blob: e70eac578f5e0bde1e194f469166b423c4167844 [file] [log] [blame]
/***************************************************************************
*
* Copyright (C) 2007-2008 SMSC
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
*****************************************************************************/
#include <linux/module.h>
#include <linux/kmod.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/usb.h>
#include <linux/bitrev.h>
#include <linux/crc16.h>
#include <linux/crc32.h>
#include <linux/usb/usbnet.h>
#include <linux/slab.h>
#include <linux/of_net.h>
#include "smsc95xx.h"
#define SMSC_CHIPNAME "smsc95xx"
#define SMSC_DRIVER_VERSION "1.0.6"
#define HS_USB_PKT_SIZE (512)
#define FS_USB_PKT_SIZE (64)
#define DEFAULT_HS_BURST_CAP_SIZE (16 * 1024 + 5 * HS_USB_PKT_SIZE)
#define DEFAULT_FS_BURST_CAP_SIZE (6 * 1024 + 33 * FS_USB_PKT_SIZE)
#define DEFAULT_BULK_IN_DELAY (0x00002000)
#define MAX_SINGLE_PACKET_SIZE (2048)
#define LAN95XX_EEPROM_MAGIC (0x9500)
#define EEPROM_MAC_OFFSET (0x01)
#define DEFAULT_TX_CSUM_ENABLE (true)
#define DEFAULT_RX_CSUM_ENABLE (true)
#define SMSC95XX_INTERNAL_PHY_ID (1)
#define SMSC95XX_TX_OVERHEAD (8)
#define SMSC95XX_TX_OVERHEAD_CSUM (12)
#define SUPPORTED_WAKE (WAKE_PHY | WAKE_UCAST | WAKE_BCAST | \
WAKE_MCAST | WAKE_ARP | WAKE_MAGIC)
#define FEATURE_8_WAKEUP_FILTERS (0x01)
#define FEATURE_PHY_NLP_CROSSOVER (0x02)
#define FEATURE_REMOTE_WAKEUP (0x04)
#define SUSPEND_SUSPEND0 (0x01)
#define SUSPEND_SUSPEND1 (0x02)
#define SUSPEND_SUSPEND2 (0x04)
#define SUSPEND_SUSPEND3 (0x08)
#define SUSPEND_ALLMODES (SUSPEND_SUSPEND0 | SUSPEND_SUSPEND1 | \
SUSPEND_SUSPEND2 | SUSPEND_SUSPEND3)
#define CARRIER_CHECK_DELAY (2 * HZ)
struct smsc95xx_priv {
u32 chip_id;
u32 mac_cr;
u32 hash_hi;
u32 hash_lo;
u32 wolopts;
spinlock_t mac_cr_lock;
u8 features;
u8 suspend_flags;
u8 mdix_ctrl;
bool link_ok;
struct delayed_work carrier_check;
struct usbnet *dev;
};
static bool turbo_mode = true;
module_param(turbo_mode, bool, 0644);
MODULE_PARM_DESC(turbo_mode, "Enable multiple frames per Rx transaction");
static int __must_check __smsc95xx_read_reg(struct usbnet *dev, u32 index,
u32 *data, int in_pm)
{
u32 buf;
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_read_cmd;
else
fn = usbnet_read_cmd_nopm;
ret = fn(dev, USB_VENDOR_REQUEST_READ_REGISTER, USB_DIR_IN
| USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, &buf, 4);
if (unlikely(ret < 0)) {
netdev_warn(dev->net, "Failed to read reg index 0x%08x: %d\n",
index, ret);
return ret;
}
le32_to_cpus(&buf);
*data = buf;
return ret;
}
static int __must_check __smsc95xx_write_reg(struct usbnet *dev, u32 index,
u32 data, int in_pm)
{
u32 buf;
int ret;
int (*fn)(struct usbnet *, u8, u8, u16, u16, const void *, u16);
BUG_ON(!dev);
if (!in_pm)
fn = usbnet_write_cmd;
else
fn = usbnet_write_cmd_nopm;
buf = data;
cpu_to_le32s(&buf);
ret = fn(dev, USB_VENDOR_REQUEST_WRITE_REGISTER, USB_DIR_OUT
| USB_TYPE_VENDOR | USB_RECIP_DEVICE,
0, index, &buf, 4);
if (unlikely(ret < 0))
netdev_warn(dev->net, "Failed to write reg index 0x%08x: %d\n",
index, ret);
return ret;
}
static int __must_check smsc95xx_read_reg_nopm(struct usbnet *dev, u32 index,
u32 *data)
{
return __smsc95xx_read_reg(dev, index, data, 1);
}
static int __must_check smsc95xx_write_reg_nopm(struct usbnet *dev, u32 index,
u32 data)
{
return __smsc95xx_write_reg(dev, index, data, 1);
}
static int __must_check smsc95xx_read_reg(struct usbnet *dev, u32 index,
u32 *data)
{
return __smsc95xx_read_reg(dev, index, data, 0);
}
static int __must_check smsc95xx_write_reg(struct usbnet *dev, u32 index,
u32 data)
{
return __smsc95xx_write_reg(dev, index, data, 0);
}
/* Loop until the read is completed with timeout
* called with phy_mutex held */
static int __must_check __smsc95xx_phy_wait_not_busy(struct usbnet *dev,
int in_pm)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = __smsc95xx_read_reg(dev, MII_ADDR, &val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_ACCESS\n");
return ret;
}
if (!(val & MII_BUSY_))
return 0;
} while (!time_after(jiffies, start_time + HZ));
return -EIO;
}
static int __smsc95xx_mdio_read(struct net_device *netdev, int phy_id, int idx,
int in_pm)
{
struct usbnet *dev = netdev_priv(netdev);
u32 val, addr;
int ret;
mutex_lock(&dev->phy_mutex);
/* confirm MII not busy */
ret = __smsc95xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "MII is busy in smsc95xx_mdio_read\n");
goto done;
}
/* set the address, index & direction (read from PHY) */
phy_id &= dev->mii.phy_id_mask;
idx &= dev->mii.reg_num_mask;
addr = (phy_id << 11) | (idx << 6) | MII_READ_ | MII_BUSY_;
ret = __smsc95xx_write_reg(dev, MII_ADDR, addr, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_ADDR\n");
goto done;
}
ret = __smsc95xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Timed out reading MII reg %02X\n", idx);
goto done;
}
ret = __smsc95xx_read_reg(dev, MII_DATA, &val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error reading MII_DATA\n");
goto done;
}
ret = (u16)(val & 0xFFFF);
done:
mutex_unlock(&dev->phy_mutex);
return ret;
}
static void __smsc95xx_mdio_write(struct net_device *netdev, int phy_id,
int idx, int regval, int in_pm)
{
struct usbnet *dev = netdev_priv(netdev);
u32 val, addr;
int ret;
mutex_lock(&dev->phy_mutex);
/* confirm MII not busy */
ret = __smsc95xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "MII is busy in smsc95xx_mdio_write\n");
goto done;
}
val = regval;
ret = __smsc95xx_write_reg(dev, MII_DATA, val, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_DATA\n");
goto done;
}
/* set the address, index & direction (write to PHY) */
phy_id &= dev->mii.phy_id_mask;
idx &= dev->mii.reg_num_mask;
addr = (phy_id << 11) | (idx << 6) | MII_WRITE_ | MII_BUSY_;
ret = __smsc95xx_write_reg(dev, MII_ADDR, addr, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Error writing MII_ADDR\n");
goto done;
}
ret = __smsc95xx_phy_wait_not_busy(dev, in_pm);
if (ret < 0) {
netdev_warn(dev->net, "Timed out writing MII reg %02X\n", idx);
goto done;
}
done:
mutex_unlock(&dev->phy_mutex);
}
static int smsc95xx_mdio_read_nopm(struct net_device *netdev, int phy_id,
int idx)
{
return __smsc95xx_mdio_read(netdev, phy_id, idx, 1);
}
static void smsc95xx_mdio_write_nopm(struct net_device *netdev, int phy_id,
int idx, int regval)
{
__smsc95xx_mdio_write(netdev, phy_id, idx, regval, 1);
}
static int smsc95xx_mdio_read(struct net_device *netdev, int phy_id, int idx)
{
return __smsc95xx_mdio_read(netdev, phy_id, idx, 0);
}
static void smsc95xx_mdio_write(struct net_device *netdev, int phy_id, int idx,
int regval)
{
__smsc95xx_mdio_write(netdev, phy_id, idx, regval, 0);
}
static int __must_check smsc95xx_wait_eeprom(struct usbnet *dev)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = smsc95xx_read_reg(dev, E2P_CMD, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_CMD\n");
return ret;
}
if (!(val & E2P_CMD_BUSY_) || (val & E2P_CMD_TIMEOUT_))
break;
udelay(40);
} while (!time_after(jiffies, start_time + HZ));
if (val & (E2P_CMD_TIMEOUT_ | E2P_CMD_BUSY_)) {
netdev_warn(dev->net, "EEPROM read operation timeout\n");
return -EIO;
}
return 0;
}
static int __must_check smsc95xx_eeprom_confirm_not_busy(struct usbnet *dev)
{
unsigned long start_time = jiffies;
u32 val;
int ret;
do {
ret = smsc95xx_read_reg(dev, E2P_CMD, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_CMD\n");
return ret;
}
if (!(val & E2P_CMD_BUSY_))
return 0;
udelay(40);
} while (!time_after(jiffies, start_time + HZ));
netdev_warn(dev->net, "EEPROM is busy\n");
return -EIO;
}
static int smsc95xx_read_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
BUG_ON(!dev);
BUG_ON(!data);
ret = smsc95xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
for (i = 0; i < length; i++) {
val = E2P_CMD_BUSY_ | E2P_CMD_READ_ | (offset & E2P_CMD_ADDR_);
ret = smsc95xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc95xx_wait_eeprom(dev);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, E2P_DATA, &val);
if (ret < 0) {
netdev_warn(dev->net, "Error reading E2P_DATA\n");
return ret;
}
data[i] = val & 0xFF;
offset++;
}
return 0;
}
static int smsc95xx_write_eeprom(struct usbnet *dev, u32 offset, u32 length,
u8 *data)
{
u32 val;
int i, ret;
BUG_ON(!dev);
BUG_ON(!data);
ret = smsc95xx_eeprom_confirm_not_busy(dev);
if (ret)
return ret;
/* Issue write/erase enable command */
val = E2P_CMD_BUSY_ | E2P_CMD_EWEN_;
ret = smsc95xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_DATA\n");
return ret;
}
ret = smsc95xx_wait_eeprom(dev);
if (ret < 0)
return ret;
for (i = 0; i < length; i++) {
/* Fill data register */
val = data[i];
ret = smsc95xx_write_reg(dev, E2P_DATA, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_DATA\n");
return ret;
}
/* Send "write" command */
val = E2P_CMD_BUSY_ | E2P_CMD_WRITE_ | (offset & E2P_CMD_ADDR_);
ret = smsc95xx_write_reg(dev, E2P_CMD, val);
if (ret < 0) {
netdev_warn(dev->net, "Error writing E2P_CMD\n");
return ret;
}
ret = smsc95xx_wait_eeprom(dev);
if (ret < 0)
return ret;
offset++;
}
return 0;
}
static int __must_check smsc95xx_write_reg_async(struct usbnet *dev, u16 index,
u32 data)
{
const u16 size = 4;
u32 buf;
int ret;
buf = data;
cpu_to_le32s(&buf);
ret = usbnet_write_cmd_async(dev, USB_VENDOR_REQUEST_WRITE_REGISTER,
USB_DIR_OUT | USB_TYPE_VENDOR |
USB_RECIP_DEVICE,
0, index, &buf, size);
if (ret < 0)
netdev_warn(dev->net, "Error write async cmd, sts=%d\n",
ret);
return ret;
}
/* returns hash bit number for given MAC address
* example:
* 01 00 5E 00 00 01 -> returns bit number 31 */
static unsigned int smsc95xx_hash(char addr[ETH_ALEN])
{
return (ether_crc(ETH_ALEN, addr) >> 26) & 0x3f;
}
static void smsc95xx_set_multicast(struct net_device *netdev)
{
struct usbnet *dev = netdev_priv(netdev);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
unsigned long flags;
int ret;
pdata->hash_hi = 0;
pdata->hash_lo = 0;
spin_lock_irqsave(&pdata->mac_cr_lock, flags);
if (dev->net->flags & IFF_PROMISC) {
netif_dbg(dev, drv, dev->net, "promiscuous mode enabled\n");
pdata->mac_cr |= MAC_CR_PRMS_;
pdata->mac_cr &= ~(MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
} else if (dev->net->flags & IFF_ALLMULTI) {
netif_dbg(dev, drv, dev->net, "receive all multicast enabled\n");
pdata->mac_cr |= MAC_CR_MCPAS_;
pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_HPFILT_);
} else if (!netdev_mc_empty(dev->net)) {
struct netdev_hw_addr *ha;
pdata->mac_cr |= MAC_CR_HPFILT_;
pdata->mac_cr &= ~(MAC_CR_PRMS_ | MAC_CR_MCPAS_);
netdev_for_each_mc_addr(ha, netdev) {
u32 bitnum = smsc95xx_hash(ha->addr);
u32 mask = 0x01 << (bitnum & 0x1F);
if (bitnum & 0x20)
pdata->hash_hi |= mask;
else
pdata->hash_lo |= mask;
}
netif_dbg(dev, drv, dev->net, "HASHH=0x%08X, HASHL=0x%08X\n",
pdata->hash_hi, pdata->hash_lo);
} else {
netif_dbg(dev, drv, dev->net, "receive own packets only\n");
pdata->mac_cr &=
~(MAC_CR_PRMS_ | MAC_CR_MCPAS_ | MAC_CR_HPFILT_);
}
spin_unlock_irqrestore(&pdata->mac_cr_lock, flags);
/* Initiate async writes, as we can't wait for completion here */
ret = smsc95xx_write_reg_async(dev, HASHH, pdata->hash_hi);
if (ret < 0)
netdev_warn(dev->net, "failed to initiate async write to HASHH\n");
ret = smsc95xx_write_reg_async(dev, HASHL, pdata->hash_lo);
if (ret < 0)
netdev_warn(dev->net, "failed to initiate async write to HASHL\n");
ret = smsc95xx_write_reg_async(dev, MAC_CR, pdata->mac_cr);
if (ret < 0)
netdev_warn(dev->net, "failed to initiate async write to MAC_CR\n");
}
static int smsc95xx_phy_update_flowcontrol(struct usbnet *dev, u8 duplex,
u16 lcladv, u16 rmtadv)
{
u32 flow = 0, afc_cfg;
int ret = smsc95xx_read_reg(dev, AFC_CFG, &afc_cfg);
if (ret < 0)
return ret;
if (duplex == DUPLEX_FULL) {
u8 cap = mii_resolve_flowctrl_fdx(lcladv, rmtadv);
if (cap & FLOW_CTRL_RX)
flow = 0xFFFF0002;
if (cap & FLOW_CTRL_TX) {
afc_cfg |= 0xF;
flow |= 0xFFFF0000;
} else {
afc_cfg &= ~0xF;
}
netif_dbg(dev, link, dev->net, "rx pause %s, tx pause %s\n",
cap & FLOW_CTRL_RX ? "enabled" : "disabled",
cap & FLOW_CTRL_TX ? "enabled" : "disabled");
} else {
netif_dbg(dev, link, dev->net, "half duplex\n");
afc_cfg |= 0xF;
}
ret = smsc95xx_write_reg(dev, FLOW, flow);
if (ret < 0)
return ret;
return smsc95xx_write_reg(dev, AFC_CFG, afc_cfg);
}
static int smsc95xx_link_reset(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
struct mii_if_info *mii = &dev->mii;
struct ethtool_cmd ecmd = { .cmd = ETHTOOL_GSET };
unsigned long flags;
u16 lcladv, rmtadv;
int ret;
/* clear interrupt status */
ret = smsc95xx_mdio_read(dev->net, mii->phy_id, PHY_INT_SRC);
if (ret < 0)
return ret;
ret = smsc95xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL_);
if (ret < 0)
return ret;
mii_check_media(mii, 1, 1);
mii_ethtool_gset(&dev->mii, &ecmd);
lcladv = smsc95xx_mdio_read(dev->net, mii->phy_id, MII_ADVERTISE);
rmtadv = smsc95xx_mdio_read(dev->net, mii->phy_id, MII_LPA);
netif_dbg(dev, link, dev->net,
"speed: %u duplex: %d lcladv: %04x rmtadv: %04x\n",
ethtool_cmd_speed(&ecmd), ecmd.duplex, lcladv, rmtadv);
spin_lock_irqsave(&pdata->mac_cr_lock, flags);
if (ecmd.duplex != DUPLEX_FULL) {
pdata->mac_cr &= ~MAC_CR_FDPX_;
pdata->mac_cr |= MAC_CR_RCVOWN_;
} else {
pdata->mac_cr &= ~MAC_CR_RCVOWN_;
pdata->mac_cr |= MAC_CR_FDPX_;
}
spin_unlock_irqrestore(&pdata->mac_cr_lock, flags);
ret = smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr);
if (ret < 0)
return ret;
ret = smsc95xx_phy_update_flowcontrol(dev, ecmd.duplex, lcladv, rmtadv);
if (ret < 0)
netdev_warn(dev->net, "Error updating PHY flow control\n");
return ret;
}
static void smsc95xx_status(struct usbnet *dev, struct urb *urb)
{
u32 intdata;
if (urb->actual_length != 4) {
netdev_warn(dev->net, "unexpected urb length %d\n",
urb->actual_length);
return;
}
memcpy(&intdata, urb->transfer_buffer, 4);
le32_to_cpus(&intdata);
netif_dbg(dev, link, dev->net, "intdata: 0x%08X\n", intdata);
if (intdata & INT_ENP_PHY_INT_)
usbnet_defer_kevent(dev, EVENT_LINK_RESET);
else
netdev_warn(dev->net, "unexpected interrupt, intdata=0x%08X\n",
intdata);
}
static void set_carrier(struct usbnet *dev, bool link)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
if (pdata->link_ok == link)
return;
pdata->link_ok = link;
if (link)
usbnet_link_change(dev, 1, 0);
else
usbnet_link_change(dev, 0, 0);
}
static void check_carrier(struct work_struct *work)
{
struct smsc95xx_priv *pdata = container_of(work, struct smsc95xx_priv,
carrier_check.work);
struct usbnet *dev = pdata->dev;
int ret;
if (pdata->suspend_flags != 0)
return;
ret = smsc95xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMSR);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read MII_BMSR\n");
return;
}
if (ret & BMSR_LSTATUS)
set_carrier(dev, 1);
else
set_carrier(dev, 0);
schedule_delayed_work(&pdata->carrier_check, CARRIER_CHECK_DELAY);
}
/* Enable or disable Tx & Rx checksum offload engines */
static int smsc95xx_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct usbnet *dev = netdev_priv(netdev);
u32 read_buf;
int ret;
ret = smsc95xx_read_reg(dev, COE_CR, &read_buf);
if (ret < 0)
return ret;
if (features & NETIF_F_IP_CSUM)
read_buf |= Tx_COE_EN_;
else
read_buf &= ~Tx_COE_EN_;
if (features & NETIF_F_RXCSUM)
read_buf |= Rx_COE_EN_;
else
read_buf &= ~Rx_COE_EN_;
ret = smsc95xx_write_reg(dev, COE_CR, read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, hw, dev->net, "COE_CR = 0x%08x\n", read_buf);
return 0;
}
static int smsc95xx_ethtool_get_eeprom_len(struct net_device *net)
{
return MAX_EEPROM_SIZE;
}
static int smsc95xx_ethtool_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
ee->magic = LAN95XX_EEPROM_MAGIC;
return smsc95xx_read_eeprom(dev, ee->offset, ee->len, data);
}
static int smsc95xx_ethtool_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *ee, u8 *data)
{
struct usbnet *dev = netdev_priv(netdev);
if (ee->magic != LAN95XX_EEPROM_MAGIC) {
netdev_warn(dev->net, "EEPROM: magic value mismatch, magic = 0x%x\n",
ee->magic);
return -EINVAL;
}
return smsc95xx_write_eeprom(dev, ee->offset, ee->len, data);
}
static int smsc95xx_ethtool_getregslen(struct net_device *netdev)
{
/* all smsc95xx registers */
return COE_CR - ID_REV + sizeof(u32);
}
static void
smsc95xx_ethtool_getregs(struct net_device *netdev, struct ethtool_regs *regs,
void *buf)
{
struct usbnet *dev = netdev_priv(netdev);
unsigned int i, j;
int retval;
u32 *data = buf;
retval = smsc95xx_read_reg(dev, ID_REV, &regs->version);
if (retval < 0) {
netdev_warn(netdev, "REGS: cannot read ID_REV\n");
return;
}
for (i = ID_REV, j = 0; i <= COE_CR; i += (sizeof(u32)), j++) {
retval = smsc95xx_read_reg(dev, i, &data[j]);
if (retval < 0) {
netdev_warn(netdev, "REGS: cannot read reg[%x]\n", i);
return;
}
}
}
static void smsc95xx_ethtool_get_wol(struct net_device *net,
struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
wolinfo->supported = SUPPORTED_WAKE;
wolinfo->wolopts = pdata->wolopts;
}
static int smsc95xx_ethtool_set_wol(struct net_device *net,
struct ethtool_wolinfo *wolinfo)
{
struct usbnet *dev = netdev_priv(net);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
int ret;
if (wolinfo->wolopts & ~SUPPORTED_WAKE)
return -EINVAL;
pdata->wolopts = wolinfo->wolopts & SUPPORTED_WAKE;
ret = device_set_wakeup_enable(&dev->udev->dev, pdata->wolopts);
if (ret < 0)
netdev_warn(dev->net, "device_set_wakeup_enable error %d\n", ret);
return ret;
}
static int get_mdix_status(struct net_device *net)
{
struct usbnet *dev = netdev_priv(net);
u32 val;
int buf;
buf = smsc95xx_mdio_read(dev->net, dev->mii.phy_id, SPECIAL_CTRL_STS);
if (buf & SPECIAL_CTRL_STS_OVRRD_AMDIX_) {
if (buf & SPECIAL_CTRL_STS_AMDIX_ENABLE_)
return ETH_TP_MDI_AUTO;
else if (buf & SPECIAL_CTRL_STS_AMDIX_STATE_)
return ETH_TP_MDI_X;
} else {
buf = smsc95xx_read_reg(dev, STRAP_STATUS, &val);
if (val & STRAP_STATUS_AMDIX_EN_)
return ETH_TP_MDI_AUTO;
}
return ETH_TP_MDI;
}
static void set_mdix_status(struct net_device *net, __u8 mdix_ctrl)
{
struct usbnet *dev = netdev_priv(net);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
int buf;
if ((pdata->chip_id == ID_REV_CHIP_ID_9500A_) ||
(pdata->chip_id == ID_REV_CHIP_ID_9530_) ||
(pdata->chip_id == ID_REV_CHIP_ID_89530_) ||
(pdata->chip_id == ID_REV_CHIP_ID_9730_)) {
/* Extend Manual AutoMDIX timer for 9500A/9500Ai */
buf = smsc95xx_mdio_read(dev->net, dev->mii.phy_id,
PHY_EDPD_CONFIG);
buf |= PHY_EDPD_CONFIG_EXT_CROSSOVER_;
smsc95xx_mdio_write(dev->net, dev->mii.phy_id,
PHY_EDPD_CONFIG, buf);
}
if (mdix_ctrl == ETH_TP_MDI) {
buf = smsc95xx_mdio_read(dev->net, dev->mii.phy_id,
SPECIAL_CTRL_STS);
buf |= SPECIAL_CTRL_STS_OVRRD_AMDIX_;
buf &= ~(SPECIAL_CTRL_STS_AMDIX_ENABLE_ |
SPECIAL_CTRL_STS_AMDIX_STATE_);
smsc95xx_mdio_write(dev->net, dev->mii.phy_id,
SPECIAL_CTRL_STS, buf);
} else if (mdix_ctrl == ETH_TP_MDI_X) {
buf = smsc95xx_mdio_read(dev->net, dev->mii.phy_id,
SPECIAL_CTRL_STS);
buf |= SPECIAL_CTRL_STS_OVRRD_AMDIX_;
buf &= ~(SPECIAL_CTRL_STS_AMDIX_ENABLE_ |
SPECIAL_CTRL_STS_AMDIX_STATE_);
buf |= SPECIAL_CTRL_STS_AMDIX_STATE_;
smsc95xx_mdio_write(dev->net, dev->mii.phy_id,
SPECIAL_CTRL_STS, buf);
} else if (mdix_ctrl == ETH_TP_MDI_AUTO) {
buf = smsc95xx_mdio_read(dev->net, dev->mii.phy_id,
SPECIAL_CTRL_STS);
buf &= ~SPECIAL_CTRL_STS_OVRRD_AMDIX_;
buf &= ~(SPECIAL_CTRL_STS_AMDIX_ENABLE_ |
SPECIAL_CTRL_STS_AMDIX_STATE_);
buf |= SPECIAL_CTRL_STS_AMDIX_ENABLE_;
smsc95xx_mdio_write(dev->net, dev->mii.phy_id,
SPECIAL_CTRL_STS, buf);
}
pdata->mdix_ctrl = mdix_ctrl;
}
static int smsc95xx_get_link_ksettings(struct net_device *net,
struct ethtool_link_ksettings *cmd)
{
struct usbnet *dev = netdev_priv(net);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
int retval;
retval = usbnet_get_link_ksettings(net, cmd);
cmd->base.eth_tp_mdix = pdata->mdix_ctrl;
cmd->base.eth_tp_mdix_ctrl = pdata->mdix_ctrl;
return retval;
}
static int smsc95xx_set_link_ksettings(struct net_device *net,
const struct ethtool_link_ksettings *cmd)
{
struct usbnet *dev = netdev_priv(net);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
int retval;
if (pdata->mdix_ctrl != cmd->base.eth_tp_mdix_ctrl)
set_mdix_status(net, cmd->base.eth_tp_mdix_ctrl);
retval = usbnet_set_link_ksettings(net, cmd);
return retval;
}
static const struct ethtool_ops smsc95xx_ethtool_ops = {
.get_link = usbnet_get_link,
.nway_reset = usbnet_nway_reset,
.get_drvinfo = usbnet_get_drvinfo,
.get_msglevel = usbnet_get_msglevel,
.set_msglevel = usbnet_set_msglevel,
.get_eeprom_len = smsc95xx_ethtool_get_eeprom_len,
.get_eeprom = smsc95xx_ethtool_get_eeprom,
.set_eeprom = smsc95xx_ethtool_set_eeprom,
.get_regs_len = smsc95xx_ethtool_getregslen,
.get_regs = smsc95xx_ethtool_getregs,
.get_wol = smsc95xx_ethtool_get_wol,
.set_wol = smsc95xx_ethtool_set_wol,
.get_link_ksettings = smsc95xx_get_link_ksettings,
.set_link_ksettings = smsc95xx_set_link_ksettings,
.get_ts_info = ethtool_op_get_ts_info,
};
static int smsc95xx_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
struct usbnet *dev = netdev_priv(netdev);
if (!netif_running(netdev))
return -EINVAL;
return generic_mii_ioctl(&dev->mii, if_mii(rq), cmd, NULL);
}
static void smsc95xx_init_mac_address(struct usbnet *dev)
{
const u8 *mac_addr;
/* maybe the boot loader passed the MAC address in devicetree */
mac_addr = of_get_mac_address(dev->udev->dev.of_node);
if (mac_addr) {
memcpy(dev->net->dev_addr, mac_addr, ETH_ALEN);
return;
}
/* try reading mac address from EEPROM */
if (smsc95xx_read_eeprom(dev, EEPROM_MAC_OFFSET, ETH_ALEN,
dev->net->dev_addr) == 0) {
if (is_valid_ether_addr(dev->net->dev_addr)) {
/* eeprom values are valid so use them */
netif_dbg(dev, ifup, dev->net, "MAC address read from EEPROM\n");
return;
}
}
/* no useful static MAC address found. generate a random one */
eth_hw_addr_random(dev->net);
netif_dbg(dev, ifup, dev->net, "MAC address set to eth_random_addr\n");
}
static int smsc95xx_set_mac_address(struct usbnet *dev)
{
u32 addr_lo = dev->net->dev_addr[0] | dev->net->dev_addr[1] << 8 |
dev->net->dev_addr[2] << 16 | dev->net->dev_addr[3] << 24;
u32 addr_hi = dev->net->dev_addr[4] | dev->net->dev_addr[5] << 8;
int ret;
ret = smsc95xx_write_reg(dev, ADDRL, addr_lo);
if (ret < 0)
return ret;
return smsc95xx_write_reg(dev, ADDRH, addr_hi);
}
/* starts the TX path */
static int smsc95xx_start_tx_path(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
unsigned long flags;
int ret;
/* Enable Tx at MAC */
spin_lock_irqsave(&pdata->mac_cr_lock, flags);
pdata->mac_cr |= MAC_CR_TXEN_;
spin_unlock_irqrestore(&pdata->mac_cr_lock, flags);
ret = smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr);
if (ret < 0)
return ret;
/* Enable Tx at SCSRs */
return smsc95xx_write_reg(dev, TX_CFG, TX_CFG_ON_);
}
/* Starts the Receive path */
static int smsc95xx_start_rx_path(struct usbnet *dev, int in_pm)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
unsigned long flags;
spin_lock_irqsave(&pdata->mac_cr_lock, flags);
pdata->mac_cr |= MAC_CR_RXEN_;
spin_unlock_irqrestore(&pdata->mac_cr_lock, flags);
return __smsc95xx_write_reg(dev, MAC_CR, pdata->mac_cr, in_pm);
}
static int smsc95xx_phy_initialize(struct usbnet *dev)
{
int bmcr, ret, timeout = 0;
/* Initialize MII structure */
dev->mii.dev = dev->net;
dev->mii.mdio_read = smsc95xx_mdio_read;
dev->mii.mdio_write = smsc95xx_mdio_write;
dev->mii.phy_id_mask = 0x1f;
dev->mii.reg_num_mask = 0x1f;
dev->mii.phy_id = SMSC95XX_INTERNAL_PHY_ID;
/* reset phy and wait for reset to complete */
smsc95xx_mdio_write(dev->net, dev->mii.phy_id, MII_BMCR, BMCR_RESET);
do {
msleep(10);
bmcr = smsc95xx_mdio_read(dev->net, dev->mii.phy_id, MII_BMCR);
timeout++;
} while ((bmcr & BMCR_RESET) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout on PHY Reset");
return -EIO;
}
smsc95xx_mdio_write(dev->net, dev->mii.phy_id, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_CSMA | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
/* read to clear */
ret = smsc95xx_mdio_read(dev->net, dev->mii.phy_id, PHY_INT_SRC);
if (ret < 0) {
netdev_warn(dev->net, "Failed to read PHY_INT_SRC during init\n");
return ret;
}
smsc95xx_mdio_write(dev->net, dev->mii.phy_id, PHY_INT_MASK,
PHY_INT_MASK_DEFAULT_);
mii_nway_restart(&dev->mii);
netif_dbg(dev, ifup, dev->net, "phy initialised successfully\n");
return 0;
}
static int smsc95xx_reset(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 read_buf, write_buf, burst_cap;
int ret = 0, timeout;
netif_dbg(dev, ifup, dev->net, "entering smsc95xx_reset\n");
ret = smsc95xx_write_reg(dev, HW_CFG, HW_CFG_LRST_);
if (ret < 0)
return ret;
timeout = 0;
do {
msleep(10);
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
timeout++;
} while ((read_buf & HW_CFG_LRST_) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for completion of Lite Reset\n");
return -ETIMEDOUT;
}
ret = smsc95xx_write_reg(dev, PM_CTRL, PM_CTL_PHY_RST_);
if (ret < 0)
return ret;
timeout = 0;
do {
msleep(10);
ret = smsc95xx_read_reg(dev, PM_CTRL, &read_buf);
if (ret < 0)
return ret;
timeout++;
} while ((read_buf & PM_CTL_PHY_RST_) && (timeout < 100));
if (timeout >= 100) {
netdev_warn(dev->net, "timeout waiting for PHY Reset\n");
return ret;
}
ret = smsc95xx_set_mac_address(dev);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net, "MAC Address: %pM\n",
dev->net->dev_addr);
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG : 0x%08x\n",
read_buf);
read_buf |= HW_CFG_BIR_;
ret = smsc95xx_write_reg(dev, HW_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net,
"Read Value from HW_CFG after writing HW_CFG_BIR_: 0x%08x\n",
read_buf);
if (!turbo_mode) {
burst_cap = 0;
dev->rx_urb_size = MAX_SINGLE_PACKET_SIZE;
} else if (dev->udev->speed == USB_SPEED_HIGH) {
burst_cap = DEFAULT_HS_BURST_CAP_SIZE / HS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_HS_BURST_CAP_SIZE;
} else {
burst_cap = DEFAULT_FS_BURST_CAP_SIZE / FS_USB_PKT_SIZE;
dev->rx_urb_size = DEFAULT_FS_BURST_CAP_SIZE;
}
netif_dbg(dev, ifup, dev->net, "rx_urb_size=%ld\n",
(ulong)dev->rx_urb_size);
ret = smsc95xx_write_reg(dev, BURST_CAP, burst_cap);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, BURST_CAP, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net,
"Read Value from BURST_CAP after writing: 0x%08x\n",
read_buf);
ret = smsc95xx_write_reg(dev, BULK_IN_DLY, DEFAULT_BULK_IN_DELAY);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, BULK_IN_DLY, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net,
"Read Value from BULK_IN_DLY after writing: 0x%08x\n",
read_buf);
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net, "Read Value from HW_CFG: 0x%08x\n",
read_buf);
if (turbo_mode)
read_buf |= (HW_CFG_MEF_ | HW_CFG_BCE_);
read_buf &= ~HW_CFG_RXDOFF_;
/* set Rx data offset=2, Make IP header aligns on word boundary. */
read_buf |= NET_IP_ALIGN << 9;
ret = smsc95xx_write_reg(dev, HW_CFG, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, HW_CFG, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net,
"Read Value from HW_CFG after writing: 0x%08x\n", read_buf);
ret = smsc95xx_write_reg(dev, INT_STS, INT_STS_CLEAR_ALL_);
if (ret < 0)
return ret;
ret = smsc95xx_read_reg(dev, ID_REV, &read_buf);
if (ret < 0)
return ret;
netif_dbg(dev, ifup, dev->net, "ID_REV = 0x%08x\n", read_buf);
/* Configure GPIO pins as LED outputs */
write_buf = LED_GPIO_CFG_SPD_LED | LED_GPIO_CFG_LNK_LED |
LED_GPIO_CFG_FDX_LED;
ret = smsc95xx_write_reg(dev, LED_GPIO_CFG, write_buf);
if (ret < 0)
return ret;
/* Init Tx */
ret = smsc95xx_write_reg(dev, FLOW, 0);
if (ret < 0)
return ret;
ret = smsc95xx_write_reg(dev, AFC_CFG, AFC_CFG_DEFAULT);
if (ret < 0)
return ret;
/* Don't need mac_cr_lock during initialisation */
ret = smsc95xx_read_reg(dev, MAC_CR, &pdata->mac_cr);
if (ret < 0)
return ret;
/* Init Rx */
/* Set Vlan */
ret = smsc95xx_write_reg(dev, VLAN1, (u32)ETH_P_8021Q);
if (ret < 0)
return ret;
/* Enable or disable checksum offload engines */
ret = smsc95xx_set_features(dev->net, dev->net->features);
if (ret < 0) {
netdev_warn(dev->net, "Failed to set checksum offload features\n");
return ret;
}
smsc95xx_set_multicast(dev->net);
ret = smsc95xx_phy_initialize(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to init PHY\n");
return ret;
}
ret = smsc95xx_read_reg(dev, INT_EP_CTL, &read_buf);
if (ret < 0)
return ret;
/* enable PHY interrupts */
read_buf |= INT_EP_CTL_PHY_INT_;
ret = smsc95xx_write_reg(dev, INT_EP_CTL, read_buf);
if (ret < 0)
return ret;
ret = smsc95xx_start_tx_path(dev);
if (ret < 0) {
netdev_warn(dev->net, "Failed to start TX path\n");
return ret;
}
ret = smsc95xx_start_rx_path(dev, 0);
if (ret < 0) {
netdev_warn(dev->net, "Failed to start RX path\n");
return ret;
}
netif_dbg(dev, ifup, dev->net, "smsc95xx_reset, return 0\n");
return 0;
}
static const struct net_device_ops smsc95xx_netdev_ops = {
.ndo_open = usbnet_open,
.ndo_stop = usbnet_stop,
.ndo_start_xmit = usbnet_start_xmit,
.ndo_tx_timeout = usbnet_tx_timeout,
.ndo_change_mtu = usbnet_change_mtu,
.ndo_get_stats64 = usbnet_get_stats64,
.ndo_set_mac_address = eth_mac_addr,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = smsc95xx_ioctl,
.ndo_set_rx_mode = smsc95xx_set_multicast,
.ndo_set_features = smsc95xx_set_features,
};
static int smsc95xx_bind(struct usbnet *dev, struct usb_interface *intf)
{
struct smsc95xx_priv *pdata = NULL;
u32 val;
int ret;
printk(KERN_INFO SMSC_CHIPNAME " v" SMSC_DRIVER_VERSION "\n");
ret = usbnet_get_endpoints(dev, intf);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_get_endpoints failed: %d\n", ret);
return ret;
}
dev->data[0] = (unsigned long)kzalloc(sizeof(struct smsc95xx_priv),
GFP_KERNEL);
pdata = (struct smsc95xx_priv *)(dev->data[0]);
if (!pdata)
return -ENOMEM;
spin_lock_init(&pdata->mac_cr_lock);
/* LAN95xx devices do not alter the computed checksum of 0 to 0xffff.
* RFC 2460, ipv6 UDP calculated checksum yields a result of zero must
* be changed to 0xffff. RFC 768, ipv4 UDP computed checksum is zero,
* it is transmitted as all ones. The zero transmitted checksum means
* transmitter generated no checksum. Hence, enable csum offload only
* for ipv4 packets.
*/
if (DEFAULT_TX_CSUM_ENABLE)
dev->net->features |= NETIF_F_IP_CSUM;
if (DEFAULT_RX_CSUM_ENABLE)
dev->net->features |= NETIF_F_RXCSUM;
dev->net->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
set_bit(EVENT_NO_IP_ALIGN, &dev->flags);
smsc95xx_init_mac_address(dev);
/* Init all registers */
ret = smsc95xx_reset(dev);
if (ret)
goto free_pdata;
/* detect device revision as different features may be available */
ret = smsc95xx_read_reg(dev, ID_REV, &val);
if (ret < 0)
goto free_pdata;
val >>= 16;
pdata->chip_id = val;
pdata->mdix_ctrl = get_mdix_status(dev->net);
if ((val == ID_REV_CHIP_ID_9500A_) || (val == ID_REV_CHIP_ID_9530_) ||
(val == ID_REV_CHIP_ID_89530_) || (val == ID_REV_CHIP_ID_9730_))
pdata->features = (FEATURE_8_WAKEUP_FILTERS |
FEATURE_PHY_NLP_CROSSOVER |
FEATURE_REMOTE_WAKEUP);
else if (val == ID_REV_CHIP_ID_9512_)
pdata->features = FEATURE_8_WAKEUP_FILTERS;
dev->net->netdev_ops = &smsc95xx_netdev_ops;
dev->net->ethtool_ops = &smsc95xx_ethtool_ops;
dev->net->flags |= IFF_MULTICAST;
dev->net->hard_header_len += SMSC95XX_TX_OVERHEAD_CSUM;
dev->net->min_mtu = ETH_MIN_MTU;
dev->net->max_mtu = ETH_DATA_LEN;
dev->hard_mtu = dev->net->mtu + dev->net->hard_header_len;
pdata->dev = dev;
INIT_DELAYED_WORK(&pdata->carrier_check, check_carrier);
schedule_delayed_work(&pdata->carrier_check, CARRIER_CHECK_DELAY);
return 0;
free_pdata:
kfree(pdata);
return ret;
}
static void smsc95xx_unbind(struct usbnet *dev, struct usb_interface *intf)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
if (pdata) {
cancel_delayed_work_sync(&pdata->carrier_check);
netif_dbg(dev, ifdown, dev->net, "free pdata\n");
kfree(pdata);
pdata = NULL;
dev->data[0] = 0;
}
}
static u32 smsc_crc(const u8 *buffer, size_t len, int filter)
{
u32 crc = bitrev16(crc16(0xFFFF, buffer, len));
return crc << ((filter % 2) * 16);
}
static int smsc95xx_enable_phy_wakeup_interrupts(struct usbnet *dev, u16 mask)
{
struct mii_if_info *mii = &dev->mii;
int ret;
netdev_dbg(dev->net, "enabling PHY wakeup interrupts\n");
/* read to clear */
ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_SRC);
if (ret < 0)
return ret;
/* enable interrupt source */
ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_INT_MASK);
if (ret < 0)
return ret;
ret |= mask;
smsc95xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_INT_MASK, ret);
return 0;
}
static int smsc95xx_link_ok_nopm(struct usbnet *dev)
{
struct mii_if_info *mii = &dev->mii;
int ret;
/* first, a dummy read, needed to latch some MII phys */
ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR);
if (ret < 0)
return ret;
ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, MII_BMSR);
if (ret < 0)
return ret;
return !!(ret & BMSR_LSTATUS);
}
static int smsc95xx_enter_suspend0(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
return ret;
val &= (~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_));
val |= PM_CTL_SUS_MODE_0;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
/* clear wol status */
val &= ~PM_CTL_WUPS_;
val |= PM_CTL_WUPS_WOL_;
/* enable energy detection */
if (pdata->wolopts & WAKE_PHY)
val |= PM_CTL_WUPS_ED_;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
/* read back PM_CTRL */
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
return ret;
pdata->suspend_flags |= SUSPEND_SUSPEND0;
return 0;
}
static int smsc95xx_enter_suspend1(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
struct mii_if_info *mii = &dev->mii;
u32 val;
int ret;
/* reconfigure link pulse detection timing for
* compatibility with non-standard link partners
*/
if (pdata->features & FEATURE_PHY_NLP_CROSSOVER)
smsc95xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_EDPD_CONFIG,
PHY_EDPD_CONFIG_DEFAULT);
/* enable energy detect power-down mode */
ret = smsc95xx_mdio_read_nopm(dev->net, mii->phy_id, PHY_MODE_CTRL_STS);
if (ret < 0)
return ret;
ret |= MODE_CTRL_STS_EDPWRDOWN_;
smsc95xx_mdio_write_nopm(dev->net, mii->phy_id, PHY_MODE_CTRL_STS, ret);
/* enter SUSPEND1 mode */
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
return ret;
val &= ~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_);
val |= PM_CTL_SUS_MODE_1;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
/* clear wol status, enable energy detection */
val &= ~PM_CTL_WUPS_;
val |= (PM_CTL_WUPS_ED_ | PM_CTL_ED_EN_);
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
pdata->suspend_flags |= SUSPEND_SUSPEND1;
return 0;
}
static int smsc95xx_enter_suspend2(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
return ret;
val &= ~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_);
val |= PM_CTL_SUS_MODE_2;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
pdata->suspend_flags |= SUSPEND_SUSPEND2;
return 0;
}
static int smsc95xx_enter_suspend3(struct usbnet *dev)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 val;
int ret;
ret = smsc95xx_read_reg_nopm(dev, RX_FIFO_INF, &val);
if (ret < 0)
return ret;
if (val & RX_FIFO_INF_USED_) {
netdev_info(dev->net, "rx fifo not empty in autosuspend\n");
return -EBUSY;
}
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
return ret;
val &= ~(PM_CTL_SUS_MODE_ | PM_CTL_WUPS_ | PM_CTL_PHY_RST_);
val |= PM_CTL_SUS_MODE_3 | PM_CTL_RES_CLR_WKP_STS;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
/* clear wol status */
val &= ~PM_CTL_WUPS_;
val |= PM_CTL_WUPS_WOL_;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
pdata->suspend_flags |= SUSPEND_SUSPEND3;
return 0;
}
static int smsc95xx_autosuspend(struct usbnet *dev, u32 link_up)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
int ret;
if (!netif_running(dev->net)) {
/* interface is ifconfig down so fully power down hw */
netdev_dbg(dev->net, "autosuspend entering SUSPEND2\n");
return smsc95xx_enter_suspend2(dev);
}
if (!link_up) {
/* link is down so enter EDPD mode, but only if device can
* reliably resume from it. This check should be redundant
* as current FEATURE_REMOTE_WAKEUP parts also support
* FEATURE_PHY_NLP_CROSSOVER but it's included for clarity */
if (!(pdata->features & FEATURE_PHY_NLP_CROSSOVER)) {
netdev_warn(dev->net, "EDPD not supported\n");
return -EBUSY;
}
netdev_dbg(dev->net, "autosuspend entering SUSPEND1\n");
/* enable PHY wakeup events for if cable is attached */
ret = smsc95xx_enable_phy_wakeup_interrupts(dev,
PHY_INT_MASK_ANEG_COMP_);
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
return ret;
}
netdev_info(dev->net, "entering SUSPEND1 mode\n");
return smsc95xx_enter_suspend1(dev);
}
/* enable PHY wakeup events so we remote wakeup if cable is pulled */
ret = smsc95xx_enable_phy_wakeup_interrupts(dev,
PHY_INT_MASK_LINK_DOWN_);
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
return ret;
}
netdev_dbg(dev->net, "autosuspend entering SUSPEND3\n");
return smsc95xx_enter_suspend3(dev);
}
static int smsc95xx_suspend(struct usb_interface *intf, pm_message_t message)
{
struct usbnet *dev = usb_get_intfdata(intf);
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
u32 val, link_up;
int ret;
ret = usbnet_suspend(intf, message);
if (ret < 0) {
netdev_warn(dev->net, "usbnet_suspend error\n");
return ret;
}
cancel_delayed_work_sync(&pdata->carrier_check);
if (pdata->suspend_flags) {
netdev_warn(dev->net, "error during last resume\n");
pdata->suspend_flags = 0;
}
/* determine if link is up using only _nopm functions */
link_up = smsc95xx_link_ok_nopm(dev);
if (message.event == PM_EVENT_AUTO_SUSPEND &&
(pdata->features & FEATURE_REMOTE_WAKEUP)) {
ret = smsc95xx_autosuspend(dev, link_up);
goto done;
}
/* if we get this far we're not autosuspending */
/* if no wol options set, or if link is down and we're not waking on
* PHY activity, enter lowest power SUSPEND2 mode
*/
if (!(pdata->wolopts & SUPPORTED_WAKE) ||
!(link_up || (pdata->wolopts & WAKE_PHY))) {
netdev_info(dev->net, "entering SUSPEND2 mode\n");
/* disable energy detect (link up) & wake up events */
ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0)
goto done;
val &= ~(WUCSR_MPEN_ | WUCSR_WAKE_EN_);
ret = smsc95xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0)
goto done;
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
goto done;
val &= ~(PM_CTL_ED_EN_ | PM_CTL_WOL_EN_);
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
goto done;
ret = smsc95xx_enter_suspend2(dev);
goto done;
}
if (pdata->wolopts & WAKE_PHY) {
ret = smsc95xx_enable_phy_wakeup_interrupts(dev,
(PHY_INT_MASK_ANEG_COMP_ | PHY_INT_MASK_LINK_DOWN_));
if (ret < 0) {
netdev_warn(dev->net, "error enabling PHY wakeup ints\n");
goto done;
}
/* if link is down then configure EDPD and enter SUSPEND1,
* otherwise enter SUSPEND0 below
*/
if (!link_up) {
netdev_info(dev->net, "entering SUSPEND1 mode\n");
ret = smsc95xx_enter_suspend1(dev);
goto done;
}
}
if (pdata->wolopts & (WAKE_BCAST | WAKE_MCAST | WAKE_ARP | WAKE_UCAST)) {
u32 *filter_mask = kzalloc(sizeof(u32) * 32, GFP_KERNEL);
u32 command[2];
u32 offset[2];
u32 crc[4];
int wuff_filter_count =
(pdata->features & FEATURE_8_WAKEUP_FILTERS) ?
LAN9500A_WUFF_NUM : LAN9500_WUFF_NUM;
int i, filter = 0;
if (!filter_mask) {
netdev_warn(dev->net, "Unable to allocate filter_mask\n");
ret = -ENOMEM;
goto done;
}
memset(command, 0, sizeof(command));
memset(offset, 0, sizeof(offset));
memset(crc, 0, sizeof(crc));
if (pdata->wolopts & WAKE_BCAST) {
const u8 bcast[] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
netdev_info(dev->net, "enabling broadcast detection\n");
filter_mask[filter * 4] = 0x003F;
filter_mask[filter * 4 + 1] = 0x00;
filter_mask[filter * 4 + 2] = 0x00;
filter_mask[filter * 4 + 3] = 0x00;
command[filter/4] |= 0x05UL << ((filter % 4) * 8);
offset[filter/4] |= 0x00 << ((filter % 4) * 8);
crc[filter/2] |= smsc_crc(bcast, 6, filter);
filter++;
}
if (pdata->wolopts & WAKE_MCAST) {
const u8 mcast[] = {0x01, 0x00, 0x5E};
netdev_info(dev->net, "enabling multicast detection\n");
filter_mask[filter * 4] = 0x0007;
filter_mask[filter * 4 + 1] = 0x00;
filter_mask[filter * 4 + 2] = 0x00;
filter_mask[filter * 4 + 3] = 0x00;
command[filter/4] |= 0x09UL << ((filter % 4) * 8);
offset[filter/4] |= 0x00 << ((filter % 4) * 8);
crc[filter/2] |= smsc_crc(mcast, 3, filter);
filter++;
}
if (pdata->wolopts & WAKE_ARP) {
const u8 arp[] = {0x08, 0x06};
netdev_info(dev->net, "enabling ARP detection\n");
filter_mask[filter * 4] = 0x0003;
filter_mask[filter * 4 + 1] = 0x00;
filter_mask[filter * 4 + 2] = 0x00;
filter_mask[filter * 4 + 3] = 0x00;
command[filter/4] |= 0x05UL << ((filter % 4) * 8);
offset[filter/4] |= 0x0C << ((filter % 4) * 8);
crc[filter/2] |= smsc_crc(arp, 2, filter);
filter++;
}
if (pdata->wolopts & WAKE_UCAST) {
netdev_info(dev->net, "enabling unicast detection\n");
filter_mask[filter * 4] = 0x003F;
filter_mask[filter * 4 + 1] = 0x00;
filter_mask[filter * 4 + 2] = 0x00;
filter_mask[filter * 4 + 3] = 0x00;
command[filter/4] |= 0x01UL << ((filter % 4) * 8);
offset[filter/4] |= 0x00 << ((filter % 4) * 8);
crc[filter/2] |= smsc_crc(dev->net->dev_addr, ETH_ALEN, filter);
filter++;
}
for (i = 0; i < (wuff_filter_count * 4); i++) {
ret = smsc95xx_write_reg_nopm(dev, WUFF, filter_mask[i]);
if (ret < 0) {
kfree(filter_mask);
goto done;
}
}
kfree(filter_mask);
for (i = 0; i < (wuff_filter_count / 4); i++) {
ret = smsc95xx_write_reg_nopm(dev, WUFF, command[i]);
if (ret < 0)
goto done;
}
for (i = 0; i < (wuff_filter_count / 4); i++) {
ret = smsc95xx_write_reg_nopm(dev, WUFF, offset[i]);
if (ret < 0)
goto done;
}
for (i = 0; i < (wuff_filter_count / 2); i++) {
ret = smsc95xx_write_reg_nopm(dev, WUFF, crc[i]);
if (ret < 0)
goto done;
}
/* clear any pending pattern match packet status */
ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0)
goto done;
val |= WUCSR_WUFR_;
ret = smsc95xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0)
goto done;
}
if (pdata->wolopts & WAKE_MAGIC) {
/* clear any pending magic packet status */
ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0)
goto done;
val |= WUCSR_MPR_;
ret = smsc95xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0)
goto done;
}
/* enable/disable wakeup sources */
ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0)
goto done;
if (pdata->wolopts & (WAKE_BCAST | WAKE_MCAST | WAKE_ARP | WAKE_UCAST)) {
netdev_info(dev->net, "enabling pattern match wakeup\n");
val |= WUCSR_WAKE_EN_;
} else {
netdev_info(dev->net, "disabling pattern match wakeup\n");
val &= ~WUCSR_WAKE_EN_;
}
if (pdata->wolopts & WAKE_MAGIC) {
netdev_info(dev->net, "enabling magic packet wakeup\n");
val |= WUCSR_MPEN_;
} else {
netdev_info(dev->net, "disabling magic packet wakeup\n");
val &= ~WUCSR_MPEN_;
}
ret = smsc95xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0)
goto done;
/* enable wol wakeup source */
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
goto done;
val |= PM_CTL_WOL_EN_;
/* phy energy detect wakeup source */
if (pdata->wolopts & WAKE_PHY)
val |= PM_CTL_ED_EN_;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
goto done;
/* enable receiver to enable frame reception */
smsc95xx_start_rx_path(dev, 1);
/* some wol options are enabled, so enter SUSPEND0 */
netdev_info(dev->net, "entering SUSPEND0 mode\n");
ret = smsc95xx_enter_suspend0(dev);
done:
/*
* TODO: resume() might need to handle the suspend failure
* in system sleep
*/
if (ret && PMSG_IS_AUTO(message))
usbnet_resume(intf);
if (ret)
schedule_delayed_work(&pdata->carrier_check,
CARRIER_CHECK_DELAY);
return ret;
}
static int smsc95xx_resume(struct usb_interface *intf)
{
struct usbnet *dev = usb_get_intfdata(intf);
struct smsc95xx_priv *pdata;
u8 suspend_flags;
int ret;
u32 val;
BUG_ON(!dev);
pdata = (struct smsc95xx_priv *)(dev->data[0]);
suspend_flags = pdata->suspend_flags;
netdev_dbg(dev->net, "resume suspend_flags=0x%02x\n", suspend_flags);
/* do this first to ensure it's cleared even in error case */
pdata->suspend_flags = 0;
schedule_delayed_work(&pdata->carrier_check, CARRIER_CHECK_DELAY);
if (suspend_flags & SUSPEND_ALLMODES) {
/* clear wake-up sources */
ret = smsc95xx_read_reg_nopm(dev, WUCSR, &val);
if (ret < 0)
return ret;
val &= ~(WUCSR_WAKE_EN_ | WUCSR_MPEN_);
ret = smsc95xx_write_reg_nopm(dev, WUCSR, val);
if (ret < 0)
return ret;
/* clear wake-up status */
ret = smsc95xx_read_reg_nopm(dev, PM_CTRL, &val);
if (ret < 0)
return ret;
val &= ~PM_CTL_WOL_EN_;
val |= PM_CTL_WUPS_;
ret = smsc95xx_write_reg_nopm(dev, PM_CTRL, val);
if (ret < 0)
return ret;
}
ret = usbnet_resume(intf);
if (ret < 0)
netdev_warn(dev->net, "usbnet_resume error\n");
return ret;
}
static int smsc95xx_reset_resume(struct usb_interface *intf)
{
struct usbnet *dev = usb_get_intfdata(intf);
int ret;
ret = smsc95xx_reset(dev);
if (ret < 0)
return ret;
return smsc95xx_resume(intf);
}
static void smsc95xx_rx_csum_offload(struct sk_buff *skb)
{
skb->csum = *(u16 *)(skb_tail_pointer(skb) - 2);
skb->ip_summed = CHECKSUM_COMPLETE;
skb_trim(skb, skb->len - 2);
}
static int smsc95xx_rx_fixup(struct usbnet *dev, struct sk_buff *skb)
{
/* This check is no longer done by usbnet */
if (skb->len < dev->net->hard_header_len)
return 0;
while (skb->len > 0) {
u32 header, align_count;
struct sk_buff *ax_skb;
unsigned char *packet;
u16 size;
memcpy(&header, skb->data, sizeof(header));
le32_to_cpus(&header);
skb_pull(skb, 4 + NET_IP_ALIGN);
packet = skb->data;
/* get the packet length */
size = (u16)((header & RX_STS_FL_) >> 16);
align_count = (4 - ((size + NET_IP_ALIGN) % 4)) % 4;
if (unlikely(size > skb->len)) {
netif_dbg(dev, rx_err, dev->net,
"size err header=0x%08x\n", header);
return 0;
}
if (unlikely(header & RX_STS_ES_)) {
netif_dbg(dev, rx_err, dev->net,
"Error header=0x%08x\n", header);
dev->net->stats.rx_errors++;
dev->net->stats.rx_dropped++;
if (header & RX_STS_CRC_) {
dev->net->stats.rx_crc_errors++;
} else {
if (header & (RX_STS_TL_ | RX_STS_RF_))
dev->net->stats.rx_frame_errors++;
if ((header & RX_STS_LE_) &&
(!(header & RX_STS_FT_)))
dev->net->stats.rx_length_errors++;
}
} else {
/* ETH_FRAME_LEN + 4(CRC) + 2(COE) + 4(Vlan) */
if (unlikely(size > (ETH_FRAME_LEN + 12))) {
netif_dbg(dev, rx_err, dev->net,
"size err header=0x%08x\n", header);
return 0;
}
/* last frame in this batch */
if (skb->len == size) {
if (dev->net->features & NETIF_F_RXCSUM)
smsc95xx_rx_csum_offload(skb);
skb_trim(skb, skb->len - 4); /* remove fcs */
skb->truesize = size + sizeof(struct sk_buff);
return 1;
}
ax_skb = skb_clone(skb, GFP_ATOMIC);
if (unlikely(!ax_skb)) {
netdev_warn(dev->net, "Error allocating skb\n");
return 0;
}
ax_skb->len = size;
ax_skb->data = packet;
skb_set_tail_pointer(ax_skb, size);
if (dev->net->features & NETIF_F_RXCSUM)
smsc95xx_rx_csum_offload(ax_skb);
skb_trim(ax_skb, ax_skb->len - 4); /* remove fcs */
ax_skb->truesize = size + sizeof(struct sk_buff);
usbnet_skb_return(dev, ax_skb);
}
skb_pull(skb, size);
/* padding bytes before the next frame starts */
if (skb->len)
skb_pull(skb, align_count);
}
return 1;
}
static u32 smsc95xx_calc_csum_preamble(struct sk_buff *skb)
{
u16 low_16 = (u16)skb_checksum_start_offset(skb);
u16 high_16 = low_16 + skb->csum_offset;
return (high_16 << 16) | low_16;
}
static struct sk_buff *smsc95xx_tx_fixup(struct usbnet *dev,
struct sk_buff *skb, gfp_t flags)
{
bool csum = skb->ip_summed == CHECKSUM_PARTIAL;
int overhead = csum ? SMSC95XX_TX_OVERHEAD_CSUM : SMSC95XX_TX_OVERHEAD;
u32 tx_cmd_a, tx_cmd_b;
/* We do not advertise SG, so skbs should be already linearized */
BUG_ON(skb_shinfo(skb)->nr_frags);
/* Make writable and expand header space by overhead if required */
if (skb_cow_head(skb, overhead)) {
/* Must deallocate here as returning NULL to indicate error
* means the skb won't be deallocated in the caller.
*/
dev_kfree_skb_any(skb);
return NULL;
}
if (csum) {
if (skb->len <= 45) {
/* workaround - hardware tx checksum does not work
* properly with extremely small packets */
long csstart = skb_checksum_start_offset(skb);
__wsum calc = csum_partial(skb->data + csstart,
skb->len - csstart, 0);
*((__sum16 *)(skb->data + csstart
+ skb->csum_offset)) = csum_fold(calc);
csum = false;
} else {
u32 csum_preamble = smsc95xx_calc_csum_preamble(skb);
skb_push(skb, 4);
cpu_to_le32s(&csum_preamble);
memcpy(skb->data, &csum_preamble, 4);
}
}
skb_push(skb, 4);
tx_cmd_b = (u32)(skb->len - 4);
if (csum)
tx_cmd_b |= TX_CMD_B_CSUM_ENABLE;
cpu_to_le32s(&tx_cmd_b);
memcpy(skb->data, &tx_cmd_b, 4);
skb_push(skb, 4);
tx_cmd_a = (u32)(skb->len - 8) | TX_CMD_A_FIRST_SEG_ |
TX_CMD_A_LAST_SEG_;
cpu_to_le32s(&tx_cmd_a);
memcpy(skb->data, &tx_cmd_a, 4);
return skb;
}
static int smsc95xx_manage_power(struct usbnet *dev, int on)
{
struct smsc95xx_priv *pdata = (struct smsc95xx_priv *)(dev->data[0]);
dev->intf->needs_remote_wakeup = on;
if (pdata->features & FEATURE_REMOTE_WAKEUP)
return 0;
/* this chip revision isn't capable of remote wakeup */
netdev_info(dev->net, "hardware isn't capable of remote wakeup\n");
if (on)
usb_autopm_get_interface_no_resume(dev->intf);
else
usb_autopm_put_interface(dev->intf);
return 0;
}
static const struct driver_info smsc95xx_info = {
.description = "smsc95xx USB 2.0 Ethernet",
.bind = smsc95xx_bind,
.unbind = smsc95xx_unbind,
.link_reset = smsc95xx_link_reset,
.reset = smsc95xx_reset,
.rx_fixup = smsc95xx_rx_fixup,
.tx_fixup = smsc95xx_tx_fixup,
.status = smsc95xx_status,
.manage_power = smsc95xx_manage_power,
.flags = FLAG_ETHER | FLAG_SEND_ZLP | FLAG_LINK_INTR,
};
static const struct usb_device_id products[] = {
{
/* SMSC9500 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9500),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9505 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9505),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9500A USB Ethernet Device */
USB_DEVICE(0x0424, 0x9E00),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9505A USB Ethernet Device */
USB_DEVICE(0x0424, 0x9E01),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9512/9514 USB Hub & Ethernet Device */
USB_DEVICE(0x0424, 0xec00),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9500 USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9900),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9505 USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9901),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9500A USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9902),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9505A USB Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9903),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9512/9514 USB Hub & Ethernet Device (SAL10) */
USB_DEVICE(0x0424, 0x9904),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9500A USB Ethernet Device (HAL) */
USB_DEVICE(0x0424, 0x9905),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9505A USB Ethernet Device (HAL) */
USB_DEVICE(0x0424, 0x9906),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9500 USB Ethernet Device (Alternate ID) */
USB_DEVICE(0x0424, 0x9907),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9500A USB Ethernet Device (Alternate ID) */
USB_DEVICE(0x0424, 0x9908),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC9512/9514 USB Hub & Ethernet Device (Alternate ID) */
USB_DEVICE(0x0424, 0x9909),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC LAN9530 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9530),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC LAN9730 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9730),
.driver_info = (unsigned long) &smsc95xx_info,
},
{
/* SMSC LAN89530 USB Ethernet Device */
USB_DEVICE(0x0424, 0x9E08),
.driver_info = (unsigned long) &smsc95xx_info,
},
{ }, /* END */
};
MODULE_DEVICE_TABLE(usb, products);
static struct usb_driver smsc95xx_driver = {
.name = "smsc95xx",
.id_table = products,
.probe = usbnet_probe,
.suspend = smsc95xx_suspend,
.resume = smsc95xx_resume,
.reset_resume = smsc95xx_reset_resume,
.disconnect = usbnet_disconnect,
.disable_hub_initiated_lpm = 1,
.supports_autosuspend = 1,
};
module_usb_driver(smsc95xx_driver);
MODULE_AUTHOR("Nancy Lin");
MODULE_AUTHOR("Steve Glendinning <steve.glendinning@shawell.net>");
MODULE_DESCRIPTION("SMSC95XX USB 2.0 Ethernet Devices");
MODULE_LICENSE("GPL");