blob: 025833b8df9fb1a841888f418dd00ad70e146baf [file] [log] [blame]
/*
* Copyright (C) 1995-1999 Gary Thomas, Paul Mackerras, Cort Dougan.
*/
#ifndef _ASM_POWERPC_PPC_ASM_H
#define _ASM_POWERPC_PPC_ASM_H
#include <linux/stringify.h>
#include <asm/asm-compat.h>
#include <asm/processor.h>
#include <asm/ppc-opcode.h>
#include <asm/firmware.h>
#ifdef __ASSEMBLY__
#define SZL (BITS_PER_LONG/8)
/*
* Stuff for accurate CPU time accounting.
* These macros handle transitions between user and system state
* in exception entry and exit and accumulate time to the
* user_time and system_time fields in the paca.
*/
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
#define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb)
#define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb)
#define ACCOUNT_STOLEN_TIME
#else
#define ACCOUNT_CPU_USER_ENTRY(ptr, ra, rb) \
MFTB(ra); /* get timebase */ \
PPC_LL rb, ACCOUNT_STARTTIME_USER(ptr); \
PPC_STL ra, ACCOUNT_STARTTIME(ptr); \
subf rb,rb,ra; /* subtract start value */ \
PPC_LL ra, ACCOUNT_USER_TIME(ptr); \
add ra,ra,rb; /* add on to user time */ \
PPC_STL ra, ACCOUNT_USER_TIME(ptr); \
#define ACCOUNT_CPU_USER_EXIT(ptr, ra, rb) \
MFTB(ra); /* get timebase */ \
PPC_LL rb, ACCOUNT_STARTTIME(ptr); \
PPC_STL ra, ACCOUNT_STARTTIME_USER(ptr); \
subf rb,rb,ra; /* subtract start value */ \
PPC_LL ra, ACCOUNT_SYSTEM_TIME(ptr); \
add ra,ra,rb; /* add on to system time */ \
PPC_STL ra, ACCOUNT_SYSTEM_TIME(ptr)
#ifdef CONFIG_PPC_SPLPAR
#define ACCOUNT_STOLEN_TIME \
BEGIN_FW_FTR_SECTION; \
beq 33f; \
/* from user - see if there are any DTL entries to process */ \
ld r10,PACALPPACAPTR(r13); /* get ptr to VPA */ \
ld r11,PACA_DTL_RIDX(r13); /* get log read index */ \
addi r10,r10,LPPACA_DTLIDX; \
LDX_BE r10,0,r10; /* get log write index */ \
cmpd cr1,r11,r10; \
beq+ cr1,33f; \
bl accumulate_stolen_time; \
ld r12,_MSR(r1); \
andi. r10,r12,MSR_PR; /* Restore cr0 (coming from user) */ \
33: \
END_FW_FTR_SECTION_IFSET(FW_FEATURE_SPLPAR)
#else /* CONFIG_PPC_SPLPAR */
#define ACCOUNT_STOLEN_TIME
#endif /* CONFIG_PPC_SPLPAR */
#endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
/*
* Macros for storing registers into and loading registers from
* exception frames.
*/
#ifdef __powerpc64__
#define SAVE_GPR(n, base) std n,GPR0+8*(n)(base)
#define REST_GPR(n, base) ld n,GPR0+8*(n)(base)
#define SAVE_NVGPRS(base) SAVE_8GPRS(14, base); SAVE_10GPRS(22, base)
#define REST_NVGPRS(base) REST_8GPRS(14, base); REST_10GPRS(22, base)
#else
#define SAVE_GPR(n, base) stw n,GPR0+4*(n)(base)
#define REST_GPR(n, base) lwz n,GPR0+4*(n)(base)
#define SAVE_NVGPRS(base) SAVE_GPR(13, base); SAVE_8GPRS(14, base); \
SAVE_10GPRS(22, base)
#define REST_NVGPRS(base) REST_GPR(13, base); REST_8GPRS(14, base); \
REST_10GPRS(22, base)
#endif
#define SAVE_2GPRS(n, base) SAVE_GPR(n, base); SAVE_GPR(n+1, base)
#define SAVE_4GPRS(n, base) SAVE_2GPRS(n, base); SAVE_2GPRS(n+2, base)
#define SAVE_8GPRS(n, base) SAVE_4GPRS(n, base); SAVE_4GPRS(n+4, base)
#define SAVE_10GPRS(n, base) SAVE_8GPRS(n, base); SAVE_2GPRS(n+8, base)
#define REST_2GPRS(n, base) REST_GPR(n, base); REST_GPR(n+1, base)
#define REST_4GPRS(n, base) REST_2GPRS(n, base); REST_2GPRS(n+2, base)
#define REST_8GPRS(n, base) REST_4GPRS(n, base); REST_4GPRS(n+4, base)
#define REST_10GPRS(n, base) REST_8GPRS(n, base); REST_2GPRS(n+8, base)
#define SAVE_FPR(n, base) stfd n,8*TS_FPRWIDTH*(n)(base)
#define SAVE_2FPRS(n, base) SAVE_FPR(n, base); SAVE_FPR(n+1, base)
#define SAVE_4FPRS(n, base) SAVE_2FPRS(n, base); SAVE_2FPRS(n+2, base)
#define SAVE_8FPRS(n, base) SAVE_4FPRS(n, base); SAVE_4FPRS(n+4, base)
#define SAVE_16FPRS(n, base) SAVE_8FPRS(n, base); SAVE_8FPRS(n+8, base)
#define SAVE_32FPRS(n, base) SAVE_16FPRS(n, base); SAVE_16FPRS(n+16, base)
#define REST_FPR(n, base) lfd n,8*TS_FPRWIDTH*(n)(base)
#define REST_2FPRS(n, base) REST_FPR(n, base); REST_FPR(n+1, base)
#define REST_4FPRS(n, base) REST_2FPRS(n, base); REST_2FPRS(n+2, base)
#define REST_8FPRS(n, base) REST_4FPRS(n, base); REST_4FPRS(n+4, base)
#define REST_16FPRS(n, base) REST_8FPRS(n, base); REST_8FPRS(n+8, base)
#define REST_32FPRS(n, base) REST_16FPRS(n, base); REST_16FPRS(n+16, base)
#define SAVE_VR(n,b,base) li b,16*(n); stvx n,base,b
#define SAVE_2VRS(n,b,base) SAVE_VR(n,b,base); SAVE_VR(n+1,b,base)
#define SAVE_4VRS(n,b,base) SAVE_2VRS(n,b,base); SAVE_2VRS(n+2,b,base)
#define SAVE_8VRS(n,b,base) SAVE_4VRS(n,b,base); SAVE_4VRS(n+4,b,base)
#define SAVE_16VRS(n,b,base) SAVE_8VRS(n,b,base); SAVE_8VRS(n+8,b,base)
#define SAVE_32VRS(n,b,base) SAVE_16VRS(n,b,base); SAVE_16VRS(n+16,b,base)
#define REST_VR(n,b,base) li b,16*(n); lvx n,base,b
#define REST_2VRS(n,b,base) REST_VR(n,b,base); REST_VR(n+1,b,base)
#define REST_4VRS(n,b,base) REST_2VRS(n,b,base); REST_2VRS(n+2,b,base)
#define REST_8VRS(n,b,base) REST_4VRS(n,b,base); REST_4VRS(n+4,b,base)
#define REST_16VRS(n,b,base) REST_8VRS(n,b,base); REST_8VRS(n+8,b,base)
#define REST_32VRS(n,b,base) REST_16VRS(n,b,base); REST_16VRS(n+16,b,base)
#ifdef __BIG_ENDIAN__
#define STXVD2X_ROT(n,b,base) STXVD2X(n,b,base)
#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base)
#else
#define STXVD2X_ROT(n,b,base) XXSWAPD(n,n); \
STXVD2X(n,b,base); \
XXSWAPD(n,n)
#define LXVD2X_ROT(n,b,base) LXVD2X(n,b,base); \
XXSWAPD(n,n)
#endif
/* Save the lower 32 VSRs in the thread VSR region */
#define SAVE_VSR(n,b,base) li b,16*(n); STXVD2X_ROT(n,R##base,R##b)
#define SAVE_2VSRS(n,b,base) SAVE_VSR(n,b,base); SAVE_VSR(n+1,b,base)
#define SAVE_4VSRS(n,b,base) SAVE_2VSRS(n,b,base); SAVE_2VSRS(n+2,b,base)
#define SAVE_8VSRS(n,b,base) SAVE_4VSRS(n,b,base); SAVE_4VSRS(n+4,b,base)
#define SAVE_16VSRS(n,b,base) SAVE_8VSRS(n,b,base); SAVE_8VSRS(n+8,b,base)
#define SAVE_32VSRS(n,b,base) SAVE_16VSRS(n,b,base); SAVE_16VSRS(n+16,b,base)
#define REST_VSR(n,b,base) li b,16*(n); LXVD2X_ROT(n,R##base,R##b)
#define REST_2VSRS(n,b,base) REST_VSR(n,b,base); REST_VSR(n+1,b,base)
#define REST_4VSRS(n,b,base) REST_2VSRS(n,b,base); REST_2VSRS(n+2,b,base)
#define REST_8VSRS(n,b,base) REST_4VSRS(n,b,base); REST_4VSRS(n+4,b,base)
#define REST_16VSRS(n,b,base) REST_8VSRS(n,b,base); REST_8VSRS(n+8,b,base)
#define REST_32VSRS(n,b,base) REST_16VSRS(n,b,base); REST_16VSRS(n+16,b,base)
/*
* b = base register for addressing, o = base offset from register of 1st EVR
* n = first EVR, s = scratch
*/
#define SAVE_EVR(n,s,b,o) evmergehi s,s,n; stw s,o+4*(n)(b)
#define SAVE_2EVRS(n,s,b,o) SAVE_EVR(n,s,b,o); SAVE_EVR(n+1,s,b,o)
#define SAVE_4EVRS(n,s,b,o) SAVE_2EVRS(n,s,b,o); SAVE_2EVRS(n+2,s,b,o)
#define SAVE_8EVRS(n,s,b,o) SAVE_4EVRS(n,s,b,o); SAVE_4EVRS(n+4,s,b,o)
#define SAVE_16EVRS(n,s,b,o) SAVE_8EVRS(n,s,b,o); SAVE_8EVRS(n+8,s,b,o)
#define SAVE_32EVRS(n,s,b,o) SAVE_16EVRS(n,s,b,o); SAVE_16EVRS(n+16,s,b,o)
#define REST_EVR(n,s,b,o) lwz s,o+4*(n)(b); evmergelo n,s,n
#define REST_2EVRS(n,s,b,o) REST_EVR(n,s,b,o); REST_EVR(n+1,s,b,o)
#define REST_4EVRS(n,s,b,o) REST_2EVRS(n,s,b,o); REST_2EVRS(n+2,s,b,o)
#define REST_8EVRS(n,s,b,o) REST_4EVRS(n,s,b,o); REST_4EVRS(n+4,s,b,o)
#define REST_16EVRS(n,s,b,o) REST_8EVRS(n,s,b,o); REST_8EVRS(n+8,s,b,o)
#define REST_32EVRS(n,s,b,o) REST_16EVRS(n,s,b,o); REST_16EVRS(n+16,s,b,o)
/* Macros to adjust thread priority for hardware multithreading */
#define HMT_VERY_LOW or 31,31,31 # very low priority
#define HMT_LOW or 1,1,1
#define HMT_MEDIUM_LOW or 6,6,6 # medium low priority
#define HMT_MEDIUM or 2,2,2
#define HMT_MEDIUM_HIGH or 5,5,5 # medium high priority
#define HMT_HIGH or 3,3,3
#define HMT_EXTRA_HIGH or 7,7,7 # power7 only
#ifdef CONFIG_PPC64
#define ULONG_SIZE 8
#else
#define ULONG_SIZE 4
#endif
#define __VCPU_GPR(n) (VCPU_GPRS + (n * ULONG_SIZE))
#define VCPU_GPR(n) __VCPU_GPR(__REG_##n)
#ifdef __KERNEL__
#ifdef CONFIG_PPC64
#define STACKFRAMESIZE 256
#define __STK_REG(i) (112 + ((i)-14)*8)
#define STK_REG(i) __STK_REG(__REG_##i)
#ifdef PPC64_ELF_ABI_v2
#define STK_GOT 24
#define __STK_PARAM(i) (32 + ((i)-3)*8)
#else
#define STK_GOT 40
#define __STK_PARAM(i) (48 + ((i)-3)*8)
#endif
#define STK_PARAM(i) __STK_PARAM(__REG_##i)
#ifdef PPC64_ELF_ABI_v2
#define _GLOBAL(name) \
.align 2 ; \
.type name,@function; \
.globl name; \
name:
#define _GLOBAL_TOC(name) \
.align 2 ; \
.type name,@function; \
.globl name; \
name: \
0: addis r2,r12,(.TOC.-0b)@ha; \
addi r2,r2,(.TOC.-0b)@l; \
.localentry name,.-name
#define DOTSYM(a) a
#else
#define XGLUE(a,b) a##b
#define GLUE(a,b) XGLUE(a,b)
#define _GLOBAL(name) \
.align 2 ; \
.globl name; \
.globl GLUE(.,name); \
.pushsection ".opd","aw"; \
name: \
.quad GLUE(.,name); \
.quad .TOC.@tocbase; \
.quad 0; \
.popsection; \
.type GLUE(.,name),@function; \
GLUE(.,name):
#define _GLOBAL_TOC(name) _GLOBAL(name)
#define DOTSYM(a) GLUE(.,a)
#endif
#else /* 32-bit */
#define _ENTRY(n) \
.globl n; \
n:
#define _GLOBAL(n) \
.stabs __stringify(n:F-1),N_FUN,0,0,n;\
.globl n; \
n:
#define _GLOBAL_TOC(name) _GLOBAL(name)
#endif
/*
* __kprobes (the C annotation) puts the symbol into the .kprobes.text
* section, which gets emitted at the end of regular text.
*
* _ASM_NOKPROBE_SYMBOL and NOKPROBE_SYMBOL just adds the symbol to
* a blacklist. The former is for core kprobe functions/data, the
* latter is for those that incdentially must be excluded from probing
* and allows them to be linked at more optimal location within text.
*/
#ifdef CONFIG_KPROBES
#define _ASM_NOKPROBE_SYMBOL(entry) \
.pushsection "_kprobe_blacklist","aw"; \
PPC_LONG (entry) ; \
.popsection
#else
#define _ASM_NOKPROBE_SYMBOL(entry)
#endif
#define FUNC_START(name) _GLOBAL(name)
#define FUNC_END(name)
/*
* LOAD_REG_IMMEDIATE(rn, expr)
* Loads the value of the constant expression 'expr' into register 'rn'
* using immediate instructions only. Use this when it's important not
* to reference other data (i.e. on ppc64 when the TOC pointer is not
* valid) and when 'expr' is a constant or absolute address.
*
* LOAD_REG_ADDR(rn, name)
* Loads the address of label 'name' into register 'rn'. Use this when
* you don't particularly need immediate instructions only, but you need
* the whole address in one register (e.g. it's a structure address and
* you want to access various offsets within it). On ppc32 this is
* identical to LOAD_REG_IMMEDIATE.
*
* LOAD_REG_ADDR_PIC(rn, name)
* Loads the address of label 'name' into register 'run'. Use this when
* the kernel doesn't run at the linked or relocated address. Please
* note that this macro will clobber the lr register.
*
* LOAD_REG_ADDRBASE(rn, name)
* ADDROFF(name)
* LOAD_REG_ADDRBASE loads part of the address of label 'name' into
* register 'rn'. ADDROFF(name) returns the remainder of the address as
* a constant expression. ADDROFF(name) is a signed expression < 16 bits
* in size, so is suitable for use directly as an offset in load and store
* instructions. Use this when loading/storing a single word or less as:
* LOAD_REG_ADDRBASE(rX, name)
* ld rY,ADDROFF(name)(rX)
*/
/* Be careful, this will clobber the lr register. */
#define LOAD_REG_ADDR_PIC(reg, name) \
bl 0f; \
0: mflr reg; \
addis reg,reg,(name - 0b)@ha; \
addi reg,reg,(name - 0b)@l;
#ifdef __powerpc64__
#ifdef HAVE_AS_ATHIGH
#define __AS_ATHIGH high
#else
#define __AS_ATHIGH h
#endif
#define LOAD_REG_IMMEDIATE(reg,expr) \
lis reg,(expr)@highest; \
ori reg,reg,(expr)@higher; \
rldicr reg,reg,32,31; \
oris reg,reg,(expr)@__AS_ATHIGH; \
ori reg,reg,(expr)@l;
#define LOAD_REG_ADDR(reg,name) \
ld reg,name@got(r2)
#define LOAD_REG_ADDRBASE(reg,name) LOAD_REG_ADDR(reg,name)
#define ADDROFF(name) 0
/* offsets for stack frame layout */
#define LRSAVE 16
#else /* 32-bit */
#define LOAD_REG_IMMEDIATE(reg,expr) \
lis reg,(expr)@ha; \
addi reg,reg,(expr)@l;
#define LOAD_REG_ADDR(reg,name) LOAD_REG_IMMEDIATE(reg, name)
#define LOAD_REG_ADDRBASE(reg, name) lis reg,name@ha
#define ADDROFF(name) name@l
/* offsets for stack frame layout */
#define LRSAVE 4
#endif
/* various errata or part fixups */
#ifdef CONFIG_PPC601_SYNC_FIX
#define SYNC \
BEGIN_FTR_SECTION \
sync; \
isync; \
END_FTR_SECTION_IFSET(CPU_FTR_601)
#define SYNC_601 \
BEGIN_FTR_SECTION \
sync; \
END_FTR_SECTION_IFSET(CPU_FTR_601)
#define ISYNC_601 \
BEGIN_FTR_SECTION \
isync; \
END_FTR_SECTION_IFSET(CPU_FTR_601)
#else
#define SYNC
#define SYNC_601
#define ISYNC_601
#endif
#if defined(CONFIG_PPC_CELL) || defined(CONFIG_PPC_FSL_BOOK3E)
#define MFTB(dest) \
90: mfspr dest, SPRN_TBRL; \
BEGIN_FTR_SECTION_NESTED(96); \
cmpwi dest,0; \
beq- 90b; \
END_FTR_SECTION_NESTED(CPU_FTR_CELL_TB_BUG, CPU_FTR_CELL_TB_BUG, 96)
#elif defined(CONFIG_8xx)
#define MFTB(dest) mftb dest
#else
#define MFTB(dest) mfspr dest, SPRN_TBRL
#endif
#ifndef CONFIG_SMP
#define TLBSYNC
#else /* CONFIG_SMP */
/* tlbsync is not implemented on 601 */
#define TLBSYNC \
BEGIN_FTR_SECTION \
tlbsync; \
sync; \
END_FTR_SECTION_IFCLR(CPU_FTR_601)
#endif
#ifdef CONFIG_PPC64
#define MTOCRF(FXM, RS) \
BEGIN_FTR_SECTION_NESTED(848); \
mtcrf (FXM), RS; \
FTR_SECTION_ELSE_NESTED(848); \
mtocrf (FXM), RS; \
ALT_FTR_SECTION_END_NESTED_IFCLR(CPU_FTR_NOEXECUTE, 848)
#endif
/*
* This instruction is not implemented on the PPC 603 or 601; however, on
* the 403GCX and 405GP tlbia IS defined and tlbie is not.
* All of these instructions exist in the 8xx, they have magical powers,
* and they must be used.
*/
#if !defined(CONFIG_4xx) && !defined(CONFIG_8xx)
#define tlbia \
li r4,1024; \
mtctr r4; \
lis r4,KERNELBASE@h; \
.machine push; \
.machine "power4"; \
0: tlbie r4; \
.machine pop; \
addi r4,r4,0x1000; \
bdnz 0b
#endif
#ifdef CONFIG_IBM440EP_ERR42
#define PPC440EP_ERR42 isync
#else
#define PPC440EP_ERR42
#endif
/* The following stops all load and store data streams associated with stream
* ID (ie. streams created explicitly). The embedded and server mnemonics for
* dcbt are different so we use machine "power4" here explicitly.
*/
#define DCBT_STOP_ALL_STREAM_IDS(scratch) \
.machine push ; \
.machine "power4" ; \
lis scratch,0x60000000@h; \
dcbt r0,scratch,0b01010; \
.machine pop
/*
* toreal/fromreal/tophys/tovirt macros. 32-bit BookE makes them
* keep the address intact to be compatible with code shared with
* 32-bit classic.
*
* On the other hand, I find it useful to have them behave as expected
* by their name (ie always do the addition) on 64-bit BookE
*/
#if defined(CONFIG_BOOKE) && !defined(CONFIG_PPC64)
#define toreal(rd)
#define fromreal(rd)
/*
* We use addis to ensure compatibility with the "classic" ppc versions of
* these macros, which use rs = 0 to get the tophys offset in rd, rather than
* converting the address in r0, and so this version has to do that too
* (i.e. set register rd to 0 when rs == 0).
*/
#define tophys(rd,rs) \
addis rd,rs,0
#define tovirt(rd,rs) \
addis rd,rs,0
#elif defined(CONFIG_PPC64)
#define toreal(rd) /* we can access c000... in real mode */
#define fromreal(rd)
#define tophys(rd,rs) \
clrldi rd,rs,2
#define tovirt(rd,rs) \
rotldi rd,rs,16; \
ori rd,rd,((KERNELBASE>>48)&0xFFFF);\
rotldi rd,rd,48
#else
/*
* On APUS (Amiga PowerPC cpu upgrade board), we don't know the
* physical base address of RAM at compile time.
*/
#define toreal(rd) tophys(rd,rd)
#define fromreal(rd) tovirt(rd,rd)
#define tophys(rd,rs) \
0: addis rd,rs,-PAGE_OFFSET@h; \
.section ".vtop_fixup","aw"; \
.align 1; \
.long 0b; \
.previous
#define tovirt(rd,rs) \
0: addis rd,rs,PAGE_OFFSET@h; \
.section ".ptov_fixup","aw"; \
.align 1; \
.long 0b; \
.previous
#endif
#ifdef CONFIG_PPC_BOOK3S_64
#define RFI rfid
#define MTMSRD(r) mtmsrd r
#define MTMSR_EERI(reg) mtmsrd reg,1
#else
#define FIX_SRR1(ra, rb)
#ifndef CONFIG_40x
#define RFI rfi
#else
#define RFI rfi; b . /* Prevent prefetch past rfi */
#endif
#define MTMSRD(r) mtmsr r
#define MTMSR_EERI(reg) mtmsr reg
#endif
#endif /* __KERNEL__ */
/* The boring bits... */
/* Condition Register Bit Fields */
#define cr0 0
#define cr1 1
#define cr2 2
#define cr3 3
#define cr4 4
#define cr5 5
#define cr6 6
#define cr7 7
/*
* General Purpose Registers (GPRs)
*
* The lower case r0-r31 should be used in preference to the upper
* case R0-R31 as they provide more error checking in the assembler.
* Use R0-31 only when really nessesary.
*/
#define r0 %r0
#define r1 %r1
#define r2 %r2
#define r3 %r3
#define r4 %r4
#define r5 %r5
#define r6 %r6
#define r7 %r7
#define r8 %r8
#define r9 %r9
#define r10 %r10
#define r11 %r11
#define r12 %r12
#define r13 %r13
#define r14 %r14
#define r15 %r15
#define r16 %r16
#define r17 %r17
#define r18 %r18
#define r19 %r19
#define r20 %r20
#define r21 %r21
#define r22 %r22
#define r23 %r23
#define r24 %r24
#define r25 %r25
#define r26 %r26
#define r27 %r27
#define r28 %r28
#define r29 %r29
#define r30 %r30
#define r31 %r31
/* Floating Point Registers (FPRs) */
#define fr0 0
#define fr1 1
#define fr2 2
#define fr3 3
#define fr4 4
#define fr5 5
#define fr6 6
#define fr7 7
#define fr8 8
#define fr9 9
#define fr10 10
#define fr11 11
#define fr12 12
#define fr13 13
#define fr14 14
#define fr15 15
#define fr16 16
#define fr17 17
#define fr18 18
#define fr19 19
#define fr20 20
#define fr21 21
#define fr22 22
#define fr23 23
#define fr24 24
#define fr25 25
#define fr26 26
#define fr27 27
#define fr28 28
#define fr29 29
#define fr30 30
#define fr31 31
/* AltiVec Registers (VPRs) */
#define v0 0
#define v1 1
#define v2 2
#define v3 3
#define v4 4
#define v5 5
#define v6 6
#define v7 7
#define v8 8
#define v9 9
#define v10 10
#define v11 11
#define v12 12
#define v13 13
#define v14 14
#define v15 15
#define v16 16
#define v17 17
#define v18 18
#define v19 19
#define v20 20
#define v21 21
#define v22 22
#define v23 23
#define v24 24
#define v25 25
#define v26 26
#define v27 27
#define v28 28
#define v29 29
#define v30 30
#define v31 31
/* VSX Registers (VSRs) */
#define vs0 0
#define vs1 1
#define vs2 2
#define vs3 3
#define vs4 4
#define vs5 5
#define vs6 6
#define vs7 7
#define vs8 8
#define vs9 9
#define vs10 10
#define vs11 11
#define vs12 12
#define vs13 13
#define vs14 14
#define vs15 15
#define vs16 16
#define vs17 17
#define vs18 18
#define vs19 19
#define vs20 20
#define vs21 21
#define vs22 22
#define vs23 23
#define vs24 24
#define vs25 25
#define vs26 26
#define vs27 27
#define vs28 28
#define vs29 29
#define vs30 30
#define vs31 31
#define vs32 32
#define vs33 33
#define vs34 34
#define vs35 35
#define vs36 36
#define vs37 37
#define vs38 38
#define vs39 39
#define vs40 40
#define vs41 41
#define vs42 42
#define vs43 43
#define vs44 44
#define vs45 45
#define vs46 46
#define vs47 47
#define vs48 48
#define vs49 49
#define vs50 50
#define vs51 51
#define vs52 52
#define vs53 53
#define vs54 54
#define vs55 55
#define vs56 56
#define vs57 57
#define vs58 58
#define vs59 59
#define vs60 60
#define vs61 61
#define vs62 62
#define vs63 63
/* SPE Registers (EVPRs) */
#define evr0 0
#define evr1 1
#define evr2 2
#define evr3 3
#define evr4 4
#define evr5 5
#define evr6 6
#define evr7 7
#define evr8 8
#define evr9 9
#define evr10 10
#define evr11 11
#define evr12 12
#define evr13 13
#define evr14 14
#define evr15 15
#define evr16 16
#define evr17 17
#define evr18 18
#define evr19 19
#define evr20 20
#define evr21 21
#define evr22 22
#define evr23 23
#define evr24 24
#define evr25 25
#define evr26 26
#define evr27 27
#define evr28 28
#define evr29 29
#define evr30 30
#define evr31 31
/* some stab codes */
#define N_FUN 36
#define N_RSYM 64
#define N_SLINE 68
#define N_SO 100
/*
* Create an endian fixup trampoline
*
* This starts with a "tdi 0,0,0x48" instruction which is
* essentially a "trap never", and thus akin to a nop.
*
* The opcode for this instruction read with the wrong endian
* however results in a b . + 8
*
* So essentially we use that trick to execute the following
* trampoline in "reverse endian" if we are running with the
* MSR_LE bit set the "wrong" way for whatever endianness the
* kernel is built for.
*/
#ifdef CONFIG_PPC_BOOK3E
#define FIXUP_ENDIAN
#else
#define FIXUP_ENDIAN \
tdi 0,0,0x48; /* Reverse endian of b . + 8 */ \
b $+36; /* Skip trampoline if endian is good */ \
.long 0x05009f42; /* bcl 20,31,$+4 */ \
.long 0xa602487d; /* mflr r10 */ \
.long 0x1c004a39; /* addi r10,r10,28 */ \
.long 0xa600607d; /* mfmsr r11 */ \
.long 0x01006b69; /* xori r11,r11,1 */ \
.long 0xa6035a7d; /* mtsrr0 r10 */ \
.long 0xa6037b7d; /* mtsrr1 r11 */ \
.long 0x2400004c /* rfid */
#endif /* !CONFIG_PPC_BOOK3E */
#endif /* __ASSEMBLY__ */
/*
* Helper macro for exception table entries
*/
#define EX_TABLE(_fault, _target) \
stringify_in_c(.section __ex_table,"a";)\
stringify_in_c(.balign 4;) \
stringify_in_c(.long (_fault) - . ;) \
stringify_in_c(.long (_target) - . ;) \
stringify_in_c(.previous)
#endif /* _ASM_POWERPC_PPC_ASM_H */