blob: c3cd217b53e9682f65e8dbd56afe43c71b8c52ef [file] [log] [blame]
/*
* Samsung EXYNOS SoC series MIPI CSI/DSI D/C-PHY driver
*
* Copyright (C) 2018 Samsung Electronics Co., Ltd.
* http://www.samsung.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/err.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mfd/syscon.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/spinlock.h>
#include <linux/io.h>
#include <soc/samsung/exynos-pmu.h>
/* the maximum number of PHY for each module */
#define EXYNOS_MIPI_PHYS_NUM 4
#define EXYNOS_MIPI_PHY_ISO_BYPASS (1 << 0)
#define MIPI_PHY_MxSx_UNIQUE (0 << 1)
#define MIPI_PHY_MxSx_SHARED (1 << 1)
#define MIPI_PHY_MxSx_INIT_DONE (2 << 1)
enum exynos_mipi_phy_owner {
EXYNOS_MIPI_PHY_OWNER_DSIM = 0,
EXYNOS_MIPI_PHY_OWNER_CSIS = 1,
};
/* per MIPI-PHY module */
struct exynos_mipi_phy_data {
u8 flags;
int active_count;
spinlock_t slock;
};
#define MKVER(ma, mi) (((ma) << 16) | (mi))
enum phy_infos {
VERSION,
TYPE,
LANES,
SPEED,
SETTLE,
};
struct exynos_mipi_phy_cfg {
u16 major;
u16 minor;
u16 mode;
/* u32 max_speed */
int (*set)(void __iomem *regs, int option, u32 *info);
};
/* per DT MIPI-PHY node, can have multiple elements */
struct exynos_mipi_phy {
struct device *dev;
spinlock_t slock;
struct regmap *reg_pmu;
struct regmap *reg_reset;
enum exynos_mipi_phy_owner owner;
struct mipi_phy_desc {
struct phy *phy;
struct exynos_mipi_phy_data *data;
unsigned int index;
unsigned int iso_offset;
unsigned int rst_bit;
void __iomem *regs;
} phys[EXYNOS_MIPI_PHYS_NUM];
};
/* 1: Isolation bypass, 0: Isolation enable */
static int __set_phy_isolation(struct regmap *reg_pmu,
unsigned int offset, unsigned int on)
{
unsigned int val;
int ret;
val = on ? EXYNOS_MIPI_PHY_ISO_BYPASS : 0;
if (reg_pmu)
ret = regmap_update_bits(reg_pmu, offset,
EXYNOS_MIPI_PHY_ISO_BYPASS, val);
else
ret = exynos_pmu_update(offset,
EXYNOS_MIPI_PHY_ISO_BYPASS, val);
if (ret)
pr_err("%s failed to %s PHY isolation 0x%x\n",
__func__, on ? "set" : "clear", offset);
pr_debug("%s off=0x%x, val=0x%x\n", __func__, offset, val);
return ret;
}
/* 1: Enable reset -> release reset, 0: Enable reset */
static int __set_phy_reset(struct regmap *reg_reset,
unsigned int bit, unsigned int on)
{
unsigned int cfg;
int ret = 0;
if (!reg_reset)
return 0;
ret = regmap_update_bits(reg_reset, 0, BIT(bit), 0);
if (ret)
pr_err("%s failed to reset PHY(%d)\n", __func__, bit);
if (on) {
ret = regmap_update_bits(reg_reset, 0, BIT(bit), BIT(bit));
if (ret)
pr_err("%s failed to release reset PHY(%d)\n",
__func__, bit);
}
regmap_read(reg_reset, 0, &cfg);
pr_debug("%s bit=%d, cfg=0x%x\n", __func__, bit, cfg);
return ret;
}
static int __set_phy_init(struct exynos_mipi_phy *state,
struct mipi_phy_desc *phy_desc, unsigned int on)
{
unsigned int cfg;
int ret = 0;
if (state->reg_pmu)
ret = regmap_read(state->reg_pmu,
phy_desc->iso_offset, &cfg);
else
ret = exynos_pmu_read(phy_desc->iso_offset, &cfg);
if (ret) {
dev_err(state->dev, "%s Can't read 0x%x\n",
__func__, phy_desc->iso_offset);
ret = -EINVAL;
goto phy_exit;
}
/* Add INIT_DONE flag when ISO is already bypass(LCD_ON_UBOOT) */
if (cfg && EXYNOS_MIPI_PHY_ISO_BYPASS)
phy_desc->data->flags |= MIPI_PHY_MxSx_INIT_DONE;
phy_exit:
return ret;
}
static int __set_phy_alone(struct exynos_mipi_phy *state,
struct mipi_phy_desc *phy_desc, unsigned int on)
{
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&state->slock, flags);
if (on) {
ret = __set_phy_isolation(state->reg_pmu,
phy_desc->iso_offset, on);
if (ret)
goto phy_exit;
ret = __set_phy_reset(state->reg_reset,
phy_desc->rst_bit, on);
} else {
ret = __set_phy_reset(state->reg_reset,
phy_desc->rst_bit, on);
if (ret)
goto phy_exit;
ret = __set_phy_isolation(state->reg_pmu,
phy_desc->iso_offset, on);
}
phy_exit:
pr_debug("%s: isolation 0x%x, reset 0x%x\n", __func__,
phy_desc->iso_offset, phy_desc->rst_bit);
spin_unlock_irqrestore(&state->slock, flags);
return ret;
}
static int __set_phy_share(struct exynos_mipi_phy *state,
struct mipi_phy_desc *phy_desc, unsigned int on)
{
int ret = 0;
unsigned long flags;
spin_lock_irqsave(&phy_desc->data->slock, flags);
on ? ++(phy_desc->data->active_count) : --(phy_desc->data->active_count);
/* If phy is already initialization(power_on) */
if (state->owner == EXYNOS_MIPI_PHY_OWNER_DSIM &&
phy_desc->data->flags & MIPI_PHY_MxSx_INIT_DONE) {
phy_desc->data->flags &= (~MIPI_PHY_MxSx_INIT_DONE);
spin_unlock_irqrestore(&phy_desc->data->slock, flags);
return ret;
}
if (on) {
/* Isolation bypass when reference count is 1 */
if (phy_desc->data->active_count) {
ret = __set_phy_isolation(state->reg_pmu,
phy_desc->iso_offset, on);
if (ret)
goto phy_exit;
}
ret = __set_phy_reset(state->reg_reset,
phy_desc->rst_bit, on);
} else {
ret = __set_phy_reset(state->reg_reset,
phy_desc->rst_bit, on);
if (ret)
goto phy_exit;
/* Isolation enabled when reference count is zero */
if (phy_desc->data->active_count == 0)
ret = __set_phy_isolation(state->reg_pmu,
phy_desc->iso_offset, on);
}
phy_exit:
pr_debug("%s: isolation 0x%x, reset 0x%x\n", __func__,
phy_desc->iso_offset, phy_desc->rst_bit);
spin_unlock_irqrestore(&phy_desc->data->slock, flags);
return ret;
}
static int __set_phy_state(struct exynos_mipi_phy *state,
struct mipi_phy_desc *phy_desc, unsigned int on)
{
int ret = 0;
if (phy_desc->data->flags & MIPI_PHY_MxSx_SHARED)
ret = __set_phy_share(state, phy_desc, on);
else
ret = __set_phy_alone(state, phy_desc, on);
return ret;
}
static void update_bits(void __iomem *addr, unsigned int start,
unsigned int width, unsigned int val)
{
unsigned int cfg;
unsigned int mask = (width >= 32) ? 0xffffffff : ((1U << width) - 1);
cfg = readl(addr);
cfg &= ~(mask << start);
cfg |= ((val & mask) << start);
writel(cfg, addr);
}
#define PHY_REF_SPEED (1500)
static int __set_phy_cfg_0501_0000_dphy(void __iomem *regs, int option, u32 *cfg)
{
int i;
u32 skew_cal_en = 0;
u32 skew_delay_sel = 0;
u32 hs_mode_sel = 1;
if (cfg[SPEED] >= PHY_REF_SPEED) {
skew_cal_en = 1;
if (cfg[SPEED] >= 3000)
skew_delay_sel = 1;
else if (cfg[SPEED] >= 2000)
skew_delay_sel = 2;
else
skew_delay_sel = 3;
hs_mode_sel = 0;
}
writel(0x2, regs + 0x0018);
update_bits(regs + 0x0084, 0, 8, 0x1);
for (i = 0; i <= cfg[LANES]; i++) {
update_bits(regs + 0x04e0 + (i * 0x400), 0, 1, skew_cal_en);
update_bits(regs + 0x043c + (i * 0x400), 5, 2, skew_delay_sel);
update_bits(regs + 0x04ac + (i * 0x400), 2, 1, hs_mode_sel);
update_bits(regs + 0x04b0 + (i * 0x400), 0, 8, cfg[SETTLE]);
}
return 0;
}
static int __set_phy_cfg_0502_0000_dphy(void __iomem *regs, int option, u32 *cfg)
{
int i;
u32 settle_clk_sel = 1;
u32 skew_delay_sel = 0;
u32 type = cfg[TYPE] & 0xffff;
u32 skew_cal_en = 0;
if (cfg[SPEED] >= PHY_REF_SPEED) {
settle_clk_sel = 0;
skew_cal_en = 1;
}
if (cfg[SPEED] >= PHY_REF_SPEED && cfg[SPEED] < 4000) {
if (cfg[SPEED] >= 3000)
skew_delay_sel = 1;
else if (cfg[SPEED] >= 2000)
skew_delay_sel = 2;
else
skew_delay_sel = 3;
}
writel(0x00000001, regs + 0x0000); /* SC_GNR_CON0 */
writel(0x00001450, regs + 0x0004); /* SC_GNR_CON1 */
writel(0x00000004, regs + 0x0008); /* SC_ANA_CON0 */
writel(0x00009000, regs + 0x000c); /* SC_ANA_CON1 */
writel(0x00000005, regs + 0x0010); /* SC_ANA_CON2 */
writel(0x00000600, regs + 0x0014); /* SC_ANA_CON3 */
writel(0x00000301, regs + 0x0030); /* SC_TIME_CON0 */
for (i = 0; i <= cfg[LANES]; i++) {
writel(0x00000001, regs + 0x0100 + (i * 0x100)); /* SD_GNR_CON0 */
writel(0x00001450, regs + 0x0104 + (i * 0x100)); /* SD_GNR_CON1 */
writel(0x00000004, regs + 0x0108 + (i * 0x100)); /* SD_ANA_CON0 */
writel(0x00009000, regs + 0x010c + (i * 0x100)); /* SD_ANA_CON1 */
writel(0x00000005, regs + 0x0110 + (i * 0x100)); /* SD_ANA_CON2 */
update_bits(regs + 0x0110 + (i * 0x100), 8, 2, skew_delay_sel); /* SD_ANA_CON2 */
writel(0x00000600, regs + 0x0114 + (i * 0x100)); /* SD_ANA_CON3 */
/* DC Combo lane has below SFR (0/1/2) */
if ((type == 0xDC) && (i < 3))
writel(0x00000040, regs + 0x0124 + (i * 0x100)); /* SD_ANA_CON7 */
update_bits(regs + 0x0130 + (i * 0x100), 0, 8, cfg[SETTLE]); /* SD_TIME_CON0 */
update_bits(regs + 0x0130 + (i * 0x100), 8, 1, settle_clk_sel); /* SD_TIME_CON0 */
writel(0x00000003, regs + 0x0134 + (i * 0x100)); /* SD_TIME_CON1 */
update_bits(regs + 0x0140 + (i * 0x100), 0, 1, skew_cal_en); /* SD_DESKEW_CON0 */
writel(0x0000081a, regs + 0x0150 + (i * 0x100)); /* SD_DESKEW_CON4 */
}
return 0;
}
static int __set_phy_cfg_0502_0001_dphy(void __iomem *regs, int option, u32 *cfg)
{
int i;
u32 settle_clk_sel = 1;
u32 skew_delay_sel = 0;
u32 skew_cal_en = 0;
if (cfg[SPEED] >= PHY_REF_SPEED) {
settle_clk_sel = 0;
skew_cal_en = 1;
}
if (cfg[SPEED] >= PHY_REF_SPEED && cfg[SPEED] < 4000) {
if (cfg[SPEED] >= 3000)
skew_delay_sel = 1;
else if (cfg[SPEED] >= 2000)
skew_delay_sel = 2;
else
skew_delay_sel = 3;
}
writel(0x00000001, regs + 0x0500); /* SC_GNR_CON0 */
writel(0x00001450, regs + 0x0504); /* SC_GNR_CON1 */
writel(0x00000004, regs + 0x0508); /* SC_ANA_CON0 */
writel(0x00009000, regs + 0x050c); /* SC_ANA_CON1 */
writel(0x00000005, regs + 0x0510); /* SC_ANA_CON2 */
writel(0x00000600, regs + 0x0514); /* SC_ANA_CON3 */
writel(0x00000301, regs + 0x0530); /* SC_TIME_CON0 */
for (i = 0; i <= cfg[LANES]; i++) {
writel(0x00000001, regs + 0x0000 + (i * 0x100)); /* SD_GNR_CON0 */
writel(0x00001450, regs + 0x0004 + (i * 0x100)); /* SD_GNR_CON1 */
writel(0x00000004, regs + 0x0008 + (i * 0x100)); /* SD_ANA_CON0 */
writel(0x00009000, regs + 0x000c + (i * 0x100)); /* SD_ANA_CON1 */
writel(0x00000005, regs + 0x0010 + (i * 0x100)); /* SD_ANA_CON2 */
update_bits(regs + 0x0010 + (i * 0x100), 8, 2, skew_delay_sel); /* SD_ANA_CON2 */
update_bits(regs + 0x0010 + (i * 0x100), 15, 1, 1); /* RESETN_CFG_SEL */
update_bits(regs + 0x0010 + (i * 0x100), 7, 1, 1); /* RXDDRCLKHS_SEL */
writel(0x00000600, regs + 0x0014 + (i * 0x100)); /* SD_ANA_CON3 */
update_bits(regs + 0x0030 + (i * 0x100), 0, 8, cfg[SETTLE]); /* SD_TIME_CON0 */
update_bits(regs + 0x0030 + (i * 0x100), 8, 1, settle_clk_sel); /* SD_TIME_CON0 */
writel(0x00000003, regs + 0x0034 + (i * 0x100)); /* SD_TIME_CON1 */
update_bits(regs + 0x0040 + (i * 0x100), 0, 1, skew_cal_en); /* SD_DESKEW_CON0 */
writel(0x0000081a, regs + 0x0050 + (i * 0x100)); /* SD_DESKEW_CON4 */
}
return 0;
}
static int __set_phy_cfg_0502_0002_dphy(void __iomem *regs, int option, u32 *cfg)
{
int i;
u32 settle_clk_sel = 1;
u32 skew_delay_sel = 0;
u32 type = cfg[TYPE] & 0xffff;
u32 t_clk_miss = 3;
u32 freq_s_xi_c = 26; /* MHz */
u32 clk_div1234_mc;
u32 skew_cal_en = 0;
if (cfg[SPEED] >= PHY_REF_SPEED) {
settle_clk_sel = 0;
skew_cal_en = 1;
}
if (cfg[SPEED] >= PHY_REF_SPEED && cfg[SPEED] < 4000) {
if (cfg[SPEED] >= 3000)
skew_delay_sel = 1;
else if (cfg[SPEED] >= 2000)
skew_delay_sel = 2;
else
skew_delay_sel = 3;
}
writel(0x00000001, regs + 0x0000); /* SC_GNR_CON0 */
writel(0x00001450, regs + 0x0004); /* SC_GNR_CON1 */
if (cfg[SPEED] > 4500)
writel(0x00000000, regs + 0x0008); /* SC_ANA_CON0 */
else
writel(0x00000004, regs + 0x0008); /* SC_ANA_CON0 */
if (cfg[SPEED] > 4500)
writel(0x00008000, regs + 0x000c); /* SC_ANA_CON1 */
else
writel(0x00009000, regs + 0x000c); /* SC_ANA_CON1 */
writel(0x00000005, regs + 0x0010); /* SC_ANA_CON2 */
clk_div1234_mc = max(0, (int)(5 - DIV_ROUND_UP(((t_clk_miss - 1) * cfg[SPEED]) >> 2, freq_s_xi_c)));
update_bits(regs + 0x0010, 8, 2, clk_div1234_mc); /* SC_ANA_CON2 */
writel(0x00000600, regs + 0x0014); /* SC_ANA_CON3 */
writel(0x00000301, regs + 0x0030); /* SC_TIME_CON0 */
for (i = 0; i <= cfg[LANES]; i++) {
writel(0x00000001, regs + 0x0100 + (i * 0x100)); /* SD_GNR_CON0 */
writel(0x00001450, regs + 0x0104 + (i * 0x100)); /* SD_GNR_CON1 */
if (cfg[SPEED] > 4500)
writel(0x00000000, regs + 0x0108 + (i * 0x100)); /* SD_ANA_CON0 */
else
writel(0x00000004, regs + 0x0108 + (i * 0x100)); /* SD_ANA_CON0 */
if (cfg[SPEED] > 4500)
writel(0x00008260, regs + 0x010c + (i * 0x100)); /* SD_ANA_CON1 */
else if (cfg[SPEED] == 4500)
writel(0x00009260, regs + 0x010c + (i * 0x100)); /* SD_ANA_CON1 */
else
writel(0x00009000, regs + 0x010c + (i * 0x100)); /* SD_ANA_CON1 */
writel(0x00000005, regs + 0x0110 + (i * 0x100)); /* SD_ANA_CON2 */
update_bits(regs + 0x0110 + (i * 0x100), 8, 2, skew_delay_sel); /* SD_ANA_CON2 */
writel(0x00000600, regs + 0x0114 + (i * 0x100)); /* SD_ANA_CON3 */
/* DC Combo lane has below SFR (0/1/2) */
if ((type == 0xDC) && (i < 3))
writel(0x00000040, regs + 0x0124 + (i * 0x100)); /* SD_ANA_CON7 */
update_bits(regs + 0x0130 + (i * 0x100), 0, 8, cfg[SETTLE]); /* SD_TIME_CON0 */
update_bits(regs + 0x0130 + (i * 0x100), 8, 1, settle_clk_sel); /* SD_TIME_CON0 */
writel(0x00000003, regs + 0x0134 + (i * 0x100)); /* SD_TIME_CON1 */
update_bits(regs + 0x0140 + (i * 0x100), 0, 1, skew_cal_en); /* SD_DESKEW_CON0 */
writel(0x0000081a, regs + 0x0150 + (i * 0x100)); /* SD_DESKEW_CON4 */
}
return 0;
}
static int __set_phy_cfg_0502_0003_dphy(void __iomem *regs, int option, u32 *cfg)
{
int i;
u32 settle_clk_sel = 1;
u32 skew_delay_sel = 0;
u32 t_clk_miss = 3;
u32 freq_s_xi_c = 26; /* MHz */
u32 clk_div1234_mc;
u32 skew_cal_en = 0;
if (cfg[SPEED] >= PHY_REF_SPEED) {
settle_clk_sel = 0;
skew_cal_en = 1;
}
if (cfg[SPEED] >= PHY_REF_SPEED && cfg[SPEED] < 4000) {
if (cfg[SPEED] >= 3000)
skew_delay_sel = 1;
else if (cfg[SPEED] >= 2000)
skew_delay_sel = 2;
else
skew_delay_sel = 3;
}
writel(0x00000001, regs + 0x0500); /* SC_GNR_CON0 */
writel(0x00001450, regs + 0x0504); /* SC_GNR_CON1 */
if (cfg[SPEED] > 4500)
writel(0x00000000, regs + 0x0508); /* SC_ANA_CON0 */
else
writel(0x00000004, regs + 0x0508); /* SC_ANA_CON0 */
if (cfg[SPEED] > 4500)
writel(0x00008000, regs + 0x050c); /* SC_ANA_CON1 */
else
writel(0x00009000, regs + 0x050c); /* SC_ANA_CON1 */
writel(0x00000005, regs + 0x0510); /* SC_ANA_CON2 */
clk_div1234_mc = max(0, (int)(5 - DIV_ROUND_UP(((t_clk_miss - 1) * cfg[SPEED]) >> 2, freq_s_xi_c)));
update_bits(regs + 0x0510, 8, 2, clk_div1234_mc); /* SC_ANA_CON2 */
writel(0x00000600, regs + 0x0514); /* SC_ANA_CON3 */
writel(0x00000301, regs + 0x0530); /* SC_TIME_CON0 */
for (i = 0; i <= cfg[LANES]; i++) {
writel(0x00000001, regs + 0x0000 + (i * 0x100)); /* SD_GNR_CON0 */
writel(0x00001450, regs + 0x0004 + (i * 0x100)); /* SD_GNR_CON1 */
if (cfg[SPEED] > 4500)
writel(0x00000000, regs + 0x0008 + (i * 0x100)); /* SD_ANA_CON0 */
else
writel(0x00000004, regs + 0x0008 + (i * 0x100)); /* SD_ANA_CON0 */
if (cfg[SPEED] > 4500)
writel(0x00008260, regs + 0x000c + (i * 0x100)); /* SD_ANA_CON1 */
else if (cfg[SPEED] == 4500)
writel(0x00009260, regs + 0x000c + (i * 0x100)); /* SD_ANA_CON1 */
else
writel(0x00009000, regs + 0x000c + (i * 0x100)); /* SD_ANA_CON1 */
writel(0x00000005, regs + 0x0010 + (i * 0x100)); /* SD_ANA_CON2 */
update_bits(regs + 0x0010 + (i * 0x100), 8, 2, skew_delay_sel); /* SD_ANA_CON2 */
update_bits(regs + 0x0010 + (i * 0x100), 15, 1, 1); /* RESETN_CFG_SEL */
update_bits(regs + 0x0010 + (i * 0x100), 7, 1, 1); /* RXDDRCLKHS_SEL */
writel(0x00000600, regs + 0x0014 + (i * 0x100)); /* SD_ANA_CON3 */
update_bits(regs + 0x0030 + (i * 0x100), 0, 8, cfg[SETTLE]); /* SD_TIME_CON0 */
update_bits(regs + 0x0030 + (i * 0x100), 8, 1, settle_clk_sel); /* SD_TIME_CON0 */
writel(0x00000003, regs + 0x0034 + (i * 0x100)); /* SD_TIME_CON1 */
update_bits(regs + 0x0040 + (i * 0x100), 0, 1, skew_cal_en); /* SD_DESKEW_CON0 */
writel(0x0000081a, regs + 0x0050 + (i * 0x100)); /* SD_DESKEW_CON4 */
}
return 0;
}
static const struct exynos_mipi_phy_cfg phy_cfg_table[] = {
{
.major = 0x0501,
.minor = 0x0000,
.mode = 0xD,
.set = __set_phy_cfg_0501_0000_dphy,
},
{
.major = 0x0502,
.minor = 0x0000,
.mode = 0xD,
.set = __set_phy_cfg_0502_0000_dphy,
},
{
.major = 0x0502,
.minor = 0x0001,
.mode = 0xD,
.set = __set_phy_cfg_0502_0001_dphy,
},
{
.major = 0x0502,
.minor = 0x0002,
.mode = 0xD,
.set = __set_phy_cfg_0502_0002_dphy,
},
{
.major = 0x0502,
.minor = 0x0003,
.mode = 0xD,
.set = __set_phy_cfg_0502_0003_dphy,
},
{ },
};
static int __set_phy_cfg(struct exynos_mipi_phy *state,
struct mipi_phy_desc *phy_desc, int option, void *info)
{
u32 *cfg = (u32 *)info;
unsigned long i;
int ret = -EINVAL;
for (i = 0; i < ARRAY_SIZE(phy_cfg_table); i++) {
if ((cfg[VERSION] == MKVER(phy_cfg_table[i].major,
phy_cfg_table[i].minor))
&& ((cfg[TYPE] >> 16) == phy_cfg_table[i].mode)) {
ret = phy_cfg_table[i].set(phy_desc->regs,
option, cfg);
break;
}
}
return ret;
}
static struct exynos_mipi_phy_data mipi_phy_m4s4_top = {
.flags = MIPI_PHY_MxSx_SHARED,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m4s4_top.slock),
};
static struct exynos_mipi_phy_data mipi_phy_m4s4_mod = {
.flags = MIPI_PHY_MxSx_SHARED,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m4s4_mod.slock),
};
static struct exynos_mipi_phy_data mipi_phy_m4s4s4 = {
.flags = MIPI_PHY_MxSx_SHARED,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m4s4s4.slock),
};
static struct exynos_mipi_phy_data mipi_phy_m4s0 = {
.flags = MIPI_PHY_MxSx_UNIQUE,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m4s0.slock),
};
static struct exynos_mipi_phy_data mipi_phy_m2s4s4s2 = {
.flags = MIPI_PHY_MxSx_SHARED,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m2s4s4s2.slock),
};
static struct exynos_mipi_phy_data mipi_phy_m1s2s2 = {
.flags = MIPI_PHY_MxSx_SHARED,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m1s2s2.slock),
};
static struct exynos_mipi_phy_data mipi_phy_m0s4s4s4_mod = {
.flags = MIPI_PHY_MxSx_SHARED,
.active_count = 0,
.slock = __SPIN_LOCK_UNLOCKED(mipi_phy_m0s4s4s4.slock),
};
static const struct of_device_id exynos_mipi_phy_of_table[] = {
{
.compatible = "samsung,mipi-phy-m4s4-top",
.data = &mipi_phy_m4s4_top,
},
{
.compatible = "samsung,mipi-phy-m4s4-mod",
.data = &mipi_phy_m4s4_mod,
},
{
.compatible = "samsung,mipi-phy-m4s4s4",
.data = &mipi_phy_m4s4s4,
},
{
.compatible = "samsung,mipi-phy-m4s0",
.data = &mipi_phy_m4s0,
},
{
.compatible = "samsung,mipi-phy-m2s4s4s2",
.data = &mipi_phy_m2s4s4s2,
},
{
.compatible = "samsung,mipi-phy-m1s2s2",
.data = &mipi_phy_m1s2s2,
},
{
.compatible = "samsung,mipi-phy-m0s4s4s4-mod",
.data = &mipi_phy_m0s4s4s4_mod,
},
{ },
};
MODULE_DEVICE_TABLE(of, exynos_mipi_phy_of_table);
#define to_mipi_video_phy(desc) \
container_of((desc), struct exynos_mipi_phy, phys[(desc)->index])
static int exynos_mipi_phy_init(struct phy *phy)
{
struct mipi_phy_desc *phy_desc = phy_get_drvdata(phy);
struct exynos_mipi_phy *state = to_mipi_video_phy(phy_desc);
return __set_phy_init(state, phy_desc, 1);
}
static int exynos_mipi_phy_power_on(struct phy *phy)
{
struct mipi_phy_desc *phy_desc = phy_get_drvdata(phy);
struct exynos_mipi_phy *state = to_mipi_video_phy(phy_desc);
return __set_phy_state(state, phy_desc, 1);
}
static int exynos_mipi_phy_power_off(struct phy *phy)
{
struct mipi_phy_desc *phy_desc = phy_get_drvdata(phy);
struct exynos_mipi_phy *state = to_mipi_video_phy(phy_desc);
return __set_phy_state(state, phy_desc, 0);
}
static int exynos_mipi_phy_set(struct phy *phy, int option, void *info)
{
struct mipi_phy_desc *phy_desc = phy_get_drvdata(phy);
struct exynos_mipi_phy *state = to_mipi_video_phy(phy_desc);
return __set_phy_cfg(state, phy_desc, option, info);
}
static struct phy *exynos_mipi_phy_of_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct exynos_mipi_phy *state = dev_get_drvdata(dev);
if (WARN_ON(args->args[0] >= EXYNOS_MIPI_PHYS_NUM))
return ERR_PTR(-ENODEV);
return state->phys[args->args[0]].phy;
}
static struct phy_ops exynos_mipi_phy_ops = {
.init = exynos_mipi_phy_init,
.power_on = exynos_mipi_phy_power_on,
.power_off = exynos_mipi_phy_power_off,
.set = exynos_mipi_phy_set,
.owner = THIS_MODULE,
};
static int exynos_mipi_phy_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct exynos_mipi_phy *state;
struct phy_provider *phy_provider;
struct exynos_mipi_phy_data *phy_data;
const struct of_device_id *of_id;
unsigned int iso[EXYNOS_MIPI_PHYS_NUM];
unsigned int rst[EXYNOS_MIPI_PHYS_NUM];
struct resource *res;
unsigned int i;
int ret = 0, elements = 0;
state = devm_kzalloc(dev, sizeof(*state), GFP_KERNEL);
if (!state)
return -ENOMEM;
state->dev = &pdev->dev;
of_id = of_match_device(of_match_ptr(exynos_mipi_phy_of_table), dev);
if (!of_id)
return -EINVAL;
phy_data = (struct exynos_mipi_phy_data *)of_id->data;
dev_set_drvdata(dev, state);
spin_lock_init(&state->slock);
/* PMU isolation (optional) */
state->reg_pmu = syscon_regmap_lookup_by_phandle(node,
"samsung,pmu-syscon");
if (IS_ERR(state->reg_pmu)) {
dev_err(dev, "failed to lookup PMU regmap, use PMU interface\n");
state->reg_pmu = NULL;
}
elements = of_property_count_u32_elems(node, "isolation");
if ((elements < 0) || (elements > EXYNOS_MIPI_PHYS_NUM))
return -EINVAL;
ret = of_property_read_u32_array(node, "isolation", iso,
elements);
if (ret) {
dev_err(dev, "cannot get PHY isolation offset\n");
return ret;
}
/* SYSREG reset (optional) */
state->reg_reset = syscon_regmap_lookup_by_phandle(node,
"samsung,reset-sysreg");
if (IS_ERR(state->reg_reset)) {
state->reg_reset = NULL;
} else {
ret = of_property_read_u32_array(node, "reset", rst, elements);
if (ret) {
dev_err(dev, "cannot get PHY reset bit\n");
return ret;
}
}
of_property_read_u32(node, "owner", &state->owner);
for (i = 0; i < elements; i++) {
state->phys[i].iso_offset = iso[i];
state->phys[i].rst_bit = rst[i];
dev_info(dev, "%s: isolation 0x%x\n", __func__,
state->phys[i].iso_offset);
if (state->reg_reset)
dev_info(dev, "%s: reset %d\n", __func__,
state->phys[i].rst_bit);
res = platform_get_resource(pdev, IORESOURCE_MEM, i);
if (res) {
state->phys[i].regs = devm_ioremap_resource(dev, res);
if (IS_ERR(state->phys[i].regs))
return PTR_ERR(state->phys[i].regs);
}
}
for (i = 0; i < elements; i++) {
struct phy *generic_phy = devm_phy_create(dev, NULL,
&exynos_mipi_phy_ops);
if (IS_ERR(generic_phy)) {
dev_err(dev, "failed to create PHY\n");
return PTR_ERR(generic_phy);
}
state->phys[i].index = i;
state->phys[i].phy = generic_phy;
state->phys[i].data = phy_data;
phy_set_drvdata(generic_phy, &state->phys[i]);
}
phy_provider = devm_of_phy_provider_register(dev,
exynos_mipi_phy_of_xlate);
if (IS_ERR(phy_provider))
dev_err(dev, "failed to create exynos mipi-phy\n");
else
dev_err(dev, "creating exynos-mipi-phy\n");
return PTR_ERR_OR_ZERO(phy_provider);
}
static struct platform_driver exynos_mipi_phy_driver = {
.probe = exynos_mipi_phy_probe,
.driver = {
.name = "exynos-mipi-phy",
.of_match_table = of_match_ptr(exynos_mipi_phy_of_table),
.suppress_bind_attrs = true,
}
};
module_platform_driver(exynos_mipi_phy_driver);
MODULE_DESCRIPTION("Samsung EXYNOS SoC MIPI CSI/DSI D/C-PHY driver");
MODULE_LICENSE("GPL v2");