = 0; |
| |
| if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) && |
| !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) { |
| if (is_dot_dotdot(name, name_size)) { |
| rc = ecryptfs_copy_filename(plaintext_name, |
| plaintext_name_size, |
| name, name_size); |
| goto out; |
| } |
| |
| if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE || |
| strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX, |
| ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) { |
| rc = -EINVAL; |
| goto out; |
| } |
| |
| name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; |
| name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; |
| ecryptfs_decode_from_filename(NULL, &decoded_name_size, |
| name, name_size); |
| decoded_name = kmalloc(decoded_name_size, GFP_KERNEL); |
| if (!decoded_name) { |
| printk(KERN_ERR "%s: Out of memory whilst attempting " |
| "to kmalloc [%zd] bytes\n", __func__, |
| decoded_name_size); |
| rc = -ENOMEM; |
| goto out; |
| } |
| ecryptfs_decode_from_filename(decoded_name, &decoded_name_size, |
| name, name_size); |
| rc = ecryptfs_parse_tag_70_packet(plaintext_name, |
| plaintext_name_size, |
| &packet_size, |
| mount_crypt_stat, |
| decoded_name, |
| decoded_name_size); |
| if (rc) { |
| ecryptfs_printk(KERN_DEBUG, |
| "%s: Could not parse tag 70 packet from filename\n", |
| __func__); |
| goto out_free; |
| } |
| } else { |
| rc = ecryptfs_copy_filename(plaintext_name, |
| plaintext_name_size, |
| name, name_size); |
| goto out; |
| } |
| out_free: |
| kfree(decoded_name); |
| out: |
| return rc; |
| } |
| |
| #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143 |
| |
| int ecryptfs_set_f_namelen(long *namelen, long lower_namelen, |
| struct ecryptfs_mount_crypt_stat *mount_crypt_stat) |
| { |
| struct crypto_skcipher *tfm; |
| struct mutex *tfm_mutex; |
| size_t cipher_blocksize; |
| int rc; |
| |
| if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) { |
| (*namelen) = lower_namelen; |
| return 0; |
| } |
| #ifdef CONFIG_CRYPTO_FIPS |
| rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, |
| mount_crypt_stat->global_default_fn_cipher_name, mount_crypt_stat->flags); |
| #else |
| rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex, |
| mount_crypt_stat->global_default_fn_cipher_name); |
| #endif |
| if (unlikely(rc)) { |
| (*namelen) = 0; |
| return rc; |
| } |
| |
| mutex_lock(tfm_mutex); |
| cipher_blocksize = crypto_skcipher_blocksize(tfm); |
| mutex_unlock(tfm_mutex); |
| |
| /* Return an exact amount for the common cases */ |
| if (lower_namelen == NAME_MAX |
| && (cipher_blocksize == 8 || cipher_blocksize == 16)) { |
| (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16; |
| return 0; |
| } |
| |
| /* Return a safe estimate for the uncommon cases */ |
| (*namelen) = lower_namelen; |
| (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE; |
| /* Since this is the max decoded size, subtract 1 "decoded block" len */ |
| (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3; |
| (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE; |
| (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES; |
| /* Worst case is that the filename is padded nearly a full block size */ |
| (*namelen) -= cipher_blocksize - 1; |
| |
| if ((*namelen) < 0) |
| (*namelen) = 0; |
| |
| return 0; |
| } |