| /* |
| * Copyright 1996 The Board of Trustees of The Leland Stanford |
| * Junior University. All Rights Reserved. |
| * |
| * Permission to use, copy, modify, and distribute this |
| * software and its documentation for any purpose and without |
| * fee is hereby granted, provided that the above copyright |
| * notice appear in all copies. Stanford University |
| * makes no representations about the suitability of this |
| * software for any purpose. It is provided "as is" without |
| * express or implied warranty. |
| * |
| * strip.c This module implements Starmode Radio IP (STRIP) |
| * for kernel-based devices like TTY. It interfaces between a |
| * raw TTY, and the kernel's INET protocol layers (via DDI). |
| * |
| * Version: @(#)strip.c 1.3 July 1997 |
| * |
| * Author: Stuart Cheshire <cheshire@cs.stanford.edu> |
| * |
| * Fixes: v0.9 12th Feb 1996 (SC) |
| * New byte stuffing (2+6 run-length encoding) |
| * New watchdog timer task |
| * New Protocol key (SIP0) |
| * |
| * v0.9.1 3rd March 1996 (SC) |
| * Changed to dynamic device allocation -- no more compile |
| * time (or boot time) limit on the number of STRIP devices. |
| * |
| * v0.9.2 13th March 1996 (SC) |
| * Uses arp cache lookups (but doesn't send arp packets yet) |
| * |
| * v0.9.3 17th April 1996 (SC) |
| * Fixed bug where STR_ERROR flag was getting set unneccessarily |
| * (causing otherwise good packets to be unneccessarily dropped) |
| * |
| * v0.9.4 27th April 1996 (SC) |
| * First attempt at using "&COMMAND" Starmode AT commands |
| * |
| * v0.9.5 29th May 1996 (SC) |
| * First attempt at sending (unicast) ARP packets |
| * |
| * v0.9.6 5th June 1996 (Elliot) |
| * Put "message level" tags in every "printk" statement |
| * |
| * v0.9.7 13th June 1996 (laik) |
| * Added support for the /proc fs |
| * |
| * v0.9.8 July 1996 (Mema) |
| * Added packet logging |
| * |
| * v1.0 November 1996 (SC) |
| * Fixed (severe) memory leaks in the /proc fs code |
| * Fixed race conditions in the logging code |
| * |
| * v1.1 January 1997 (SC) |
| * Deleted packet logging (use tcpdump instead) |
| * Added support for Metricom Firmware v204 features |
| * (like message checksums) |
| * |
| * v1.2 January 1997 (SC) |
| * Put portables list back in |
| * |
| * v1.3 July 1997 (SC) |
| * Made STRIP driver set the radio's baud rate automatically. |
| * It is no longer necessarily to manually set the radio's |
| * rate permanently to 115200 -- the driver handles setting |
| * the rate automatically. |
| */ |
| |
| #ifdef MODULE |
| static const char StripVersion[] = "1.3A-STUART.CHESHIRE-MODULAR"; |
| #else |
| static const char StripVersion[] = "1.3A-STUART.CHESHIRE"; |
| #endif |
| |
| #define TICKLE_TIMERS 0 |
| #define EXT_COUNTERS 1 |
| |
| |
| /************************************************************************/ |
| /* Header files */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/init.h> |
| #include <linux/bitops.h> |
| #include <asm/system.h> |
| #include <asm/uaccess.h> |
| |
| # include <linux/ctype.h> |
| #include <linux/string.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/in.h> |
| #include <linux/tty.h> |
| #include <linux/errno.h> |
| #include <linux/netdevice.h> |
| #include <linux/inetdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/skbuff.h> |
| #include <linux/if_arp.h> |
| #include <linux/if_strip.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/serial.h> |
| #include <linux/serialP.h> |
| #include <linux/rcupdate.h> |
| #include <net/arp.h> |
| #include <net/net_namespace.h> |
| |
| #include <linux/ip.h> |
| #include <linux/tcp.h> |
| #include <linux/time.h> |
| #include <linux/jiffies.h> |
| |
| /************************************************************************/ |
| /* Useful structures and definitions */ |
| |
| /* |
| * A MetricomKey identifies the protocol being carried inside a Metricom |
| * Starmode packet. |
| */ |
| |
| typedef union { |
| __u8 c[4]; |
| __u32 l; |
| } MetricomKey; |
| |
| /* |
| * An IP address can be viewed as four bytes in memory (which is what it is) or as |
| * a single 32-bit long (which is convenient for assignment, equality testing etc.) |
| */ |
| |
| typedef union { |
| __u8 b[4]; |
| __u32 l; |
| } IPaddr; |
| |
| /* |
| * A MetricomAddressString is used to hold a printable representation of |
| * a Metricom address. |
| */ |
| |
| typedef struct { |
| __u8 c[24]; |
| } MetricomAddressString; |
| |
| /* Encapsulation can expand packet of size x to 65/64x + 1 |
| * Sent packet looks like "<CR>*<address>*<key><encaps payload><CR>" |
| * 1 1 1-18 1 4 ? 1 |
| * eg. <CR>*0000-1234*SIP0<encaps payload><CR> |
| * We allow 31 bytes for the stars, the key, the address and the <CR>s |
| */ |
| #define STRIP_ENCAP_SIZE(X) (32 + (X)*65L/64L) |
| |
| /* |
| * A STRIP_Header is never really sent over the radio, but making a dummy |
| * header for internal use within the kernel that looks like an Ethernet |
| * header makes certain other software happier. For example, tcpdump |
| * already understands Ethernet headers. |
| */ |
| |
| typedef struct { |
| MetricomAddress dst_addr; /* Destination address, e.g. "0000-1234" */ |
| MetricomAddress src_addr; /* Source address, e.g. "0000-5678" */ |
| unsigned short protocol; /* The protocol type, using Ethernet codes */ |
| } STRIP_Header; |
| |
| typedef struct { |
| char c[60]; |
| } MetricomNode; |
| |
| #define NODE_TABLE_SIZE 32 |
| typedef struct { |
| struct timeval timestamp; |
| int num_nodes; |
| MetricomNode node[NODE_TABLE_SIZE]; |
| } MetricomNodeTable; |
| |
| enum { FALSE = 0, TRUE = 1 }; |
| |
| /* |
| * Holds the radio's firmware version. |
| */ |
| typedef struct { |
| char c[50]; |
| } FirmwareVersion; |
| |
| /* |
| * Holds the radio's serial number. |
| */ |
| typedef struct { |
| char c[18]; |
| } SerialNumber; |
| |
| /* |
| * Holds the radio's battery voltage. |
| */ |
| typedef struct { |
| char c[11]; |
| } BatteryVoltage; |
| |
| typedef struct { |
| char c[8]; |
| } char8; |
| |
| enum { |
| NoStructure = 0, /* Really old firmware */ |
| StructuredMessages = 1, /* Parsable AT response msgs */ |
| ChecksummedMessages = 2 /* Parsable AT response msgs with checksums */ |
| }; |
| |
| struct strip { |
| int magic; |
| /* |
| * These are pointers to the malloc()ed frame buffers. |
| */ |
| |
| unsigned char *rx_buff; /* buffer for received IP packet */ |
| unsigned char *sx_buff; /* buffer for received serial data */ |
| int sx_count; /* received serial data counter */ |
| int sx_size; /* Serial buffer size */ |
| unsigned char *tx_buff; /* transmitter buffer */ |
| unsigned char *tx_head; /* pointer to next byte to XMIT */ |
| int tx_left; /* bytes left in XMIT queue */ |
| int tx_size; /* Serial buffer size */ |
| |
| /* |
| * STRIP interface statistics. |
| */ |
| |
| unsigned long rx_packets; /* inbound frames counter */ |
| unsigned long tx_packets; /* outbound frames counter */ |
| unsigned long rx_errors; /* Parity, etc. errors */ |
| unsigned long tx_errors; /* Planned stuff */ |
| unsigned long rx_dropped; /* No memory for skb */ |
| unsigned long tx_dropped; /* When MTU change */ |
| unsigned long rx_over_errors; /* Frame bigger than STRIP buf. */ |
| |
| unsigned long pps_timer; /* Timer to determine pps */ |
| unsigned long rx_pps_count; /* Counter to determine pps */ |
| unsigned long tx_pps_count; /* Counter to determine pps */ |
| unsigned long sx_pps_count; /* Counter to determine pps */ |
| unsigned long rx_average_pps; /* rx packets per second * 8 */ |
| unsigned long tx_average_pps; /* tx packets per second * 8 */ |
| unsigned long sx_average_pps; /* sent packets per second * 8 */ |
| |
| #ifdef EXT_COUNTERS |
| unsigned long rx_bytes; /* total received bytes */ |
| unsigned long tx_bytes; /* total received bytes */ |
| unsigned long rx_rbytes; /* bytes thru radio i/f */ |
| unsigned long tx_rbytes; /* bytes thru radio i/f */ |
| unsigned long rx_sbytes; /* tot bytes thru serial i/f */ |
| unsigned long tx_sbytes; /* tot bytes thru serial i/f */ |
| unsigned long rx_ebytes; /* tot stat/err bytes */ |
| unsigned long tx_ebytes; /* tot stat/err bytes */ |
| #endif |
| |
| /* |
| * Internal variables. |
| */ |
| |
| struct list_head list; /* Linked list of devices */ |
| |
| int discard; /* Set if serial error */ |
| int working; /* Is radio working correctly? */ |
| int firmware_level; /* Message structuring level */ |
| int next_command; /* Next periodic command */ |
| unsigned int user_baud; /* The user-selected baud rate */ |
| int mtu; /* Our mtu (to spot changes!) */ |
| long watchdog_doprobe; /* Next time to test the radio */ |
| long watchdog_doreset; /* Time to do next reset */ |
| long gratuitous_arp; /* Time to send next ARP refresh */ |
| long arp_interval; /* Next ARP interval */ |
| struct timer_list idle_timer; /* For periodic wakeup calls */ |
| MetricomAddress true_dev_addr; /* True address of radio */ |
| int manual_dev_addr; /* Hack: See note below */ |
| |
| FirmwareVersion firmware_version; /* The radio's firmware version */ |
| SerialNumber serial_number; /* The radio's serial number */ |
| BatteryVoltage battery_voltage; /* The radio's battery voltage */ |
| |
| /* |
| * Other useful structures. |
| */ |
| |
| struct tty_struct *tty; /* ptr to TTY structure */ |
| struct net_device *dev; /* Our device structure */ |
| |
| /* |
| * Neighbour radio records |
| */ |
| |
| MetricomNodeTable portables; |
| MetricomNodeTable poletops; |
| }; |
| |
| /* |
| * Note: manual_dev_addr hack |
| * |
| * It is not possible to change the hardware address of a Metricom radio, |
| * or to send packets with a user-specified hardware source address, thus |
| * trying to manually set a hardware source address is a questionable |
| * thing to do. However, if the user *does* manually set the hardware |
| * source address of a STRIP interface, then the kernel will believe it, |
| * and use it in certain places. For example, the hardware address listed |
| * by ifconfig will be the manual address, not the true one. |
| * (Both addresses are listed in /proc/net/strip.) |
| * Also, ARP packets will be sent out giving the user-specified address as |
| * the source address, not the real address. This is dangerous, because |
| * it means you won't receive any replies -- the ARP replies will go to |
| * the specified address, which will be some other radio. The case where |
| * this is useful is when that other radio is also connected to the same |
| * machine. This allows you to connect a pair of radios to one machine, |
| * and to use one exclusively for inbound traffic, and the other |
| * exclusively for outbound traffic. Pretty neat, huh? |
| * |
| * Here's the full procedure to set this up: |
| * |
| * 1. "slattach" two interfaces, e.g. st0 for outgoing packets, |
| * and st1 for incoming packets |
| * |
| * 2. "ifconfig" st0 (outbound radio) to have the hardware address |
| * which is the real hardware address of st1 (inbound radio). |
| * Now when it sends out packets, it will masquerade as st1, and |
| * replies will be sent to that radio, which is exactly what we want. |
| * |
| * 3. Set the route table entry ("route add default ..." or |
| * "route add -net ...", as appropriate) to send packets via the st0 |
| * interface (outbound radio). Do not add any route which sends packets |
| * out via the st1 interface -- that radio is for inbound traffic only. |
| * |
| * 4. "ifconfig" st1 (inbound radio) to have hardware address zero. |
| * This tells the STRIP driver to "shut down" that interface and not |
| * send any packets through it. In particular, it stops sending the |
| * periodic gratuitous ARP packets that a STRIP interface normally sends. |
| * Also, when packets arrive on that interface, it will search the |
| * interface list to see if there is another interface who's manual |
| * hardware address matches its own real address (i.e. st0 in this |
| * example) and if so it will transfer ownership of the skbuff to |
| * that interface, so that it looks to the kernel as if the packet |
| * arrived on that interface. This is necessary because when the |
| * kernel sends an ARP packet on st0, it expects to get a reply on |
| * st0, and if it sees the reply come from st1 then it will ignore |
| * it (to be accurate, it puts the entry in the ARP table, but |
| * labelled in such a way that st0 can't use it). |
| * |
| * Thanks to Petros Maniatis for coming up with the idea of splitting |
| * inbound and outbound traffic between two interfaces, which turned |
| * out to be really easy to implement, even if it is a bit of a hack. |
| * |
| * Having set a manual address on an interface, you can restore it |
| * to automatic operation (where the address is automatically kept |
| * consistent with the real address of the radio) by setting a manual |
| * address of all ones, e.g. "ifconfig st0 hw strip FFFFFFFFFFFF" |
| * This 'turns off' manual override mode for the device address. |
| * |
| * Note: The IEEE 802 headers reported in tcpdump will show the *real* |
| * radio addresses the packets were sent and received from, so that you |
| * can see what is really going on with packets, and which interfaces |
| * they are really going through. |
| */ |
| |
| |
| /************************************************************************/ |
| /* Constants */ |
| |
| /* |
| * CommandString1 works on all radios |
| * Other CommandStrings are only used with firmware that provides structured responses. |
| * |
| * ats319=1 Enables Info message for node additions and deletions |
| * ats319=2 Enables Info message for a new best node |
| * ats319=4 Enables checksums |
| * ats319=8 Enables ACK messages |
| */ |
| |
| static const int MaxCommandStringLength = 32; |
| static const int CompatibilityCommand = 1; |
| |
| static const char CommandString0[] = "*&COMMAND*ATS319=7"; /* Turn on checksums & info messages */ |
| static const char CommandString1[] = "*&COMMAND*ATS305?"; /* Query radio name */ |
| static const char CommandString2[] = "*&COMMAND*ATS325?"; /* Query battery voltage */ |
| static const char CommandString3[] = "*&COMMAND*ATS300?"; /* Query version information */ |
| static const char CommandString4[] = "*&COMMAND*ATS311?"; /* Query poletop list */ |
| static const char CommandString5[] = "*&COMMAND*AT~LA"; /* Query portables list */ |
| typedef struct { |
| const char *string; |
| long length; |
| } StringDescriptor; |
| |
| static const StringDescriptor CommandString[] = { |
| {CommandString0, sizeof(CommandString0) - 1}, |
| {CommandString1, sizeof(CommandString1) - 1}, |
| {CommandString2, sizeof(CommandString2) - 1}, |
| {CommandString3, sizeof(CommandString3) - 1}, |
| {CommandString4, sizeof(CommandString4) - 1}, |
| {CommandString5, sizeof(CommandString5) - 1} |
| }; |
| |
| #define GOT_ALL_RADIO_INFO(S) \ |
| ((S)->firmware_version.c[0] && \ |
| (S)->battery_voltage.c[0] && \ |
| memcmp(&(S)->true_dev_addr, zero_address.c, sizeof(zero_address))) |
| |
| static const char hextable[16] = "0123456789ABCDEF"; |
| |
| static const MetricomAddress zero_address; |
| static const MetricomAddress broadcast_address = |
| { {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF} }; |
| |
| static const MetricomKey SIP0Key = { "SIP0" }; |
| static const MetricomKey ARP0Key = { "ARP0" }; |
| static const MetricomKey ATR_Key = { "ATR " }; |
| static const MetricomKey ACK_Key = { "ACK_" }; |
| static const MetricomKey INF_Key = { "INF_" }; |
| static const MetricomKey ERR_Key = { "ERR_" }; |
| |
| static const long MaxARPInterval = 60 * HZ; /* One minute */ |
| |
| /* |
| * Maximum Starmode packet length is 1183 bytes. Allowing 4 bytes for |
| * protocol key, 4 bytes for checksum, one byte for CR, and 65/64 expansion |
| * for STRIP encoding, that translates to a maximum payload MTU of 1155. |
| * Note: A standard NFS 1K data packet is a total of 0x480 (1152) bytes |
| * long, including IP header, UDP header, and NFS header. Setting the STRIP |
| * MTU to 1152 allows us to send default sized NFS packets without fragmentation. |
| */ |
| static const unsigned short MAX_SEND_MTU = 1152; |
| static const unsigned short MAX_RECV_MTU = 1500; /* Hoping for Ethernet sized packets in the future! */ |
| static const unsigned short DEFAULT_STRIP_MTU = 1152; |
| static const int STRIP_MAGIC = 0x5303; |
| static const long LongTime = 0x7FFFFFFF; |
| |
| /************************************************************************/ |
| /* Global variables */ |
| |
| static LIST_HEAD(strip_list); |
| static DEFINE_SPINLOCK(strip_lock); |
| |
| /************************************************************************/ |
| /* Macros */ |
| |
| /* Returns TRUE if text T begins with prefix P */ |
| #define has_prefix(T,L,P) (((L) >= sizeof(P)-1) && !strncmp((T), (P), sizeof(P)-1)) |
| |
| /* Returns TRUE if text T of length L is equal to string S */ |
| #define text_equal(T,L,S) (((L) == sizeof(S)-1) && !strncmp((T), (S), sizeof(S)-1)) |
| |
| #define READHEX(X) ((X)>='0' && (X)<='9' ? (X)-'0' : \ |
| (X)>='a' && (X)<='f' ? (X)-'a'+10 : \ |
| (X)>='A' && (X)<='F' ? (X)-'A'+10 : 0 ) |
| |
| #define READHEX16(X) ((__u16)(READHEX(X))) |
| |
| #define READDEC(X) ((X)>='0' && (X)<='9' ? (X)-'0' : 0) |
| |
| #define ARRAY_END(X) (&((X)[ARRAY_SIZE(X)])) |
| |
| #define JIFFIE_TO_SEC(X) ((X) / HZ) |
| |
| |
| /************************************************************************/ |
| /* Utility routines */ |
| |
| static int arp_query(unsigned char *haddr, u32 paddr, |
| struct net_device *dev) |
| { |
| struct neighbour *neighbor_entry; |
| int ret = 0; |
| |
| neighbor_entry = neigh_lookup(&arp_tbl, &paddr, dev); |
| |
| if (neighbor_entry != NULL) { |
| neighbor_entry->used = jiffies; |
| if (neighbor_entry->nud_state & NUD_VALID) { |
| memcpy(haddr, neighbor_entry->ha, dev->addr_len); |
| ret = 1; |
| } |
| neigh_release(neighbor_entry); |
| } |
| return ret; |
| } |
| |
| static void DumpData(char *msg, struct strip *strip_info, __u8 * ptr, |
| __u8 * end) |
| { |
| static const int MAX_DumpData = 80; |
| __u8 pkt_text[MAX_DumpData], *p = pkt_text; |
| |
| *p++ = '\"'; |
| |
| while (ptr < end && p < &pkt_text[MAX_DumpData - 4]) { |
| if (*ptr == '\\') { |
| *p++ = '\\'; |
| *p++ = '\\'; |
| } else { |
| if (*ptr >= 32 && *ptr <= 126) { |
| *p++ = *ptr; |
| } else { |
| sprintf(p, "\\%02X", *ptr); |
| p += 3; |
| } |
| } |
| ptr++; |
| } |
| |
| if (ptr == end) |
| *p++ = '\"'; |
| *p++ = 0; |
| |
| printk(KERN_INFO "%s: %-13s%s\n", strip_info->dev->name, msg, pkt_text); |
| } |
| |
| |
| /************************************************************************/ |
| /* Byte stuffing/unstuffing routines */ |
| |
| /* Stuffing scheme: |
| * 00 Unused (reserved character) |
| * 01-3F Run of 2-64 different characters |
| * 40-7F Run of 1-64 different characters plus a single zero at the end |
| * 80-BF Run of 1-64 of the same character |
| * C0-FF Run of 1-64 zeroes (ASCII 0) |
| */ |
| |
| typedef enum { |
| Stuff_Diff = 0x00, |
| Stuff_DiffZero = 0x40, |
| Stuff_Same = 0x80, |
| Stuff_Zero = 0xC0, |
| Stuff_NoCode = 0xFF, /* Special code, meaning no code selected */ |
| |
| Stuff_CodeMask = 0xC0, |
| Stuff_CountMask = 0x3F, |
| Stuff_MaxCount = 0x3F, |
| Stuff_Magic = 0x0D /* The value we are eliminating */ |
| } StuffingCode; |
| |
| /* StuffData encodes the data starting at "src" for "length" bytes. |
| * It writes it to the buffer pointed to by "dst" (which must be at least |
| * as long as 1 + 65/64 of the input length). The output may be up to 1.6% |
| * larger than the input for pathological input, but will usually be smaller. |
| * StuffData returns the new value of the dst pointer as its result. |
| * "code_ptr_ptr" points to a "__u8 *" which is used to hold encoding state |
| * between calls, allowing an encoded packet to be incrementally built up |
| * from small parts. On the first call, the "__u8 *" pointed to should be |
| * initialized to NULL; between subsequent calls the calling routine should |
| * leave the value alone and simply pass it back unchanged so that the |
| * encoder can recover its current state. |
| */ |
| |
| #define StuffData_FinishBlock(X) \ |
| (*code_ptr = (X) ^ Stuff_Magic, code = Stuff_NoCode) |
| |
| static __u8 *StuffData(__u8 * src, __u32 length, __u8 * dst, |
| __u8 ** code_ptr_ptr) |
| { |
| __u8 *end = src + length; |
| __u8 *code_ptr = *code_ptr_ptr; |
| __u8 code = Stuff_NoCode, count = 0; |
| |
| if (!length) |
| return (dst); |
| |
| if (code_ptr) { |
| /* |
| * Recover state from last call, if applicable |
| */ |
| code = (*code_ptr ^ Stuff_Magic) & Stuff_CodeMask; |
| count = (*code_ptr ^ Stuff_Magic) & Stuff_CountMask; |
| } |
| |
| while (src < end) { |
| switch (code) { |
| /* Stuff_NoCode: If no current code, select one */ |
| case Stuff_NoCode: |
| /* Record where we're going to put this code */ |
| code_ptr = dst++; |
| count = 0; /* Reset the count (zero means one instance) */ |
| /* Tentatively start a new block */ |
| if (*src == 0) { |
| code = Stuff_Zero; |
| src++; |
| } else { |
| code = Stuff_Same; |
| *dst++ = *src++ ^ Stuff_Magic; |
| } |
| /* Note: We optimistically assume run of same -- */ |
| /* which will be fixed later in Stuff_Same */ |
| /* if it turns out not to be true. */ |
| break; |
| |
| /* Stuff_Zero: We already have at least one zero encoded */ |
| case Stuff_Zero: |
| /* If another zero, count it, else finish this code block */ |
| if (*src == 0) { |
| count++; |
| src++; |
| } else { |
| StuffData_FinishBlock(Stuff_Zero + count); |
| } |
| break; |
| |
| /* Stuff_Same: We already have at least one byte encoded */ |
| case Stuff_Same: |
| /* If another one the same, count it */ |
| if ((*src ^ Stuff_Magic) == code_ptr[1]) { |
| count++; |
| src++; |
| break; |
| } |
| /* else, this byte does not match this block. */ |
| /* If we already have two or more bytes encoded, finish this code block */ |
| if (count) { |
| StuffData_FinishBlock(Stuff_Same + count); |
| break; |
| } |
| /* else, we only have one so far, so switch to Stuff_Diff code */ |
| code = Stuff_Diff; |
| /* and fall through to Stuff_Diff case below |
| * Note cunning cleverness here: case Stuff_Diff compares |
| * the current character with the previous two to see if it |
| * has a run of three the same. Won't this be an error if |
| * there aren't two previous characters stored to compare with? |
| * No. Because we know the current character is *not* the same |
| * as the previous one, the first test below will necessarily |
| * fail and the send half of the "if" won't be executed. |
| */ |
| |
| /* Stuff_Diff: We have at least two *different* bytes encoded */ |
| case Stuff_Diff: |
| /* If this is a zero, must encode a Stuff_DiffZero, and begin a new block */ |
| if (*src == 0) { |
| StuffData_FinishBlock(Stuff_DiffZero + |
| count); |
| } |
| /* else, if we have three in a row, it is worth starting a Stuff_Same block */ |
| else if ((*src ^ Stuff_Magic) == dst[-1] |
| && dst[-1] == dst[-2]) { |
| /* Back off the last two characters we encoded */ |
| code += count - 2; |
| /* Note: "Stuff_Diff + 0" is an illegal code */ |
| if (code == Stuff_Diff + 0) { |
| code = Stuff_Same + 0; |
| } |
| StuffData_FinishBlock(code); |
| code_ptr = dst - 2; |
| /* dst[-1] already holds the correct value */ |
| count = 2; /* 2 means three bytes encoded */ |
| code = Stuff_Same; |
| } |
| /* else, another different byte, so add it to the block */ |
| else { |
| *dst++ = *src ^ Stuff_Magic; |
| count++; |
| } |
| src++; /* Consume the byte */ |
| break; |
| } |
| if (count == Stuff_MaxCount) { |
| StuffData_FinishBlock(code + count); |
| } |
| } |
| if (code == Stuff_NoCode) { |
| *code_ptr_ptr = NULL; |
| } else { |
| *code_ptr_ptr = code_ptr; |
| StuffData_FinishBlock(code + count); |
| } |
| return (dst); |
| } |
| |
| /* |
| * UnStuffData decodes the data at "src", up to (but not including) "end". |
| * It writes the decoded data into the buffer pointed to by "dst", up to a |
| * maximum of "dst_length", and returns the new value of "src" so that a |
| * follow-on call can read more data, continuing from where the first left off. |
| * |
| * There are three types of results: |
| * 1. The source data runs out before extracting "dst_length" bytes: |
| * UnStuffData returns NULL to indicate failure. |
| * 2. The source data produces exactly "dst_length" bytes: |
| * UnStuffData returns new_src = end to indicate that all bytes were consumed. |
| * 3. "dst_length" bytes are extracted, with more remaining. |
| * UnStuffData returns new_src < end to indicate that there are more bytes |
| * to be read. |
| * |
| * Note: The decoding may be destructive, in that it may alter the source |
| * data in the process of decoding it (this is necessary to allow a follow-on |
| * call to resume correctly). |
| */ |
| |
| static __u8 *UnStuffData(__u8 * src, __u8 * end, __u8 * dst, |
| __u32 dst_length) |
| { |
| __u8 *dst_end = dst + dst_length; |
| /* Sanity check */ |
| if (!src || !end || !dst || !dst_length) |
| return (NULL); |
| while (src < end && dst < dst_end) { |
| int count = (*src ^ Stuff_Magic) & Stuff_CountMask; |
| switch ((*src ^ Stuff_Magic) & Stuff_CodeMask) { |
| case Stuff_Diff: |
| if (src + 1 + count >= end) |
| return (NULL); |
| do { |
| *dst++ = *++src ^ Stuff_Magic; |
| } |
| while (--count >= 0 && dst < dst_end); |
| if (count < 0) |
| src += 1; |
| else { |
| if (count == 0) |
| *src = Stuff_Same ^ Stuff_Magic; |
| else |
| *src = |
| (Stuff_Diff + |
| count) ^ Stuff_Magic; |
| } |
| break; |
| case Stuff_DiffZero: |
| if (src + 1 + count >= end) |
| return (NULL); |
| do { |
| *dst++ = *++src ^ Stuff_Magic; |
| } |
| while (--count >= 0 && dst < dst_end); |
| if (count < 0) |
| *src = Stuff_Zero ^ Stuff_Magic; |
| else |
| *src = |
| (Stuff_DiffZero + count) ^ Stuff_Magic; |
| break; |
| case Stuff_Same: |
| if (src + 1 >= end) |
| return (NULL); |
| do { |
| *dst++ = src[1] ^ Stuff_Magic; |
| } |
| while (--count >= 0 && dst < dst_end); |
| if (count < 0) |
| src += 2; |
| else |
| *src = (Stuff_Same + count) ^ Stuff_Magic; |
| break; |
| case Stuff_Zero: |
| do { |
| *dst++ = 0; |
| } |
| while (--count >= 0 && dst < dst_end); |
| if (count < 0) |
| src += 1; |
| else |
| *src = (Stuff_Zero + count) ^ Stuff_Magic; |
| break; |
| } |
| } |
| if (dst < dst_end) |
| return (NULL); |
| else |
| return (src); |
| } |
| |
| |
| /************************************************************************/ |
| /* General routines for STRIP */ |
| |
| /* |
| * set_baud sets the baud rate to the rate defined by baudcode |
| */ |
| static void set_baud(struct tty_struct *tty, speed_t baudrate) |
| { |
| struct ktermios old_termios; |
| |
| mutex_lock(&tty->termios_mutex); |
| old_termios =*(tty->termios); |
| tty_encode_baud_rate(tty, baudrate, baudrate); |
| tty->ops->set_termios(tty, &old_termios); |
| mutex_unlock(&tty->termios_mutex); |
| } |
| |
| /* |
| * Convert a string to a Metricom Address. |
| */ |
| |
| #define IS_RADIO_ADDRESS(p) ( \ |
| isdigit((p)[0]) && isdigit((p)[1]) && isdigit((p)[2]) && isdigit((p)[3]) && \ |
| (p)[4] == '-' && \ |
| isdigit((p)[5]) && isdigit((p)[6]) && isdigit((p)[7]) && isdigit((p)[8]) ) |
| |
| static int string_to_radio_address(MetricomAddress * addr, __u8 * p) |
| { |
| if (!IS_RADIO_ADDRESS(p)) |
| return (1); |
| addr->c[0] = 0; |
| addr->c[1] = 0; |
| addr->c[2] = READHEX(p[0]) << 4 | READHEX(p[1]); |
| addr->c[3] = READHEX(p[2]) << 4 | READHEX(p[3]); |
| addr->c[4] = READHEX(p[5]) << 4 | READHEX(p[6]); |
| addr->c[5] = READHEX(p[7]) << 4 | READHEX(p[8]); |
| return (0); |
| } |
| |
| /* |
| * Convert a Metricom Address to a string. |
| */ |
| |
| static __u8 *radio_address_to_string(const MetricomAddress * addr, |
| MetricomAddressString * p) |
| { |
| sprintf(p->c, "%02X%02X-%02X%02X", addr->c[2], addr->c[3], |
| addr->c[4], addr->c[5]); |
| return (p->c); |
| } |
| |
| /* |
| * Note: Must make sure sx_size is big enough to receive a stuffed |
| * MAX_RECV_MTU packet. Additionally, we also want to ensure that it's |
| * big enough to receive a large radio neighbour list (currently 4K). |
| */ |
| |
| static int allocate_buffers(struct strip *strip_info, int mtu) |
| { |
| struct net_device *dev = strip_info->dev; |
| int sx_size = max_t(int, STRIP_ENCAP_SIZE(MAX_RECV_MTU), 4096); |
| int tx_size = STRIP_ENCAP_SIZE(mtu) + MaxCommandStringLength; |
| __u8 *r = kmalloc(MAX_RECV_MTU, GFP_ATOMIC); |
| __u8 *s = kmalloc(sx_size, GFP_ATOMIC); |
| __u8 *t = kmalloc(tx_size, GFP_ATOMIC); |
| if (r && s && t) { |
| strip_info->rx_buff = r; |
| strip_info->sx_buff = s; |
| strip_info->tx_buff = t; |
| strip_info->sx_size = sx_size; |
| strip_info->tx_size = tx_size; |
| strip_info->mtu = dev->mtu = mtu; |
| return (1); |
| } |
| kfree(r); |
| kfree(s); |
| kfree(t); |
| return (0); |
| } |
| |
| /* |
| * MTU has been changed by the IP layer. |
| * We could be in |
| * an upcall from the tty driver, or in an ip packet queue. |
| */ |
| static int strip_change_mtu(struct net_device *dev, int new_mtu) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| int old_mtu = strip_info->mtu; |
| unsigned char *orbuff = strip_info->rx_buff; |
| unsigned char *osbuff = strip_info->sx_buff; |
| unsigned char *otbuff = strip_info->tx_buff; |
| |
| if (new_mtu > MAX_SEND_MTU) { |
| printk(KERN_ERR |
| "%s: MTU exceeds maximum allowable (%d), MTU change cancelled.\n", |
| strip_info->dev->name, MAX_SEND_MTU); |
| return -EINVAL; |
| } |
| |
| spin_lock_bh(&strip_lock); |
| if (!allocate_buffers(strip_info, new_mtu)) { |
| printk(KERN_ERR "%s: unable to grow strip buffers, MTU change cancelled.\n", |
| strip_info->dev->name); |
| spin_unlock_bh(&strip_lock); |
| return -ENOMEM; |
| } |
| |
| if (strip_info->sx_count) { |
| if (strip_info->sx_count <= strip_info->sx_size) |
| memcpy(strip_info->sx_buff, osbuff, |
| strip_info->sx_count); |
| else { |
| strip_info->discard = strip_info->sx_count; |
| strip_info->rx_over_errors++; |
| } |
| } |
| |
| if (strip_info->tx_left) { |
| if (strip_info->tx_left <= strip_info->tx_size) |
| memcpy(strip_info->tx_buff, strip_info->tx_head, |
| strip_info->tx_left); |
| else { |
| strip_info->tx_left = 0; |
| strip_info->tx_dropped++; |
| } |
| } |
| strip_info->tx_head = strip_info->tx_buff; |
| spin_unlock_bh(&strip_lock); |
| |
| printk(KERN_NOTICE "%s: strip MTU changed fom %d to %d.\n", |
| strip_info->dev->name, old_mtu, strip_info->mtu); |
| |
| kfree(orbuff); |
| kfree(osbuff); |
| kfree(otbuff); |
| return 0; |
| } |
| |
| static void strip_unlock(struct strip *strip_info) |
| { |
| /* |
| * Set the timer to go off in one second. |
| */ |
| strip_info->idle_timer.expires = jiffies + 1 * HZ; |
| add_timer(&strip_info->idle_timer); |
| netif_wake_queue(strip_info->dev); |
| } |
| |
| |
| |
| /* |
| * If the time is in the near future, time_delta prints the number of |
| * seconds to go into the buffer and returns the address of the buffer. |
| * If the time is not in the near future, it returns the address of the |
| * string "Not scheduled" The buffer must be long enough to contain the |
| * ascii representation of the number plus 9 charactes for the " seconds" |
| * and the null character. |
| */ |
| #ifdef CONFIG_PROC_FS |
| static char *time_delta(char buffer[], long time) |
| { |
| time -= jiffies; |
| if (time > LongTime / 2) |
| return ("Not scheduled"); |
| if (time < 0) |
| time = 0; /* Don't print negative times */ |
| sprintf(buffer, "%ld seconds", time / HZ); |
| return (buffer); |
| } |
| |
| /* get Nth element of the linked list */ |
| static struct strip *strip_get_idx(loff_t pos) |
| { |
| struct strip *str; |
| int i = 0; |
| |
| list_for_each_entry_rcu(str, &strip_list, list) { |
| if (pos == i) |
| return str; |
| ++i; |
| } |
| return NULL; |
| } |
| |
| static void *strip_seq_start(struct seq_file *seq, loff_t *pos) |
| __acquires(RCU) |
| { |
| rcu_read_lock(); |
| return *pos ? strip_get_idx(*pos - 1) : SEQ_START_TOKEN; |
| } |
| |
| static void *strip_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct list_head *l; |
| struct strip *s; |
| |
| ++*pos; |
| if (v == SEQ_START_TOKEN) |
| return strip_get_idx(1); |
| |
| s = v; |
| l = &s->list; |
| list_for_each_continue_rcu(l, &strip_list) { |
| return list_entry(l, struct strip, list); |
| } |
| return NULL; |
| } |
| |
| static void strip_seq_stop(struct seq_file *seq, void *v) |
| __releases(RCU) |
| { |
| rcu_read_unlock(); |
| } |
| |
| static void strip_seq_neighbours(struct seq_file *seq, |
| const MetricomNodeTable * table, |
| const char *title) |
| { |
| /* We wrap this in a do/while loop, so if the table changes */ |
| /* while we're reading it, we just go around and try again. */ |
| struct timeval t; |
| |
| do { |
| int i; |
| t = table->timestamp; |
| if (table->num_nodes) |
| seq_printf(seq, "\n %s\n", title); |
| for (i = 0; i < table->num_nodes; i++) { |
| MetricomNode node; |
| |
| spin_lock_bh(&strip_lock); |
| node = table->node[i]; |
| spin_unlock_bh(&strip_lock); |
| seq_printf(seq, " %s\n", node.c); |
| } |
| } while (table->timestamp.tv_sec != t.tv_sec |
| || table->timestamp.tv_usec != t.tv_usec); |
| } |
| |
| /* |
| * This function prints radio status information via the seq_file |
| * interface. The interface takes care of buffer size and over |
| * run issues. |
| * |
| * The buffer in seq_file is PAGESIZE (4K) |
| * so this routine should never print more or it will get truncated. |
| * With the maximum of 32 portables and 32 poletops |
| * reported, the routine outputs 3107 bytes into the buffer. |
| */ |
| static void strip_seq_status_info(struct seq_file *seq, |
| const struct strip *strip_info) |
| { |
| char temp[32]; |
| MetricomAddressString addr_string; |
| |
| /* First, we must copy all of our data to a safe place, */ |
| /* in case a serial interrupt comes in and changes it. */ |
| int tx_left = strip_info->tx_left; |
| unsigned long rx_average_pps = strip_info->rx_average_pps; |
| unsigned long tx_average_pps = strip_info->tx_average_pps; |
| unsigned long sx_average_pps = strip_info->sx_average_pps; |
| int working = strip_info->working; |
| int firmware_level = strip_info->firmware_level; |
| long watchdog_doprobe = strip_info->watchdog_doprobe; |
| long watchdog_doreset = strip_info->watchdog_doreset; |
| long gratuitous_arp = strip_info->gratuitous_arp; |
| long arp_interval = strip_info->arp_interval; |
| FirmwareVersion firmware_version = strip_info->firmware_version; |
| SerialNumber serial_number = strip_info->serial_number; |
| BatteryVoltage battery_voltage = strip_info->battery_voltage; |
| char *if_name = strip_info->dev->name; |
| MetricomAddress true_dev_addr = strip_info->true_dev_addr; |
| MetricomAddress dev_dev_addr = |
| *(MetricomAddress *) strip_info->dev->dev_addr; |
| int manual_dev_addr = strip_info->manual_dev_addr; |
| #ifdef EXT_COUNTERS |
| unsigned long rx_bytes = strip_info->rx_bytes; |
| unsigned long tx_bytes = strip_info->tx_bytes; |
| unsigned long rx_rbytes = strip_info->rx_rbytes; |
| unsigned long tx_rbytes = strip_info->tx_rbytes; |
| unsigned long rx_sbytes = strip_info->rx_sbytes; |
| unsigned long tx_sbytes = strip_info->tx_sbytes; |
| unsigned long rx_ebytes = strip_info->rx_ebytes; |
| unsigned long tx_ebytes = strip_info->tx_ebytes; |
| #endif |
| |
| seq_printf(seq, "\nInterface name\t\t%s\n", if_name); |
| seq_printf(seq, " Radio working:\t\t%s\n", working ? "Yes" : "No"); |
| radio_address_to_string(&true_dev_addr, &addr_string); |
| seq_printf(seq, " Radio address:\t\t%s\n", addr_string.c); |
| if (manual_dev_addr) { |
| radio_address_to_string(&dev_dev_addr, &addr_string); |
| seq_printf(seq, " Device address:\t%s\n", addr_string.c); |
| } |
| seq_printf(seq, " Firmware version:\t%s", !working ? "Unknown" : |
| !firmware_level ? "Should be upgraded" : |
| firmware_version.c); |
| if (firmware_level >= ChecksummedMessages) |
| seq_printf(seq, " (Checksums Enabled)"); |
| seq_printf(seq, "\n"); |
| seq_printf(seq, " Serial number:\t\t%s\n", serial_number.c); |
| seq_printf(seq, " Battery voltage:\t%s\n", battery_voltage.c); |
| seq_printf(seq, " Transmit queue (bytes):%d\n", tx_left); |
| seq_printf(seq, " Receive packet rate: %ld packets per second\n", |
| rx_average_pps / 8); |
| seq_printf(seq, " Transmit packet rate: %ld packets per second\n", |
| tx_average_pps / 8); |
| seq_printf(seq, " Sent packet rate: %ld packets per second\n", |
| sx_average_pps / 8); |
| seq_printf(seq, " Next watchdog probe:\t%s\n", |
| time_delta(temp, watchdog_doprobe)); |
| seq_printf(seq, " Next watchdog reset:\t%s\n", |
| time_delta(temp, watchdog_doreset)); |
| seq_printf(seq, " Next gratuitous ARP:\t"); |
| |
| if (!memcmp |
| (strip_info->dev->dev_addr, zero_address.c, |
| sizeof(zero_address))) |
| seq_printf(seq, "Disabled\n"); |
| else { |
| seq_printf(seq, "%s\n", time_delta(temp, gratuitous_arp)); |
| seq_printf(seq, " Next ARP interval:\t%ld seconds\n", |
| JIFFIE_TO_SEC(arp_interval)); |
| } |
| |
| if (working) { |
| #ifdef EXT_COUNTERS |
| seq_printf(seq, "\n"); |
| seq_printf(seq, |
| " Total bytes: \trx:\t%lu\ttx:\t%lu\n", |
| rx_bytes, tx_bytes); |
| seq_printf(seq, |
| " thru radio: \trx:\t%lu\ttx:\t%lu\n", |
| rx_rbytes, tx_rbytes); |
| seq_printf(seq, |
| " thru serial port: \trx:\t%lu\ttx:\t%lu\n", |
| rx_sbytes, tx_sbytes); |
| seq_printf(seq, |
| " Total stat/err bytes:\trx:\t%lu\ttx:\t%lu\n", |
| rx_ebytes, tx_ebytes); |
| #endif |
| strip_seq_neighbours(seq, &strip_info->poletops, |
| "Poletops:"); |
| strip_seq_neighbours(seq, &strip_info->portables, |
| "Portables:"); |
| } |
| } |
| |
| /* |
| * This function is exports status information from the STRIP driver through |
| * the /proc file system. |
| */ |
| static int strip_seq_show(struct seq_file *seq, void *v) |
| { |
| if (v == SEQ_START_TOKEN) |
| seq_printf(seq, "strip_version: %s\n", StripVersion); |
| else |
| strip_seq_status_info(seq, (const struct strip *)v); |
| return 0; |
| } |
| |
| |
| static const struct seq_operations strip_seq_ops = { |
| .start = strip_seq_start, |
| .next = strip_seq_next, |
| .stop = strip_seq_stop, |
| .show = strip_seq_show, |
| }; |
| |
| static int strip_seq_open(struct inode *inode, struct file *file) |
| { |
| return seq_open(file, &strip_seq_ops); |
| } |
| |
| static const struct file_operations strip_seq_fops = { |
| .owner = THIS_MODULE, |
| .open = strip_seq_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = seq_release, |
| }; |
| #endif |
| |
| |
| |
| /************************************************************************/ |
| /* Sending routines */ |
| |
| static void ResetRadio(struct strip *strip_info) |
| { |
| struct tty_struct *tty = strip_info->tty; |
| static const char init[] = "ate0q1dt**starmode\r**"; |
| StringDescriptor s = { init, sizeof(init) - 1 }; |
| |
| /* |
| * If the radio isn't working anymore, |
| * we should clear the old status information. |
| */ |
| if (strip_info->working) { |
| printk(KERN_INFO "%s: No response: Resetting radio.\n", |
| strip_info->dev->name); |
| strip_info->firmware_version.c[0] = '\0'; |
| strip_info->serial_number.c[0] = '\0'; |
| strip_info->battery_voltage.c[0] = '\0'; |
| strip_info->portables.num_nodes = 0; |
| do_gettimeofday(&strip_info->portables.timestamp); |
| strip_info->poletops.num_nodes = 0; |
| do_gettimeofday(&strip_info->poletops.timestamp); |
| } |
| |
| strip_info->pps_timer = jiffies; |
| strip_info->rx_pps_count = 0; |
| strip_info->tx_pps_count = 0; |
| strip_info->sx_pps_count = 0; |
| strip_info->rx_average_pps = 0; |
| strip_info->tx_average_pps = 0; |
| strip_info->sx_average_pps = 0; |
| |
| /* Mark radio address as unknown */ |
| *(MetricomAddress *) & strip_info->true_dev_addr = zero_address; |
| if (!strip_info->manual_dev_addr) |
| *(MetricomAddress *) strip_info->dev->dev_addr = |
| zero_address; |
| strip_info->working = FALSE; |
| strip_info->firmware_level = NoStructure; |
| strip_info->next_command = CompatibilityCommand; |
| strip_info->watchdog_doprobe = jiffies + 10 * HZ; |
| strip_info->watchdog_doreset = jiffies + 1 * HZ; |
| |
| /* If the user has selected a baud rate above 38.4 see what magic we have to do */ |
| if (strip_info->user_baud > 38400) { |
| /* |
| * Subtle stuff: Pay attention :-) |
| * If the serial port is currently at the user's selected (>38.4) rate, |
| * then we temporarily switch to 19.2 and issue the ATS304 command |
| * to tell the radio to switch to the user's selected rate. |
| * If the serial port is not currently at that rate, that means we just |
| * issued the ATS304 command last time through, so this time we restore |
| * the user's selected rate and issue the normal starmode reset string. |
| */ |
| if (strip_info->user_baud == tty_get_baud_rate(tty)) { |
| static const char b0[] = "ate0q1s304=57600\r"; |
| static const char b1[] = "ate0q1s304=115200\r"; |
| static const StringDescriptor baudstring[2] = |
| { {b0, sizeof(b0) - 1} |
| , {b1, sizeof(b1) - 1} |
| }; |
| set_baud(tty, 19200); |
| if (strip_info->user_baud == 57600) |
| s = baudstring[0]; |
| else if (strip_info->user_baud == 115200) |
| s = baudstring[1]; |
| else |
| s = baudstring[1]; /* For now */ |
| } else |
| set_baud(tty, strip_info->user_baud); |
| } |
| |
| tty->ops->write(tty, s.string, s.length); |
| #ifdef EXT_COUNTERS |
| strip_info->tx_ebytes += s.length; |
| #endif |
| } |
| |
| /* |
| * Called by the driver when there's room for more data. If we have |
| * more packets to send, we send them here. |
| */ |
| |
| static void strip_write_some_more(struct tty_struct *tty) |
| { |
| struct strip *strip_info = tty->disc_data; |
| |
| /* First make sure we're connected. */ |
| if (!strip_info || strip_info->magic != STRIP_MAGIC || |
| !netif_running(strip_info->dev)) |
| return; |
| |
| if (strip_info->tx_left > 0) { |
| int num_written = |
| tty->ops->write(tty, strip_info->tx_head, |
| strip_info->tx_left); |
| strip_info->tx_left -= num_written; |
| strip_info->tx_head += num_written; |
| #ifdef EXT_COUNTERS |
| strip_info->tx_sbytes += num_written; |
| #endif |
| } else { /* Else start transmission of another packet */ |
| |
| clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags); |
| strip_unlock(strip_info); |
| } |
| } |
| |
| static __u8 *add_checksum(__u8 * buffer, __u8 * end) |
| { |
| __u16 sum = 0; |
| __u8 *p = buffer; |
| while (p < end) |
| sum += *p++; |
| end[3] = hextable[sum & 0xF]; |
| sum >>= 4; |
| end[2] = hextable[sum & 0xF]; |
| sum >>= 4; |
| end[1] = hextable[sum & 0xF]; |
| sum >>= 4; |
| end[0] = hextable[sum & 0xF]; |
| return (end + 4); |
| } |
| |
| static unsigned char *strip_make_packet(unsigned char *buffer, |
| struct strip *strip_info, |
| struct sk_buff *skb) |
| { |
| __u8 *ptr = buffer; |
| __u8 *stuffstate = NULL; |
| STRIP_Header *header = (STRIP_Header *) skb->data; |
| MetricomAddress haddr = header->dst_addr; |
| int len = skb->len - sizeof(STRIP_Header); |
| MetricomKey key; |
| |
| /*HexDump("strip_make_packet", strip_info, skb->data, skb->data + skb->len); */ |
| |
| if (header->protocol == htons(ETH_P_IP)) |
| key = SIP0Key; |
| else if (header->protocol == htons(ETH_P_ARP)) |
| key = ARP0Key; |
| else { |
| printk(KERN_ERR |
| "%s: strip_make_packet: Unknown packet type 0x%04X\n", |
| strip_info->dev->name, ntohs(header->protocol)); |
| return (NULL); |
| } |
| |
| if (len > strip_info->mtu) { |
| printk(KERN_ERR |
| "%s: Dropping oversized transmit packet: %d bytes\n", |
| strip_info->dev->name, len); |
| return (NULL); |
| } |
| |
| /* |
| * If we're sending to ourselves, discard the packet. |
| * (Metricom radios choke if they try to send a packet to their own address.) |
| */ |
| if (!memcmp(haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) { |
| printk(KERN_ERR "%s: Dropping packet addressed to self\n", |
| strip_info->dev->name); |
| return (NULL); |
| } |
| |
| /* |
| * If this is a broadcast packet, send it to our designated Metricom |
| * 'broadcast hub' radio (First byte of address being 0xFF means broadcast) |
| */ |
| if (haddr.c[0] == 0xFF) { |
| __be32 brd = 0; |
| struct in_device *in_dev; |
| |
| rcu_read_lock(); |
| in_dev = __in_dev_get_rcu(strip_info->dev); |
| if (in_dev == NULL) { |
| rcu_read_unlock(); |
| return NULL; |
| } |
| if (in_dev->ifa_list) |
| brd = in_dev->ifa_list->ifa_broadcast; |
| rcu_read_unlock(); |
| |
| /* arp_query returns 1 if it succeeds in looking up the address, 0 if it fails */ |
| if (!arp_query(haddr.c, brd, strip_info->dev)) { |
| printk(KERN_ERR |
| "%s: Unable to send packet (no broadcast hub configured)\n", |
| strip_info->dev->name); |
| return (NULL); |
| } |
| /* |
| * If we are the broadcast hub, don't bother sending to ourselves. |
| * (Metricom radios choke if they try to send a packet to their own address.) |
| */ |
| if (!memcmp |
| (haddr.c, strip_info->true_dev_addr.c, sizeof(haddr))) |
| return (NULL); |
| } |
| |
| *ptr++ = 0x0D; |
| *ptr++ = '*'; |
| *ptr++ = hextable[haddr.c[2] >> 4]; |
| *ptr++ = hextable[haddr.c[2] & 0xF]; |
| *ptr++ = hextable[haddr.c[3] >> 4]; |
| *ptr++ = hextable[haddr.c[3] & 0xF]; |
| *ptr++ = '-'; |
| *ptr++ = hextable[haddr.c[4] >> 4]; |
| *ptr++ = hextable[haddr.c[4] & 0xF]; |
| *ptr++ = hextable[haddr.c[5] >> 4]; |
| *ptr++ = hextable[haddr.c[5] & 0xF]; |
| *ptr++ = '*'; |
| *ptr++ = key.c[0]; |
| *ptr++ = key.c[1]; |
| *ptr++ = key.c[2]; |
| *ptr++ = key.c[3]; |
| |
| ptr = |
| StuffData(skb->data + sizeof(STRIP_Header), len, ptr, |
| &stuffstate); |
| |
| if (strip_info->firmware_level >= ChecksummedMessages) |
| ptr = add_checksum(buffer + 1, ptr); |
| |
| *ptr++ = 0x0D; |
| return (ptr); |
| } |
| |
| static void strip_send(struct strip *strip_info, struct sk_buff *skb) |
| { |
| MetricomAddress haddr; |
| unsigned char *ptr = strip_info->tx_buff; |
| int doreset = (long) jiffies - strip_info->watchdog_doreset >= 0; |
| int doprobe = (long) jiffies - strip_info->watchdog_doprobe >= 0 |
| && !doreset; |
| __be32 addr, brd; |
| |
| /* |
| * 1. If we have a packet, encapsulate it and put it in the buffer |
| */ |
| if (skb) { |
| char *newptr = strip_make_packet(ptr, strip_info, skb); |
| strip_info->tx_pps_count++; |
| if (!newptr) |
| strip_info->tx_dropped++; |
| else { |
| ptr = newptr; |
| strip_info->sx_pps_count++; |
| strip_info->tx_packets++; /* Count another successful packet */ |
| #ifdef EXT_COUNTERS |
| strip_info->tx_bytes += skb->len; |
| strip_info->tx_rbytes += ptr - strip_info->tx_buff; |
| #endif |
| /*DumpData("Sending:", strip_info, strip_info->tx_buff, ptr); */ |
| /*HexDump("Sending", strip_info, strip_info->tx_buff, ptr); */ |
| } |
| } |
| |
| /* |
| * 2. If it is time for another tickle, tack it on, after the packet |
| */ |
| if (doprobe) { |
| StringDescriptor ts = CommandString[strip_info->next_command]; |
| #if TICKLE_TIMERS |
| { |
| struct timeval tv; |
| do_gettimeofday(&tv); |
| printk(KERN_INFO "**** Sending tickle string %d at %02d.%06d\n", |
| strip_info->next_command, tv.tv_sec % 100, |
| tv.tv_usec); |
| } |
| #endif |
| if (ptr == strip_info->tx_buff) |
| *ptr++ = 0x0D; |
| |
| *ptr++ = '*'; /* First send "**" to provoke an error message */ |
| *ptr++ = '*'; |
| |
| /* Then add the command */ |
| memcpy(ptr, ts.string, ts.length); |
| |
| /* Add a checksum ? */ |
| if (strip_info->firmware_level < ChecksummedMessages) |
| ptr += ts.length; |
| else |
| ptr = add_checksum(ptr, ptr + ts.length); |
| |
| *ptr++ = 0x0D; /* Terminate the command with a <CR> */ |
| |
| /* Cycle to next periodic command? */ |
| if (strip_info->firmware_level >= StructuredMessages) |
| if (++strip_info->next_command >= |
| ARRAY_SIZE(CommandString)) |
| strip_info->next_command = 0; |
| #ifdef EXT_COUNTERS |
| strip_info->tx_ebytes += ts.length; |
| #endif |
| strip_info->watchdog_doprobe = jiffies + 10 * HZ; |
| strip_info->watchdog_doreset = jiffies + 1 * HZ; |
| /*printk(KERN_INFO "%s: Routine radio test.\n", strip_info->dev->name); */ |
| } |
| |
| /* |
| * 3. Set up the strip_info ready to send the data (if any). |
| */ |
| strip_info->tx_head = strip_info->tx_buff; |
| strip_info->tx_left = ptr - strip_info->tx_buff; |
| set_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags); |
| /* |
| * 4. Debugging check to make sure we're not overflowing the buffer. |
| */ |
| if (strip_info->tx_size - strip_info->tx_left < 20) |
| printk(KERN_ERR "%s: Sending%5d bytes;%5d bytes free.\n", |
| strip_info->dev->name, strip_info->tx_left, |
| strip_info->tx_size - strip_info->tx_left); |
| |
| /* |
| * 5. If watchdog has expired, reset the radio. Note: if there's data waiting in |
| * the buffer, strip_write_some_more will send it after the reset has finished |
| */ |
| if (doreset) { |
| ResetRadio(strip_info); |
| return; |
| } |
| |
| if (1) { |
| struct in_device *in_dev; |
| |
| brd = addr = 0; |
| rcu_read_lock(); |
| in_dev = __in_dev_get_rcu(strip_info->dev); |
| if (in_dev) { |
| if (in_dev->ifa_list) { |
| brd = in_dev->ifa_list->ifa_broadcast; |
| addr = in_dev->ifa_list->ifa_local; |
| } |
| } |
| rcu_read_unlock(); |
| } |
| |
| |
| /* |
| * 6. If it is time for a periodic ARP, queue one up to be sent. |
| * We only do this if: |
| * 1. The radio is working |
| * 2. It's time to send another periodic ARP |
| * 3. We really know what our address is (and it is not manually set to zero) |
| * 4. We have a designated broadcast address configured |
| * If we queue up an ARP packet when we don't have a designated broadcast |
| * address configured, then the packet will just have to be discarded in |
| * strip_make_packet. This is not fatal, but it causes misleading information |
| * to be displayed in tcpdump. tcpdump will report that periodic APRs are |
| * being sent, when in fact they are not, because they are all being dropped |
| * in the strip_make_packet routine. |
| */ |
| if (strip_info->working |
| && (long) jiffies - strip_info->gratuitous_arp >= 0 |
| && memcmp(strip_info->dev->dev_addr, zero_address.c, |
| sizeof(zero_address)) |
| && arp_query(haddr.c, brd, strip_info->dev)) { |
| /*printk(KERN_INFO "%s: Sending gratuitous ARP with interval %ld\n", |
| strip_info->dev->name, strip_info->arp_interval / HZ); */ |
| strip_info->gratuitous_arp = |
| jiffies + strip_info->arp_interval; |
| strip_info->arp_interval *= 2; |
| if (strip_info->arp_interval > MaxARPInterval) |
| strip_info->arp_interval = MaxARPInterval; |
| if (addr) |
| arp_send(ARPOP_REPLY, ETH_P_ARP, addr, /* Target address of ARP packet is our address */ |
| strip_info->dev, /* Device to send packet on */ |
| addr, /* Source IP address this ARP packet comes from */ |
| NULL, /* Destination HW address is NULL (broadcast it) */ |
| strip_info->dev->dev_addr, /* Source HW address is our HW address */ |
| strip_info->dev->dev_addr); /* Target HW address is our HW address (redundant) */ |
| } |
| |
| /* |
| * 7. All ready. Start the transmission |
| */ |
| strip_write_some_more(strip_info->tty); |
| } |
| |
| /* Encapsulate a datagram and kick it into a TTY queue. */ |
| static int strip_xmit(struct sk_buff *skb, struct net_device *dev) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| |
| if (!netif_running(dev)) { |
| printk(KERN_ERR "%s: xmit call when iface is down\n", |
| dev->name); |
| return NETDEV_TX_BUSY; |
| } |
| |
| netif_stop_queue(dev); |
| |
| del_timer(&strip_info->idle_timer); |
| |
| |
| if (time_after(jiffies, strip_info->pps_timer + HZ)) { |
| unsigned long t = jiffies - strip_info->pps_timer; |
| unsigned long rx_pps_count = (strip_info->rx_pps_count * HZ * 8 + t / 2) / t; |
| unsigned long tx_pps_count = (strip_info->tx_pps_count * HZ * 8 + t / 2) / t; |
| unsigned long sx_pps_count = (strip_info->sx_pps_count * HZ * 8 + t / 2) / t; |
| |
| strip_info->pps_timer = jiffies; |
| strip_info->rx_pps_count = 0; |
| strip_info->tx_pps_count = 0; |
| strip_info->sx_pps_count = 0; |
| |
| strip_info->rx_average_pps = (strip_info->rx_average_pps + rx_pps_count + 1) / 2; |
| strip_info->tx_average_pps = (strip_info->tx_average_pps + tx_pps_count + 1) / 2; |
| strip_info->sx_average_pps = (strip_info->sx_average_pps + sx_pps_count + 1) / 2; |
| |
| if (rx_pps_count / 8 >= 10) |
| printk(KERN_INFO "%s: WARNING: Receiving %ld packets per second.\n", |
| strip_info->dev->name, rx_pps_count / 8); |
| if (tx_pps_count / 8 >= 10) |
| printk(KERN_INFO "%s: WARNING: Tx %ld packets per second.\n", |
| strip_info->dev->name, tx_pps_count / 8); |
| if (sx_pps_count / 8 >= 10) |
| printk(KERN_INFO "%s: WARNING: Sending %ld packets per second.\n", |
| strip_info->dev->name, sx_pps_count / 8); |
| } |
| |
| spin_lock_bh(&strip_lock); |
| |
| strip_send(strip_info, skb); |
| |
| spin_unlock_bh(&strip_lock); |
| |
| if (skb) |
| dev_kfree_skb(skb); |
| return NETDEV_TX_OK; |
| } |
| |
| /* |
| * IdleTask periodically calls strip_xmit, so even when we have no IP packets |
| * to send for an extended period of time, the watchdog processing still gets |
| * done to ensure that the radio stays in Starmode |
| */ |
| |
| static void strip_IdleTask(unsigned long parameter) |
| { |
| strip_xmit(NULL, (struct net_device *) parameter); |
| } |
| |
| /* |
| * Create the MAC header for an arbitrary protocol layer |
| * |
| * saddr!=NULL means use this specific address (n/a for Metricom) |
| * saddr==NULL means use default device source address |
| * daddr!=NULL means use this destination address |
| * daddr==NULL means leave destination address alone |
| * (e.g. unresolved arp -- kernel will call |
| * rebuild_header later to fill in the address) |
| */ |
| |
| static int strip_header(struct sk_buff *skb, struct net_device *dev, |
| unsigned short type, const void *daddr, |
| const void *saddr, unsigned len) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| STRIP_Header *header = (STRIP_Header *) skb_push(skb, sizeof(STRIP_Header)); |
| |
| /*printk(KERN_INFO "%s: strip_header 0x%04X %s\n", dev->name, type, |
| type == ETH_P_IP ? "IP" : type == ETH_P_ARP ? "ARP" : ""); */ |
| |
| header->src_addr = strip_info->true_dev_addr; |
| header->protocol = htons(type); |
| |
| /*HexDump("strip_header", netdev_priv(dev), skb->data, skb->data + skb->len); */ |
| |
| if (!daddr) |
| return (-dev->hard_header_len); |
| |
| header->dst_addr = *(MetricomAddress *) daddr; |
| return (dev->hard_header_len); |
| } |
| |
| /* |
| * Rebuild the MAC header. This is called after an ARP |
| * (or in future other address resolution) has completed on this |
| * sk_buff. We now let ARP fill in the other fields. |
| * I think this should return zero if packet is ready to send, |
| * or non-zero if it needs more time to do an address lookup |
| */ |
| |
| static int strip_rebuild_header(struct sk_buff *skb) |
| { |
| #ifdef CONFIG_INET |
| STRIP_Header *header = (STRIP_Header *) skb->data; |
| |
| /* Arp find returns zero if if knows the address, */ |
| /* or if it doesn't know the address it sends an ARP packet and returns non-zero */ |
| return arp_find(header->dst_addr.c, skb) ? 1 : 0; |
| #else |
| return 0; |
| #endif |
| } |
| |
| |
| /************************************************************************/ |
| /* Receiving routines */ |
| |
| /* |
| * This function parses the response to the ATS300? command, |
| * extracting the radio version and serial number. |
| */ |
| static void get_radio_version(struct strip *strip_info, __u8 * ptr, __u8 * end) |
| { |
| __u8 *p, *value_begin, *value_end; |
| int len; |
| |
| /* Determine the beginning of the second line of the payload */ |
| p = ptr; |
| while (p < end && *p != 10) |
| p++; |
| if (p >= end) |
| return; |
| p++; |
| value_begin = p; |
| |
| /* Determine the end of line */ |
| while (p < end && *p != 10) |
| p++; |
| if (p >= end) |
| return; |
| value_end = p; |
| p++; |
| |
| len = value_end - value_begin; |
| len = min_t(int, len, sizeof(FirmwareVersion) - 1); |
| if (strip_info->firmware_version.c[0] == 0) |
| printk(KERN_INFO "%s: Radio Firmware: %.*s\n", |
| strip_info->dev->name, len, value_begin); |
| sprintf(strip_info->firmware_version.c, "%.*s", len, value_begin); |
| |
| /* Look for the first colon */ |
| while (p < end && *p != ':') |
| p++; |
| if (p >= end) |
| return; |
| /* Skip over the space */ |
| p += 2; |
| len = sizeof(SerialNumber) - 1; |
| if (p + len <= end) { |
| sprintf(strip_info->serial_number.c, "%.*s", len, p); |
| } else { |
| printk(KERN_DEBUG |
| "STRIP: radio serial number shorter (%zd) than expected (%d)\n", |
| end - p, len); |
| } |
| } |
| |
| /* |
| * This function parses the response to the ATS325? command, |
| * extracting the radio battery voltage. |
| */ |
| static void get_radio_voltage(struct strip *strip_info, __u8 * ptr, __u8 * end) |
| { |
| int len; |
| |
| len = sizeof(BatteryVoltage) - 1; |
| if (ptr + len <= end) { |
| sprintf(strip_info->battery_voltage.c, "%.*s", len, ptr); |
| } else { |
| printk(KERN_DEBUG |
| "STRIP: radio voltage string shorter (%zd) than expected (%d)\n", |
| end - ptr, len); |
| } |
| } |
| |
| /* |
| * This function parses the responses to the AT~LA and ATS311 commands, |
| * which list the radio's neighbours. |
| */ |
| static void get_radio_neighbours(MetricomNodeTable * table, __u8 * ptr, __u8 * end) |
| { |
| table->num_nodes = 0; |
| while (ptr < end && table->num_nodes < NODE_TABLE_SIZE) { |
| MetricomNode *node = &table->node[table->num_nodes++]; |
| char *dst = node->c, *limit = dst + sizeof(*node) - 1; |
| while (ptr < end && *ptr <= 32) |
| ptr++; |
| while (ptr < end && dst < limit && *ptr != 10) |
| *dst++ = *ptr++; |
| *dst++ = 0; |
| while (ptr < end && ptr[-1] != 10) |
| ptr++; |
| } |
| do_gettimeofday(&table->timestamp); |
| } |
| |
| static int get_radio_address(struct strip *strip_info, __u8 * p) |
| { |
| MetricomAddress addr; |
| |
| if (string_to_radio_address(&addr, p)) |
| return (1); |
| |
| /* See if our radio address has changed */ |
| if (memcmp(strip_info->true_dev_addr.c, addr.c, sizeof(addr))) { |
| MetricomAddressString addr_string; |
| radio_address_to_string(&addr, &addr_string); |
| printk(KERN_INFO "%s: Radio address = %s\n", |
| strip_info->dev->name, addr_string.c); |
| strip_info->true_dev_addr = addr; |
| if (!strip_info->manual_dev_addr) |
| *(MetricomAddress *) strip_info->dev->dev_addr = |
| addr; |
| /* Give the radio a few seconds to get its head straight, then send an arp */ |
| strip_info->gratuitous_arp = jiffies + 15 * HZ; |
| strip_info->arp_interval = 1 * HZ; |
| } |
| return (0); |
| } |
| |
| static int verify_checksum(struct strip *strip_info) |
| { |
| __u8 *p = strip_info->sx_buff; |
| __u8 *end = strip_info->sx_buff + strip_info->sx_count - 4; |
| u_short sum = |
| (READHEX16(end[0]) << 12) | (READHEX16(end[1]) << 8) | |
| (READHEX16(end[2]) << 4) | (READHEX16(end[3])); |
| while (p < end) |
| sum -= *p++; |
| if (sum == 0 && strip_info->firmware_level == StructuredMessages) { |
| strip_info->firmware_level = ChecksummedMessages; |
| printk(KERN_INFO "%s: Radio provides message checksums\n", |
| strip_info->dev->name); |
| } |
| return (sum == 0); |
| } |
| |
| static void RecvErr(char *msg, struct strip *strip_info) |
| { |
| __u8 *ptr = strip_info->sx_buff; |
| __u8 *end = strip_info->sx_buff + strip_info->sx_count; |
| DumpData(msg, strip_info, ptr, end); |
| strip_info->rx_errors++; |
| } |
| |
| static void RecvErr_Message(struct strip *strip_info, __u8 * sendername, |
| const __u8 * msg, u_long len) |
| { |
| if (has_prefix(msg, len, "001")) { /* Not in StarMode! */ |
| RecvErr("Error Msg:", strip_info); |
| printk(KERN_INFO "%s: Radio %s is not in StarMode\n", |
| strip_info->dev->name, sendername); |
| } |
| |
| else if (has_prefix(msg, len, "002")) { /* Remap handle */ |
| /* We ignore "Remap handle" messages for now */ |
| } |
| |
| else if (has_prefix(msg, len, "003")) { /* Can't resolve name */ |
| RecvErr("Error Msg:", strip_info); |
| printk(KERN_INFO "%s: Destination radio name is unknown\n", |
| strip_info->dev->name); |
| } |
| |
| else if (has_prefix(msg, len, "004")) { /* Name too small or missing */ |
| strip_info->watchdog_doreset = jiffies + LongTime; |
| #if TICKLE_TIMERS |
| { |
| struct timeval tv; |
| do_gettimeofday(&tv); |
| printk(KERN_INFO |
| "**** Got ERR_004 response at %02d.%06d\n", |
| tv.tv_sec % 100, tv.tv_usec); |
| } |
| #endif |
| if (!strip_info->working) { |
| strip_info->working = TRUE; |
| printk(KERN_INFO "%s: Radio now in starmode\n", |
| strip_info->dev->name); |
| /* |
| * If the radio has just entered a working state, we should do our first |
| * probe ASAP, so that we find out our radio address etc. without delay. |
| */ |
| strip_info->watchdog_doprobe = jiffies; |
| } |
| if (strip_info->firmware_level == NoStructure && sendername) { |
| strip_info->firmware_level = StructuredMessages; |
| strip_info->next_command = 0; /* Try to enable checksums ASAP */ |
| printk(KERN_INFO |
| "%s: Radio provides structured messages\n", |
| strip_info->dev->name); |
| } |
| if (strip_info->firmware_level >= StructuredMessages) { |
| /* |
| * If this message has a valid checksum on the end, then the call to verify_checksum |
| * will elevate the firmware_level to ChecksummedMessages for us. (The actual return |
| * code from verify_checksum is ignored here.) |
| */ |
| verify_checksum(strip_info); |
| /* |
| * If the radio has structured messages but we don't yet have all our information about it, |
| * we should do probes without delay, until we have gathered all the information |
| */ |
| if (!GOT_ALL_RADIO_INFO(strip_info)) |
| strip_info->watchdog_doprobe = jiffies; |
| } |
| } |
| |
| else if (has_prefix(msg, len, "005")) /* Bad count specification */ |
| RecvErr("Error Msg:", strip_info); |
| |
| else if (has_prefix(msg, len, "006")) /* Header too big */ |
| RecvErr("Error Msg:", strip_info); |
| |
| else if (has_prefix(msg, len, "007")) { /* Body too big */ |
| RecvErr("Error Msg:", strip_info); |
| printk(KERN_ERR |
| "%s: Error! Packet size too big for radio.\n", |
| strip_info->dev->name); |
| } |
| |
| else if (has_prefix(msg, len, "008")) { /* Bad character in name */ |
| RecvErr("Error Msg:", strip_info); |
| printk(KERN_ERR |
| "%s: Radio name contains illegal character\n", |
| strip_info->dev->name); |
| } |
| |
| else if (has_prefix(msg, len, "009")) /* No count or line terminator */ |
| RecvErr("Error Msg:", strip_info); |
| |
| else if (has_prefix(msg, len, "010")) /* Invalid checksum */ |
| RecvErr("Error Msg:", strip_info); |
| |
| else if (has_prefix(msg, len, "011")) /* Checksum didn't match */ |
| RecvErr("Error Msg:", strip_info); |
| |
| else if (has_prefix(msg, len, "012")) /* Failed to transmit packet */ |
| RecvErr("Error Msg:", strip_info); |
| |
| else |
| RecvErr("Error Msg:", strip_info); |
| } |
| |
| static void process_AT_response(struct strip *strip_info, __u8 * ptr, |
| __u8 * end) |
| { |
| u_long len; |
| __u8 *p = ptr; |
| while (p < end && p[-1] != 10) |
| p++; /* Skip past first newline character */ |
| /* Now ptr points to the AT command, and p points to the text of the response. */ |
| len = p - ptr; |
| |
| #if TICKLE_TIMERS |
| { |
| struct timeval tv; |
| do_gettimeofday(&tv); |
| printk(KERN_INFO "**** Got AT response %.7s at %02d.%06d\n", |
| ptr, tv.tv_sec % 100, tv.tv_usec); |
| } |
| #endif |
| |
| if (has_prefix(ptr, len, "ATS300?")) |
| get_radio_version(strip_info, p, end); |
| else if (has_prefix(ptr, len, "ATS305?")) |
| get_radio_address(strip_info, p); |
| else if (has_prefix(ptr, len, "ATS311?")) |
| get_radio_neighbours(&strip_info->poletops, p, end); |
| else if (has_prefix(ptr, len, "ATS319=7")) |
| verify_checksum(strip_info); |
| else if (has_prefix(ptr, len, "ATS325?")) |
| get_radio_voltage(strip_info, p, end); |
| else if (has_prefix(ptr, len, "AT~LA")) |
| get_radio_neighbours(&strip_info->portables, p, end); |
| else |
| RecvErr("Unknown AT Response:", strip_info); |
| } |
| |
| static void process_ACK(struct strip *strip_info, __u8 * ptr, __u8 * end) |
| { |
| /* Currently we don't do anything with ACKs from the radio */ |
| } |
| |
| static void process_Info(struct strip *strip_info, __u8 * ptr, __u8 * end) |
| { |
| if (ptr + 16 > end) |
| RecvErr("Bad Info Msg:", strip_info); |
| } |
| |
| static struct net_device *get_strip_dev(struct strip *strip_info) |
| { |
| /* If our hardware address is *manually set* to zero, and we know our */ |
| /* real radio hardware address, try to find another strip device that has been */ |
| /* manually set to that address that we can 'transfer ownership' of this packet to */ |
| if (strip_info->manual_dev_addr && |
| !memcmp(strip_info->dev->dev_addr, zero_address.c, |
| sizeof(zero_address)) |
| && memcmp(&strip_info->true_dev_addr, zero_address.c, |
| sizeof(zero_address))) { |
| struct net_device *dev; |
| read_lock_bh(&dev_base_lock); |
| for_each_netdev(&init_net, dev) { |
| if (dev->type == strip_info->dev->type && |
| !memcmp(dev->dev_addr, |
| &strip_info->true_dev_addr, |
| sizeof(MetricomAddress))) { |
| printk(KERN_INFO |
| "%s: Transferred packet ownership to %s.\n", |
| strip_info->dev->name, dev->name); |
| read_unlock_bh(&dev_base_lock); |
| return (dev); |
| } |
| } |
| read_unlock_bh(&dev_base_lock); |
| } |
| return (strip_info->dev); |
| } |
| |
| /* |
| * Send one completely decapsulated datagram to the next layer. |
| */ |
| |
| static void deliver_packet(struct strip *strip_info, STRIP_Header * header, |
| __u16 packetlen) |
| { |
| struct sk_buff *skb = dev_alloc_skb(sizeof(STRIP_Header) + packetlen); |
| if (!skb) { |
| printk(KERN_ERR "%s: memory squeeze, dropping packet.\n", |
| strip_info->dev->name); |
| strip_info->rx_dropped++; |
| } else { |
| memcpy(skb_put(skb, sizeof(STRIP_Header)), header, |
| sizeof(STRIP_Header)); |
| memcpy(skb_put(skb, packetlen), strip_info->rx_buff, |
| packetlen); |
| skb->dev = get_strip_dev(strip_info); |
| skb->protocol = header->protocol; |
| skb_reset_mac_header(skb); |
| |
| /* Having put a fake header on the front of the sk_buff for the */ |
| /* benefit of tools like tcpdump, skb_pull now 'consumes' that */ |
| /* fake header before we hand the packet up to the next layer. */ |
| skb_pull(skb, sizeof(STRIP_Header)); |
| |
| /* Finally, hand the packet up to the next layer (e.g. IP or ARP, etc.) */ |
| strip_info->rx_packets++; |
| strip_info->rx_pps_count++; |
| #ifdef EXT_COUNTERS |
| strip_info->rx_bytes += packetlen; |
| #endif |
| netif_rx(skb); |
| } |
| } |
| |
| static void process_IP_packet(struct strip *strip_info, |
| STRIP_Header * header, __u8 * ptr, |
| __u8 * end) |
| { |
| __u16 packetlen; |
| |
| /* Decode start of the IP packet header */ |
| ptr = UnStuffData(ptr, end, strip_info->rx_buff, 4); |
| if (!ptr) { |
| RecvErr("IP Packet too short", strip_info); |
| return; |
| } |
| |
| packetlen = ((__u16) strip_info->rx_buff[2] << 8) | strip_info->rx_buff[3]; |
| |
| if (packetlen > MAX_RECV_MTU) { |
| printk(KERN_INFO "%s: Dropping oversized received IP packet: %d bytes\n", |
| strip_info->dev->name, packetlen); |
| strip_info->rx_dropped++; |
| return; |
| } |
| |
| /*printk(KERN_INFO "%s: Got %d byte IP packet\n", strip_info->dev->name, packetlen); */ |
| |
| /* Decode remainder of the IP packet */ |
| ptr = |
| UnStuffData(ptr, end, strip_info->rx_buff + 4, packetlen - 4); |
| if (!ptr) { |
| RecvErr("IP Packet too short", strip_info); |
| return; |
| } |
| |
| if (ptr < end) { |
| RecvErr("IP Packet too long", strip_info); |
| return; |
| } |
| |
| header->protocol = htons(ETH_P_IP); |
| |
| deliver_packet(strip_info, header, packetlen); |
| } |
| |
| static void process_ARP_packet(struct strip *strip_info, |
| STRIP_Header * header, __u8 * ptr, |
| __u8 * end) |
| { |
| __u16 packetlen; |
| struct arphdr *arphdr = (struct arphdr *) strip_info->rx_buff; |
| |
| /* Decode start of the ARP packet */ |
| ptr = UnStuffData(ptr, end, strip_info->rx_buff, 8); |
| if (!ptr) { |
| RecvErr("ARP Packet too short", strip_info); |
| return; |
| } |
| |
| packetlen = 8 + (arphdr->ar_hln + arphdr->ar_pln) * 2; |
| |
| if (packetlen > MAX_RECV_MTU) { |
| printk(KERN_INFO |
| "%s: Dropping oversized received ARP packet: %d bytes\n", |
| strip_info->dev->name, packetlen); |
| strip_info->rx_dropped++; |
| return; |
| } |
| |
| /*printk(KERN_INFO "%s: Got %d byte ARP %s\n", |
| strip_info->dev->name, packetlen, |
| ntohs(arphdr->ar_op) == ARPOP_REQUEST ? "request" : "reply"); */ |
| |
| /* Decode remainder of the ARP packet */ |
| ptr = |
| UnStuffData(ptr, end, strip_info->rx_buff + 8, packetlen - 8); |
| if (!ptr) { |
| RecvErr("ARP Packet too short", strip_info); |
| return; |
| } |
| |
| if (ptr < end) { |
| RecvErr("ARP Packet too long", strip_info); |
| return; |
| } |
| |
| header->protocol = htons(ETH_P_ARP); |
| |
| deliver_packet(strip_info, header, packetlen); |
| } |
| |
| /* |
| * process_text_message processes a <CR>-terminated block of data received |
| * from the radio that doesn't begin with a '*' character. All normal |
| * Starmode communication messages with the radio begin with a '*', |
| * so any text that does not indicates a serial port error, a radio that |
| * is in Hayes command mode instead of Starmode, or a radio with really |
| * old firmware that doesn't frame its Starmode responses properly. |
| */ |
| static void process_text_message(struct strip *strip_info) |
| { |
| __u8 *msg = strip_info->sx_buff; |
| int len = strip_info->sx_count; |
| |
| /* Check for anything that looks like it might be our radio name */ |
| /* (This is here for backwards compatibility with old firmware) */ |
| if (len == 9 && get_radio_address(strip_info, msg) == 0) |
| return; |
| |
| if (text_equal(msg, len, "OK")) |
| return; /* Ignore 'OK' responses from prior commands */ |
| if (text_equal(msg, len, "ERROR")) |
| return; /* Ignore 'ERROR' messages */ |
| if (has_prefix(msg, len, "ate0q1")) |
| return; /* Ignore character echo back from the radio */ |
| |
| /* Catch other error messages */ |
| /* (This is here for backwards compatibility with old firmware) */ |
| if (has_prefix(msg, len, "ERR_")) { |
| RecvErr_Message(strip_info, NULL, &msg[4], len - 4); |
| return; |
| } |
| |
| RecvErr("No initial *", strip_info); |
| } |
| |
| /* |
| * process_message processes a <CR>-terminated block of data received |
| * from the radio. If the radio is not in Starmode or has old firmware, |
| * it may be a line of text in response to an AT command. Ideally, with |
| * a current radio that's properly in Starmode, all data received should |
| * be properly framed and checksummed radio message blocks, containing |
| * either a starmode packet, or a other communication from the radio |
| * firmware, like "INF_" Info messages and &COMMAND responses. |
| */ |
| static void process_message(struct strip *strip_info) |
| { |
| STRIP_Header header = { zero_address, zero_address, 0 }; |
| __u8 *ptr = strip_info->sx_buff; |
| __u8 *end = strip_info->sx_buff + strip_info->sx_count; |
| __u8 sendername[32], *sptr = sendername; |
| MetricomKey key; |
| |
| /*HexDump("Receiving", strip_info, ptr, end); */ |
| |
| /* Check for start of address marker, and then skip over it */ |
| if (*ptr == '*') |
| ptr++; |
| else { |
| process_text_message(strip_info); |
| return; |
| } |
| |
| /* Copy out the return address */ |
| while (ptr < end && *ptr != '*' |
| && sptr < ARRAY_END(sendername) - 1) |
| *sptr++ = *ptr++; |
| *sptr = 0; /* Null terminate the sender name */ |
| |
| /* Check for end of address marker, and skip over it */ |
| if (ptr >= end || *ptr != '*') { |
| RecvErr("No second *", strip_info); |
| return; |
| } |
| ptr++; /* Skip the second '*' */ |
| |
| /* If the sender name is "&COMMAND", ignore this 'packet' */ |
| /* (This is here for backwards compatibility with old firmware) */ |
| if (!strcmp(sendername, "&COMMAND")) { |
| strip_info->firmware_level = NoStructure; |
| strip_info->next_command = CompatibilityCommand; |
| return; |
| } |
| |
| if (ptr + 4 > end) { |
| RecvErr("No proto key", strip_info); |
| return; |
| } |
| |
| /* Get the protocol key out of the buffer */ |
| key.c[0] = *ptr++; |
| key.c[1] = *ptr++; |
| key.c[2] = *ptr++; |
| key.c[3] = *ptr++; |
| |
| /* If we're using checksums, verify the checksum at the end of the packet */ |
| if (strip_info->firmware_level >= ChecksummedMessages) { |
| end -= 4; /* Chop the last four bytes off the packet (they're the checksum) */ |
| if (ptr > end) { |
| RecvErr("Missing Checksum", strip_info); |
| return; |
| } |
| if (!verify_checksum(strip_info)) { |
| RecvErr("Bad Checksum", strip_info); |
| return; |
| } |
| } |
| |
| /*printk(KERN_INFO "%s: Got packet from \"%s\".\n", strip_info->dev->name, sendername); */ |
| |
| /* |
| * Fill in (pseudo) source and destination addresses in the packet. |
| * We assume that the destination address was our address (the radio does not |
| * tell us this). If the radio supplies a source address, then we use it. |
| */ |
| header.dst_addr = strip_info->true_dev_addr; |
| string_to_radio_address(&header.src_addr, sendername); |
| |
| #ifdef EXT_COUNTERS |
| if (key.l == SIP0Key.l) { |
| strip_info->rx_rbytes += (end - ptr); |
| process_IP_packet(strip_info, &header, ptr, end); |
| } else if (key.l == ARP0Key.l) { |
| strip_info->rx_rbytes += (end - ptr); |
| process_ARP_packet(strip_info, &header, ptr, end); |
| } else if (key.l == ATR_Key.l) { |
| strip_info->rx_ebytes += (end - ptr); |
| process_AT_response(strip_info, ptr, end); |
| } else if (key.l == ACK_Key.l) { |
| strip_info->rx_ebytes += (end - ptr); |
| process_ACK(strip_info, ptr, end); |
| } else if (key.l == INF_Key.l) { |
| strip_info->rx_ebytes += (end - ptr); |
| process_Info(strip_info, ptr, end); |
| } else if (key.l == ERR_Key.l) { |
| strip_info->rx_ebytes += (end - ptr); |
| RecvErr_Message(strip_info, sendername, ptr, end - ptr); |
| } else |
| RecvErr("Unrecognized protocol key", strip_info); |
| #else |
| if (key.l == SIP0Key.l) |
| process_IP_packet(strip_info, &header, ptr, end); |
| else if (key.l == ARP0Key.l) |
| process_ARP_packet(strip_info, &header, ptr, end); |
| else if (key.l == ATR_Key.l) |
| process_AT_response(strip_info, ptr, end); |
| else if (key.l == ACK_Key.l) |
| process_ACK(strip_info, ptr, end); |
| else if (key.l == INF_Key.l) |
| process_Info(strip_info, ptr, end); |
| else if (key.l == ERR_Key.l) |
| RecvErr_Message(strip_info, sendername, ptr, end - ptr); |
| else |
| RecvErr("Unrecognized protocol key", strip_info); |
| #endif |
| } |
| |
| #define TTYERROR(X) ((X) == TTY_BREAK ? "Break" : \ |
| (X) == TTY_FRAME ? "Framing Error" : \ |
| (X) == TTY_PARITY ? "Parity Error" : \ |
| (X) == TTY_OVERRUN ? "Hardware Overrun" : "Unknown Error") |
| |
| /* |
| * Handle the 'receiver data ready' interrupt. |
| * This function is called by the 'tty_io' module in the kernel when |
| * a block of STRIP data has been received, which can now be decapsulated |
| * and sent on to some IP layer for further processing. |
| */ |
| |
| static void strip_receive_buf(struct tty_struct *tty, const unsigned char *cp, |
| char *fp, int count) |
| { |
| struct strip *strip_info = tty->disc_data; |
| const unsigned char *end = cp + count; |
| |
| if (!strip_info || strip_info->magic != STRIP_MAGIC |
| || !netif_running(strip_info->dev)) |
| return; |
| |
| spin_lock_bh(&strip_lock); |
| #if 0 |
| { |
| struct timeval tv; |
| do_gettimeofday(&tv); |
| printk(KERN_INFO |
| "**** strip_receive_buf: %3d bytes at %02d.%06d\n", |
| count, tv.tv_sec % 100, tv.tv_usec); |
| } |
| #endif |
| |
| #ifdef EXT_COUNTERS |
| strip_info->rx_sbytes += count; |
| #endif |
| |
| /* Read the characters out of the buffer */ |
| while (cp < end) { |
| if (fp && *fp) |
| printk(KERN_INFO "%s: %s on serial port\n", |
| strip_info->dev->name, TTYERROR(*fp)); |
| if (fp && *fp++ && !strip_info->discard) { /* If there's a serial error, record it */ |
| /* If we have some characters in the buffer, discard them */ |
| strip_info->discard = strip_info->sx_count; |
| strip_info->rx_errors++; |
| } |
| |
| /* Leading control characters (CR, NL, Tab, etc.) are ignored */ |
| if (strip_info->sx_count > 0 || *cp >= ' ') { |
| if (*cp == 0x0D) { /* If end of packet, decide what to do with it */ |
| if (strip_info->sx_count > 3000) |
| printk(KERN_INFO |
| "%s: Cut a %d byte packet (%zd bytes remaining)%s\n", |
| strip_info->dev->name, |
| strip_info->sx_count, |
| end - cp - 1, |
| strip_info-> |
| discard ? " (discarded)" : |
| ""); |
| if (strip_info->sx_count > |
| strip_info->sx_size) { |
| strip_info->rx_over_errors++; |
| printk(KERN_INFO |
| "%s: sx_buff overflow (%d bytes total)\n", |
| strip_info->dev->name, |
| strip_info->sx_count); |
| } else if (strip_info->discard) |
| printk(KERN_INFO |
| "%s: Discarding bad packet (%d/%d)\n", |
| strip_info->dev->name, |
| strip_info->discard, |
| strip_info->sx_count); |
| else |
| process_message(strip_info); |
| strip_info->discard = 0; |
| strip_info->sx_count = 0; |
| } else { |
| /* Make sure we have space in the buffer */ |
| if (strip_info->sx_count < |
| strip_info->sx_size) |
| strip_info->sx_buff[strip_info-> |
| sx_count] = |
| *cp; |
| strip_info->sx_count++; |
| } |
| } |
| cp++; |
| } |
| spin_unlock_bh(&strip_lock); |
| } |
| |
| |
| /************************************************************************/ |
| /* General control routines */ |
| |
| static int set_mac_address(struct strip *strip_info, |
| MetricomAddress * addr) |
| { |
| /* |
| * We're using a manually specified address if the address is set |
| * to anything other than all ones. Setting the address to all ones |
| * disables manual mode and goes back to automatic address determination |
| * (tracking the true address that the radio has). |
| */ |
| strip_info->manual_dev_addr = |
| memcmp(addr->c, broadcast_address.c, |
| sizeof(broadcast_address)); |
| if (strip_info->manual_dev_addr) |
| *(MetricomAddress *) strip_info->dev->dev_addr = *addr; |
| else |
| *(MetricomAddress *) strip_info->dev->dev_addr = |
| strip_info->true_dev_addr; |
| return 0; |
| } |
| |
| static int strip_set_mac_address(struct net_device *dev, void *addr) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| struct sockaddr *sa = addr; |
| printk(KERN_INFO "%s: strip_set_dev_mac_address called\n", dev->name); |
| set_mac_address(strip_info, (MetricomAddress *) sa->sa_data); |
| return 0; |
| } |
| |
| static struct net_device_stats *strip_get_stats(struct net_device *dev) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| static struct net_device_stats stats; |
| |
| memset(&stats, 0, sizeof(struct net_device_stats)); |
| |
| stats.rx_packets = strip_info->rx_packets; |
| stats.tx_packets = strip_info->tx_packets; |
| stats.rx_dropped = strip_info->rx_dropped; |
| stats.tx_dropped = strip_info->tx_dropped; |
| stats.tx_errors = strip_info->tx_errors; |
| stats.rx_errors = strip_info->rx_errors; |
| stats.rx_over_errors = strip_info->rx_over_errors; |
| return (&stats); |
| } |
| |
| |
| /************************************************************************/ |
| /* Opening and closing */ |
| |
| /* |
| * Here's the order things happen: |
| * When the user runs "slattach -p strip ..." |
| * 1. The TTY module calls strip_open;; |
| * 2. strip_open calls strip_alloc |
| * 3. strip_alloc calls register_netdev |
| * 4. register_netdev calls strip_dev_init |
| * 5. then strip_open finishes setting up the strip_info |
| * |
| * When the user runs "ifconfig st<x> up address netmask ..." |
| * 6. strip_open_low gets called |
| * |
| * When the user runs "ifconfig st<x> down" |
| * 7. strip_close_low gets called |
| * |
| * When the user kills the slattach process |
| * 8. strip_close gets called |
| * 9. strip_close calls dev_close |
| * 10. if the device is still up, then dev_close calls strip_close_low |
| * 11. strip_close calls strip_free |
| */ |
| |
| /* Open the low-level part of the STRIP channel. Easy! */ |
| |
| static int strip_open_low(struct net_device *dev) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| |
| if (strip_info->tty == NULL) |
| return (-ENODEV); |
| |
| if (!allocate_buffers(strip_info, dev->mtu)) |
| return (-ENOMEM); |
| |
| strip_info->sx_count = 0; |
| strip_info->tx_left = 0; |
| |
| strip_info->discard = 0; |
| strip_info->working = FALSE; |
| strip_info->firmware_level = NoStructure; |
| strip_info->next_command = CompatibilityCommand; |
| strip_info->user_baud = tty_get_baud_rate(strip_info->tty); |
| |
| printk(KERN_INFO "%s: Initializing Radio.\n", |
| strip_info->dev->name); |
| ResetRadio(strip_info); |
| strip_info->idle_timer.expires = jiffies + 1 * HZ; |
| add_timer(&strip_info->idle_timer); |
| netif_wake_queue(dev); |
| return (0); |
| } |
| |
| |
| /* |
| * Close the low-level part of the STRIP channel. Easy! |
| */ |
| |
| static int strip_close_low(struct net_device *dev) |
| { |
| struct strip *strip_info = netdev_priv(dev); |
| |
| if (strip_info->tty == NULL) |
| return -EBUSY; |
| clear_bit(TTY_DO_WRITE_WAKEUP, &strip_info->tty->flags); |
| netif_stop_queue(dev); |
| |
| /* |
| * Free all STRIP frame buffers. |
| */ |
| kfree(strip_info->rx_buff); |
| strip_info->rx_buff = NULL; |
| kfree(strip_info->sx_buff); |
| strip_info->sx_buff = NULL; |
| kfree(strip_info->tx_buff); |
| strip_info->tx_buff = NULL; |
| |
| del_timer(&strip_info->idle_timer); |
| return 0; |
| } |
| |
| static const struct header_ops strip_header_ops = { |
| .create = strip_header, |
| .rebuild = strip_rebuild_header, |
| }; |
| |
| |
| static const struct net_device_ops strip_netdev_ops = { |
| .ndo_open = strip_open_low, |
| .ndo_stop = strip_close_low, |
| .ndo_start_xmit = strip_xmit, |
| .ndo_set_mac_address = strip_set_mac_address, |
| .ndo_get_stats = strip_get_stats, |
| .ndo_change_mtu = strip_change_mtu, |
| }; |
| |
| /* |
| * This routine is called by DDI when the |
| * (dynamically assigned) device is registered |
| */ |
| |
| static void strip_dev_setup(struct net_device *dev) |
| { |
| /* |
| * Finish setting up the DEVICE info. |
| */ |
| |
| dev->trans_start = 0; |
| dev->tx_queue_len = 30; /* Drop after 30 frames queued */ |
| |
| dev->flags = 0; |
| dev->mtu = DEFAULT_STRIP_MTU; |
| dev->type = ARPHRD_METRICOM; /* dtang */ |
| dev->hard_header_len = sizeof(STRIP_Header); |
| /* |
| * netdev_priv(dev) Already holds a pointer to our struct strip |
| */ |
| |
| *(MetricomAddress *)dev->broadcast = broadcast_address; |
| dev->dev_addr[0] = 0; |
| dev->addr_len = sizeof(MetricomAddress); |
| |
| dev->header_ops = &strip_header_ops, |
| dev->netdev_ops = &strip_netdev_ops; |
| } |
| |
| /* |
| * Free a STRIP channel. |
| */ |
| |
| static void strip_free(struct strip *strip_info) |
| { |
| spin_lock_bh(&strip_lock); |
| list_del_rcu(&strip_info->list); |
| spin_unlock_bh(&strip_lock); |
| |
| strip_info->magic = 0; |
| |
| free_netdev(strip_info->dev); |
| } |
| |
| |
| /* |
| * Allocate a new free STRIP channel |
| */ |
| static struct strip *strip_alloc(void) |
| { |
| struct list_head *n; |
| struct net_device *dev; |
| struct strip *strip_info; |
| |
| dev = alloc_netdev(sizeof(struct strip), "st%d", |
| strip_dev_setup); |
| |
| if (!dev) |
| return NULL; /* If no more memory, return */ |
| |
| |
| strip_info = netdev_priv(dev); |
| strip_info->dev = dev; |
| |
| strip_info->magic = STRIP_MAGIC; |
| strip_info->tty = NULL; |
| |
| strip_info->gratuitous_arp = jiffies + LongTime; |
| strip_info->arp_interval = 0; |
| init_timer(&strip_info->idle_timer); |
| strip_info->idle_timer.data = (long) dev; |
| strip_info->idle_timer.function = strip_IdleTask; |
| |
| |
| spin_lock_bh(&strip_lock); |
| rescan: |
| /* |
| * Search the list to find where to put our new entry |
| * (and in the process decide what channel number it is |
| * going to be) |
| */ |
| list_for_each(n, &strip_list) { |
| struct strip *s = hlist_entry(n, struct strip, list); |
| |
| if (s->dev->base_addr == dev->base_addr) { |
| ++dev->base_addr; |
| goto rescan; |
| } |
| } |
| |
| sprintf(dev->name, "st%ld", dev->base_addr); |
| |
| list_add_tail_rcu(&strip_info->list, &strip_list); |
| spin_unlock_bh(&strip_lock); |
| |
| return strip_info; |
| } |
| |
| /* |
| * Open the high-level part of the STRIP channel. |
| * This function is called by the TTY module when the |
| * STRIP line discipline is called for. Because we are |
| * sure the tty line exists, we only have to link it to |
| * a free STRIP channel... |
| */ |
| |
| static int strip_open(struct tty_struct *tty) |
| { |
| struct strip *strip_info = tty->disc_data; |
| |
| /* |
| * First make sure we're not already connected. |
| */ |
| |
| if (strip_info && strip_info->magic == STRIP_MAGIC) |
| return -EEXIST; |
| |
| /* |
| * We need a write method. |
| */ |
| |
| if (tty->ops->write == NULL || tty->ops->set_termios == NULL) |
| return -EOPNOTSUPP; |
| |
| /* |
| * OK. Find a free STRIP channel to use. |
| */ |
| if ((strip_info = strip_alloc()) == NULL) |
| return -ENFILE; |
| |
| /* |
| * Register our newly created device so it can be ifconfig'd |
| * strip_dev_init() will be called as a side-effect |
| */ |
| |
| if (register_netdev(strip_info->dev) != 0) { |
| printk(KERN_ERR "strip: register_netdev() failed.\n"); |
| strip_free(strip_info); |
| return -ENFILE; |
| } |
| |
| strip_info->tty = tty; |
| tty->disc_data = strip_info; |
| tty->receive_room = 65536; |
| |
| tty_driver_flush_buffer(tty); |
| |
| /* |
| * Restore default settings |
| */ |
| |
| strip_info->dev->type = ARPHRD_METRICOM; /* dtang */ |
| |
| /* |
| * Set tty options |
| */ |
| |
| tty->termios->c_iflag |= IGNBRK | IGNPAR; /* Ignore breaks and parity errors. */ |
| tty->termios->c_cflag |= CLOCAL; /* Ignore modem control signals. */ |
| tty->termios->c_cflag &= ~HUPCL; /* Don't close on hup */ |
| |
| printk(KERN_INFO "STRIP: device \"%s\" activated\n", |
| strip_info->dev->name); |
| |
| /* |
| * Done. We have linked the TTY line to a channel. |
| */ |
| return (strip_info->dev->base_addr); |
| } |
| |
| /* |
| * Close down a STRIP channel. |
| * This means flushing out any pending queues, and then restoring the |
| * TTY line discipline to what it was before it got hooked to STRIP |
| * (which usually is TTY again). |
| */ |
| |
| static void strip_close(struct tty_struct *tty) |
| { |
| struct strip *strip_info = tty->disc_data; |
| |
| /* |
| * First make sure we're connected. |
| */ |
| |
| if (!strip_info || strip_info->magic != STRIP_MAGIC) |
| return; |
| |
| unregister_netdev(strip_info->dev); |
| |
| tty->disc_data = NULL; |
| strip_info->tty = NULL; |
| printk(KERN_INFO "STRIP: device \"%s\" closed down\n", |
| strip_info->dev->name); |
| strip_free(strip_info); |
| tty->disc_data = NULL; |
| } |
| |
| |
| /************************************************************************/ |
| /* Perform I/O control calls on an active STRIP channel. */ |
| |
| static int strip_ioctl(struct tty_struct *tty, struct file *file, |
| unsigned int cmd, unsigned long arg) |
| { |
| struct strip *strip_info = tty->disc_data; |
| |
| /* |
| * First make sure we're connected. |
| */ |
| |
| if (!strip_info || strip_info->magic != STRIP_MAGIC) |
| return -EINVAL; |
| |
| switch (cmd) { |
| case SIOCGIFNAME: |
| if(copy_to_user((void __user *) arg, strip_info->dev->name, strlen(strip_info->dev->name) + 1)) |
| return -EFAULT; |
| break; |
| case SIOCSIFHWADDR: |
| { |
| MetricomAddress addr; |
| //printk(KERN_INFO "%s: SIOCSIFHWADDR\n", strip_info->dev->name); |
| if(copy_from_user(&addr, (void __user *) arg, sizeof(MetricomAddress))) |
| return -EFAULT; |
| return set_mac_address(strip_info, &addr); |
| } |
| default: |
| return tty_mode_ioctl(tty, file, cmd, arg); |
| break; |
| } |
| return 0; |
| } |
| |
| |
| /************************************************************************/ |
| /* Initialization */ |
| |
| static struct tty_ldisc_ops strip_ldisc = { |
| .magic = TTY_LDISC_MAGIC, |
| .name = "strip", |
| .owner = THIS_MODULE, |
| .open = strip_open, |
| .close = strip_close, |
| .ioctl = strip_ioctl, |
| .receive_buf = strip_receive_buf, |
| .write_wakeup = strip_write_some_more, |
| }; |
| |
| /* |
| * Initialize the STRIP driver. |
| * This routine is called at boot time, to bootstrap the multi-channel |
| * STRIP driver |
| */ |
| |
| static char signon[] __initdata = |
| KERN_INFO "STRIP: Version %s (unlimited channels)\n"; |
| |
| static int __init strip_init_driver(void) |
| { |
| int status; |
| |
| printk(signon, StripVersion); |
| |
| |
| /* |
| * Fill in our line protocol discipline, and register it |
| */ |
| if ((status = tty_register_ldisc(N_STRIP, &strip_ldisc))) |
| printk(KERN_ERR "STRIP: can't register line discipline (err = %d)\n", |
| status); |
| |
| /* |
| * Register the status file with /proc |
| */ |
| proc_net_fops_create(&init_net, "strip", S_IFREG | S_IRUGO, &strip_seq_fops); |
| |
| return status; |
| } |
| |
| module_init(strip_init_driver); |
| |
| static const char signoff[] __exitdata = |
| KERN_INFO "STRIP: Module Unloaded\n"; |
| |
| static void __exit strip_exit_driver(void) |
| { |
| int i; |
| struct list_head *p,*n; |
| |
| /* module ref count rules assure that all entries are unregistered */ |
| list_for_each_safe(p, n, &strip_list) { |
| struct strip *s = list_entry(p, struct strip, list); |
| strip_free(s); |
| } |
| |
| /* Unregister with the /proc/net file here. */ |
| proc_net_remove(&init_net, "strip"); |
| |
| if ((i = tty_unregister_ldisc(N_STRIP))) |
| printk(KERN_ERR "STRIP: can't unregister line discipline (err = %d)\n", i); |
| |
| printk(signoff); |
| } |
| |
| module_exit(strip_exit_driver); |
| |
| MODULE_AUTHOR("Stuart Cheshire <cheshire@cs.stanford.edu>"); |
| MODULE_DESCRIPTION("Starmode Radio IP (STRIP) Device Driver"); |
| MODULE_LICENSE("Dual BSD/GPL"); |
| |
| MODULE_SUPPORTED_DEVICE("Starmode Radio IP (STRIP) modem"); |