| |
| /* |
| * Linux driver for Disk-On-Chip 2000 and Millennium |
| * (c) 1999 Machine Vision Holdings, Inc. |
| * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> |
| * |
| * $Id: doc2000.c,v 1.67 2005/11/07 11:14:24 gleixner Exp $ |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <asm/errno.h> |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| #include <linux/miscdevice.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/init.h> |
| #include <linux/types.h> |
| #include <linux/bitops.h> |
| #include <linux/mutex.h> |
| |
| #include <linux/mtd/mtd.h> |
| #include <linux/mtd/nand.h> |
| #include <linux/mtd/doc2000.h> |
| |
| #define DOC_SUPPORT_2000 |
| #define DOC_SUPPORT_2000TSOP |
| #define DOC_SUPPORT_MILLENNIUM |
| |
| #ifdef DOC_SUPPORT_2000 |
| #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k) |
| #else |
| #define DoC_is_2000(doc) (0) |
| #endif |
| |
| #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM) |
| #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil) |
| #else |
| #define DoC_is_Millennium(doc) (0) |
| #endif |
| |
| /* #define ECC_DEBUG */ |
| |
| /* I have no idea why some DoC chips can not use memcpy_from|to_io(). |
| * This may be due to the different revisions of the ASIC controller built-in or |
| * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment |
| * this: |
| #undef USE_MEMCPY |
| */ |
| |
| static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf); |
| static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf); |
| static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t *retlen, u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); |
| static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t *retlen, const u_char *buf, u_char *eccbuf, struct nand_oobinfo *oobsel); |
| static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen, |
| u_char *eccbuf, struct nand_oobinfo *oobsel); |
| static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, |
| size_t *retlen, u_char *buf); |
| static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, |
| size_t *retlen, const u_char *buf); |
| static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, |
| size_t *retlen, const u_char *buf); |
| static int doc_erase (struct mtd_info *mtd, struct erase_info *instr); |
| |
| static struct mtd_info *doc2klist = NULL; |
| |
| /* Perform the required delay cycles by reading from the appropriate register */ |
| static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles) |
| { |
| volatile char dummy; |
| int i; |
| |
| for (i = 0; i < cycles; i++) { |
| if (DoC_is_Millennium(doc)) |
| dummy = ReadDOC(doc->virtadr, NOP); |
| else |
| dummy = ReadDOC(doc->virtadr, DOCStatus); |
| } |
| |
| } |
| |
| /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ |
| static int _DoC_WaitReady(struct DiskOnChip *doc) |
| { |
| void __iomem *docptr = doc->virtadr; |
| unsigned long timeo = jiffies + (HZ * 10); |
| |
| DEBUG(MTD_DEBUG_LEVEL3, |
| "_DoC_WaitReady called for out-of-line wait\n"); |
| |
| /* Out-of-line routine to wait for chip response */ |
| while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { |
| /* issue 2 read from NOP register after reading from CDSNControl register |
| see Software Requirement 11.4 item 2. */ |
| DoC_Delay(doc, 2); |
| |
| if (time_after(jiffies, timeo)) { |
| DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n"); |
| return -EIO; |
| } |
| udelay(1); |
| cond_resched(); |
| } |
| |
| return 0; |
| } |
| |
| static inline int DoC_WaitReady(struct DiskOnChip *doc) |
| { |
| void __iomem *docptr = doc->virtadr; |
| |
| /* This is inline, to optimise the common case, where it's ready instantly */ |
| int ret = 0; |
| |
| /* 4 read form NOP register should be issued in prior to the read from CDSNControl |
| see Software Requirement 11.4 item 2. */ |
| DoC_Delay(doc, 4); |
| |
| if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) |
| /* Call the out-of-line routine to wait */ |
| ret = _DoC_WaitReady(doc); |
| |
| /* issue 2 read from NOP register after reading from CDSNControl register |
| see Software Requirement 11.4 item 2. */ |
| DoC_Delay(doc, 2); |
| |
| return ret; |
| } |
| |
| /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to |
| bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is |
| required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ |
| |
| static int DoC_Command(struct DiskOnChip *doc, unsigned char command, |
| unsigned char xtraflags) |
| { |
| void __iomem *docptr = doc->virtadr; |
| |
| if (DoC_is_2000(doc)) |
| xtraflags |= CDSN_CTRL_FLASH_IO; |
| |
| /* Assert the CLE (Command Latch Enable) line to the flash chip */ |
| WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(command, docptr, CDSNSlowIO); |
| |
| /* Send the command */ |
| WriteDOC_(command, docptr, doc->ioreg); |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(command, docptr, WritePipeTerm); |
| |
| /* Lower the CLE line */ |
| WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to |
| bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is |
| required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */ |
| |
| static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs, |
| unsigned char xtraflags1, unsigned char xtraflags2) |
| { |
| int i; |
| void __iomem *docptr = doc->virtadr; |
| |
| if (DoC_is_2000(doc)) |
| xtraflags1 |= CDSN_CTRL_FLASH_IO; |
| |
| /* Assert the ALE (Address Latch Enable) line to the flash chip */ |
| WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl); |
| |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Send the address */ |
| /* Devices with 256-byte page are addressed as: |
| Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) |
| * there is no device on the market with page256 |
| and more than 24 bits. |
| Devices with 512-byte page are addressed as: |
| Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) |
| * 25-31 is sent only if the chip support it. |
| * bit 8 changes the read command to be sent |
| (NAND_CMD_READ0 or NAND_CMD_READ1). |
| */ |
| |
| if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) { |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); |
| WriteDOC_(ofs & 0xff, docptr, doc->ioreg); |
| } |
| |
| if (doc->page256) { |
| ofs = ofs >> 8; |
| } else { |
| ofs = ofs >> 9; |
| } |
| |
| if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { |
| for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) { |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(ofs & 0xff, docptr, CDSNSlowIO); |
| WriteDOC_(ofs & 0xff, docptr, doc->ioreg); |
| } |
| } |
| |
| if (DoC_is_Millennium(doc)) |
| WriteDOC(ofs & 0xff, docptr, WritePipeTerm); |
| |
| DoC_Delay(doc, 2); /* Needed for some slow flash chips. mf. */ |
| |
| /* FIXME: The SlowIO's for millennium could be replaced by |
| a single WritePipeTerm here. mf. */ |
| |
| /* Lower the ALE line */ |
| WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr, |
| CDSNControl); |
| |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Wait for the chip to respond - Software requirement 11.4.1 */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* Read a buffer from DoC, taking care of Millennium odditys */ |
| static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len) |
| { |
| volatile int dummy; |
| int modulus = 0xffff; |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| if (len <= 0) |
| return; |
| |
| if (DoC_is_Millennium(doc)) { |
| /* Read the data via the internal pipeline through CDSN IO register, |
| see Pipelined Read Operations 11.3 */ |
| dummy = ReadDOC(docptr, ReadPipeInit); |
| |
| /* Millennium should use the LastDataRead register - Pipeline Reads */ |
| len--; |
| |
| /* This is needed for correctly ECC calculation */ |
| modulus = 0xff; |
| } |
| |
| for (i = 0; i < len; i++) |
| buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus)); |
| |
| if (DoC_is_Millennium(doc)) { |
| buf[i] = ReadDOC(docptr, LastDataRead); |
| } |
| } |
| |
| /* Write a buffer to DoC, taking care of Millennium odditys */ |
| static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len) |
| { |
| void __iomem *docptr = doc->virtadr; |
| int i; |
| |
| if (len <= 0) |
| return; |
| |
| for (i = 0; i < len; i++) |
| WriteDOC_(buf[i], docptr, doc->ioreg + i); |
| |
| if (DoC_is_Millennium(doc)) { |
| WriteDOC(0x00, docptr, WritePipeTerm); |
| } |
| } |
| |
| |
| /* DoC_SelectChip: Select a given flash chip within the current floor */ |
| |
| static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip) |
| { |
| void __iomem *docptr = doc->virtadr; |
| |
| /* Software requirement 11.4.4 before writing DeviceSelect */ |
| /* Deassert the CE line to eliminate glitches on the FCE# outputs */ |
| WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Select the individual flash chip requested */ |
| WriteDOC(chip, docptr, CDSNDeviceSelect); |
| DoC_Delay(doc, 4); |
| |
| /* Reassert the CE line */ |
| WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr, |
| CDSNControl); |
| DoC_Delay(doc, 4); /* Software requirement 11.4.3 for Millennium */ |
| |
| /* Wait for it to be ready */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* DoC_SelectFloor: Select a given floor (bank of flash chips) */ |
| |
| static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor) |
| { |
| void __iomem *docptr = doc->virtadr; |
| |
| /* Select the floor (bank) of chips required */ |
| WriteDOC(floor, docptr, FloorSelect); |
| |
| /* Wait for the chip to be ready */ |
| return DoC_WaitReady(doc); |
| } |
| |
| /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */ |
| |
| static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip) |
| { |
| int mfr, id, i, j; |
| volatile char dummy; |
| |
| /* Page in the required floor/chip */ |
| DoC_SelectFloor(doc, floor); |
| DoC_SelectChip(doc, chip); |
| |
| /* Reset the chip */ |
| if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) { |
| DEBUG(MTD_DEBUG_LEVEL2, |
| "DoC_Command (reset) for %d,%d returned true\n", |
| floor, chip); |
| return 0; |
| } |
| |
| |
| /* Read the NAND chip ID: 1. Send ReadID command */ |
| if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) { |
| DEBUG(MTD_DEBUG_LEVEL2, |
| "DoC_Command (ReadID) for %d,%d returned true\n", |
| floor, chip); |
| return 0; |
| } |
| |
| /* Read the NAND chip ID: 2. Send address byte zero */ |
| DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0); |
| |
| /* Read the manufacturer and device id codes from the device */ |
| |
| if (DoC_is_Millennium(doc)) { |
| DoC_Delay(doc, 2); |
| dummy = ReadDOC(doc->virtadr, ReadPipeInit); |
| mfr = ReadDOC(doc->virtadr, LastDataRead); |
| |
| DoC_Delay(doc, 2); |
| dummy = ReadDOC(doc->virtadr, ReadPipeInit); |
| id = ReadDOC(doc->virtadr, LastDataRead); |
| } else { |
| /* CDSN Slow IO register see Software Req 11.4 item 5. */ |
| dummy = ReadDOC(doc->virtadr, CDSNSlowIO); |
| DoC_Delay(doc, 2); |
| mfr = ReadDOC_(doc->virtadr, doc->ioreg); |
| |
| /* CDSN Slow IO register see Software Req 11.4 item 5. */ |
| dummy = ReadDOC(doc->virtadr, CDSNSlowIO); |
| DoC_Delay(doc, 2); |
| id = ReadDOC_(doc->virtadr, doc->ioreg); |
| } |
| |
| /* No response - return failure */ |
| if (mfr == 0xff || mfr == 0) |
| return 0; |
| |
| /* Check it's the same as the first chip we identified. |
| * M-Systems say that any given DiskOnChip device should only |
| * contain _one_ type of flash part, although that's not a |
| * hardware restriction. */ |
| if (doc->mfr) { |
| if (doc->mfr == mfr && doc->id == id) |
| return 1; /* This is another the same the first */ |
| else |
| printk(KERN_WARNING |
| "Flash chip at floor %d, chip %d is different:\n", |
| floor, chip); |
| } |
| |
| /* Print and store the manufacturer and ID codes. */ |
| for (i = 0; nand_flash_ids[i].name != NULL; i++) { |
| if (id == nand_flash_ids[i].id) { |
| /* Try to identify manufacturer */ |
| for (j = 0; nand_manuf_ids[j].id != 0x0; j++) { |
| if (nand_manuf_ids[j].id == mfr) |
| break; |
| } |
| printk(KERN_INFO |
| "Flash chip found: Manufacturer ID: %2.2X, " |
| "Chip ID: %2.2X (%s:%s)\n", mfr, id, |
| nand_manuf_ids[j].name, nand_flash_ids[i].name); |
| if (!doc->mfr) { |
| doc->mfr = mfr; |
| doc->id = id; |
| doc->chipshift = |
| ffs((nand_flash_ids[i].chipsize << 20)) - 1; |
| doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0; |
| doc->pageadrlen = doc->chipshift > 25 ? 3 : 2; |
| doc->erasesize = |
| nand_flash_ids[i].erasesize; |
| return 1; |
| } |
| return 0; |
| } |
| } |
| |
| |
| /* We haven't fully identified the chip. Print as much as we know. */ |
| printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n", |
| id, mfr); |
| |
| printk(KERN_WARNING "Please report to dwmw2@infradead.org\n"); |
| return 0; |
| } |
| |
| /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */ |
| |
| static void DoC_ScanChips(struct DiskOnChip *this, int maxchips) |
| { |
| int floor, chip; |
| int numchips[MAX_FLOORS]; |
| int ret = 1; |
| |
| this->numchips = 0; |
| this->mfr = 0; |
| this->id = 0; |
| |
| /* For each floor, find the number of valid chips it contains */ |
| for (floor = 0; floor < MAX_FLOORS; floor++) { |
| ret = 1; |
| numchips[floor] = 0; |
| for (chip = 0; chip < maxchips && ret != 0; chip++) { |
| |
| ret = DoC_IdentChip(this, floor, chip); |
| if (ret) { |
| numchips[floor]++; |
| this->numchips++; |
| } |
| } |
| } |
| |
| /* If there are none at all that we recognise, bail */ |
| if (!this->numchips) { |
| printk(KERN_NOTICE "No flash chips recognised.\n"); |
| return; |
| } |
| |
| /* Allocate an array to hold the information for each chip */ |
| this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL); |
| if (!this->chips) { |
| printk(KERN_NOTICE "No memory for allocating chip info structures\n"); |
| return; |
| } |
| |
| ret = 0; |
| |
| /* Fill out the chip array with {floor, chipno} for each |
| * detected chip in the device. */ |
| for (floor = 0; floor < MAX_FLOORS; floor++) { |
| for (chip = 0; chip < numchips[floor]; chip++) { |
| this->chips[ret].floor = floor; |
| this->chips[ret].chip = chip; |
| this->chips[ret].curadr = 0; |
| this->chips[ret].curmode = 0x50; |
| ret++; |
| } |
| } |
| |
| /* Calculate and print the total size of the device */ |
| this->totlen = this->numchips * (1 << this->chipshift); |
| |
| printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n", |
| this->numchips, this->totlen >> 20); |
| } |
| |
| static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2) |
| { |
| int tmp1, tmp2, retval; |
| if (doc1->physadr == doc2->physadr) |
| return 1; |
| |
| /* Use the alias resolution register which was set aside for this |
| * purpose. If it's value is the same on both chips, they might |
| * be the same chip, and we write to one and check for a change in |
| * the other. It's unclear if this register is usuable in the |
| * DoC 2000 (it's in the Millennium docs), but it seems to work. */ |
| tmp1 = ReadDOC(doc1->virtadr, AliasResolution); |
| tmp2 = ReadDOC(doc2->virtadr, AliasResolution); |
| if (tmp1 != tmp2) |
| return 0; |
| |
| WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution); |
| tmp2 = ReadDOC(doc2->virtadr, AliasResolution); |
| if (tmp2 == (tmp1 + 1) % 0xff) |
| retval = 1; |
| else |
| retval = 0; |
| |
| /* Restore register contents. May not be necessary, but do it just to |
| * be safe. */ |
| WriteDOC(tmp1, doc1->virtadr, AliasResolution); |
| |
| return retval; |
| } |
| |
| /* This routine is found from the docprobe code by symbol_get(), |
| * which will bump the use count of this module. */ |
| void DoC2k_init(struct mtd_info *mtd) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| struct DiskOnChip *old = NULL; |
| int maxchips; |
| |
| /* We must avoid being called twice for the same device. */ |
| |
| if (doc2klist) |
| old = doc2klist->priv; |
| |
| while (old) { |
| if (DoC2k_is_alias(old, this)) { |
| printk(KERN_NOTICE |
| "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n", |
| this->physadr); |
| iounmap(this->virtadr); |
| kfree(mtd); |
| return; |
| } |
| if (old->nextdoc) |
| old = old->nextdoc->priv; |
| else |
| old = NULL; |
| } |
| |
| |
| switch (this->ChipID) { |
| case DOC_ChipID_Doc2kTSOP: |
| mtd->name = "DiskOnChip 2000 TSOP"; |
| this->ioreg = DoC_Mil_CDSN_IO; |
| /* Pretend it's a Millennium */ |
| this->ChipID = DOC_ChipID_DocMil; |
| maxchips = MAX_CHIPS; |
| break; |
| case DOC_ChipID_Doc2k: |
| mtd->name = "DiskOnChip 2000"; |
| this->ioreg = DoC_2k_CDSN_IO; |
| maxchips = MAX_CHIPS; |
| break; |
| case DOC_ChipID_DocMil: |
| mtd->name = "DiskOnChip Millennium"; |
| this->ioreg = DoC_Mil_CDSN_IO; |
| maxchips = MAX_CHIPS_MIL; |
| break; |
| default: |
| printk("Unknown ChipID 0x%02x\n", this->ChipID); |
| kfree(mtd); |
| iounmap(this->virtadr); |
| return; |
| } |
| |
| printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name, |
| this->physadr); |
| |
| mtd->type = MTD_NANDFLASH; |
| mtd->flags = MTD_CAP_NANDFLASH; |
| mtd->ecctype = MTD_ECC_RS_DiskOnChip; |
| mtd->size = 0; |
| mtd->erasesize = 0; |
| mtd->writesize = 512; |
| mtd->oobsize = 16; |
| mtd->owner = THIS_MODULE; |
| mtd->erase = doc_erase; |
| mtd->point = NULL; |
| mtd->unpoint = NULL; |
| mtd->read = doc_read; |
| mtd->write = doc_write; |
| mtd->read_ecc = doc_read_ecc; |
| mtd->write_ecc = doc_write_ecc; |
| mtd->writev_ecc = doc_writev_ecc; |
| mtd->read_oob = doc_read_oob; |
| mtd->write_oob = doc_write_oob; |
| mtd->sync = NULL; |
| |
| this->totlen = 0; |
| this->numchips = 0; |
| |
| this->curfloor = -1; |
| this->curchip = -1; |
| mutex_init(&this->lock); |
| |
| /* Ident all the chips present. */ |
| DoC_ScanChips(this, maxchips); |
| |
| if (!this->totlen) { |
| kfree(mtd); |
| iounmap(this->virtadr); |
| } else { |
| this->nextdoc = doc2klist; |
| doc2klist = mtd; |
| mtd->size = this->totlen; |
| mtd->erasesize = this->erasesize; |
| add_mtd_device(mtd); |
| return; |
| } |
| } |
| EXPORT_SYMBOL_GPL(DoC2k_init); |
| |
| static int doc_read(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t * retlen, u_char * buf) |
| { |
| /* Just a special case of doc_read_ecc */ |
| return doc_read_ecc(mtd, from, len, retlen, buf, NULL, NULL); |
| } |
| |
| static int doc_read_ecc(struct mtd_info *mtd, loff_t from, size_t len, |
| size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| void __iomem *docptr = this->virtadr; |
| struct Nand *mychip; |
| unsigned char syndrome[6]; |
| volatile char dummy; |
| int i, len256 = 0, ret=0; |
| size_t left = len; |
| |
| /* Don't allow read past end of device */ |
| if (from >= this->totlen) |
| return -EINVAL; |
| |
| mutex_lock(&this->lock); |
| |
| *retlen = 0; |
| while (left) { |
| len = left; |
| |
| /* Don't allow a single read to cross a 512-byte block boundary */ |
| if (from + len > ((from | 0x1ff) + 1)) |
| len = ((from | 0x1ff) + 1) - from; |
| |
| /* The ECC will not be calculated correctly if less than 512 is read */ |
| if (len != 0x200 && eccbuf) |
| printk(KERN_WARNING |
| "ECC needs a full sector read (adr: %lx size %lx)\n", |
| (long) from, (long) len); |
| |
| /* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */ |
| |
| |
| /* Find the chip which is to be used and select it */ |
| mychip = &this->chips[from >> (this->chipshift)]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| DoC_Command(this, |
| (!this->page256 |
| && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, |
| CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP, |
| CDSN_CTRL_ECC_IO); |
| |
| if (eccbuf) { |
| /* Prime the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_EN, docptr, ECCConf); |
| } else { |
| /* disable the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| } |
| |
| /* treat crossing 256-byte sector for 2M x 8bits devices */ |
| if (this->page256 && from + len > (from | 0xff) + 1) { |
| len256 = (from | 0xff) + 1 - from; |
| DoC_ReadBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, from + len256, |
| CDSN_CTRL_WP, CDSN_CTRL_ECC_IO); |
| } |
| |
| DoC_ReadBuf(this, &buf[len256], len - len256); |
| |
| /* Let the caller know we completed it */ |
| *retlen += len; |
| |
| if (eccbuf) { |
| /* Read the ECC data through the DiskOnChip ECC logic */ |
| /* Note: this will work even with 2M x 8bit devices as */ |
| /* they have 8 bytes of OOB per 256 page. mf. */ |
| DoC_ReadBuf(this, eccbuf, 6); |
| |
| /* Flush the pipeline */ |
| if (DoC_is_Millennium(this)) { |
| dummy = ReadDOC(docptr, ECCConf); |
| dummy = ReadDOC(docptr, ECCConf); |
| i = ReadDOC(docptr, ECCConf); |
| } else { |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| dummy = ReadDOC(docptr, 2k_ECCStatus); |
| i = ReadDOC(docptr, 2k_ECCStatus); |
| } |
| |
| /* Check the ECC Status */ |
| if (i & 0x80) { |
| int nb_errors; |
| /* There was an ECC error */ |
| #ifdef ECC_DEBUG |
| printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from); |
| #endif |
| /* Read the ECC syndrom through the DiskOnChip ECC logic. |
| These syndrome will be all ZERO when there is no error */ |
| for (i = 0; i < 6; i++) { |
| syndrome[i] = |
| ReadDOC(docptr, ECCSyndrome0 + i); |
| } |
| nb_errors = doc_decode_ecc(buf, syndrome); |
| |
| #ifdef ECC_DEBUG |
| printk(KERN_ERR "Errors corrected: %x\n", nb_errors); |
| #endif |
| if (nb_errors < 0) { |
| /* We return error, but have actually done the read. Not that |
| this can be told to user-space, via sys_read(), but at least |
| MTD-aware stuff can know about it by checking *retlen */ |
| ret = -EIO; |
| } |
| } |
| |
| #ifdef PSYCHO_DEBUG |
| printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", |
| (long)from, eccbuf[0], eccbuf[1], eccbuf[2], |
| eccbuf[3], eccbuf[4], eccbuf[5]); |
| #endif |
| |
| /* disable the ECC engine */ |
| WriteDOC(DOC_ECC_DIS, docptr , ECCConf); |
| } |
| |
| /* according to 11.4.1, we need to wait for the busy line |
| * drop if we read to the end of the page. */ |
| if(0 == ((from + len) & 0x1ff)) |
| { |
| DoC_WaitReady(this); |
| } |
| |
| from += len; |
| left -= len; |
| buf += len; |
| } |
| |
| mutex_unlock(&this->lock); |
| |
| return ret; |
| } |
| |
| static int doc_write(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t * retlen, const u_char * buf) |
| { |
| char eccbuf[6]; |
| return doc_write_ecc(mtd, to, len, retlen, buf, eccbuf, NULL); |
| } |
| |
| static int doc_write_ecc(struct mtd_info *mtd, loff_t to, size_t len, |
| size_t * retlen, const u_char * buf, |
| u_char * eccbuf, struct nand_oobinfo *oobsel) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */ |
| void __iomem *docptr = this->virtadr; |
| volatile char dummy; |
| int len256 = 0; |
| struct Nand *mychip; |
| size_t left = len; |
| int status; |
| |
| /* Don't allow write past end of device */ |
| if (to >= this->totlen) |
| return -EINVAL; |
| |
| mutex_lock(&this->lock); |
| |
| *retlen = 0; |
| while (left) { |
| len = left; |
| |
| /* Don't allow a single write to cross a 512-byte block boundary */ |
| if (to + len > ((to | 0x1ff) + 1)) |
| len = ((to | 0x1ff) + 1) - to; |
| |
| /* The ECC will not be calculated correctly if less than 512 is written */ |
| /* DBB- |
| if (len != 0x200 && eccbuf) |
| printk(KERN_WARNING |
| "ECC needs a full sector write (adr: %lx size %lx)\n", |
| (long) to, (long) len); |
| -DBB */ |
| |
| /* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */ |
| |
| /* Find the chip which is to be used and select it */ |
| mychip = &this->chips[to >> (this->chipshift)]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| /* Set device to main plane of flash */ |
| DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); |
| DoC_Command(this, |
| (!this->page256 |
| && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0, |
| CDSN_CTRL_WP); |
| |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO); |
| |
| if (eccbuf) { |
| /* Prime the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); |
| } else { |
| /* disable the ECC engine */ |
| WriteDOC(DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| } |
| |
| /* treat crossing 256-byte sector for 2M x 8bits devices */ |
| if (this->page256 && to + len > (to | 0xff) + 1) { |
| len256 = (to | 0xff) + 1 - to; |
| DoC_WriteBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| |
| DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| /* There's an implicit DoC_WaitReady() in DoC_Command */ |
| |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| |
| if (ReadDOC_(docptr, this->ioreg) & 1) { |
| printk(KERN_ERR "Error programming flash\n"); |
| /* Error in programming */ |
| *retlen = 0; |
| mutex_unlock(&this->lock); |
| return -EIO; |
| } |
| |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0, |
| CDSN_CTRL_ECC_IO); |
| } |
| |
| DoC_WriteBuf(this, &buf[len256], len - len256); |
| |
| if (eccbuf) { |
| WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, |
| CDSNControl); |
| |
| if (DoC_is_Millennium(this)) { |
| WriteDOC(0, docptr, NOP); |
| WriteDOC(0, docptr, NOP); |
| WriteDOC(0, docptr, NOP); |
| } else { |
| WriteDOC_(0, docptr, this->ioreg); |
| WriteDOC_(0, docptr, this->ioreg); |
| WriteDOC_(0, docptr, this->ioreg); |
| } |
| |
| WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr, |
| CDSNControl); |
| |
| /* Read the ECC data through the DiskOnChip ECC logic */ |
| for (di = 0; di < 6; di++) { |
| eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di); |
| } |
| |
| /* Reset the ECC engine */ |
| WriteDOC(DOC_ECC_DIS, docptr, ECCConf); |
| |
| #ifdef PSYCHO_DEBUG |
| printk |
| ("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n", |
| (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3], |
| eccbuf[4], eccbuf[5]); |
| #endif |
| } |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| |
| DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| /* There's an implicit DoC_WaitReady() in DoC_Command */ |
| |
| if (DoC_is_Millennium(this)) { |
| ReadDOC(docptr, ReadPipeInit); |
| status = ReadDOC(docptr, LastDataRead); |
| } else { |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| status = ReadDOC_(docptr, this->ioreg); |
| } |
| |
| if (status & 1) { |
| printk(KERN_ERR "Error programming flash\n"); |
| /* Error in programming */ |
| *retlen = 0; |
| mutex_unlock(&this->lock); |
| return -EIO; |
| } |
| |
| /* Let the caller know we completed it */ |
| *retlen += len; |
| |
| if (eccbuf) { |
| unsigned char x[8]; |
| size_t dummy; |
| int ret; |
| |
| /* Write the ECC data to flash */ |
| for (di=0; di<6; di++) |
| x[di] = eccbuf[di]; |
| |
| x[6]=0x55; |
| x[7]=0x55; |
| |
| ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x); |
| if (ret) { |
| mutex_unlock(&this->lock); |
| return ret; |
| } |
| } |
| |
| to += len; |
| left -= len; |
| buf += len; |
| } |
| |
| mutex_unlock(&this->lock); |
| return 0; |
| } |
| |
| static int doc_writev_ecc(struct mtd_info *mtd, const struct kvec *vecs, |
| unsigned long count, loff_t to, size_t *retlen, |
| u_char *eccbuf, struct nand_oobinfo *oobsel) |
| { |
| static char static_buf[512]; |
| static DEFINE_MUTEX(writev_buf_mutex); |
| |
| size_t totretlen = 0; |
| size_t thisvecofs = 0; |
| int ret= 0; |
| |
| mutex_lock(&writev_buf_mutex); |
| |
| while(count) { |
| size_t thislen, thisretlen; |
| unsigned char *buf; |
| |
| buf = vecs->iov_base + thisvecofs; |
| thislen = vecs->iov_len - thisvecofs; |
| |
| |
| if (thislen >= 512) { |
| thislen = thislen & ~(512-1); |
| thisvecofs += thislen; |
| } else { |
| /* Not enough to fill a page. Copy into buf */ |
| memcpy(static_buf, buf, thislen); |
| buf = &static_buf[thislen]; |
| |
| while(count && thislen < 512) { |
| vecs++; |
| count--; |
| thisvecofs = min((512-thislen), vecs->iov_len); |
| memcpy(buf, vecs->iov_base, thisvecofs); |
| thislen += thisvecofs; |
| buf += thisvecofs; |
| } |
| buf = static_buf; |
| } |
| if (count && thisvecofs == vecs->iov_len) { |
| thisvecofs = 0; |
| vecs++; |
| count--; |
| } |
| ret = doc_write_ecc(mtd, to, thislen, &thisretlen, buf, eccbuf, oobsel); |
| |
| totretlen += thisretlen; |
| |
| if (ret || thisretlen != thislen) |
| break; |
| |
| to += thislen; |
| } |
| |
| mutex_unlock(&writev_buf_mutex); |
| *retlen = totretlen; |
| return ret; |
| } |
| |
| |
| static int doc_read_oob(struct mtd_info *mtd, loff_t ofs, size_t len, |
| size_t * retlen, u_char * buf) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| int len256 = 0, ret; |
| struct Nand *mychip; |
| |
| mutex_lock(&this->lock); |
| |
| mychip = &this->chips[ofs >> this->chipshift]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| /* update address for 2M x 8bit devices. OOB starts on the second */ |
| /* page to maintain compatibility with doc_read_ecc. */ |
| if (this->page256) { |
| if (!(ofs & 0x8)) |
| ofs += 0x100; |
| else |
| ofs -= 0x8; |
| } |
| |
| DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0); |
| |
| /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| /* Note: datasheet says it should automaticaly wrap to the */ |
| /* next OOB block, but it didn't work here. mf. */ |
| if (this->page256 && ofs + len > (ofs | 0x7) + 1) { |
| len256 = (ofs | 0x7) + 1 - ofs; |
| DoC_ReadBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), |
| CDSN_CTRL_WP, 0); |
| } |
| |
| DoC_ReadBuf(this, &buf[len256], len - len256); |
| |
| *retlen = len; |
| /* Reading the full OOB data drops us off of the end of the page, |
| * causing the flash device to go into busy mode, so we need |
| * to wait until ready 11.4.1 and Toshiba TC58256FT docs */ |
| |
| ret = DoC_WaitReady(this); |
| |
| mutex_unlock(&this->lock); |
| return ret; |
| |
| } |
| |
| static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len, |
| size_t * retlen, const u_char * buf) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| int len256 = 0; |
| void __iomem *docptr = this->virtadr; |
| struct Nand *mychip = &this->chips[ofs >> this->chipshift]; |
| volatile int dummy; |
| int status; |
| |
| // printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len, |
| // buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]); |
| |
| /* Find the chip which is to be used and select it */ |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| /* disable the ECC engine */ |
| WriteDOC (DOC_ECC_RESET, docptr, ECCConf); |
| WriteDOC (DOC_ECC_DIS, docptr, ECCConf); |
| |
| /* Reset the chip, see Software Requirement 11.4 item 1. */ |
| DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP); |
| |
| /* issue the Read2 command to set the pointer to the Spare Data Area. */ |
| DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP); |
| |
| /* update address for 2M x 8bit devices. OOB starts on the second */ |
| /* page to maintain compatibility with doc_read_ecc. */ |
| if (this->page256) { |
| if (!(ofs & 0x8)) |
| ofs += 0x100; |
| else |
| ofs -= 0x8; |
| } |
| |
| /* issue the Serial Data In command to initial the Page Program process */ |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0); |
| |
| /* treat crossing 8-byte OOB data for 2M x 8bit devices */ |
| /* Note: datasheet says it should automaticaly wrap to the */ |
| /* next OOB block, but it didn't work here. mf. */ |
| if (this->page256 && ofs + len > (ofs | 0x7) + 1) { |
| len256 = (ofs | 0x7) + 1 - ofs; |
| DoC_WriteBuf(this, buf, len256); |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| DoC_Command(this, NAND_CMD_STATUS, 0); |
| /* DoC_WaitReady() is implicit in DoC_Command */ |
| |
| if (DoC_is_Millennium(this)) { |
| ReadDOC(docptr, ReadPipeInit); |
| status = ReadDOC(docptr, LastDataRead); |
| } else { |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| status = ReadDOC_(docptr, this->ioreg); |
| } |
| |
| if (status & 1) { |
| printk(KERN_ERR "Error programming oob data\n"); |
| /* There was an error */ |
| *retlen = 0; |
| return -EIO; |
| } |
| DoC_Command(this, NAND_CMD_SEQIN, 0); |
| DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0); |
| } |
| |
| DoC_WriteBuf(this, &buf[len256], len - len256); |
| |
| DoC_Command(this, NAND_CMD_PAGEPROG, 0); |
| DoC_Command(this, NAND_CMD_STATUS, 0); |
| /* DoC_WaitReady() is implicit in DoC_Command */ |
| |
| if (DoC_is_Millennium(this)) { |
| ReadDOC(docptr, ReadPipeInit); |
| status = ReadDOC(docptr, LastDataRead); |
| } else { |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| status = ReadDOC_(docptr, this->ioreg); |
| } |
| |
| if (status & 1) { |
| printk(KERN_ERR "Error programming oob data\n"); |
| /* There was an error */ |
| *retlen = 0; |
| return -EIO; |
| } |
| |
| *retlen = len; |
| return 0; |
| |
| } |
| |
| static int doc_write_oob(struct mtd_info *mtd, loff_t ofs, size_t len, |
| size_t * retlen, const u_char * buf) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| int ret; |
| |
| mutex_lock(&this->lock); |
| ret = doc_write_oob_nolock(mtd, ofs, len, retlen, buf); |
| |
| mutex_unlock(&this->lock); |
| return ret; |
| } |
| |
| static int doc_erase(struct mtd_info *mtd, struct erase_info *instr) |
| { |
| struct DiskOnChip *this = mtd->priv; |
| __u32 ofs = instr->addr; |
| __u32 len = instr->len; |
| volatile int dummy; |
| void __iomem *docptr = this->virtadr; |
| struct Nand *mychip; |
| int status; |
| |
| mutex_lock(&this->lock); |
| |
| if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) { |
| mutex_unlock(&this->lock); |
| return -EINVAL; |
| } |
| |
| instr->state = MTD_ERASING; |
| |
| /* FIXME: Do this in the background. Use timers or schedule_task() */ |
| while(len) { |
| mychip = &this->chips[ofs >> this->chipshift]; |
| |
| if (this->curfloor != mychip->floor) { |
| DoC_SelectFloor(this, mychip->floor); |
| DoC_SelectChip(this, mychip->chip); |
| } else if (this->curchip != mychip->chip) { |
| DoC_SelectChip(this, mychip->chip); |
| } |
| this->curfloor = mychip->floor; |
| this->curchip = mychip->chip; |
| |
| DoC_Command(this, NAND_CMD_ERASE1, 0); |
| DoC_Address(this, ADDR_PAGE, ofs, 0, 0); |
| DoC_Command(this, NAND_CMD_ERASE2, 0); |
| |
| DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP); |
| |
| if (DoC_is_Millennium(this)) { |
| ReadDOC(docptr, ReadPipeInit); |
| status = ReadDOC(docptr, LastDataRead); |
| } else { |
| dummy = ReadDOC(docptr, CDSNSlowIO); |
| DoC_Delay(this, 2); |
| status = ReadDOC_(docptr, this->ioreg); |
| } |
| |
| if (status & 1) { |
| printk(KERN_ERR "Error erasing at 0x%x\n", ofs); |
| /* There was an error */ |
| instr->state = MTD_ERASE_FAILED; |
| goto callback; |
| } |
| ofs += mtd->erasesize; |
| len -= mtd->erasesize; |
| } |
| instr->state = MTD_ERASE_DONE; |
| |
| callback: |
| mtd_erase_callback(instr); |
| |
| mutex_unlock(&this->lock); |
| return 0; |
| } |
| |
| |
| /**************************************************************************** |
| * |
| * Module stuff |
| * |
| ****************************************************************************/ |
| |
| static void __exit cleanup_doc2000(void) |
| { |
| struct mtd_info *mtd; |
| struct DiskOnChip *this; |
| |
| while ((mtd = doc2klist)) { |
| this = mtd->priv; |
| doc2klist = this->nextdoc; |
| |
| del_mtd_device(mtd); |
| |
| iounmap(this->virtadr); |
| kfree(this->chips); |
| kfree(mtd); |
| } |
| } |
| |
| module_exit(cleanup_doc2000); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al."); |
| MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium"); |
| |