blob: ee2666d87287cd33e55dafc84570eb3ae013a38c [file] [log] [blame]
/*
* Core driver for the pin control subsystem
*
* Copyright (C) 2011-2012 ST-Ericsson SA
* Written on behalf of Linaro for ST-Ericsson
* Based on bits of regulator core, gpio core and clk core
*
* Author: Linus Walleij <linus.walleij@linaro.org>
*
* Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
*
* License terms: GNU General Public License (GPL) version 2
*/
#define pr_fmt(fmt) "pinctrl core: " fmt
#include <linux/kernel.h>
#include <linux/kref.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/slab.h>
#include <linux/err.h>
#include <linux/list.h>
#include <linux/sysfs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pinctrl/pinctrl.h>
#include <linux/pinctrl/machine.h>
#ifdef CONFIG_GPIOLIB
#include <asm-generic/gpio.h>
#endif
#include "core.h"
#include "devicetree.h"
#include "pinmux.h"
#include "pinconf.h"
static bool pinctrl_dummy_state;
/* Mutex taken to protect pinctrl_list */
static DEFINE_MUTEX(pinctrl_list_mutex);
/* Mutex taken to protect pinctrl_maps */
DEFINE_MUTEX(pinctrl_maps_mutex);
/* Mutex taken to protect pinctrldev_list */
static DEFINE_MUTEX(pinctrldev_list_mutex);
/* Global list of pin control devices (struct pinctrl_dev) */
static LIST_HEAD(pinctrldev_list);
/* List of pin controller handles (struct pinctrl) */
static LIST_HEAD(pinctrl_list);
/* List of pinctrl maps (struct pinctrl_maps) */
LIST_HEAD(pinctrl_maps);
/**
* pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
*
* Usually this function is called by platforms without pinctrl driver support
* but run with some shared drivers using pinctrl APIs.
* After calling this function, the pinctrl core will return successfully
* with creating a dummy state for the driver to keep going smoothly.
*/
void pinctrl_provide_dummies(void)
{
pinctrl_dummy_state = true;
}
const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
{
/* We're not allowed to register devices without name */
return pctldev->desc->name;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
{
return dev_name(pctldev->dev);
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
{
return pctldev->driver_data;
}
EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
/**
* get_pinctrl_dev_from_devname() - look up pin controller device
* @devname: the name of a device instance, as returned by dev_name()
*
* Looks up a pin control device matching a certain device name or pure device
* pointer, the pure device pointer will take precedence.
*/
struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
{
struct pinctrl_dev *pctldev = NULL;
if (!devname)
return NULL;
mutex_lock(&pinctrldev_list_mutex);
list_for_each_entry(pctldev, &pinctrldev_list, node) {
if (!strcmp(dev_name(pctldev->dev), devname)) {
/* Matched on device name */
mutex_unlock(&pinctrldev_list_mutex);
return pctldev;
}
}
mutex_unlock(&pinctrldev_list_mutex);
return NULL;
}
struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
{
struct pinctrl_dev *pctldev;
mutex_lock(&pinctrldev_list_mutex);
list_for_each_entry(pctldev, &pinctrldev_list, node)
if (pctldev->dev->of_node == np) {
mutex_unlock(&pinctrldev_list_mutex);
return pctldev;
}
mutex_unlock(&pinctrldev_list_mutex);
return NULL;
}
/**
* pin_get_from_name() - look up a pin number from a name
* @pctldev: the pin control device to lookup the pin on
* @name: the name of the pin to look up
*/
int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
{
unsigned i, pin;
/* The pin number can be retrived from the pin controller descriptor */
for (i = 0; i < pctldev->desc->npins; i++) {
struct pin_desc *desc;
pin = pctldev->desc->pins[i].number;
desc = pin_desc_get(pctldev, pin);
/* Pin space may be sparse */
if (desc && !strcmp(name, desc->name))
return pin;
}
return -EINVAL;
}
/**
* pin_get_name_from_id() - look up a pin name from a pin id
* @pctldev: the pin control device to lookup the pin on
* @name: the name of the pin to look up
*/
const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
{
const struct pin_desc *desc;
desc = pin_desc_get(pctldev, pin);
if (!desc) {
dev_err(pctldev->dev, "failed to get pin(%d) name\n",
pin);
return NULL;
}
return desc->name;
}
/**
* pin_is_valid() - check if pin exists on controller
* @pctldev: the pin control device to check the pin on
* @pin: pin to check, use the local pin controller index number
*
* This tells us whether a certain pin exist on a certain pin controller or
* not. Pin lists may be sparse, so some pins may not exist.
*/
bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
{
struct pin_desc *pindesc;
if (pin < 0)
return false;
mutex_lock(&pctldev->mutex);
pindesc = pin_desc_get(pctldev, pin);
mutex_unlock(&pctldev->mutex);
return pindesc != NULL;
}
EXPORT_SYMBOL_GPL(pin_is_valid);
/* Deletes a range of pin descriptors */
static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
const struct pinctrl_pin_desc *pins,
unsigned num_pins)
{
int i;
for (i = 0; i < num_pins; i++) {
struct pin_desc *pindesc;
pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
pins[i].number);
if (pindesc) {
radix_tree_delete(&pctldev->pin_desc_tree,
pins[i].number);
if (pindesc->dynamic_name)
kfree(pindesc->name);
}
kfree(pindesc);
}
}
static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
const struct pinctrl_pin_desc *pin)
{
struct pin_desc *pindesc;
pindesc = pin_desc_get(pctldev, pin->number);
if (pindesc) {
dev_err(pctldev->dev, "pin %d already registered\n",
pin->number);
return -EINVAL;
}
pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
if (!pindesc)
return -ENOMEM;
/* Set owner */
pindesc->pctldev = pctldev;
/* Copy basic pin info */
if (pin->name) {
pindesc->name = pin->name;
} else {
pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
if (!pindesc->name) {
kfree(pindesc);
return -ENOMEM;
}
pindesc->dynamic_name = true;
}
pindesc->drv_data = pin->drv_data;
radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
pr_debug("registered pin %d (%s) on %s\n",
pin->number, pindesc->name, pctldev->desc->name);
return 0;
}
static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
const struct pinctrl_pin_desc *pins,
unsigned num_descs)
{
unsigned i;
int ret = 0;
for (i = 0; i < num_descs; i++) {
ret = pinctrl_register_one_pin(pctldev, &pins[i]);
if (ret)
return ret;
}
return 0;
}
/**
* gpio_to_pin() - GPIO range GPIO number to pin number translation
* @range: GPIO range used for the translation
* @gpio: gpio pin to translate to a pin number
*
* Finds the pin number for a given GPIO using the specified GPIO range
* as a base for translation. The distinction between linear GPIO ranges
* and pin list based GPIO ranges is managed correctly by this function.
*
* This function assumes the gpio is part of the specified GPIO range, use
* only after making sure this is the case (e.g. by calling it on the
* result of successful pinctrl_get_device_gpio_range calls)!
*/
static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
unsigned int gpio)
{
unsigned int offset = gpio - range->base;
if (range->pins)
return range->pins[offset];
else
return range->pin_base + offset;
}
/**
* pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
* @pctldev: pin controller device to check
* @gpio: gpio pin to check taken from the global GPIO pin space
*
* Tries to match a GPIO pin number to the ranges handled by a certain pin
* controller, return the range or NULL
*/
static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
{
struct pinctrl_gpio_range *range = NULL;
mutex_lock(&pctldev->mutex);
/* Loop over the ranges */
list_for_each_entry(range, &pctldev->gpio_ranges, node) {
/* Check if we're in the valid range */
if (gpio >= range->base &&
gpio < range->base + range->npins) {
mutex_unlock(&pctldev->mutex);
return range;
}
}
mutex_unlock(&pctldev->mutex);
return NULL;
}
/**
* pinctrl_ready_for_gpio_range() - check if other GPIO pins of
* the same GPIO chip are in range
* @gpio: gpio pin to check taken from the global GPIO pin space
*
* This function is complement of pinctrl_match_gpio_range(). If the return
* value of pinctrl_match_gpio_range() is NULL, this function could be used
* to check whether pinctrl device is ready or not. Maybe some GPIO pins
* of the same GPIO chip don't have back-end pinctrl interface.
* If the return value is true, it means that pinctrl device is ready & the
* certain GPIO pin doesn't have back-end pinctrl device. If the return value
* is false, it means that pinctrl device may not be ready.
*/
#ifdef CONFIG_GPIOLIB
static bool pinctrl_ready_for_gpio_range(unsigned gpio)
{
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range *range = NULL;
struct gpio_chip *chip = gpio_to_chip(gpio);
if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
return false;
mutex_lock(&pinctrldev_list_mutex);
/* Loop over the pin controllers */
list_for_each_entry(pctldev, &pinctrldev_list, node) {
/* Loop over the ranges */
mutex_lock(&pctldev->mutex);
list_for_each_entry(range, &pctldev->gpio_ranges, node) {
/* Check if any gpio range overlapped with gpio chip */
if (range->base + range->npins - 1 < chip->base ||
range->base > chip->base + chip->ngpio - 1)
continue;
mutex_unlock(&pctldev->mutex);
mutex_unlock(&pinctrldev_list_mutex);
return true;
}
mutex_unlock(&pctldev->mutex);
}
mutex_unlock(&pinctrldev_list_mutex);
return false;
}
#else
static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
#endif
/**
* pinctrl_get_device_gpio_range() - find device for GPIO range
* @gpio: the pin to locate the pin controller for
* @outdev: the pin control device if found
* @outrange: the GPIO range if found
*
* Find the pin controller handling a certain GPIO pin from the pinspace of
* the GPIO subsystem, return the device and the matching GPIO range. Returns
* -EPROBE_DEFER if the GPIO range could not be found in any device since it
* may still have not been registered.
*/
static int pinctrl_get_device_gpio_range(unsigned gpio,
struct pinctrl_dev **outdev,
struct pinctrl_gpio_range **outrange)
{
struct pinctrl_dev *pctldev = NULL;
mutex_lock(&pinctrldev_list_mutex);
/* Loop over the pin controllers */
list_for_each_entry(pctldev, &pinctrldev_list, node) {
struct pinctrl_gpio_range *range;
range = pinctrl_match_gpio_range(pctldev, gpio);
if (range) {
*outdev = pctldev;
*outrange = range;
mutex_unlock(&pinctrldev_list_mutex);
return 0;
}
}
mutex_unlock(&pinctrldev_list_mutex);
return -EPROBE_DEFER;
}
/**
* pinctrl_add_gpio_range() - register a GPIO range for a controller
* @pctldev: pin controller device to add the range to
* @range: the GPIO range to add
*
* This adds a range of GPIOs to be handled by a certain pin controller. Call
* this to register handled ranges after registering your pin controller.
*/
void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range)
{
mutex_lock(&pctldev->mutex);
list_add_tail(&range->node, &pctldev->gpio_ranges);
mutex_unlock(&pctldev->mutex);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *ranges,
unsigned nranges)
{
int i;
for (i = 0; i < nranges; i++)
pinctrl_add_gpio_range(pctldev, &ranges[i]);
}
EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
struct pinctrl_gpio_range *range)
{
struct pinctrl_dev *pctldev;
pctldev = get_pinctrl_dev_from_devname(devname);
/*
* If we can't find this device, let's assume that is because
* it has not probed yet, so the driver trying to register this
* range need to defer probing.
*/
if (!pctldev) {
return ERR_PTR(-EPROBE_DEFER);
}
pinctrl_add_gpio_range(pctldev, range);
return pctldev;
}
EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
const unsigned **pins, unsigned *num_pins)
{
const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
int gs;
if (!pctlops->get_group_pins)
return -EINVAL;
gs = pinctrl_get_group_selector(pctldev, pin_group);
if (gs < 0)
return gs;
return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
}
EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
unsigned int pin)
{
struct pinctrl_gpio_range *range;
/* Loop over the ranges */
list_for_each_entry(range, &pctldev->gpio_ranges, node) {
/* Check if we're in the valid range */
if (range->pins) {
int a;
for (a = 0; a < range->npins; a++) {
if (range->pins[a] == pin)
return range;
}
} else if (pin >= range->pin_base &&
pin < range->pin_base + range->npins)
return range;
}
return NULL;
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
/**
* pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
* @pctldev: the pin controller device to look in
* @pin: a controller-local number to find the range for
*/
struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
unsigned int pin)
{
struct pinctrl_gpio_range *range;
mutex_lock(&pctldev->mutex);
range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
mutex_unlock(&pctldev->mutex);
return range;
}
EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
/**
* pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
* @pctldev: pin controller device to remove the range from
* @range: the GPIO range to remove
*/
void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
struct pinctrl_gpio_range *range)
{
mutex_lock(&pctldev->mutex);
list_del(&range->node);
mutex_unlock(&pctldev->mutex);
}
EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
/**
* pinctrl_generic_get_group_count() - returns the number of pin groups
* @pctldev: pin controller device
*/
int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
{
return pctldev->num_groups;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
/**
* pinctrl_generic_get_group_name() - returns the name of a pin group
* @pctldev: pin controller device
* @selector: group number
*/
const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
unsigned int selector)
{
struct group_desc *group;
group = radix_tree_lookup(&pctldev->pin_group_tree,
selector);
if (!group)
return NULL;
return group->name;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
/**
* pinctrl_generic_get_group_pins() - gets the pin group pins
* @pctldev: pin controller device
* @selector: group number
* @pins: pins in the group
* @num_pins: number of pins in the group
*/
int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
unsigned int selector,
const unsigned int **pins,
unsigned int *num_pins)
{
struct group_desc *group;
group = radix_tree_lookup(&pctldev->pin_group_tree,
selector);
if (!group) {
dev_err(pctldev->dev, "%s could not find pingroup%i\n",
__func__, selector);
return -EINVAL;
}
*pins = group->pins;
*num_pins = group->num_pins;
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
/**
* pinctrl_generic_get_group() - returns a pin group based on the number
* @pctldev: pin controller device
* @gselector: group number
*/
struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
unsigned int selector)
{
struct group_desc *group;
group = radix_tree_lookup(&pctldev->pin_group_tree,
selector);
if (!group)
return NULL;
return group;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
/**
* pinctrl_generic_add_group() - adds a new pin group
* @pctldev: pin controller device
* @name: name of the pin group
* @pins: pins in the pin group
* @num_pins: number of pins in the pin group
* @data: pin controller driver specific data
*
* Note that the caller must take care of locking.
*/
int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
int *pins, int num_pins, void *data)
{
struct group_desc *group;
group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
if (!group)
return -ENOMEM;
group->name = name;
group->pins = pins;
group->num_pins = num_pins;
group->data = data;
radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
group);
pctldev->num_groups++;
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
/**
* pinctrl_generic_remove_group() - removes a numbered pin group
* @pctldev: pin controller device
* @selector: group number
*
* Note that the caller must take care of locking.
*/
int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
unsigned int selector)
{
struct group_desc *group;
group = radix_tree_lookup(&pctldev->pin_group_tree,
selector);
if (!group)
return -ENOENT;
radix_tree_delete(&pctldev->pin_group_tree, selector);
devm_kfree(pctldev->dev, group);
pctldev->num_groups--;
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
/**
* pinctrl_generic_free_groups() - removes all pin groups
* @pctldev: pin controller device
*
* Note that the caller must take care of locking. The pinctrl groups
* are allocated with devm_kzalloc() so no need to free them here.
*/
static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
{
struct radix_tree_iter iter;
void __rcu **slot;
radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
radix_tree_delete(&pctldev->pin_group_tree, iter.index);
pctldev->num_groups = 0;
}
#else
static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
{
}
#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
/**
* pinctrl_get_group_selector() - returns the group selector for a group
* @pctldev: the pin controller handling the group
* @pin_group: the pin group to look up
*/
int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
const char *pin_group)
{
const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
unsigned ngroups = pctlops->get_groups_count(pctldev);
unsigned group_selector = 0;
while (group_selector < ngroups) {
const char *gname = pctlops->get_group_name(pctldev,
group_selector);
if (!strcmp(gname, pin_group)) {
dev_dbg(pctldev->dev,
"found group selector %u for %s\n",
group_selector,
pin_group);
return group_selector;
}
group_selector++;
}
dev_err(pctldev->dev, "does not have pin group %s\n",
pin_group);
return -EINVAL;
}
/**
* pinctrl_request_gpio() - request a single pin to be used as GPIO
* @gpio: the GPIO pin number from the GPIO subsystem number space
*
* This function should *ONLY* be used from gpiolib-based GPIO drivers,
* as part of their gpio_request() semantics, platforms and individual drivers
* shall *NOT* request GPIO pins to be muxed in.
*/
int pinctrl_request_gpio(unsigned gpio)
{
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range *range;
int ret;
int pin;
ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
if (ret) {
if (pinctrl_ready_for_gpio_range(gpio))
ret = 0;
return ret;
}
mutex_lock(&pctldev->mutex);
/* Convert to the pin controllers number space */
pin = gpio_to_pin(range, gpio);
ret = pinmux_request_gpio(pctldev, range, pin, gpio);
mutex_unlock(&pctldev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
/**
* pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
* @gpio: the GPIO pin number from the GPIO subsystem number space
*
* This function should *ONLY* be used from gpiolib-based GPIO drivers,
* as part of their gpio_free() semantics, platforms and individual drivers
* shall *NOT* request GPIO pins to be muxed out.
*/
void pinctrl_free_gpio(unsigned gpio)
{
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range *range;
int ret;
int pin;
ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
if (ret) {
return;
}
mutex_lock(&pctldev->mutex);
/* Convert to the pin controllers number space */
pin = gpio_to_pin(range, gpio);
pinmux_free_gpio(pctldev, pin, range);
mutex_unlock(&pctldev->mutex);
}
EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
static int pinctrl_gpio_direction(unsigned gpio, bool input)
{
struct pinctrl_dev *pctldev;
struct pinctrl_gpio_range *range;
int ret;
int pin;
ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
if (ret) {
return ret;
}
mutex_lock(&pctldev->mutex);
/* Convert to the pin controllers number space */
pin = gpio_to_pin(range, gpio);
ret = pinmux_gpio_direction(pctldev, range, pin, input);
mutex_unlock(&pctldev->mutex);
return ret;
}
/**
* pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
* @gpio: the GPIO pin number from the GPIO subsystem number space
*
* This function should *ONLY* be used from gpiolib-based GPIO drivers,
* as part of their gpio_direction_input() semantics, platforms and individual
* drivers shall *NOT* touch pin control GPIO calls.
*/
int pinctrl_gpio_direction_input(unsigned gpio)
{
return pinctrl_gpio_direction(gpio, true);
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
/**
* pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
* @gpio: the GPIO pin number from the GPIO subsystem number space
*
* This function should *ONLY* be used from gpiolib-based GPIO drivers,
* as part of their gpio_direction_output() semantics, platforms and individual
* drivers shall *NOT* touch pin control GPIO calls.
*/
int pinctrl_gpio_direction_output(unsigned gpio)
{
return pinctrl_gpio_direction(gpio, false);
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
/**
* pinctrl_gpio_set_config() - Apply config to given GPIO pin
* @gpio: the GPIO pin number from the GPIO subsystem number space
* @config: the configuration to apply to the GPIO
*
* This function should *ONLY* be used from gpiolib-based GPIO drivers, if
* they need to call the underlying pin controller to change GPIO config
* (for example set debounce time).
*/
int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
{
unsigned long configs[] = { config };
struct pinctrl_gpio_range *range;
struct pinctrl_dev *pctldev;
int ret, pin;
ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
if (ret)
return ret;
mutex_lock(&pctldev->mutex);
pin = gpio_to_pin(range, gpio);
ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
mutex_unlock(&pctldev->mutex);
return ret;
}
EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
static struct pinctrl_state *find_state(struct pinctrl *p,
const char *name)
{
struct pinctrl_state *state;
list_for_each_entry(state, &p->states, node)
if (!strcmp(state->name, name))
return state;
return NULL;
}
static struct pinctrl_state *create_state(struct pinctrl *p,
const char *name)
{
struct pinctrl_state *state;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return ERR_PTR(-ENOMEM);
state->name = name;
INIT_LIST_HEAD(&state->settings);
list_add_tail(&state->node, &p->states);
return state;
}
static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
const struct pinctrl_map *map)
{
struct pinctrl_state *state;
struct pinctrl_setting *setting;
int ret;
state = find_state(p, map->name);
if (!state)
state = create_state(p, map->name);
if (IS_ERR(state))
return PTR_ERR(state);
if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
return 0;
setting = kzalloc(sizeof(*setting), GFP_KERNEL);
if (!setting)
return -ENOMEM;
setting->type = map->type;
if (pctldev)
setting->pctldev = pctldev;
else
setting->pctldev =
get_pinctrl_dev_from_devname(map->ctrl_dev_name);
if (!setting->pctldev) {
kfree(setting);
/* Do not defer probing of hogs (circular loop) */
if (!strcmp(map->ctrl_dev_name, map->dev_name))
return -ENODEV;
/*
* OK let us guess that the driver is not there yet, and
* let's defer obtaining this pinctrl handle to later...
*/
dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
map->ctrl_dev_name);
return -EPROBE_DEFER;
}
setting->dev_name = map->dev_name;
switch (map->type) {
case PIN_MAP_TYPE_MUX_GROUP:
ret = pinmux_map_to_setting(map, setting);
break;
case PIN_MAP_TYPE_CONFIGS_PIN:
case PIN_MAP_TYPE_CONFIGS_GROUP:
ret = pinconf_map_to_setting(map, setting);
break;
default:
ret = -EINVAL;
break;
}
if (ret < 0) {
kfree(setting);
return ret;
}
list_add_tail(&setting->node, &state->settings);
return 0;
}
static struct pinctrl *find_pinctrl(struct device *dev)
{
struct pinctrl *p;
mutex_lock(&pinctrl_list_mutex);
list_for_each_entry(p, &pinctrl_list, node)
if (p->dev == dev) {
mutex_unlock(&pinctrl_list_mutex);
return p;
}
mutex_unlock(&pinctrl_list_mutex);
return NULL;
}
static void pinctrl_free(struct pinctrl *p, bool inlist);
static struct pinctrl *create_pinctrl(struct device *dev,
struct pinctrl_dev *pctldev)
{
struct pinctrl *p;
const char *devname;
struct pinctrl_maps *maps_node;
int i;
const struct pinctrl_map *map;
int ret;
/*
* create the state cookie holder struct pinctrl for each
* mapping, this is what consumers will get when requesting
* a pin control handle with pinctrl_get()
*/
p = kzalloc(sizeof(*p), GFP_KERNEL);
if (!p)
return ERR_PTR(-ENOMEM);
p->dev = dev;
INIT_LIST_HEAD(&p->states);
INIT_LIST_HEAD(&p->dt_maps);
ret = pinctrl_dt_to_map(p, pctldev);
if (ret < 0) {
kfree(p);
return ERR_PTR(ret);
}
devname = dev_name(dev);
mutex_lock(&pinctrl_maps_mutex);
/* Iterate over the pin control maps to locate the right ones */
for_each_maps(maps_node, i, map) {
/* Map must be for this device */
if (strcmp(map->dev_name, devname))
continue;
/*
* If pctldev is not null, we are claiming hog for it,
* that means, setting that is served by pctldev by itself.
*
* Thus we must skip map that is for this device but is served
* by other device.
*/
if (pctldev &&
strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
continue;
ret = add_setting(p, pctldev, map);
/*
* At this point the adding of a setting may:
*
* - Defer, if the pinctrl device is not yet available
* - Fail, if the pinctrl device is not yet available,
* AND the setting is a hog. We cannot defer that, since
* the hog will kick in immediately after the device
* is registered.
*
* If the error returned was not -EPROBE_DEFER then we
* accumulate the errors to see if we end up with
* an -EPROBE_DEFER later, as that is the worst case.
*/
if (ret == -EPROBE_DEFER) {
pinctrl_free(p, false);
mutex_unlock(&pinctrl_maps_mutex);
return ERR_PTR(ret);
}
}
mutex_unlock(&pinctrl_maps_mutex);
if (ret < 0) {
/* If some other error than deferral occurred, return here */
pinctrl_free(p, false);
return ERR_PTR(ret);
}
kref_init(&p->users);
/* Add the pinctrl handle to the global list */
mutex_lock(&pinctrl_list_mutex);
list_add_tail(&p->node, &pinctrl_list);
mutex_unlock(&pinctrl_list_mutex);
return p;
}
/**
* pinctrl_get() - retrieves the pinctrl handle for a device
* @dev: the device to obtain the handle for
*/
struct pinctrl *pinctrl_get(struct device *dev)
{
struct pinctrl *p;
if (WARN_ON(!dev))
return ERR_PTR(-EINVAL);
/*
* See if somebody else (such as the device core) has already
* obtained a handle to the pinctrl for this device. In that case,
* return another pointer to it.
*/
p = find_pinctrl(dev);
if (p) {
dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
kref_get(&p->users);
return p;
}
return create_pinctrl(dev, NULL);
}
EXPORT_SYMBOL_GPL(pinctrl_get);
static void pinctrl_free_setting(bool disable_setting,
struct pinctrl_setting *setting)
{
switch (setting->type) {
case PIN_MAP_TYPE_MUX_GROUP:
if (disable_setting)
pinmux_disable_setting(setting);
pinmux_free_setting(setting);
break;
case PIN_MAP_TYPE_CONFIGS_PIN:
case PIN_MAP_TYPE_CONFIGS_GROUP:
pinconf_free_setting(setting);
break;
default:
break;
}
}
static void pinctrl_free(struct pinctrl *p, bool inlist)
{
struct pinctrl_state *state, *n1;
struct pinctrl_setting *setting, *n2;
mutex_lock(&pinctrl_list_mutex);
list_for_each_entry_safe(state, n1, &p->states, node) {
list_for_each_entry_safe(setting, n2, &state->settings, node) {
pinctrl_free_setting(state == p->state, setting);
list_del(&setting->node);
kfree(setting);
}
list_del(&state->node);
kfree(state);
}
pinctrl_dt_free_maps(p);
if (inlist)
list_del(&p->node);
kfree(p);
mutex_unlock(&pinctrl_list_mutex);
}
/**
* pinctrl_release() - release the pinctrl handle
* @kref: the kref in the pinctrl being released
*/
static void pinctrl_release(struct kref *kref)
{
struct pinctrl *p = container_of(kref, struct pinctrl, users);
pinctrl_free(p, true);
}
/**
* pinctrl_put() - decrease use count on a previously claimed pinctrl handle
* @p: the pinctrl handle to release
*/
void pinctrl_put(struct pinctrl *p)
{
kref_put(&p->users, pinctrl_release);
}
EXPORT_SYMBOL_GPL(pinctrl_put);
/**
* pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
* @p: the pinctrl handle to retrieve the state from
* @name: the state name to retrieve
*/
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
const char *name)
{
struct pinctrl_state *state;
state = find_state(p, name);
if (!state) {
if (pinctrl_dummy_state) {
/* create dummy state */
dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
name);
state = create_state(p, name);
} else
state = ERR_PTR(-ENODEV);
}
return state;
}
EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
/**
* pinctrl_commit_state() - select/activate/program a pinctrl state to HW
* @p: the pinctrl handle for the device that requests configuration
* @state: the state handle to select/activate/program
*/
static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
{
struct pinctrl_setting *setting, *setting2;
struct pinctrl_state *old_state = READ_ONCE(p->state);
int ret;
if (old_state) {
/*
* For each pinmux setting in the old state, forget SW's record
* of mux owner for that pingroup. Any pingroups which are
* still owned by the new state will be re-acquired by the call
* to pinmux_enable_setting() in the loop below.
*/
list_for_each_entry(setting, &old_state->settings, node) {
if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
continue;
pinmux_disable_setting(setting);
}
}
p->state = NULL;
/* Apply all the settings for the new state */
list_for_each_entry(setting, &state->settings, node) {
switch (setting->type) {
case PIN_MAP_TYPE_MUX_GROUP:
ret = pinmux_enable_setting(setting);
break;
case PIN_MAP_TYPE_CONFIGS_PIN:
case PIN_MAP_TYPE_CONFIGS_GROUP:
ret = pinconf_apply_setting(setting);
break;
default:
ret = -EINVAL;
break;
}
if (ret < 0) {
goto unapply_new_state;
}
}
p->state = state;
return 0;
unapply_new_state:
dev_err(p->dev, "Error applying setting, reverse things back\n");
list_for_each_entry(setting2, &state->settings, node) {
if (&setting2->node == &setting->node)
break;
/*
* All we can do here is pinmux_disable_setting.
* That means that some pins are muxed differently now
* than they were before applying the setting (We can't
* "unmux a pin"!), but it's not a big deal since the pins
* are free to be muxed by another apply_setting.
*/
if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
pinmux_disable_setting(setting2);
}
/* There's no infinite recursive loop here because p->state is NULL */
if (old_state)
pinctrl_select_state(p, old_state);
return ret;
}
/**
* pinctrl_select_state() - select/activate/program a pinctrl state to HW
* @p: the pinctrl handle for the device that requests configuration
* @state: the state handle to select/activate/program
*/
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
{
if (p->state == state)
return 0;
return pinctrl_commit_state(p, state);
}
EXPORT_SYMBOL_GPL(pinctrl_select_state);
static void devm_pinctrl_release(struct device *dev, void *res)
{
pinctrl_put(*(struct pinctrl **)res);
}
/**
* struct devm_pinctrl_get() - Resource managed pinctrl_get()
* @dev: the device to obtain the handle for
*
* If there is a need to explicitly destroy the returned struct pinctrl,
* devm_pinctrl_put() should be used, rather than plain pinctrl_put().
*/
struct pinctrl *devm_pinctrl_get(struct device *dev)
{
struct pinctrl **ptr, *p;
ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
p = pinctrl_get(dev);
if (!IS_ERR(p)) {
*ptr = p;
devres_add(dev, ptr);
} else {
devres_free(ptr);
}
return p;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_get);
static int devm_pinctrl_match(struct device *dev, void *res, void *data)
{
struct pinctrl **p = res;
return *p == data;
}
/**
* devm_pinctrl_put() - Resource managed pinctrl_put()
* @p: the pinctrl handle to release
*
* Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
* this function will not need to be called and the resource management
* code will ensure that the resource is freed.
*/
void devm_pinctrl_put(struct pinctrl *p)
{
WARN_ON(devres_release(p->dev, devm_pinctrl_release,
devm_pinctrl_match, p));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_put);
int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
bool dup)
{
int i, ret;
struct pinctrl_maps *maps_node;
pr_debug("add %u pinctrl maps\n", num_maps);
/* First sanity check the new mapping */
for (i = 0; i < num_maps; i++) {
if (!maps[i].dev_name) {
pr_err("failed to register map %s (%d): no device given\n",
maps[i].name, i);
return -EINVAL;
}
if (!maps[i].name) {
pr_err("failed to register map %d: no map name given\n",
i);
return -EINVAL;
}
if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
!maps[i].ctrl_dev_name) {
pr_err("failed to register map %s (%d): no pin control device given\n",
maps[i].name, i);
return -EINVAL;
}
switch (maps[i].type) {
case PIN_MAP_TYPE_DUMMY_STATE:
break;
case PIN_MAP_TYPE_MUX_GROUP:
ret = pinmux_validate_map(&maps[i], i);
if (ret < 0)
return ret;
break;
case PIN_MAP_TYPE_CONFIGS_PIN:
case PIN_MAP_TYPE_CONFIGS_GROUP:
ret = pinconf_validate_map(&maps[i], i);
if (ret < 0)
return ret;
break;
default:
pr_err("failed to register map %s (%d): invalid type given\n",
maps[i].name, i);
return -EINVAL;
}
}
maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
if (!maps_node)
return -ENOMEM;
maps_node->num_maps = num_maps;
if (dup) {
maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
GFP_KERNEL);
if (!maps_node->maps) {
kfree(maps_node);
return -ENOMEM;
}
} else {
maps_node->maps = maps;
}
mutex_lock(&pinctrl_maps_mutex);
list_add_tail(&maps_node->node, &pinctrl_maps);
mutex_unlock(&pinctrl_maps_mutex);
return 0;
}
/**
* pinctrl_register_mappings() - register a set of pin controller mappings
* @maps: the pincontrol mappings table to register. This should probably be
* marked with __initdata so it can be discarded after boot. This
* function will perform a shallow copy for the mapping entries.
* @num_maps: the number of maps in the mapping table
*/
int pinctrl_register_mappings(const struct pinctrl_map *maps,
unsigned num_maps)
{
return pinctrl_register_map(maps, num_maps, true);
}
void pinctrl_unregister_map(const struct pinctrl_map *map)
{
struct pinctrl_maps *maps_node;
mutex_lock(&pinctrl_maps_mutex);
list_for_each_entry(maps_node, &pinctrl_maps, node) {
if (maps_node->maps == map) {
list_del(&maps_node->node);
kfree(maps_node);
mutex_unlock(&pinctrl_maps_mutex);
return;
}
}
mutex_unlock(&pinctrl_maps_mutex);
}
/**
* pinctrl_force_sleep() - turn a given controller device into sleep state
* @pctldev: pin controller device
*/
int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
{
if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
/**
* pinctrl_force_default() - turn a given controller device into default state
* @pctldev: pin controller device
*/
int pinctrl_force_default(struct pinctrl_dev *pctldev)
{
if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_force_default);
/**
* pinctrl_init_done() - tell pinctrl probe is done
*
* We'll use this time to switch the pins from "init" to "default" unless the
* driver selected some other state.
*
* @dev: device to that's done probing
*/
int pinctrl_init_done(struct device *dev)
{
struct dev_pin_info *pins = dev->pins;
int ret;
if (!pins)
return 0;
if (IS_ERR(pins->init_state))
return 0; /* No such state */
if (pins->p->state != pins->init_state)
return 0; /* Not at init anyway */
if (IS_ERR(pins->default_state))
return 0; /* No default state */
ret = pinctrl_select_state(pins->p, pins->default_state);
if (ret)
dev_err(dev, "failed to activate default pinctrl state\n");
return ret;
}
#ifdef CONFIG_PM
/**
* pinctrl_pm_select_state() - select pinctrl state for PM
* @dev: device to select default state for
* @state: state to set
*/
static int pinctrl_pm_select_state(struct device *dev,
struct pinctrl_state *state)
{
struct dev_pin_info *pins = dev->pins;
int ret;
if (IS_ERR(state))
return 0; /* No such state */
ret = pinctrl_select_state(pins->p, state);
if (ret)
dev_err(dev, "failed to activate pinctrl state %s\n",
state->name);
return ret;
}
/**
* pinctrl_pm_select_default_state() - select default pinctrl state for PM
* @dev: device to select default state for
*/
int pinctrl_pm_select_default_state(struct device *dev)
{
if (!dev->pins)
return 0;
return pinctrl_pm_select_state(dev, dev->pins->default_state);
}
EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
/**
* pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
* @dev: device to select sleep state for
*/
int pinctrl_pm_select_sleep_state(struct device *dev)
{
if (!dev->pins)
return 0;
return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
}
EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
/**
* pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
* @dev: device to select idle state for
*/
int pinctrl_pm_select_idle_state(struct device *dev)
{
if (!dev->pins)
return 0;
return pinctrl_pm_select_state(dev, dev->pins->idle_state);
}
EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
#endif
#ifdef CONFIG_DEBUG_FS
static int pinctrl_pins_show(struct seq_file *s, void *what)
{
struct pinctrl_dev *pctldev = s->private;
const struct pinctrl_ops *ops = pctldev->desc->pctlops;
unsigned i, pin;
seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
mutex_lock(&pctldev->mutex);
/* The pin number can be retrived from the pin controller descriptor */
for (i = 0; i < pctldev->desc->npins; i++) {
struct pin_desc *desc;
pin = pctldev->desc->pins[i].number;
desc = pin_desc_get(pctldev, pin);
/* Pin space may be sparse */
if (!desc)
continue;
seq_printf(s, "pin %d (%s) ", pin, desc->name);
/* Driver-specific info per pin */
if (ops->pin_dbg_show)
ops->pin_dbg_show(pctldev, s, pin);
seq_puts(s, "\n");
}
mutex_unlock(&pctldev->mutex);
return 0;
}
static int pinctrl_groups_show(struct seq_file *s, void *what)
{
struct pinctrl_dev *pctldev = s->private;
const struct pinctrl_ops *ops = pctldev->desc->pctlops;
unsigned ngroups, selector = 0;
mutex_lock(&pctldev->mutex);
ngroups = ops->get_groups_count(pctldev);
seq_puts(s, "registered pin groups:\n");
while (selector < ngroups) {
const unsigned *pins = NULL;
unsigned num_pins = 0;
const char *gname = ops->get_group_name(pctldev, selector);
const char *pname;
int ret = 0;
int i;
if (ops->get_group_pins)
ret = ops->get_group_pins(pctldev, selector,
&pins, &num_pins);
if (ret)
seq_printf(s, "%s [ERROR GETTING PINS]\n",
gname);
else {
seq_printf(s, "group: %s\n", gname);
for (i = 0; i < num_pins; i++) {
pname = pin_get_name(pctldev, pins[i]);
if (WARN_ON(!pname)) {
mutex_unlock(&pctldev->mutex);
return -EINVAL;
}
seq_printf(s, "pin %d (%s)\n", pins[i], pname);
}
seq_puts(s, "\n");
}
selector++;
}
mutex_unlock(&pctldev->mutex);
return 0;
}
static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
{
struct pinctrl_dev *pctldev = s->private;
struct pinctrl_gpio_range *range = NULL;
seq_puts(s, "GPIO ranges handled:\n");
mutex_lock(&pctldev->mutex);
/* Loop over the ranges */
list_for_each_entry(range, &pctldev->gpio_ranges, node) {
if (range->pins) {
int a;
seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
range->id, range->name,
range->base, (range->base + range->npins - 1));
for (a = 0; a < range->npins - 1; a++)
seq_printf(s, "%u, ", range->pins[a]);
seq_printf(s, "%u}\n", range->pins[a]);
}
else
seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
range->id, range->name,
range->base, (range->base + range->npins - 1),
range->pin_base,
(range->pin_base + range->npins - 1));
}
mutex_unlock(&pctldev->mutex);
return 0;
}
static int pinctrl_devices_show(struct seq_file *s, void *what)
{
struct pinctrl_dev *pctldev;
seq_puts(s, "name [pinmux] [pinconf]\n");
mutex_lock(&pinctrldev_list_mutex);
list_for_each_entry(pctldev, &pinctrldev_list, node) {
seq_printf(s, "%s ", pctldev->desc->name);
if (pctldev->desc->pmxops)
seq_puts(s, "yes ");
else
seq_puts(s, "no ");
if (pctldev->desc->confops)
seq_puts(s, "yes");
else
seq_puts(s, "no");
seq_puts(s, "\n");
}
mutex_unlock(&pinctrldev_list_mutex);
return 0;
}
static inline const char *map_type(enum pinctrl_map_type type)
{
static const char * const names[] = {
"INVALID",
"DUMMY_STATE",
"MUX_GROUP",
"CONFIGS_PIN",
"CONFIGS_GROUP",
};
if (type >= ARRAY_SIZE(names))
return "UNKNOWN";
return names[type];
}
static int pinctrl_maps_show(struct seq_file *s, void *what)
{
struct pinctrl_maps *maps_node;
int i;
const struct pinctrl_map *map;
seq_puts(s, "Pinctrl maps:\n");
mutex_lock(&pinctrl_maps_mutex);
for_each_maps(maps_node, i, map) {
seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
map->dev_name, map->name, map_type(map->type),
map->type);
if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
seq_printf(s, "controlling device %s\n",
map->ctrl_dev_name);
switch (map->type) {
case PIN_MAP_TYPE_MUX_GROUP:
pinmux_show_map(s, map);
break;
case PIN_MAP_TYPE_CONFIGS_PIN:
case PIN_MAP_TYPE_CONFIGS_GROUP:
pinconf_show_map(s, map);
break;
default:
break;
}
seq_putc(s, '\n');
}
mutex_unlock(&pinctrl_maps_mutex);
return 0;
}
static int pinctrl_show(struct seq_file *s, void *what)
{
struct pinctrl *p;
struct pinctrl_state *state;
struct pinctrl_setting *setting;
seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
mutex_lock(&pinctrl_list_mutex);
list_for_each_entry(p, &pinctrl_list, node) {
seq_printf(s, "device: %s current state: %s\n",
dev_name(p->dev),
p->state ? p->state->name : "none");
list_for_each_entry(state, &p->states, node) {
seq_printf(s, " state: %s\n", state->name);
list_for_each_entry(setting, &state->settings, node) {
struct pinctrl_dev *pctldev = setting->pctldev;
seq_printf(s, " type: %s controller %s ",
map_type(setting->type),
pinctrl_dev_get_name(pctldev));
switch (setting->type) {
case PIN_MAP_TYPE_MUX_GROUP:
pinmux_show_setting(s, setting);
break;
case PIN_MAP_TYPE_CONFIGS_PIN:
case PIN_MAP_TYPE_CONFIGS_GROUP:
pinconf_show_setting(s, setting);
break;
default:
break;
}
}
}
}
mutex_unlock(&pinctrl_list_mutex);
return 0;
}
static int pinctrl_pins_open(struct inode *inode, struct file *file)
{
return single_open(file, pinctrl_pins_show, inode->i_private);
}
static int pinctrl_groups_open(struct inode *inode, struct file *file)
{
return single_open(file, pinctrl_groups_show, inode->i_private);
}
static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
{
return single_open(file, pinctrl_gpioranges_show, inode->i_private);
}
static int pinctrl_devices_open(struct inode *inode, struct file *file)
{
return single_open(file, pinctrl_devices_show, NULL);
}
static int pinctrl_maps_open(struct inode *inode, struct file *file)
{
return single_open(file, pinctrl_maps_show, NULL);
}
static int pinctrl_open(struct inode *inode, struct file *file)
{
return single_open(file, pinctrl_show, NULL);
}
static const struct file_operations pinctrl_pins_ops = {
.open = pinctrl_pins_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations pinctrl_groups_ops = {
.open = pinctrl_groups_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations pinctrl_gpioranges_ops = {
.open = pinctrl_gpioranges_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations pinctrl_devices_ops = {
.open = pinctrl_devices_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations pinctrl_maps_ops = {
.open = pinctrl_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const struct file_operations pinctrl_ops = {
.open = pinctrl_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static struct dentry *debugfs_root;
static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
struct dentry *device_root;
device_root = debugfs_create_dir(dev_name(pctldev->dev),
debugfs_root);
pctldev->device_root = device_root;
if (IS_ERR(device_root) || !device_root) {
pr_warn("failed to create debugfs directory for %s\n",
dev_name(pctldev->dev));
return;
}
debugfs_create_file("pins", S_IFREG | S_IRUGO,
device_root, pctldev, &pinctrl_pins_ops);
debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
device_root, pctldev, &pinctrl_groups_ops);
debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
device_root, pctldev, &pinctrl_gpioranges_ops);
if (pctldev->desc->pmxops)
pinmux_init_device_debugfs(device_root, pctldev);
if (pctldev->desc->confops)
pinconf_init_device_debugfs(device_root, pctldev);
}
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
debugfs_remove_recursive(pctldev->device_root);
}
static void pinctrl_init_debugfs(void)
{
debugfs_root = debugfs_create_dir("pinctrl", NULL);
if (IS_ERR(debugfs_root) || !debugfs_root) {
pr_warn("failed to create debugfs directory\n");
debugfs_root = NULL;
return;
}
debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
debugfs_root, NULL, &pinctrl_devices_ops);
debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
debugfs_root, NULL, &pinctrl_maps_ops);
debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
debugfs_root, NULL, &pinctrl_ops);
}
#else /* CONFIG_DEBUG_FS */
static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
{
}
static void pinctrl_init_debugfs(void)
{
}
static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
{
}
#endif
static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
{
const struct pinctrl_ops *ops = pctldev->desc->pctlops;
if (!ops ||
!ops->get_groups_count ||
!ops->get_group_name)
return -EINVAL;
return 0;
}
/**
* pinctrl_init_controller() - init a pin controller device
* @pctldesc: descriptor for this pin controller
* @dev: parent device for this pin controller
* @driver_data: private pin controller data for this pin controller
*/
static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
void *driver_data)
{
struct pinctrl_dev *pctldev;
int ret;
if (!pctldesc)
return ERR_PTR(-EINVAL);
if (!pctldesc->name)
return ERR_PTR(-EINVAL);
pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
if (!pctldev)
return ERR_PTR(-ENOMEM);
/* Initialize pin control device struct */
pctldev->owner = pctldesc->owner;
pctldev->desc = pctldesc;
pctldev->driver_data = driver_data;
INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
#endif
#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
#endif
INIT_LIST_HEAD(&pctldev->gpio_ranges);
INIT_LIST_HEAD(&pctldev->node);
pctldev->dev = dev;
mutex_init(&pctldev->mutex);
/* check core ops for sanity */
ret = pinctrl_check_ops(pctldev);
if (ret) {
dev_err(dev, "pinctrl ops lacks necessary functions\n");
goto out_err;
}
/* If we're implementing pinmuxing, check the ops for sanity */
if (pctldesc->pmxops) {
ret = pinmux_check_ops(pctldev);
if (ret)
goto out_err;
}
/* If we're implementing pinconfig, check the ops for sanity */
if (pctldesc->confops) {
ret = pinconf_check_ops(pctldev);
if (ret)
goto out_err;
}
/* Register all the pins */
dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
if (ret) {
dev_err(dev, "error during pin registration\n");
pinctrl_free_pindescs(pctldev, pctldesc->pins,
pctldesc->npins);
goto out_err;
}
return pctldev;
out_err:
mutex_destroy(&pctldev->mutex);
kfree(pctldev);
return ERR_PTR(ret);
}
static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
{
pctldev->p = create_pinctrl(pctldev->dev, pctldev);
if (PTR_ERR(pctldev->p) == -ENODEV) {
dev_dbg(pctldev->dev, "no hogs found\n");
return 0;
}
if (IS_ERR(pctldev->p)) {
dev_err(pctldev->dev, "error claiming hogs: %li\n",
PTR_ERR(pctldev->p));
return PTR_ERR(pctldev->p);
}
pctldev->hog_default =
pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
if (IS_ERR(pctldev->hog_default)) {
dev_dbg(pctldev->dev,
"failed to lookup the default state\n");
} else {
if (pinctrl_select_state(pctldev->p,
pctldev->hog_default))
dev_err(pctldev->dev,
"failed to select default state\n");
}
pctldev->hog_sleep =
pinctrl_lookup_state(pctldev->p,
PINCTRL_STATE_SLEEP);
if (IS_ERR(pctldev->hog_sleep))
dev_dbg(pctldev->dev,
"failed to lookup the sleep state\n");
return 0;
}
int pinctrl_enable(struct pinctrl_dev *pctldev)
{
int error;
error = pinctrl_claim_hogs(pctldev);
if (error) {
dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
return error;
}
mutex_lock(&pinctrldev_list_mutex);
list_add_tail(&pctldev->node, &pinctrldev_list);
mutex_unlock(&pinctrldev_list_mutex);
pinctrl_init_device_debugfs(pctldev);
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_enable);
/**
* pinctrl_register() - register a pin controller device
* @pctldesc: descriptor for this pin controller
* @dev: parent device for this pin controller
* @driver_data: private pin controller data for this pin controller
*
* Note that pinctrl_register() is known to have problems as the pin
* controller driver functions are called before the driver has a
* struct pinctrl_dev handle. To avoid issues later on, please use the
* new pinctrl_register_and_init() below instead.
*/
struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
struct device *dev, void *driver_data)
{
struct pinctrl_dev *pctldev;
int error;
pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
if (IS_ERR(pctldev))
return pctldev;
error = pinctrl_enable(pctldev);
if (error)
return ERR_PTR(error);
return pctldev;
}
EXPORT_SYMBOL_GPL(pinctrl_register);
/**
* pinctrl_register_and_init() - register and init pin controller device
* @pctldesc: descriptor for this pin controller
* @dev: parent device for this pin controller
* @driver_data: private pin controller data for this pin controller
* @pctldev: pin controller device
*
* Note that pinctrl_enable() still needs to be manually called after
* this once the driver is ready.
*/
int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
struct device *dev, void *driver_data,
struct pinctrl_dev **pctldev)
{
struct pinctrl_dev *p;
p = pinctrl_init_controller(pctldesc, dev, driver_data);
if (IS_ERR(p))
return PTR_ERR(p);
/*
* We have pinctrl_start() call functions in the pin controller
* driver with create_pinctrl() for at least dt_node_to_map(). So
* let's make sure pctldev is properly initialized for the
* pin controller driver before we do anything.
*/
*pctldev = p;
return 0;
}
EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
/**
* pinctrl_unregister() - unregister pinmux
* @pctldev: pin controller to unregister
*
* Called by pinmux drivers to unregister a pinmux.
*/
void pinctrl_unregister(struct pinctrl_dev *pctldev)
{
struct pinctrl_gpio_range *range, *n;
if (!pctldev)
return;
mutex_lock(&pctldev->mutex);
pinctrl_remove_device_debugfs(pctldev);
mutex_unlock(&pctldev->mutex);
if (!IS_ERR_OR_NULL(pctldev->p))
pinctrl_put(pctldev->p);
mutex_lock(&pinctrldev_list_mutex);
mutex_lock(&pctldev->mutex);
/* TODO: check that no pinmuxes are still active? */
list_del(&pctldev->node);
pinmux_generic_free_functions(pctldev);
pinctrl_generic_free_groups(pctldev);
/* Destroy descriptor tree */
pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
pctldev->desc->npins);
/* remove gpio ranges map */
list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
list_del(&range->node);
mutex_unlock(&pctldev->mutex);
mutex_destroy(&pctldev->mutex);
kfree(pctldev);
mutex_unlock(&pinctrldev_list_mutex);
}
EXPORT_SYMBOL_GPL(pinctrl_unregister);
static void devm_pinctrl_dev_release(struct device *dev, void *res)
{
struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
pinctrl_unregister(pctldev);
}
static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
{
struct pctldev **r = res;
if (WARN_ON(!r || !*r))
return 0;
return *r == data;
}
/**
* devm_pinctrl_register() - Resource managed version of pinctrl_register().
* @dev: parent device for this pin controller
* @pctldesc: descriptor for this pin controller
* @driver_data: private pin controller data for this pin controller
*
* Returns an error pointer if pincontrol register failed. Otherwise
* it returns valid pinctrl handle.
*
* The pinctrl device will be automatically released when the device is unbound.
*/
struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
struct pinctrl_desc *pctldesc,
void *driver_data)
{
struct pinctrl_dev **ptr, *pctldev;
ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return ERR_PTR(-ENOMEM);
pctldev = pinctrl_register(pctldesc, dev, driver_data);
if (IS_ERR(pctldev)) {
devres_free(ptr);
return pctldev;
}
*ptr = pctldev;
devres_add(dev, ptr);
return pctldev;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_register);
/**
* devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
* @dev: parent device for this pin controller
* @pctldesc: descriptor for this pin controller
* @driver_data: private pin controller data for this pin controller
*
* Returns an error pointer if pincontrol register failed. Otherwise
* it returns valid pinctrl handle.
*
* The pinctrl device will be automatically released when the device is unbound.
*/
int devm_pinctrl_register_and_init(struct device *dev,
struct pinctrl_desc *pctldesc,
void *driver_data,
struct pinctrl_dev **pctldev)
{
struct pinctrl_dev **ptr;
int error;
ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
if (!ptr)
return -ENOMEM;
error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
if (error) {
devres_free(ptr);
return error;
}
*ptr = *pctldev;
devres_add(dev, ptr);
return 0;
}
EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
/**
* devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
* @dev: device for which which resource was allocated
* @pctldev: the pinctrl device to unregister.
*/
void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
{
WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
devm_pinctrl_dev_match, pctldev));
}
EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
static int __init pinctrl_init(void)
{
pr_info("initialized pinctrl subsystem\n");
pinctrl_init_debugfs();
return 0;
}
/* init early since many drivers really need to initialized pinmux early */
core_initcall(pinctrl_init);