| /* |
| * arch/v850/kernel/entry.S -- Low-level system-call handling, trap handlers, |
| * and context-switching |
| * |
| * Copyright (C) 2001,02,03 NEC Electronics Corporation |
| * Copyright (C) 2001,02,03 Miles Bader <miles@gnu.org> |
| * |
| * This file is subject to the terms and conditions of the GNU General |
| * Public License. See the file COPYING in the main directory of this |
| * archive for more details. |
| * |
| * Written by Miles Bader <miles@gnu.org> |
| */ |
| |
| #include <linux/sys.h> |
| |
| #include <asm/entry.h> |
| #include <asm/current.h> |
| #include <asm/thread_info.h> |
| #include <asm/clinkage.h> |
| #include <asm/processor.h> |
| #include <asm/irq.h> |
| #include <asm/errno.h> |
| |
| #include <asm/asm-consts.h> |
| |
| |
| /* Make a slightly more convenient alias for C_SYMBOL_NAME. */ |
| #define CSYM C_SYMBOL_NAME |
| |
| |
| /* The offset of the struct pt_regs in a state-save-frame on the stack. */ |
| #define PTO STATE_SAVE_PT_OFFSET |
| |
| |
| /* Save argument registers to the state-save-frame pointed to by EP. */ |
| #define SAVE_ARG_REGS \ |
| sst.w r6, PTO+PT_GPR(6)[ep]; \ |
| sst.w r7, PTO+PT_GPR(7)[ep]; \ |
| sst.w r8, PTO+PT_GPR(8)[ep]; \ |
| sst.w r9, PTO+PT_GPR(9)[ep] |
| /* Restore argument registers from the state-save-frame pointed to by EP. */ |
| #define RESTORE_ARG_REGS \ |
| sld.w PTO+PT_GPR(6)[ep], r6; \ |
| sld.w PTO+PT_GPR(7)[ep], r7; \ |
| sld.w PTO+PT_GPR(8)[ep], r8; \ |
| sld.w PTO+PT_GPR(9)[ep], r9 |
| |
| /* Save value return registers to the state-save-frame pointed to by EP. */ |
| #define SAVE_RVAL_REGS \ |
| sst.w r10, PTO+PT_GPR(10)[ep]; \ |
| sst.w r11, PTO+PT_GPR(11)[ep] |
| /* Restore value return registers from the state-save-frame pointed to by EP. */ |
| #define RESTORE_RVAL_REGS \ |
| sld.w PTO+PT_GPR(10)[ep], r10; \ |
| sld.w PTO+PT_GPR(11)[ep], r11 |
| |
| |
| #define SAVE_CALL_CLOBBERED_REGS_BEFORE_ARGS \ |
| sst.w r1, PTO+PT_GPR(1)[ep]; \ |
| sst.w r5, PTO+PT_GPR(5)[ep] |
| #define SAVE_CALL_CLOBBERED_REGS_AFTER_RVAL \ |
| sst.w r12, PTO+PT_GPR(12)[ep]; \ |
| sst.w r13, PTO+PT_GPR(13)[ep]; \ |
| sst.w r14, PTO+PT_GPR(14)[ep]; \ |
| sst.w r15, PTO+PT_GPR(15)[ep]; \ |
| sst.w r16, PTO+PT_GPR(16)[ep]; \ |
| sst.w r17, PTO+PT_GPR(17)[ep]; \ |
| sst.w r18, PTO+PT_GPR(18)[ep]; \ |
| sst.w r19, PTO+PT_GPR(19)[ep] |
| #define RESTORE_CALL_CLOBBERED_REGS_BEFORE_ARGS \ |
| sld.w PTO+PT_GPR(1)[ep], r1; \ |
| sld.w PTO+PT_GPR(5)[ep], r5 |
| #define RESTORE_CALL_CLOBBERED_REGS_AFTER_RVAL \ |
| sld.w PTO+PT_GPR(12)[ep], r12; \ |
| sld.w PTO+PT_GPR(13)[ep], r13; \ |
| sld.w PTO+PT_GPR(14)[ep], r14; \ |
| sld.w PTO+PT_GPR(15)[ep], r15; \ |
| sld.w PTO+PT_GPR(16)[ep], r16; \ |
| sld.w PTO+PT_GPR(17)[ep], r17; \ |
| sld.w PTO+PT_GPR(18)[ep], r18; \ |
| sld.w PTO+PT_GPR(19)[ep], r19 |
| |
| /* Save `call clobbered' registers to the state-save-frame pointed to by EP. */ |
| #define SAVE_CALL_CLOBBERED_REGS \ |
| SAVE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ |
| SAVE_ARG_REGS; \ |
| SAVE_RVAL_REGS; \ |
| SAVE_CALL_CLOBBERED_REGS_AFTER_RVAL |
| /* Restore `call clobbered' registers from the state-save-frame pointed to |
| by EP. */ |
| #define RESTORE_CALL_CLOBBERED_REGS \ |
| RESTORE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ |
| RESTORE_ARG_REGS; \ |
| RESTORE_RVAL_REGS; \ |
| RESTORE_CALL_CLOBBERED_REGS_AFTER_RVAL |
| |
| /* Save `call clobbered' registers except for the return-value registers |
| to the state-save-frame pointed to by EP. */ |
| #define SAVE_CALL_CLOBBERED_REGS_NO_RVAL \ |
| SAVE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ |
| SAVE_ARG_REGS; \ |
| SAVE_CALL_CLOBBERED_REGS_AFTER_RVAL |
| /* Restore `call clobbered' registers except for the return-value registers |
| from the state-save-frame pointed to by EP. */ |
| #define RESTORE_CALL_CLOBBERED_REGS_NO_RVAL \ |
| RESTORE_CALL_CLOBBERED_REGS_BEFORE_ARGS; \ |
| RESTORE_ARG_REGS; \ |
| RESTORE_CALL_CLOBBERED_REGS_AFTER_RVAL |
| |
| /* Save `call saved' registers to the state-save-frame pointed to by EP. */ |
| #define SAVE_CALL_SAVED_REGS \ |
| sst.w r2, PTO+PT_GPR(2)[ep]; \ |
| sst.w r20, PTO+PT_GPR(20)[ep]; \ |
| sst.w r21, PTO+PT_GPR(21)[ep]; \ |
| sst.w r22, PTO+PT_GPR(22)[ep]; \ |
| sst.w r23, PTO+PT_GPR(23)[ep]; \ |
| sst.w r24, PTO+PT_GPR(24)[ep]; \ |
| sst.w r25, PTO+PT_GPR(25)[ep]; \ |
| sst.w r26, PTO+PT_GPR(26)[ep]; \ |
| sst.w r27, PTO+PT_GPR(27)[ep]; \ |
| sst.w r28, PTO+PT_GPR(28)[ep]; \ |
| sst.w r29, PTO+PT_GPR(29)[ep] |
| /* Restore `call saved' registers from the state-save-frame pointed to by EP. */ |
| #define RESTORE_CALL_SAVED_REGS \ |
| sld.w PTO+PT_GPR(2)[ep], r2; \ |
| sld.w PTO+PT_GPR(20)[ep], r20; \ |
| sld.w PTO+PT_GPR(21)[ep], r21; \ |
| sld.w PTO+PT_GPR(22)[ep], r22; \ |
| sld.w PTO+PT_GPR(23)[ep], r23; \ |
| sld.w PTO+PT_GPR(24)[ep], r24; \ |
| sld.w PTO+PT_GPR(25)[ep], r25; \ |
| sld.w PTO+PT_GPR(26)[ep], r26; \ |
| sld.w PTO+PT_GPR(27)[ep], r27; \ |
| sld.w PTO+PT_GPR(28)[ep], r28; \ |
| sld.w PTO+PT_GPR(29)[ep], r29 |
| |
| |
| /* Save the PC stored in the special register SAVEREG to the state-save-frame |
| pointed to by EP. r19 is clobbered. */ |
| #define SAVE_PC(savereg) \ |
| stsr SR_ ## savereg, r19; \ |
| sst.w r19, PTO+PT_PC[ep] |
| /* Restore the PC from the state-save-frame pointed to by EP, to the special |
| register SAVEREG. LP is clobbered (it is used as a scratch register |
| because the POP_STATE macro restores it, and this macro is usually used |
| inside POP_STATE). */ |
| #define RESTORE_PC(savereg) \ |
| sld.w PTO+PT_PC[ep], lp; \ |
| ldsr lp, SR_ ## savereg |
| /* Save the PSW register stored in the special register SAVREG to the |
| state-save-frame pointed to by EP. r19 is clobbered. */ |
| #define SAVE_PSW(savereg) \ |
| stsr SR_ ## savereg, r19; \ |
| sst.w r19, PTO+PT_PSW[ep] |
| /* Restore the PSW register from the state-save-frame pointed to by EP, to |
| the special register SAVEREG. LP is clobbered (it is used as a scratch |
| register because the POP_STATE macro restores it, and this macro is |
| usually used inside POP_STATE). */ |
| #define RESTORE_PSW(savereg) \ |
| sld.w PTO+PT_PSW[ep], lp; \ |
| ldsr lp, SR_ ## savereg |
| |
| /* Save CTPC/CTPSW/CTBP registers to the state-save-frame pointed to by REG. |
| r19 is clobbered. */ |
| #define SAVE_CT_REGS \ |
| stsr SR_CTPC, r19; \ |
| sst.w r19, PTO+PT_CTPC[ep]; \ |
| stsr SR_CTPSW, r19; \ |
| sst.w r19, PTO+PT_CTPSW[ep]; \ |
| stsr SR_CTBP, r19; \ |
| sst.w r19, PTO+PT_CTBP[ep] |
| /* Restore CTPC/CTPSW/CTBP registers from the state-save-frame pointed to by EP. |
| LP is clobbered (it is used as a scratch register because the POP_STATE |
| macro restores it, and this macro is usually used inside POP_STATE). */ |
| #define RESTORE_CT_REGS \ |
| sld.w PTO+PT_CTPC[ep], lp; \ |
| ldsr lp, SR_CTPC; \ |
| sld.w PTO+PT_CTPSW[ep], lp; \ |
| ldsr lp, SR_CTPSW; \ |
| sld.w PTO+PT_CTBP[ep], lp; \ |
| ldsr lp, SR_CTBP |
| |
| |
| /* Push register state, except for the stack pointer, on the stack in the |
| form of a state-save-frame (plus some extra padding), in preparation for |
| a system call. This macro makes sure that the EP, GP, and LP |
| registers are saved, and TYPE identifies the set of extra registers to |
| be saved as well. Also copies (the new value of) SP to EP. */ |
| #define PUSH_STATE(type) \ |
| addi -STATE_SAVE_SIZE, sp, sp; /* Make room on the stack. */ \ |
| st.w ep, PTO+PT_GPR(GPR_EP)[sp]; \ |
| mov sp, ep; \ |
| sst.w gp, PTO+PT_GPR(GPR_GP)[ep]; \ |
| sst.w lp, PTO+PT_GPR(GPR_LP)[ep]; \ |
| type ## _STATE_SAVER |
| /* Pop a register state pushed by PUSH_STATE, except for the stack pointer, |
| from the the stack. */ |
| #define POP_STATE(type) \ |
| mov sp, ep; \ |
| type ## _STATE_RESTORER; \ |
| sld.w PTO+PT_GPR(GPR_GP)[ep], gp; \ |
| sld.w PTO+PT_GPR(GPR_LP)[ep], lp; \ |
| sld.w PTO+PT_GPR(GPR_EP)[ep], ep; \ |
| addi STATE_SAVE_SIZE, sp, sp /* Clean up our stack space. */ |
| |
| |
| /* Switch to the kernel stack if necessary, and push register state on the |
| stack in the form of a state-save-frame. Also load the current task |
| pointer if switching from user mode. The stack-pointer (r3) should have |
| already been saved to the memory location SP_SAVE_LOC (the reason for |
| this is that the interrupt vectors may be beyond a 22-bit signed offset |
| jump from the actual interrupt handler, and this allows them to save the |
| stack-pointer and use that register to do an indirect jump). This macro |
| makes sure that `special' registers, system registers, and the stack |
| pointer are saved; TYPE identifies the set of extra registers to be |
| saved as well. SYSCALL_NUM is the register in which the system-call |
| number this state is for is stored (r0 if this isn't a system call). |
| Interrupts should already be disabled when calling this. */ |
| #define SAVE_STATE(type, syscall_num, sp_save_loc) \ |
| tst1 0, KM; /* See if already in kernel mode. */ \ |
| bz 1f; \ |
| ld.w sp_save_loc, sp; /* ... yes, use saved SP. */ \ |
| br 2f; \ |
| 1: ld.w KSP, sp; /* ... no, switch to kernel stack. */ \ |
| 2: PUSH_STATE(type); \ |
| ld.b KM, r19; /* Remember old kernel-mode. */ \ |
| sst.w r19, PTO+PT_KERNEL_MODE[ep]; \ |
| ld.w sp_save_loc, r19; /* Remember old SP. */ \ |
| sst.w r19, PTO+PT_GPR(GPR_SP)[ep]; \ |
| mov 1, r19; /* Now definitely in kernel-mode. */ \ |
| st.b r19, KM; \ |
| GET_CURRENT_TASK(CURRENT_TASK); /* Fetch the current task pointer. */ \ |
| /* Save away the syscall number. */ \ |
| sst.w syscall_num, PTO+PT_CUR_SYSCALL[ep] |
| |
| |
| /* Save register state not normally saved by PUSH_STATE for TYPE, to the |
| state-save-frame on the stack; also copies SP to EP. r19 may be trashed. */ |
| #define SAVE_EXTRA_STATE(type) \ |
| mov sp, ep; \ |
| type ## _EXTRA_STATE_SAVER |
| /* Restore register state not normally restored by POP_STATE for TYPE, |
| from the state-save-frame on the stack; also copies SP to EP. |
| r19 may be trashed. */ |
| #define RESTORE_EXTRA_STATE(type) \ |
| mov sp, ep; \ |
| type ## _EXTRA_STATE_RESTORER |
| |
| /* Save any call-clobbered registers not normally saved by PUSH_STATE for |
| TYPE, to the state-save-frame on the stack. |
| EP may be trashed, but is not guaranteed to contain a copy of SP |
| (unlike after most SAVE_... macros). r19 may be trashed. */ |
| #define SAVE_EXTRA_STATE_FOR_SCHEDULE(type) \ |
| type ## _SCHEDULE_EXTRA_STATE_SAVER |
| /* Restore any call-clobbered registers not normally restored by |
| POP_STATE for TYPE, to the state-save-frame on the stack. |
| EP may be trashed, but is not guaranteed to contain a copy of SP |
| (unlike after most RESTORE_... macros). r19 may be trashed. */ |
| #define RESTORE_EXTRA_STATE_FOR_SCHEDULE(type) \ |
| type ## _SCHEDULE_EXTRA_STATE_RESTORER |
| |
| |
| /* These are extra_state_saver/restorer values for a user trap. Note |
| that we save the argument registers so that restarted syscalls will |
| function properly (otherwise it wouldn't be necessary), and we must |
| _not_ restore the return-value registers (so that traps can return a |
| value!), but call-clobbered registers are not saved at all, as the |
| caller of the syscall function should have saved them. */ |
| |
| #define TRAP_RET reti |
| /* Traps don't save call-clobbered registers (but do still save arg regs). |
| We preserve PSw to keep long-term state, namely interrupt status (for traps |
| from kernel-mode), and the single-step flag (for user traps). */ |
| #define TRAP_STATE_SAVER \ |
| SAVE_ARG_REGS; \ |
| SAVE_PC(EIPC); \ |
| SAVE_PSW(EIPSW) |
| /* When traps return, they just leave call-clobbered registers (except for arg |
| regs) with whatever value they have from the kernel. Traps don't preserve |
| the PSW, but we zero EIPSW to ensure it doesn't contain anything dangerous |
| (in particular, the single-step flag). */ |
| #define TRAP_STATE_RESTORER \ |
| RESTORE_ARG_REGS; \ |
| RESTORE_PC(EIPC); \ |
| RESTORE_PSW(EIPSW) |
| /* Save registers not normally saved by traps. We need to save r12, even |
| though it's nominally call-clobbered, because it's used when restarting |
| a system call (the signal-handling path uses SAVE_EXTRA_STATE, and |
| expects r12 to be restored when the trap returns). */ |
| #define TRAP_EXTRA_STATE_SAVER \ |
| SAVE_RVAL_REGS; \ |
| sst.w r12, PTO+PT_GPR(12)[ep]; \ |
| SAVE_CALL_SAVED_REGS; \ |
| SAVE_CT_REGS |
| #define TRAP_EXTRA_STATE_RESTORER \ |
| RESTORE_RVAL_REGS; \ |
| sld.w PTO+PT_GPR(12)[ep], r12; \ |
| RESTORE_CALL_SAVED_REGS; \ |
| RESTORE_CT_REGS |
| /* Save registers prior to calling scheduler (just before trap returns). |
| We have to save the return-value registers to preserve the trap's return |
| value. Note that ..._SCHEDULE_EXTRA_STATE_SAVER, unlike most ..._SAVER |
| macros, is required to setup EP itself if EP is needed (this is because |
| in many cases, the macro is empty). */ |
| #define TRAP_SCHEDULE_EXTRA_STATE_SAVER \ |
| mov sp, ep; \ |
| SAVE_RVAL_REGS |
| /* Note that ..._SCHEDULE_EXTRA_STATE_RESTORER, unlike most ..._RESTORER |
| macros, is required to setup EP itself if EP is needed (this is because |
| in many cases, the macro is empty). */ |
| #define TRAP_SCHEDULE_EXTRA_STATE_RESTORER \ |
| mov sp, ep; \ |
| RESTORE_RVAL_REGS |
| |
| /* Register saving/restoring for maskable interrupts. */ |
| #define IRQ_RET reti |
| #define IRQ_STATE_SAVER \ |
| SAVE_CALL_CLOBBERED_REGS; \ |
| SAVE_PC(EIPC); \ |
| SAVE_PSW(EIPSW) |
| #define IRQ_STATE_RESTORER \ |
| RESTORE_CALL_CLOBBERED_REGS; \ |
| RESTORE_PC(EIPC); \ |
| RESTORE_PSW(EIPSW) |
| #define IRQ_EXTRA_STATE_SAVER \ |
| SAVE_CALL_SAVED_REGS; \ |
| SAVE_CT_REGS |
| #define IRQ_EXTRA_STATE_RESTORER \ |
| RESTORE_CALL_SAVED_REGS; \ |
| RESTORE_CT_REGS |
| #define IRQ_SCHEDULE_EXTRA_STATE_SAVER /* nothing */ |
| #define IRQ_SCHEDULE_EXTRA_STATE_RESTORER /* nothing */ |
| |
| /* Register saving/restoring for non-maskable interrupts. */ |
| #define NMI_RET reti |
| #define NMI_STATE_SAVER \ |
| SAVE_CALL_CLOBBERED_REGS; \ |
| SAVE_PC(FEPC); \ |
| SAVE_PSW(FEPSW); |
| #define NMI_STATE_RESTORER \ |
| RESTORE_CALL_CLOBBERED_REGS; \ |
| RESTORE_PC(FEPC); \ |
| RESTORE_PSW(FEPSW); |
| #define NMI_EXTRA_STATE_SAVER \ |
| SAVE_CALL_SAVED_REGS; \ |
| SAVE_CT_REGS |
| #define NMI_EXTRA_STATE_RESTORER \ |
| RESTORE_CALL_SAVED_REGS; \ |
| RESTORE_CT_REGS |
| #define NMI_SCHEDULE_EXTRA_STATE_SAVER /* nothing */ |
| #define NMI_SCHEDULE_EXTRA_STATE_RESTORER /* nothing */ |
| |
| /* Register saving/restoring for debug traps. */ |
| #define DBTRAP_RET .long 0x014607E0 /* `dbret', but gas doesn't support it. */ |
| #define DBTRAP_STATE_SAVER \ |
| SAVE_CALL_CLOBBERED_REGS; \ |
| SAVE_PC(DBPC); \ |
| SAVE_PSW(DBPSW) |
| #define DBTRAP_STATE_RESTORER \ |
| RESTORE_CALL_CLOBBERED_REGS; \ |
| RESTORE_PC(DBPC); \ |
| RESTORE_PSW(DBPSW) |
| #define DBTRAP_EXTRA_STATE_SAVER \ |
| SAVE_CALL_SAVED_REGS; \ |
| SAVE_CT_REGS |
| #define DBTRAP_EXTRA_STATE_RESTORER \ |
| RESTORE_CALL_SAVED_REGS; \ |
| RESTORE_CT_REGS |
| #define DBTRAP_SCHEDULE_EXTRA_STATE_SAVER /* nothing */ |
| #define DBTRAP_SCHEDULE_EXTRA_STATE_RESTORER /* nothing */ |
| |
| /* Register saving/restoring for a context switch. We don't need to save |
| too many registers, because context-switching looks like a function call |
| (via the function `switch_thread'), so callers will save any |
| call-clobbered registers themselves. We do need to save the CT regs, as |
| they're normally not saved during kernel entry (the kernel doesn't use |
| them). We save PSW so that interrupt-status state will correctly follow |
| each thread (mostly NMI vs. normal-IRQ/trap), though for the most part |
| it doesn't matter since threads are always in almost exactly the same |
| processor state during a context switch. The stack pointer and return |
| value are handled by switch_thread itself. */ |
| #define SWITCH_STATE_SAVER \ |
| SAVE_CALL_SAVED_REGS; \ |
| SAVE_PSW(PSW); \ |
| SAVE_CT_REGS |
| #define SWITCH_STATE_RESTORER \ |
| RESTORE_CALL_SAVED_REGS; \ |
| RESTORE_PSW(PSW); \ |
| RESTORE_CT_REGS |
| |
| |
| /* Restore register state from the state-save-frame on the stack, switch back |
| to the user stack if necessary, and return from the trap/interrupt. |
| EXTRA_STATE_RESTORER is a sequence of assembly language statements to |
| restore anything not restored by this macro. Only registers not saved by |
| the C compiler are restored (that is, R3(sp), R4(gp), R31(lp), and |
| anything restored by EXTRA_STATE_RESTORER). */ |
| #define RETURN(type) \ |
| ld.b PTO+PT_KERNEL_MODE[sp], r19; \ |
| di; /* Disable interrupts */ \ |
| cmp r19, r0; /* See if returning to kernel mode, */\ |
| bne 2f; /* ... if so, skip resched &c. */ \ |
| \ |
| /* We're returning to user mode, so check for various conditions that \ |
| trigger rescheduling. */ \ |
| GET_CURRENT_THREAD(r18); \ |
| ld.w TI_FLAGS[r18], r19; \ |
| andi _TIF_NEED_RESCHED, r19, r0; \ |
| bnz 3f; /* Call the scheduler. */ \ |
| 5: andi _TIF_SIGPENDING, r19, r18; \ |
| ld.w TASK_PTRACE[CURRENT_TASK], r19; /* ptrace flags */ \ |
| or r18, r19; /* see if either is non-zero */ \ |
| bnz 4f; /* if so, handle them */ \ |
| \ |
| /* Return to user state. */ \ |
| 1: st.b r0, KM; /* Now officially in user state. */ \ |
| \ |
| /* Final return. The stack-pointer fiddling is not needed when returning \ |
| to kernel-mode, but they don't hurt, and this way we can share the \ |
| (sometimes rather lengthy) POP_STATE macro. */ \ |
| 2: POP_STATE(type); \ |
| st.w sp, KSP; /* Save the kernel stack pointer. */ \ |
| ld.w PT_GPR(GPR_SP)-PT_SIZE[sp], sp; /* Restore stack pointer. */ \ |
| type ## _RET; /* Return from the trap/interrupt. */ \ |
| \ |
| /* Call the scheduler before returning from a syscall/trap. */ \ |
| 3: SAVE_EXTRA_STATE_FOR_SCHEDULE(type); /* Prepare to call scheduler. */ \ |
| jarl call_scheduler, lp; /* Call scheduler */ \ |
| di; /* The scheduler enables interrupts */\ |
| RESTORE_EXTRA_STATE_FOR_SCHEDULE(type); \ |
| GET_CURRENT_THREAD(r18); \ |
| ld.w TI_FLAGS[r18], r19; \ |
| br 5b; /* Continue with return path. */ \ |
| \ |
| /* Handle a signal or ptraced process return. \ |
| r18 should be non-zero if there are pending signals. */ \ |
| 4: /* Not all registers are saved by the normal trap/interrupt entry \ |
| points (for instance, call-saved registers (because the normal \ |
| C-compiler calling sequence in the kernel makes sure they're \ |
| preserved), and call-clobbered registers in the case of \ |
| traps), but signal handlers may want to examine or change the \ |
| complete register state. Here we save anything not saved by \ |
| the normal entry sequence, so that it may be safely restored \ |
| (in a possibly modified form) after do_signal returns. */ \ |
| SAVE_EXTRA_STATE(type); /* Save state not saved by entry. */ \ |
| jarl handle_signal_or_ptrace_return, lp; \ |
| RESTORE_EXTRA_STATE(type); /* Restore extra regs. */ \ |
| br 1b |
| |
| |
| /* Jump to the appropriate function for the system call number in r12 |
| (r12 is not preserved), or return an error if r12 is not valid. The |
| LP register should point to the location where the called function |
| should return. [note that MAKE_SYS_CALL uses label 1] */ |
| #define MAKE_SYS_CALL \ |
| /* Figure out which function to use for this system call. */ \ |
| shl 2, r12; \ |
| /* See if the system call number is valid. */ \ |
| addi lo(CSYM(sys_call_table) - sys_call_table_end), r12, r0; \ |
| bnh 1f; \ |
| mov hilo(CSYM(sys_call_table)), r19; \ |
| add r19, r12; \ |
| ld.w 0[r12], r12; \ |
| /* Make the system call. */ \ |
| jmp [r12]; \ |
| /* The syscall number is invalid, return an error. */ \ |
| 1: addi -ENOSYS, r0, r10; \ |
| jmp [lp] |
| |
| |
| .text |
| |
| /* |
| * User trap. |
| * |
| * Trap 0 system calls are also handled here. |
| * |
| * The stack-pointer (r3) should have already been saved to the memory |
| * location ENTRY_SP (the reason for this is that the interrupt vectors may be |
| * beyond a 22-bit signed offset jump from the actual interrupt handler, and |
| * this allows them to save the stack-pointer and use that register to do an |
| * indirect jump). |
| * |
| * Syscall protocol: |
| * Syscall number in r12, args in r6-r9 |
| * Return value in r10 |
| */ |
| G_ENTRY(trap): |
| SAVE_STATE (TRAP, r12, ENTRY_SP) // Save registers. |
| stsr SR_ECR, r19 // Find out which trap it was. |
| ei // Enable interrupts. |
| mov hilo(ret_from_trap), lp // where the trap should return |
| |
| // The following two shifts (1) clear out extraneous NMI data in the |
| // upper 16-bits, (2) convert the 0x40 - 0x5f range of trap ECR |
| // numbers into the (0-31) << 2 range we want, (3) set the flags. |
| shl 27, r19 // chop off all high bits |
| shr 25, r19 // scale back down and then << 2 |
| bnz 2f // See if not trap 0. |
| |
| // Trap 0 is a `short' system call, skip general trap table. |
| MAKE_SYS_CALL // Jump to the syscall function. |
| |
| 2: // For other traps, use a table lookup. |
| mov hilo(CSYM(trap_table)), r18 |
| add r19, r18 |
| ld.w 0[r18], r18 |
| jmp [r18] // Jump to the trap handler. |
| END(trap) |
| |
| /* This is just like ret_from_trap, but first restores extra registers |
| saved by some wrappers. */ |
| L_ENTRY(restore_extra_regs_and_ret_from_trap): |
| RESTORE_EXTRA_STATE(TRAP) |
| // fall through |
| END(restore_extra_regs_and_ret_from_trap) |
| |
| /* Entry point used to return from a syscall/trap. */ |
| L_ENTRY(ret_from_trap): |
| RETURN(TRAP) |
| END(ret_from_trap) |
| |
| |
| /* This the initial entry point for a new child thread, with an appropriate |
| stack in place that makes it look the the child is in the middle of an |
| syscall. This function is actually `returned to' from switch_thread |
| (copy_thread makes ret_from_fork the return address in each new thread's |
| saved context). */ |
| C_ENTRY(ret_from_fork): |
| mov r10, r6 // switch_thread returns the prev task. |
| jarl CSYM(schedule_tail), lp // ...which is schedule_tail's arg |
| mov r0, r10 // Child's fork call should return 0. |
| br ret_from_trap // Do normal trap return. |
| C_END(ret_from_fork) |
| |
| |
| /* |
| * Trap 1: `long' system calls |
| * `Long' syscall protocol: |
| * Syscall number in r12, args in r6-r9, r13-r14 |
| * Return value in r10 |
| */ |
| L_ENTRY(syscall_long): |
| // Push extra arguments on the stack. Note that by default, the trap |
| // handler reserves enough stack space for 6 arguments, so we don't |
| // have to make any additional room. |
| st.w r13, 16[sp] // arg 5 |
| st.w r14, 20[sp] // arg 6 |
| |
| // Make sure r13 and r14 are preserved, in case we have to restart a |
| // system call because of a signal (ep has already been set by caller). |
| st.w r13, PTO+PT_GPR(13)[sp] |
| st.w r14, PTO+PT_GPR(13)[sp] |
| mov hilo(ret_from_long_syscall), lp |
| |
| MAKE_SYS_CALL // Jump to the syscall function. |
| END(syscall_long) |
| |
| /* Entry point used to return from a long syscall. Only needed to restore |
| r13/r14 if the general trap mechanism doesnt' do so. */ |
| L_ENTRY(ret_from_long_syscall): |
| ld.w PTO+PT_GPR(13)[sp], r13 // Restore the extra registers |
| ld.w PTO+PT_GPR(13)[sp], r14 |
| br ret_from_trap // The rest is the same as other traps |
| END(ret_from_long_syscall) |
| |
| |
| /* These syscalls need access to the struct pt_regs on the stack, so we |
| implement them in assembly (they're basically all wrappers anyway). */ |
| |
| L_ENTRY(sys_fork_wrapper): |
| #ifdef CONFIG_MMU |
| addi SIGCHLD, r0, r6 // Arg 0: flags |
| ld.w PTO+PT_GPR(GPR_SP)[sp], r7 // Arg 1: child SP (use parent's) |
| movea PTO, sp, r8 // Arg 2: parent context |
| mov r0, r9 // Arg 3/4/5: 0 |
| st.w r0, 16[sp] |
| st.w r0, 20[sp] |
| mov hilo(CSYM(do_fork)), r18 // Where the real work gets done |
| br save_extra_state_tramp // Save state and go there |
| #else |
| // fork almost works, enough to trick you into looking elsewhere :-( |
| addi -EINVAL, r0, r10 |
| jmp [lp] |
| #endif |
| END(sys_fork_wrapper) |
| |
| L_ENTRY(sys_vfork_wrapper): |
| addi CLONE_VFORK | CLONE_VM | SIGCHLD, r0, r6 // Arg 0: flags |
| ld.w PTO+PT_GPR(GPR_SP)[sp], r7 // Arg 1: child SP (use parent's) |
| movea PTO, sp, r8 // Arg 2: parent context |
| mov r0, r9 // Arg 3/4/5: 0 |
| st.w r0, 16[sp] |
| st.w r0, 20[sp] |
| mov hilo(CSYM(do_fork)), r18 // Where the real work gets done |
| br save_extra_state_tramp // Save state and go there |
| END(sys_vfork_wrapper) |
| |
| L_ENTRY(sys_clone_wrapper): |
| ld.w PTO+PT_GPR(GPR_SP)[sp], r19// parent's stack pointer |
| cmp r7, r0 // See if child SP arg (arg 1) is 0. |
| cmov z, r19, r7, r7 // ... and use the parent's if so. |
| movea PTO, sp, r8 // Arg 2: parent context |
| mov r0, r9 // Arg 3/4/5: 0 |
| st.w r0, 16[sp] |
| st.w r0, 20[sp] |
| mov hilo(CSYM(do_fork)), r18 // Where the real work gets done |
| br save_extra_state_tramp // Save state and go there |
| END(sys_clone_wrapper) |
| |
| |
| L_ENTRY(sys_execve_wrapper): |
| movea PTO, sp, r9 // add user context as 4th arg |
| jr CSYM(sys_execve) // Do real work (tail-call). |
| END(sys_execve_wrapper) |
| |
| |
| L_ENTRY(sys_sigsuspend_wrapper): |
| movea PTO, sp, r7 // add user context as 2nd arg |
| mov hilo(CSYM(sys_sigsuspend)), r18 // syscall function |
| jarl save_extra_state_tramp, lp // Save state and do it |
| br restore_extra_regs_and_ret_from_trap |
| END(sys_sigsuspend_wrapper) |
| L_ENTRY(sys_rt_sigsuspend_wrapper): |
| movea PTO, sp, r8 // add user context as 3rd arg |
| mov hilo(CSYM(sys_rt_sigsuspend)), r18 // syscall function |
| jarl save_extra_state_tramp, lp // Save state and do it |
| br restore_extra_regs_and_ret_from_trap |
| END(sys_rt_sigsuspend_wrapper) |
| |
| L_ENTRY(sys_sigreturn_wrapper): |
| movea PTO, sp, r6 // add user context as 1st arg |
| mov hilo(CSYM(sys_sigreturn)), r18 // syscall function |
| jarl save_extra_state_tramp, lp // Save state and do it |
| br restore_extra_regs_and_ret_from_trap |
| END(sys_sigreturn_wrapper) |
| L_ENTRY(sys_rt_sigreturn_wrapper): |
| movea PTO, sp, r6 // add user context as 1st arg |
| mov hilo(CSYM(sys_rt_sigreturn)), r18// syscall function |
| jarl save_extra_state_tramp, lp // Save state and do it |
| br restore_extra_regs_and_ret_from_trap |
| END(sys_rt_sigreturn_wrapper) |
| |
| |
| /* Save any state not saved by SAVE_STATE(TRAP), and jump to r18. |
| It's main purpose is to share the rather lengthy code sequence that |
| SAVE_STATE expands into among the above wrapper functions. */ |
| L_ENTRY(save_extra_state_tramp): |
| SAVE_EXTRA_STATE(TRAP) // Save state not saved by entry. |
| jmp [r18] // Do the work the caller wants |
| END(save_extra_state_tramp) |
| |
| |
| /* |
| * Hardware maskable interrupts. |
| * |
| * The stack-pointer (r3) should have already been saved to the memory |
| * location ENTRY_SP (the reason for this is that the interrupt vectors may be |
| * beyond a 22-bit signed offset jump from the actual interrupt handler, and |
| * this allows them to save the stack-pointer and use that register to do an |
| * indirect jump). |
| */ |
| G_ENTRY(irq): |
| SAVE_STATE (IRQ, r0, ENTRY_SP) // Save registers. |
| |
| stsr SR_ECR, r6 // Find out which interrupt it was. |
| movea PTO, sp, r7 // User regs are arg2 |
| |
| // All v850 implementations I know about encode their interrupts as |
| // multiples of 0x10, starting at 0x80 (after NMIs and software |
| // interrupts). Convert this number into a simple IRQ index for the |
| // rest of the kernel. We also clear the upper 16 bits, which hold |
| // NMI info, and don't appear to be cleared when a NMI returns. |
| shl 16, r6 // clear upper 16 bits |
| shr 20, r6 // shift back, and remove lower nibble |
| add -8, r6 // remove bias for irqs |
| |
| // Call the high-level interrupt handling code. |
| jarl CSYM(handle_irq), lp |
| |
| RETURN(IRQ) |
| END(irq) |
| |
| |
| /* |
| * Debug trap / illegal-instruction exception |
| * |
| * The stack-pointer (r3) should have already been saved to the memory |
| * location ENTRY_SP (the reason for this is that the interrupt vectors may be |
| * beyond a 22-bit signed offset jump from the actual interrupt handler, and |
| * this allows them to save the stack-pointer and use that register to do an |
| * indirect jump). |
| */ |
| G_ENTRY(dbtrap): |
| SAVE_STATE (DBTRAP, r0, ENTRY_SP)// Save registers. |
| |
| /* First see if we came from kernel mode; if so, the dbtrap |
| instruction has a special meaning, to set the DIR (`debug |
| information register') register. This is because the DIR register |
| can _only_ be manipulated/read while in `debug mode,' and debug |
| mode is only active while we're inside the dbtrap handler. The |
| exact functionality is: { DIR = (DIR | r6) & ~r7; return DIR; }. */ |
| ld.b PTO+PT_KERNEL_MODE[sp], r19 |
| cmp r19, r0 |
| bz 1f |
| |
| stsr SR_DIR, r10 |
| or r6, r10 |
| not r7, r7 |
| and r7, r10 |
| ldsr r10, SR_DIR |
| stsr SR_DIR, r10 // Confirm the value we set |
| st.w r10, PTO+PT_GPR(10)[sp] // return it |
| br 3f |
| |
| 1: ei // Enable interrupts. |
| |
| /* The default signal type we raise. */ |
| mov SIGTRAP, r6 |
| |
| /* See if it's a single-step trap. */ |
| stsr SR_DBPSW, r19 |
| andi 0x0800, r19, r19 |
| bnz 2f |
| |
| /* Look to see if the preceding instruction was is a dbtrap or not, |
| to decide which signal we should use. */ |
| stsr SR_DBPC, r19 // PC following trapping insn |
| ld.hu -2[r19], r19 |
| ori 0xf840, r0, r20 // DBTRAP insn |
| cmp r19, r20 // Was this trap caused by DBTRAP? |
| cmov ne, SIGILL, r6, r6 // Choose signal appropriately |
| |
| /* Raise the desired signal. */ |
| 2: mov CURRENT_TASK, r7 // Arg 1: task |
| jarl CSYM(send_sig), lp // tail call |
| |
| 3: RETURN(DBTRAP) |
| END(dbtrap) |
| |
| |
| /* |
| * Hardware non-maskable interrupts. |
| * |
| * The stack-pointer (r3) should have already been saved to the memory |
| * location ENTRY_SP (the reason for this is that the interrupt vectors may be |
| * beyond a 22-bit signed offset jump from the actual interrupt handler, and |
| * this allows them to save the stack-pointer and use that register to do an |
| * indirect jump). |
| */ |
| G_ENTRY(nmi): |
| SAVE_STATE (NMI, r0, NMI_ENTRY_SP); /* Save registers. */ |
| |
| stsr SR_ECR, r6; /* Find out which nmi it was. */ |
| shr 20, r6; /* Extract NMI code in bits 20-24. */ |
| movea PTO, sp, r7; /* User regs are arg2. */ |
| |
| /* Non-maskable interrupts always lie right after maskable interrupts. |
| Call the generic IRQ handler, with two arguments, the IRQ number, |
| and a pointer to the user registers, to handle the specifics. |
| (we subtract one because the first NMI has code 1). */ |
| addi FIRST_NMI - 1, r6, r6 |
| jarl CSYM(handle_irq), lp |
| |
| RETURN(NMI) |
| END(nmi) |
| |
| |
| /* |
| * Trap with no handler |
| */ |
| L_ENTRY(bad_trap_wrapper): |
| mov r19, r6 // Arg 0: trap number |
| movea PTO, sp, r7 // Arg 1: user regs |
| jr CSYM(bad_trap) // tail call handler |
| END(bad_trap_wrapper) |
| |
| |
| /* |
| * Invoke the scheduler, called from the trap/irq kernel exit path. |
| * |
| * This basically just calls `schedule', but also arranges for extra |
| * registers to be saved for ptrace'd processes, so ptrace can modify them. |
| */ |
| L_ENTRY(call_scheduler): |
| ld.w TASK_PTRACE[CURRENT_TASK], r19 // See if task is ptrace'd |
| cmp r19, r0 |
| bnz 1f // ... yes, do special stuff |
| jr CSYM(schedule) // ... no, just tail-call scheduler |
| |
| // Save extra regs for ptrace'd task. We want to save anything |
| // that would otherwise only be `implicitly' saved by the normal |
| // compiler calling-convention. |
| 1: mov sp, ep // Setup EP for SAVE_CALL_SAVED_REGS |
| SAVE_CALL_SAVED_REGS // Save call-saved registers to stack |
| mov lp, r20 // Save LP in a callee-saved register |
| |
| jarl CSYM(schedule), lp // Call scheduler |
| |
| mov r20, lp |
| mov sp, ep // We can't rely on EP after return |
| RESTORE_CALL_SAVED_REGS // Restore (possibly modified) regs |
| jmp [lp] // Return to the return path |
| END(call_scheduler) |
| |
| |
| /* |
| * This is an out-of-line handler for two special cases during the kernel |
| * trap/irq exit sequence: |
| * |
| * (1) If r18 is non-zero then a signal needs to be handled, which is |
| * done, and then the caller returned to. |
| * |
| * (2) If r18 is non-zero then we're returning to a ptraced process, which |
| * has several special cases -- single-stepping and trap tracing, both |
| * of which require using the `dbret' instruction to exit the kernel |
| * instead of the normal `reti' (this is because the CPU not correctly |
| * single-step after a reti). In this case, of course, this handler |
| * never returns to the caller. |
| * |
| * In either case, all registers should have been saved to the current |
| * state-save-frame on the stack, except for callee-saved registers. |
| * |
| * [These two different cases are combined merely to avoid bloating the |
| * macro-inlined code, not because they really make much sense together!] |
| */ |
| L_ENTRY(handle_signal_or_ptrace_return): |
| cmp r18, r0 // See if handling a signal |
| bz 1f // ... nope, go do ptrace return |
| |
| // Handle a signal |
| mov lp, r20 // Save link-pointer |
| mov r10, r21 // Save return-values (for trap) |
| mov r11, r22 |
| |
| movea PTO, sp, r6 // Arg 1: struct pt_regs *regs |
| mov r0, r7 // Arg 2: sigset_t *oldset |
| jarl CSYM(do_signal), lp // Handle the signal |
| di // sig handling enables interrupts |
| |
| mov r20, lp // Restore link-pointer |
| mov r21, r10 // Restore return-values (for trap) |
| mov r22, r11 |
| ld.w TASK_PTRACE[CURRENT_TASK], r19 // check ptrace flags too |
| cmp r19, r0 |
| bnz 1f // ... some set, so look more |
| 2: jmp [lp] // ... none set, so return normally |
| |
| // ptrace return |
| 1: ld.w PTO+PT_PSW[sp], r19 // Look at user-processes's flags |
| andi 0x0800, r19, r19 // See if single-step flag is set |
| bz 2b // ... nope, return normally |
| |
| // Return as if from a dbtrap insn |
| st.b r0, KM // Now officially in user state. |
| POP_STATE(DBTRAP) // Restore regs |
| st.w sp, KSP // Save the kernel stack pointer. |
| ld.w PT_GPR(GPR_SP)-PT_SIZE[sp], sp // Restore user stack pointer. |
| DBTRAP_RET // Return from the trap/interrupt. |
| END(handle_signal_or_ptrace_return) |
| |
| |
| /* |
| * This is where we switch between two threads. The arguments are: |
| * r6 -- pointer to the struct thread for the `current' process |
| * r7 -- pointer to the struct thread for the `new' process. |
| * when this function returns, it will return to the new thread. |
| */ |
| C_ENTRY(switch_thread): |
| // Return the previous task (r10 is not clobbered by restore below) |
| mov CURRENT_TASK, r10 |
| // First, push the current processor state on the stack |
| PUSH_STATE(SWITCH) |
| // Now save the location of the kernel stack pointer for this thread; |
| // since we've pushed all other state on the stack, this is enough to |
| // restore it all later. |
| st.w sp, THREAD_KSP[r6] |
| // Now restore the stack pointer from the new process |
| ld.w THREAD_KSP[r7], sp |
| // ... and restore all state from that |
| POP_STATE(SWITCH) |
| // Update the current task pointer |
| GET_CURRENT_TASK(CURRENT_TASK) |
| // Now return into the new thread |
| jmp [lp] |
| C_END(switch_thread) |
| |
| |
| .data |
| |
| .align 4 |
| C_DATA(trap_table): |
| .long bad_trap_wrapper // trap 0, doesn't use trap table. |
| .long syscall_long // trap 1, `long' syscall. |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| .long bad_trap_wrapper |
| C_END(trap_table) |
| |
| |
| .section .rodata |
| |
| .align 4 |
| C_DATA(sys_call_table): |
| .long CSYM(sys_restart_syscall) // 0 |
| .long CSYM(sys_exit) |
| .long sys_fork_wrapper |
| .long CSYM(sys_read) |
| .long CSYM(sys_write) |
| .long CSYM(sys_open) // 5 |
| .long CSYM(sys_close) |
| .long CSYM(sys_waitpid) |
| .long CSYM(sys_creat) |
| .long CSYM(sys_link) |
| .long CSYM(sys_unlink) // 10 |
| .long sys_execve_wrapper |
| .long CSYM(sys_chdir) |
| .long CSYM(sys_time) |
| .long CSYM(sys_mknod) |
| .long CSYM(sys_chmod) // 15 |
| .long CSYM(sys_chown) |
| .long CSYM(sys_ni_syscall) // was: break |
| .long CSYM(sys_ni_syscall) // was: oldstat (aka stat) |
| .long CSYM(sys_lseek) |
| .long CSYM(sys_getpid) // 20 |
| .long CSYM(sys_mount) |
| .long CSYM(sys_oldumount) |
| .long CSYM(sys_setuid) |
| .long CSYM(sys_getuid) |
| .long CSYM(sys_stime) // 25 |
| .long CSYM(sys_ptrace) |
| .long CSYM(sys_alarm) |
| .long CSYM(sys_ni_syscall) // was: oldfstat (aka fstat) |
| .long CSYM(sys_pause) |
| .long CSYM(sys_utime) // 30 |
| .long CSYM(sys_ni_syscall) // was: stty |
| .long CSYM(sys_ni_syscall) // was: gtty |
| .long CSYM(sys_access) |
| .long CSYM(sys_nice) |
| .long CSYM(sys_ni_syscall) // 35, was: ftime |
| .long CSYM(sys_sync) |
| .long CSYM(sys_kill) |
| .long CSYM(sys_rename) |
| .long CSYM(sys_mkdir) |
| .long CSYM(sys_rmdir) // 40 |
| .long CSYM(sys_dup) |
| .long CSYM(sys_pipe) |
| .long CSYM(sys_times) |
| .long CSYM(sys_ni_syscall) // was: prof |
| .long CSYM(sys_brk) // 45 |
| .long CSYM(sys_setgid) |
| .long CSYM(sys_getgid) |
| .long CSYM(sys_signal) |
| .long CSYM(sys_geteuid) |
| .long CSYM(sys_getegid) // 50 |
| .long CSYM(sys_acct) |
| .long CSYM(sys_umount) // recycled never used phys() |
| .long CSYM(sys_ni_syscall) // was: lock |
| .long CSYM(sys_ioctl) |
| .long CSYM(sys_fcntl) // 55 |
| .long CSYM(sys_ni_syscall) // was: mpx |
| .long CSYM(sys_setpgid) |
| .long CSYM(sys_ni_syscall) // was: ulimit |
| .long CSYM(sys_ni_syscall) |
| .long CSYM(sys_umask) // 60 |
| .long CSYM(sys_chroot) |
| .long CSYM(sys_ustat) |
| .long CSYM(sys_dup2) |
| .long CSYM(sys_getppid) |
| .long CSYM(sys_getpgrp) // 65 |
| .long CSYM(sys_setsid) |
| .long CSYM(sys_sigaction) |
| .long CSYM(sys_sgetmask) |
| .long CSYM(sys_ssetmask) |
| .long CSYM(sys_setreuid) // 70 |
| .long CSYM(sys_setregid) |
| .long sys_sigsuspend_wrapper |
| .long CSYM(sys_sigpending) |
| .long CSYM(sys_sethostname) |
| .long CSYM(sys_setrlimit) // 75 |
| .long CSYM(sys_getrlimit) |
| .long CSYM(sys_getrusage) |
| .long CSYM(sys_gettimeofday) |
| .long CSYM(sys_settimeofday) |
| .long CSYM(sys_getgroups) // 80 |
| .long CSYM(sys_setgroups) |
| .long CSYM(sys_select) |
| .long CSYM(sys_symlink) |
| .long CSYM(sys_ni_syscall) // was: oldlstat (aka lstat) |
| .long CSYM(sys_readlink) // 85 |
| .long CSYM(sys_uselib) |
| .long CSYM(sys_swapon) |
| .long CSYM(sys_reboot) |
| .long CSYM(old_readdir) |
| .long CSYM(sys_mmap) // 90 |
| .long CSYM(sys_munmap) |
| .long CSYM(sys_truncate) |
| .long CSYM(sys_ftruncate) |
| .long CSYM(sys_fchmod) |
| .long CSYM(sys_fchown) // 95 |
| .long CSYM(sys_getpriority) |
| .long CSYM(sys_setpriority) |
| .long CSYM(sys_ni_syscall) // was: profil |
| .long CSYM(sys_statfs) |
| .long CSYM(sys_fstatfs) // 100 |
| .long CSYM(sys_ni_syscall) // i386: ioperm |
| .long CSYM(sys_socketcall) |
| .long CSYM(sys_syslog) |
| .long CSYM(sys_setitimer) |
| .long CSYM(sys_getitimer) // 105 |
| .long CSYM(sys_newstat) |
| .long CSYM(sys_newlstat) |
| .long CSYM(sys_newfstat) |
| .long CSYM(sys_ni_syscall) // was: olduname (aka uname) |
| .long CSYM(sys_ni_syscall) // 110, i386: iopl |
| .long CSYM(sys_vhangup) |
| .long CSYM(sys_ni_syscall) // was: idle |
| .long CSYM(sys_ni_syscall) // i386: vm86old |
| .long CSYM(sys_wait4) |
| .long CSYM(sys_swapoff) // 115 |
| .long CSYM(sys_sysinfo) |
| .long CSYM(sys_ipc) |
| .long CSYM(sys_fsync) |
| .long sys_sigreturn_wrapper |
| .long sys_clone_wrapper // 120 |
| .long CSYM(sys_setdomainname) |
| .long CSYM(sys_newuname) |
| .long CSYM(sys_ni_syscall) // i386: modify_ldt, m68k: cacheflush |
| .long CSYM(sys_adjtimex) |
| .long CSYM(sys_ni_syscall) // 125 - sys_mprotect |
| .long CSYM(sys_sigprocmask) |
| .long CSYM(sys_ni_syscall) // sys_create_module |
| .long CSYM(sys_init_module) |
| .long CSYM(sys_delete_module) |
| .long CSYM(sys_ni_syscall) // 130 - sys_get_kernel_syms |
| .long CSYM(sys_quotactl) |
| .long CSYM(sys_getpgid) |
| .long CSYM(sys_fchdir) |
| .long CSYM(sys_bdflush) |
| .long CSYM(sys_sysfs) // 135 |
| .long CSYM(sys_personality) |
| .long CSYM(sys_ni_syscall) // for afs_syscall |
| .long CSYM(sys_setfsuid) |
| .long CSYM(sys_setfsgid) |
| .long CSYM(sys_llseek) // 140 |
| .long CSYM(sys_getdents) |
| .long CSYM(sys_select) // for backward compat; remove someday |
| .long CSYM(sys_flock) |
| .long CSYM(sys_ni_syscall) // sys_msync |
| .long CSYM(sys_readv) // 145 |
| .long CSYM(sys_writev) |
| .long CSYM(sys_getsid) |
| .long CSYM(sys_fdatasync) |
| .long CSYM(sys_sysctl) |
| .long CSYM(sys_ni_syscall) // 150 - sys_mlock |
| .long CSYM(sys_ni_syscall) // sys_munlock |
| .long CSYM(sys_ni_syscall) // sys_mlockall |
| .long CSYM(sys_ni_syscall) // sys_munlockall |
| .long CSYM(sys_sched_setparam) |
| .long CSYM(sys_sched_getparam) // 155 |
| .long CSYM(sys_sched_setscheduler) |
| .long CSYM(sys_sched_getscheduler) |
| .long CSYM(sys_sched_yield) |
| .long CSYM(sys_sched_get_priority_max) |
| .long CSYM(sys_sched_get_priority_min) // 160 |
| .long CSYM(sys_sched_rr_get_interval) |
| .long CSYM(sys_nanosleep) |
| .long CSYM(sys_ni_syscall) // sys_mremap |
| .long CSYM(sys_setresuid) |
| .long CSYM(sys_getresuid) // 165 |
| .long CSYM(sys_ni_syscall) // for vm86 |
| .long CSYM(sys_ni_syscall) // sys_query_module |
| .long CSYM(sys_poll) |
| .long CSYM(sys_nfsservctl) |
| .long CSYM(sys_setresgid) // 170 |
| .long CSYM(sys_getresgid) |
| .long CSYM(sys_prctl) |
| .long sys_rt_sigreturn_wrapper |
| .long CSYM(sys_rt_sigaction) |
| .long CSYM(sys_rt_sigprocmask) // 175 |
| .long CSYM(sys_rt_sigpending) |
| .long CSYM(sys_rt_sigtimedwait) |
| .long CSYM(sys_rt_sigqueueinfo) |
| .long sys_rt_sigsuspend_wrapper |
| .long CSYM(sys_pread64) // 180 |
| .long CSYM(sys_pwrite64) |
| .long CSYM(sys_lchown) |
| .long CSYM(sys_getcwd) |
| .long CSYM(sys_capget) |
| .long CSYM(sys_capset) // 185 |
| .long CSYM(sys_sigaltstack) |
| .long CSYM(sys_sendfile) |
| .long CSYM(sys_ni_syscall) // streams1 |
| .long CSYM(sys_ni_syscall) // streams2 |
| .long sys_vfork_wrapper // 190 |
| .long CSYM(sys_ni_syscall) |
| .long CSYM(sys_mmap2) |
| .long CSYM(sys_truncate64) |
| .long CSYM(sys_ftruncate64) |
| .long CSYM(sys_stat64) // 195 |
| .long CSYM(sys_lstat64) |
| .long CSYM(sys_fstat64) |
| .long CSYM(sys_fcntl64) |
| .long CSYM(sys_getdents64) |
| .long CSYM(sys_pivot_root) // 200 |
| .long CSYM(sys_gettid) |
| .long CSYM(sys_tkill) |
| sys_call_table_end: |
| C_END(sys_call_table) |