| /* |
| * Copyright (C) 2007 Oracle. All rights reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public |
| * License v2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public |
| * License along with this program; if not, write to the |
| * Free Software Foundation, Inc., 59 Temple Place - Suite 330, |
| * Boston, MA 021110-1307, USA. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/slab.h> |
| #include <linux/sched.h> |
| #include <linux/writeback.h> |
| #include <linux/pagemap.h> |
| #include <linux/blkdev.h> |
| #include <linux/uuid.h> |
| #include "ctree.h" |
| #include "disk-io.h" |
| #include "transaction.h" |
| #include "locking.h" |
| #include "tree-log.h" |
| #include "inode-map.h" |
| #include "volumes.h" |
| #include "dev-replace.h" |
| |
| #define BTRFS_ROOT_TRANS_TAG 0 |
| |
| static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { |
| [TRANS_STATE_RUNNING] = 0U, |
| [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | |
| __TRANS_START), |
| [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | |
| __TRANS_START | |
| __TRANS_ATTACH), |
| [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | |
| __TRANS_START | |
| __TRANS_ATTACH | |
| __TRANS_JOIN), |
| [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | |
| __TRANS_START | |
| __TRANS_ATTACH | |
| __TRANS_JOIN | |
| __TRANS_JOIN_NOLOCK), |
| [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | |
| __TRANS_START | |
| __TRANS_ATTACH | |
| __TRANS_JOIN | |
| __TRANS_JOIN_NOLOCK), |
| }; |
| |
| static void put_transaction(struct btrfs_transaction *transaction) |
| { |
| WARN_ON(atomic_read(&transaction->use_count) == 0); |
| if (atomic_dec_and_test(&transaction->use_count)) { |
| BUG_ON(!list_empty(&transaction->list)); |
| WARN_ON(transaction->delayed_refs.root.rb_node); |
| while (!list_empty(&transaction->pending_chunks)) { |
| struct extent_map *em; |
| |
| em = list_first_entry(&transaction->pending_chunks, |
| struct extent_map, list); |
| list_del_init(&em->list); |
| free_extent_map(em); |
| } |
| kmem_cache_free(btrfs_transaction_cachep, transaction); |
| } |
| } |
| |
| static noinline void switch_commit_root(struct btrfs_root *root) |
| { |
| free_extent_buffer(root->commit_root); |
| root->commit_root = btrfs_root_node(root); |
| } |
| |
| static inline void extwriter_counter_inc(struct btrfs_transaction *trans, |
| unsigned int type) |
| { |
| if (type & TRANS_EXTWRITERS) |
| atomic_inc(&trans->num_extwriters); |
| } |
| |
| static inline void extwriter_counter_dec(struct btrfs_transaction *trans, |
| unsigned int type) |
| { |
| if (type & TRANS_EXTWRITERS) |
| atomic_dec(&trans->num_extwriters); |
| } |
| |
| static inline void extwriter_counter_init(struct btrfs_transaction *trans, |
| unsigned int type) |
| { |
| atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); |
| } |
| |
| static inline int extwriter_counter_read(struct btrfs_transaction *trans) |
| { |
| return atomic_read(&trans->num_extwriters); |
| } |
| |
| /* |
| * either allocate a new transaction or hop into the existing one |
| */ |
| static noinline int join_transaction(struct btrfs_root *root, unsigned int type) |
| { |
| struct btrfs_transaction *cur_trans; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| spin_lock(&fs_info->trans_lock); |
| loop: |
| /* The file system has been taken offline. No new transactions. */ |
| if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| spin_unlock(&fs_info->trans_lock); |
| return -EROFS; |
| } |
| |
| cur_trans = fs_info->running_transaction; |
| if (cur_trans) { |
| if (cur_trans->aborted) { |
| spin_unlock(&fs_info->trans_lock); |
| return cur_trans->aborted; |
| } |
| if (btrfs_blocked_trans_types[cur_trans->state] & type) { |
| spin_unlock(&fs_info->trans_lock); |
| return -EBUSY; |
| } |
| atomic_inc(&cur_trans->use_count); |
| atomic_inc(&cur_trans->num_writers); |
| extwriter_counter_inc(cur_trans, type); |
| spin_unlock(&fs_info->trans_lock); |
| return 0; |
| } |
| spin_unlock(&fs_info->trans_lock); |
| |
| /* |
| * If we are ATTACH, we just want to catch the current transaction, |
| * and commit it. If there is no transaction, just return ENOENT. |
| */ |
| if (type == TRANS_ATTACH) |
| return -ENOENT; |
| |
| /* |
| * JOIN_NOLOCK only happens during the transaction commit, so |
| * it is impossible that ->running_transaction is NULL |
| */ |
| BUG_ON(type == TRANS_JOIN_NOLOCK); |
| |
| cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); |
| if (!cur_trans) |
| return -ENOMEM; |
| |
| spin_lock(&fs_info->trans_lock); |
| if (fs_info->running_transaction) { |
| /* |
| * someone started a transaction after we unlocked. Make sure |
| * to redo the checks above |
| */ |
| kmem_cache_free(btrfs_transaction_cachep, cur_trans); |
| goto loop; |
| } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { |
| spin_unlock(&fs_info->trans_lock); |
| kmem_cache_free(btrfs_transaction_cachep, cur_trans); |
| return -EROFS; |
| } |
| |
| atomic_set(&cur_trans->num_writers, 1); |
| extwriter_counter_init(cur_trans, type); |
| init_waitqueue_head(&cur_trans->writer_wait); |
| init_waitqueue_head(&cur_trans->commit_wait); |
| cur_trans->state = TRANS_STATE_RUNNING; |
| /* |
| * One for this trans handle, one so it will live on until we |
| * commit the transaction. |
| */ |
| atomic_set(&cur_trans->use_count, 2); |
| cur_trans->start_time = get_seconds(); |
| |
| cur_trans->delayed_refs.root = RB_ROOT; |
| cur_trans->delayed_refs.num_entries = 0; |
| cur_trans->delayed_refs.num_heads_ready = 0; |
| cur_trans->delayed_refs.num_heads = 0; |
| cur_trans->delayed_refs.flushing = 0; |
| cur_trans->delayed_refs.run_delayed_start = 0; |
| |
| /* |
| * although the tree mod log is per file system and not per transaction, |
| * the log must never go across transaction boundaries. |
| */ |
| smp_mb(); |
| if (!list_empty(&fs_info->tree_mod_seq_list)) |
| WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " |
| "creating a fresh transaction\n"); |
| if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) |
| WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " |
| "creating a fresh transaction\n"); |
| atomic64_set(&fs_info->tree_mod_seq, 0); |
| |
| spin_lock_init(&cur_trans->delayed_refs.lock); |
| atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0); |
| atomic_set(&cur_trans->delayed_refs.ref_seq, 0); |
| init_waitqueue_head(&cur_trans->delayed_refs.wait); |
| |
| INIT_LIST_HEAD(&cur_trans->pending_snapshots); |
| INIT_LIST_HEAD(&cur_trans->ordered_operations); |
| INIT_LIST_HEAD(&cur_trans->pending_chunks); |
| list_add_tail(&cur_trans->list, &fs_info->trans_list); |
| extent_io_tree_init(&cur_trans->dirty_pages, |
| fs_info->btree_inode->i_mapping); |
| fs_info->generation++; |
| cur_trans->transid = fs_info->generation; |
| fs_info->running_transaction = cur_trans; |
| cur_trans->aborted = 0; |
| spin_unlock(&fs_info->trans_lock); |
| |
| return 0; |
| } |
| |
| /* |
| * this does all the record keeping required to make sure that a reference |
| * counted root is properly recorded in a given transaction. This is required |
| * to make sure the old root from before we joined the transaction is deleted |
| * when the transaction commits |
| */ |
| static int record_root_in_trans(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| if (root->ref_cows && root->last_trans < trans->transid) { |
| WARN_ON(root == root->fs_info->extent_root); |
| WARN_ON(root->commit_root != root->node); |
| |
| /* |
| * see below for in_trans_setup usage rules |
| * we have the reloc mutex held now, so there |
| * is only one writer in this function |
| */ |
| root->in_trans_setup = 1; |
| |
| /* make sure readers find in_trans_setup before |
| * they find our root->last_trans update |
| */ |
| smp_wmb(); |
| |
| spin_lock(&root->fs_info->fs_roots_radix_lock); |
| if (root->last_trans == trans->transid) { |
| spin_unlock(&root->fs_info->fs_roots_radix_lock); |
| return 0; |
| } |
| radix_tree_tag_set(&root->fs_info->fs_roots_radix, |
| (unsigned long)root->root_key.objectid, |
| BTRFS_ROOT_TRANS_TAG); |
| spin_unlock(&root->fs_info->fs_roots_radix_lock); |
| root->last_trans = trans->transid; |
| |
| /* this is pretty tricky. We don't want to |
| * take the relocation lock in btrfs_record_root_in_trans |
| * unless we're really doing the first setup for this root in |
| * this transaction. |
| * |
| * Normally we'd use root->last_trans as a flag to decide |
| * if we want to take the expensive mutex. |
| * |
| * But, we have to set root->last_trans before we |
| * init the relocation root, otherwise, we trip over warnings |
| * in ctree.c. The solution used here is to flag ourselves |
| * with root->in_trans_setup. When this is 1, we're still |
| * fixing up the reloc trees and everyone must wait. |
| * |
| * When this is zero, they can trust root->last_trans and fly |
| * through btrfs_record_root_in_trans without having to take the |
| * lock. smp_wmb() makes sure that all the writes above are |
| * done before we pop in the zero below |
| */ |
| btrfs_init_reloc_root(trans, root); |
| smp_wmb(); |
| root->in_trans_setup = 0; |
| } |
| return 0; |
| } |
| |
| |
| int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| if (!root->ref_cows) |
| return 0; |
| |
| /* |
| * see record_root_in_trans for comments about in_trans_setup usage |
| * and barriers |
| */ |
| smp_rmb(); |
| if (root->last_trans == trans->transid && |
| !root->in_trans_setup) |
| return 0; |
| |
| mutex_lock(&root->fs_info->reloc_mutex); |
| record_root_in_trans(trans, root); |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| |
| return 0; |
| } |
| |
| static inline int is_transaction_blocked(struct btrfs_transaction *trans) |
| { |
| return (trans->state >= TRANS_STATE_BLOCKED && |
| trans->state < TRANS_STATE_UNBLOCKED && |
| !trans->aborted); |
| } |
| |
| /* wait for commit against the current transaction to become unblocked |
| * when this is done, it is safe to start a new transaction, but the current |
| * transaction might not be fully on disk. |
| */ |
| static void wait_current_trans(struct btrfs_root *root) |
| { |
| struct btrfs_transaction *cur_trans; |
| |
| spin_lock(&root->fs_info->trans_lock); |
| cur_trans = root->fs_info->running_transaction; |
| if (cur_trans && is_transaction_blocked(cur_trans)) { |
| atomic_inc(&cur_trans->use_count); |
| spin_unlock(&root->fs_info->trans_lock); |
| |
| wait_event(root->fs_info->transaction_wait, |
| cur_trans->state >= TRANS_STATE_UNBLOCKED || |
| cur_trans->aborted); |
| put_transaction(cur_trans); |
| } else { |
| spin_unlock(&root->fs_info->trans_lock); |
| } |
| } |
| |
| static int may_wait_transaction(struct btrfs_root *root, int type) |
| { |
| if (root->fs_info->log_root_recovering) |
| return 0; |
| |
| if (type == TRANS_USERSPACE) |
| return 1; |
| |
| if (type == TRANS_START && |
| !atomic_read(&root->fs_info->open_ioctl_trans)) |
| return 1; |
| |
| return 0; |
| } |
| |
| static struct btrfs_trans_handle * |
| start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type, |
| enum btrfs_reserve_flush_enum flush) |
| { |
| struct btrfs_trans_handle *h; |
| struct btrfs_transaction *cur_trans; |
| u64 num_bytes = 0; |
| int ret; |
| u64 qgroup_reserved = 0; |
| |
| if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) |
| return ERR_PTR(-EROFS); |
| |
| if (current->journal_info) { |
| WARN_ON(type & TRANS_EXTWRITERS); |
| h = current->journal_info; |
| h->use_count++; |
| WARN_ON(h->use_count > 2); |
| h->orig_rsv = h->block_rsv; |
| h->block_rsv = NULL; |
| goto got_it; |
| } |
| |
| /* |
| * Do the reservation before we join the transaction so we can do all |
| * the appropriate flushing if need be. |
| */ |
| if (num_items > 0 && root != root->fs_info->chunk_root) { |
| if (root->fs_info->quota_enabled && |
| is_fstree(root->root_key.objectid)) { |
| qgroup_reserved = num_items * root->leafsize; |
| ret = btrfs_qgroup_reserve(root, qgroup_reserved); |
| if (ret) |
| return ERR_PTR(ret); |
| } |
| |
| num_bytes = btrfs_calc_trans_metadata_size(root, num_items); |
| ret = btrfs_block_rsv_add(root, |
| &root->fs_info->trans_block_rsv, |
| num_bytes, flush); |
| if (ret) |
| goto reserve_fail; |
| } |
| again: |
| h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); |
| if (!h) { |
| ret = -ENOMEM; |
| goto alloc_fail; |
| } |
| |
| /* |
| * If we are JOIN_NOLOCK we're already committing a transaction and |
| * waiting on this guy, so we don't need to do the sb_start_intwrite |
| * because we're already holding a ref. We need this because we could |
| * have raced in and did an fsync() on a file which can kick a commit |
| * and then we deadlock with somebody doing a freeze. |
| * |
| * If we are ATTACH, it means we just want to catch the current |
| * transaction and commit it, so we needn't do sb_start_intwrite(). |
| */ |
| if (type & __TRANS_FREEZABLE) |
| sb_start_intwrite(root->fs_info->sb); |
| |
| if (may_wait_transaction(root, type)) |
| wait_current_trans(root); |
| |
| do { |
| ret = join_transaction(root, type); |
| if (ret == -EBUSY) { |
| wait_current_trans(root); |
| if (unlikely(type == TRANS_ATTACH)) |
| ret = -ENOENT; |
| } |
| } while (ret == -EBUSY); |
| |
| if (ret < 0) { |
| /* We must get the transaction if we are JOIN_NOLOCK. */ |
| BUG_ON(type == TRANS_JOIN_NOLOCK); |
| goto join_fail; |
| } |
| |
| cur_trans = root->fs_info->running_transaction; |
| |
| h->transid = cur_trans->transid; |
| h->transaction = cur_trans; |
| h->blocks_used = 0; |
| h->bytes_reserved = 0; |
| h->root = root; |
| h->delayed_ref_updates = 0; |
| h->use_count = 1; |
| h->adding_csums = 0; |
| h->block_rsv = NULL; |
| h->orig_rsv = NULL; |
| h->aborted = 0; |
| h->qgroup_reserved = 0; |
| h->delayed_ref_elem.seq = 0; |
| h->type = type; |
| h->allocating_chunk = false; |
| INIT_LIST_HEAD(&h->qgroup_ref_list); |
| INIT_LIST_HEAD(&h->new_bgs); |
| |
| smp_mb(); |
| if (cur_trans->state >= TRANS_STATE_BLOCKED && |
| may_wait_transaction(root, type)) { |
| btrfs_commit_transaction(h, root); |
| goto again; |
| } |
| |
| if (num_bytes) { |
| trace_btrfs_space_reservation(root->fs_info, "transaction", |
| h->transid, num_bytes, 1); |
| h->block_rsv = &root->fs_info->trans_block_rsv; |
| h->bytes_reserved = num_bytes; |
| } |
| h->qgroup_reserved = qgroup_reserved; |
| |
| got_it: |
| btrfs_record_root_in_trans(h, root); |
| |
| if (!current->journal_info && type != TRANS_USERSPACE) |
| current->journal_info = h; |
| return h; |
| |
| join_fail: |
| if (type & __TRANS_FREEZABLE) |
| sb_end_intwrite(root->fs_info->sb); |
| kmem_cache_free(btrfs_trans_handle_cachep, h); |
| alloc_fail: |
| if (num_bytes) |
| btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, |
| num_bytes); |
| reserve_fail: |
| if (qgroup_reserved) |
| btrfs_qgroup_free(root, qgroup_reserved); |
| return ERR_PTR(ret); |
| } |
| |
| struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, |
| int num_items) |
| { |
| return start_transaction(root, num_items, TRANS_START, |
| BTRFS_RESERVE_FLUSH_ALL); |
| } |
| |
| struct btrfs_trans_handle *btrfs_start_transaction_lflush( |
| struct btrfs_root *root, int num_items) |
| { |
| return start_transaction(root, num_items, TRANS_START, |
| BTRFS_RESERVE_FLUSH_LIMIT); |
| } |
| |
| struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) |
| { |
| return start_transaction(root, 0, TRANS_JOIN, 0); |
| } |
| |
| struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) |
| { |
| return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); |
| } |
| |
| struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) |
| { |
| return start_transaction(root, 0, TRANS_USERSPACE, 0); |
| } |
| |
| /* |
| * btrfs_attach_transaction() - catch the running transaction |
| * |
| * It is used when we want to commit the current the transaction, but |
| * don't want to start a new one. |
| * |
| * Note: If this function return -ENOENT, it just means there is no |
| * running transaction. But it is possible that the inactive transaction |
| * is still in the memory, not fully on disk. If you hope there is no |
| * inactive transaction in the fs when -ENOENT is returned, you should |
| * invoke |
| * btrfs_attach_transaction_barrier() |
| */ |
| struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) |
| { |
| return start_transaction(root, 0, TRANS_ATTACH, 0); |
| } |
| |
| /* |
| * btrfs_attach_transaction_barrier() - catch the running transaction |
| * |
| * It is similar to the above function, the differentia is this one |
| * will wait for all the inactive transactions until they fully |
| * complete. |
| */ |
| struct btrfs_trans_handle * |
| btrfs_attach_transaction_barrier(struct btrfs_root *root) |
| { |
| struct btrfs_trans_handle *trans; |
| |
| trans = start_transaction(root, 0, TRANS_ATTACH, 0); |
| if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) |
| btrfs_wait_for_commit(root, 0); |
| |
| return trans; |
| } |
| |
| /* wait for a transaction commit to be fully complete */ |
| static noinline void wait_for_commit(struct btrfs_root *root, |
| struct btrfs_transaction *commit) |
| { |
| wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); |
| } |
| |
| int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) |
| { |
| struct btrfs_transaction *cur_trans = NULL, *t; |
| int ret = 0; |
| |
| if (transid) { |
| if (transid <= root->fs_info->last_trans_committed) |
| goto out; |
| |
| ret = -EINVAL; |
| /* find specified transaction */ |
| spin_lock(&root->fs_info->trans_lock); |
| list_for_each_entry(t, &root->fs_info->trans_list, list) { |
| if (t->transid == transid) { |
| cur_trans = t; |
| atomic_inc(&cur_trans->use_count); |
| ret = 0; |
| break; |
| } |
| if (t->transid > transid) { |
| ret = 0; |
| break; |
| } |
| } |
| spin_unlock(&root->fs_info->trans_lock); |
| /* The specified transaction doesn't exist */ |
| if (!cur_trans) |
| goto out; |
| } else { |
| /* find newest transaction that is committing | committed */ |
| spin_lock(&root->fs_info->trans_lock); |
| list_for_each_entry_reverse(t, &root->fs_info->trans_list, |
| list) { |
| if (t->state >= TRANS_STATE_COMMIT_START) { |
| if (t->state == TRANS_STATE_COMPLETED) |
| break; |
| cur_trans = t; |
| atomic_inc(&cur_trans->use_count); |
| break; |
| } |
| } |
| spin_unlock(&root->fs_info->trans_lock); |
| if (!cur_trans) |
| goto out; /* nothing committing|committed */ |
| } |
| |
| wait_for_commit(root, cur_trans); |
| put_transaction(cur_trans); |
| out: |
| return ret; |
| } |
| |
| void btrfs_throttle(struct btrfs_root *root) |
| { |
| if (!atomic_read(&root->fs_info->open_ioctl_trans)) |
| wait_current_trans(root); |
| } |
| |
| static int should_end_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| if (root->fs_info->global_block_rsv.space_info->full && |
| btrfs_should_throttle_delayed_refs(trans, root)) |
| return 1; |
| |
| return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); |
| } |
| |
| int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| int updates; |
| int err; |
| |
| smp_mb(); |
| if (cur_trans->state >= TRANS_STATE_BLOCKED || |
| cur_trans->delayed_refs.flushing) |
| return 1; |
| |
| updates = trans->delayed_ref_updates; |
| trans->delayed_ref_updates = 0; |
| if (updates) { |
| err = btrfs_run_delayed_refs(trans, root, updates); |
| if (err) /* Error code will also eval true */ |
| return err; |
| } |
| |
| return should_end_transaction(trans, root); |
| } |
| |
| static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, int throttle) |
| { |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| struct btrfs_fs_info *info = root->fs_info; |
| unsigned long cur = trans->delayed_ref_updates; |
| int lock = (trans->type != TRANS_JOIN_NOLOCK); |
| int err = 0; |
| |
| if (--trans->use_count) { |
| trans->block_rsv = trans->orig_rsv; |
| return 0; |
| } |
| |
| /* |
| * do the qgroup accounting as early as possible |
| */ |
| err = btrfs_delayed_refs_qgroup_accounting(trans, info); |
| |
| btrfs_trans_release_metadata(trans, root); |
| trans->block_rsv = NULL; |
| |
| if (trans->qgroup_reserved) { |
| /* |
| * the same root has to be passed here between start_transaction |
| * and end_transaction. Subvolume quota depends on this. |
| */ |
| btrfs_qgroup_free(trans->root, trans->qgroup_reserved); |
| trans->qgroup_reserved = 0; |
| } |
| |
| if (!list_empty(&trans->new_bgs)) |
| btrfs_create_pending_block_groups(trans, root); |
| |
| trans->delayed_ref_updates = 0; |
| if (btrfs_should_throttle_delayed_refs(trans, root)) { |
| cur = max_t(unsigned long, cur, 1); |
| trans->delayed_ref_updates = 0; |
| btrfs_run_delayed_refs(trans, root, cur); |
| } |
| |
| btrfs_trans_release_metadata(trans, root); |
| trans->block_rsv = NULL; |
| |
| if (!list_empty(&trans->new_bgs)) |
| btrfs_create_pending_block_groups(trans, root); |
| |
| if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && |
| should_end_transaction(trans, root) && |
| ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { |
| spin_lock(&info->trans_lock); |
| if (cur_trans->state == TRANS_STATE_RUNNING) |
| cur_trans->state = TRANS_STATE_BLOCKED; |
| spin_unlock(&info->trans_lock); |
| } |
| |
| if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { |
| if (throttle) { |
| /* |
| * We may race with somebody else here so end up having |
| * to call end_transaction on ourselves again, so inc |
| * our use_count. |
| */ |
| trans->use_count++; |
| return btrfs_commit_transaction(trans, root); |
| } else { |
| wake_up_process(info->transaction_kthread); |
| } |
| } |
| |
| if (trans->type & __TRANS_FREEZABLE) |
| sb_end_intwrite(root->fs_info->sb); |
| |
| WARN_ON(cur_trans != info->running_transaction); |
| WARN_ON(atomic_read(&cur_trans->num_writers) < 1); |
| atomic_dec(&cur_trans->num_writers); |
| extwriter_counter_dec(cur_trans, trans->type); |
| |
| smp_mb(); |
| if (waitqueue_active(&cur_trans->writer_wait)) |
| wake_up(&cur_trans->writer_wait); |
| put_transaction(cur_trans); |
| |
| if (current->journal_info == trans) |
| current->journal_info = NULL; |
| |
| if (throttle) |
| btrfs_run_delayed_iputs(root); |
| |
| if (trans->aborted || |
| test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) |
| err = -EIO; |
| assert_qgroups_uptodate(trans); |
| |
| kmem_cache_free(btrfs_trans_handle_cachep, trans); |
| return err; |
| } |
| |
| int btrfs_end_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| return __btrfs_end_transaction(trans, root, 0); |
| } |
| |
| int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| return __btrfs_end_transaction(trans, root, 1); |
| } |
| |
| int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| return __btrfs_end_transaction(trans, root, 1); |
| } |
| |
| /* |
| * when btree blocks are allocated, they have some corresponding bits set for |
| * them in one of two extent_io trees. This is used to make sure all of |
| * those extents are sent to disk but does not wait on them |
| */ |
| int btrfs_write_marked_extents(struct btrfs_root *root, |
| struct extent_io_tree *dirty_pages, int mark) |
| { |
| int err = 0; |
| int werr = 0; |
| struct address_space *mapping = root->fs_info->btree_inode->i_mapping; |
| struct extent_state *cached_state = NULL; |
| u64 start = 0; |
| u64 end; |
| |
| while (!find_first_extent_bit(dirty_pages, start, &start, &end, |
| mark, &cached_state)) { |
| convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, |
| mark, &cached_state, GFP_NOFS); |
| cached_state = NULL; |
| err = filemap_fdatawrite_range(mapping, start, end); |
| if (err) |
| werr = err; |
| cond_resched(); |
| start = end + 1; |
| } |
| if (err) |
| werr = err; |
| return werr; |
| } |
| |
| /* |
| * when btree blocks are allocated, they have some corresponding bits set for |
| * them in one of two extent_io trees. This is used to make sure all of |
| * those extents are on disk for transaction or log commit. We wait |
| * on all the pages and clear them from the dirty pages state tree |
| */ |
| int btrfs_wait_marked_extents(struct btrfs_root *root, |
| struct extent_io_tree *dirty_pages, int mark) |
| { |
| int err = 0; |
| int werr = 0; |
| struct address_space *mapping = root->fs_info->btree_inode->i_mapping; |
| struct extent_state *cached_state = NULL; |
| u64 start = 0; |
| u64 end; |
| |
| while (!find_first_extent_bit(dirty_pages, start, &start, &end, |
| EXTENT_NEED_WAIT, &cached_state)) { |
| clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, |
| 0, 0, &cached_state, GFP_NOFS); |
| err = filemap_fdatawait_range(mapping, start, end); |
| if (err) |
| werr = err; |
| cond_resched(); |
| start = end + 1; |
| } |
| if (err) |
| werr = err; |
| return werr; |
| } |
| |
| /* |
| * when btree blocks are allocated, they have some corresponding bits set for |
| * them in one of two extent_io trees. This is used to make sure all of |
| * those extents are on disk for transaction or log commit |
| */ |
| static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, |
| struct extent_io_tree *dirty_pages, int mark) |
| { |
| int ret; |
| int ret2; |
| struct blk_plug plug; |
| |
| blk_start_plug(&plug); |
| ret = btrfs_write_marked_extents(root, dirty_pages, mark); |
| blk_finish_plug(&plug); |
| ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); |
| |
| if (ret) |
| return ret; |
| if (ret2) |
| return ret2; |
| return 0; |
| } |
| |
| int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| if (!trans || !trans->transaction) { |
| struct inode *btree_inode; |
| btree_inode = root->fs_info->btree_inode; |
| return filemap_write_and_wait(btree_inode->i_mapping); |
| } |
| return btrfs_write_and_wait_marked_extents(root, |
| &trans->transaction->dirty_pages, |
| EXTENT_DIRTY); |
| } |
| |
| /* |
| * this is used to update the root pointer in the tree of tree roots. |
| * |
| * But, in the case of the extent allocation tree, updating the root |
| * pointer may allocate blocks which may change the root of the extent |
| * allocation tree. |
| * |
| * So, this loops and repeats and makes sure the cowonly root didn't |
| * change while the root pointer was being updated in the metadata. |
| */ |
| static int update_cowonly_root(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| int ret; |
| u64 old_root_bytenr; |
| u64 old_root_used; |
| struct btrfs_root *tree_root = root->fs_info->tree_root; |
| |
| old_root_used = btrfs_root_used(&root->root_item); |
| btrfs_write_dirty_block_groups(trans, root); |
| |
| while (1) { |
| old_root_bytenr = btrfs_root_bytenr(&root->root_item); |
| if (old_root_bytenr == root->node->start && |
| old_root_used == btrfs_root_used(&root->root_item)) |
| break; |
| |
| btrfs_set_root_node(&root->root_item, root->node); |
| ret = btrfs_update_root(trans, tree_root, |
| &root->root_key, |
| &root->root_item); |
| if (ret) |
| return ret; |
| |
| old_root_used = btrfs_root_used(&root->root_item); |
| ret = btrfs_write_dirty_block_groups(trans, root); |
| if (ret) |
| return ret; |
| } |
| |
| if (root != root->fs_info->extent_root) |
| switch_commit_root(root); |
| |
| return 0; |
| } |
| |
| /* |
| * update all the cowonly tree roots on disk |
| * |
| * The error handling in this function may not be obvious. Any of the |
| * failures will cause the file system to go offline. We still need |
| * to clean up the delayed refs. |
| */ |
| static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| struct list_head *next; |
| struct extent_buffer *eb; |
| int ret; |
| |
| ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); |
| if (ret) |
| return ret; |
| |
| eb = btrfs_lock_root_node(fs_info->tree_root); |
| ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, |
| 0, &eb); |
| btrfs_tree_unlock(eb); |
| free_extent_buffer(eb); |
| |
| if (ret) |
| return ret; |
| |
| ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); |
| if (ret) |
| return ret; |
| |
| ret = btrfs_run_dev_stats(trans, root->fs_info); |
| WARN_ON(ret); |
| ret = btrfs_run_dev_replace(trans, root->fs_info); |
| WARN_ON(ret); |
| |
| ret = btrfs_run_qgroups(trans, root->fs_info); |
| BUG_ON(ret); |
| |
| /* run_qgroups might have added some more refs */ |
| ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); |
| BUG_ON(ret); |
| |
| while (!list_empty(&fs_info->dirty_cowonly_roots)) { |
| next = fs_info->dirty_cowonly_roots.next; |
| list_del_init(next); |
| root = list_entry(next, struct btrfs_root, dirty_list); |
| |
| ret = update_cowonly_root(trans, root); |
| if (ret) |
| return ret; |
| } |
| |
| down_write(&fs_info->extent_commit_sem); |
| switch_commit_root(fs_info->extent_root); |
| up_write(&fs_info->extent_commit_sem); |
| |
| btrfs_after_dev_replace_commit(fs_info); |
| |
| return 0; |
| } |
| |
| /* |
| * dead roots are old snapshots that need to be deleted. This allocates |
| * a dirty root struct and adds it into the list of dead roots that need to |
| * be deleted |
| */ |
| void btrfs_add_dead_root(struct btrfs_root *root) |
| { |
| spin_lock(&root->fs_info->trans_lock); |
| if (list_empty(&root->root_list)) |
| list_add_tail(&root->root_list, &root->fs_info->dead_roots); |
| spin_unlock(&root->fs_info->trans_lock); |
| } |
| |
| /* |
| * update all the cowonly tree roots on disk |
| */ |
| static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_root *gang[8]; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| int i; |
| int ret; |
| int err = 0; |
| |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| while (1) { |
| ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, |
| (void **)gang, 0, |
| ARRAY_SIZE(gang), |
| BTRFS_ROOT_TRANS_TAG); |
| if (ret == 0) |
| break; |
| for (i = 0; i < ret; i++) { |
| root = gang[i]; |
| radix_tree_tag_clear(&fs_info->fs_roots_radix, |
| (unsigned long)root->root_key.objectid, |
| BTRFS_ROOT_TRANS_TAG); |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| |
| btrfs_free_log(trans, root); |
| btrfs_update_reloc_root(trans, root); |
| btrfs_orphan_commit_root(trans, root); |
| |
| btrfs_save_ino_cache(root, trans); |
| |
| /* see comments in should_cow_block() */ |
| root->force_cow = 0; |
| smp_wmb(); |
| |
| if (root->commit_root != root->node) { |
| mutex_lock(&root->fs_commit_mutex); |
| switch_commit_root(root); |
| btrfs_unpin_free_ino(root); |
| mutex_unlock(&root->fs_commit_mutex); |
| |
| btrfs_set_root_node(&root->root_item, |
| root->node); |
| } |
| |
| err = btrfs_update_root(trans, fs_info->tree_root, |
| &root->root_key, |
| &root->root_item); |
| spin_lock(&fs_info->fs_roots_radix_lock); |
| if (err) |
| break; |
| } |
| } |
| spin_unlock(&fs_info->fs_roots_radix_lock); |
| return err; |
| } |
| |
| /* |
| * defrag a given btree. |
| * Every leaf in the btree is read and defragged. |
| */ |
| int btrfs_defrag_root(struct btrfs_root *root) |
| { |
| struct btrfs_fs_info *info = root->fs_info; |
| struct btrfs_trans_handle *trans; |
| int ret; |
| |
| if (xchg(&root->defrag_running, 1)) |
| return 0; |
| |
| while (1) { |
| trans = btrfs_start_transaction(root, 0); |
| if (IS_ERR(trans)) |
| return PTR_ERR(trans); |
| |
| ret = btrfs_defrag_leaves(trans, root); |
| |
| btrfs_end_transaction(trans, root); |
| btrfs_btree_balance_dirty(info->tree_root); |
| cond_resched(); |
| |
| if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) |
| break; |
| |
| if (btrfs_defrag_cancelled(root->fs_info)) { |
| printk(KERN_DEBUG "btrfs: defrag_root cancelled\n"); |
| ret = -EAGAIN; |
| break; |
| } |
| } |
| root->defrag_running = 0; |
| return ret; |
| } |
| |
| /* |
| * new snapshots need to be created at a very specific time in the |
| * transaction commit. This does the actual creation. |
| * |
| * Note: |
| * If the error which may affect the commitment of the current transaction |
| * happens, we should return the error number. If the error which just affect |
| * the creation of the pending snapshots, just return 0. |
| */ |
| static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info, |
| struct btrfs_pending_snapshot *pending) |
| { |
| struct btrfs_key key; |
| struct btrfs_root_item *new_root_item; |
| struct btrfs_root *tree_root = fs_info->tree_root; |
| struct btrfs_root *root = pending->root; |
| struct btrfs_root *parent_root; |
| struct btrfs_block_rsv *rsv; |
| struct inode *parent_inode; |
| struct btrfs_path *path; |
| struct btrfs_dir_item *dir_item; |
| struct dentry *dentry; |
| struct extent_buffer *tmp; |
| struct extent_buffer *old; |
| struct timespec cur_time = CURRENT_TIME; |
| int ret = 0; |
| u64 to_reserve = 0; |
| u64 index = 0; |
| u64 objectid; |
| u64 root_flags; |
| uuid_le new_uuid; |
| |
| path = btrfs_alloc_path(); |
| if (!path) { |
| pending->error = -ENOMEM; |
| return 0; |
| } |
| |
| new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); |
| if (!new_root_item) { |
| pending->error = -ENOMEM; |
| goto root_item_alloc_fail; |
| } |
| |
| pending->error = btrfs_find_free_objectid(tree_root, &objectid); |
| if (pending->error) |
| goto no_free_objectid; |
| |
| btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); |
| |
| if (to_reserve > 0) { |
| pending->error = btrfs_block_rsv_add(root, |
| &pending->block_rsv, |
| to_reserve, |
| BTRFS_RESERVE_NO_FLUSH); |
| if (pending->error) |
| goto no_free_objectid; |
| } |
| |
| pending->error = btrfs_qgroup_inherit(trans, fs_info, |
| root->root_key.objectid, |
| objectid, pending->inherit); |
| if (pending->error) |
| goto no_free_objectid; |
| |
| key.objectid = objectid; |
| key.offset = (u64)-1; |
| key.type = BTRFS_ROOT_ITEM_KEY; |
| |
| rsv = trans->block_rsv; |
| trans->block_rsv = &pending->block_rsv; |
| trans->bytes_reserved = trans->block_rsv->reserved; |
| |
| dentry = pending->dentry; |
| parent_inode = pending->dir; |
| parent_root = BTRFS_I(parent_inode)->root; |
| record_root_in_trans(trans, parent_root); |
| |
| /* |
| * insert the directory item |
| */ |
| ret = btrfs_set_inode_index(parent_inode, &index); |
| BUG_ON(ret); /* -ENOMEM */ |
| |
| /* check if there is a file/dir which has the same name. */ |
| dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, |
| btrfs_ino(parent_inode), |
| dentry->d_name.name, |
| dentry->d_name.len, 0); |
| if (dir_item != NULL && !IS_ERR(dir_item)) { |
| pending->error = -EEXIST; |
| goto dir_item_existed; |
| } else if (IS_ERR(dir_item)) { |
| ret = PTR_ERR(dir_item); |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| btrfs_release_path(path); |
| |
| /* |
| * pull in the delayed directory update |
| * and the delayed inode item |
| * otherwise we corrupt the FS during |
| * snapshot |
| */ |
| ret = btrfs_run_delayed_items(trans, root); |
| if (ret) { /* Transaction aborted */ |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| record_root_in_trans(trans, root); |
| btrfs_set_root_last_snapshot(&root->root_item, trans->transid); |
| memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); |
| btrfs_check_and_init_root_item(new_root_item); |
| |
| root_flags = btrfs_root_flags(new_root_item); |
| if (pending->readonly) |
| root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; |
| else |
| root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; |
| btrfs_set_root_flags(new_root_item, root_flags); |
| |
| btrfs_set_root_generation_v2(new_root_item, |
| trans->transid); |
| uuid_le_gen(&new_uuid); |
| memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); |
| memcpy(new_root_item->parent_uuid, root->root_item.uuid, |
| BTRFS_UUID_SIZE); |
| if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { |
| memset(new_root_item->received_uuid, 0, |
| sizeof(new_root_item->received_uuid)); |
| memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); |
| memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); |
| btrfs_set_root_stransid(new_root_item, 0); |
| btrfs_set_root_rtransid(new_root_item, 0); |
| } |
| btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); |
| btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); |
| btrfs_set_root_otransid(new_root_item, trans->transid); |
| |
| old = btrfs_lock_root_node(root); |
| ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); |
| if (ret) { |
| btrfs_tree_unlock(old); |
| free_extent_buffer(old); |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| btrfs_set_lock_blocking(old); |
| |
| ret = btrfs_copy_root(trans, root, old, &tmp, objectid); |
| /* clean up in any case */ |
| btrfs_tree_unlock(old); |
| free_extent_buffer(old); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| /* see comments in should_cow_block() */ |
| root->force_cow = 1; |
| smp_wmb(); |
| |
| btrfs_set_root_node(new_root_item, tmp); |
| /* record when the snapshot was created in key.offset */ |
| key.offset = trans->transid; |
| ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); |
| btrfs_tree_unlock(tmp); |
| free_extent_buffer(tmp); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| /* |
| * insert root back/forward references |
| */ |
| ret = btrfs_add_root_ref(trans, tree_root, objectid, |
| parent_root->root_key.objectid, |
| btrfs_ino(parent_inode), index, |
| dentry->d_name.name, dentry->d_name.len); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| key.offset = (u64)-1; |
| pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); |
| if (IS_ERR(pending->snap)) { |
| ret = PTR_ERR(pending->snap); |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| ret = btrfs_reloc_post_snapshot(trans, pending); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| ret = btrfs_insert_dir_item(trans, parent_root, |
| dentry->d_name.name, dentry->d_name.len, |
| parent_inode, &key, |
| BTRFS_FT_DIR, index); |
| /* We have check then name at the beginning, so it is impossible. */ |
| BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| |
| btrfs_i_size_write(parent_inode, parent_inode->i_size + |
| dentry->d_name.len * 2); |
| parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; |
| ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, |
| BTRFS_UUID_KEY_SUBVOL, objectid); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { |
| ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, |
| new_root_item->received_uuid, |
| BTRFS_UUID_KEY_RECEIVED_SUBVOL, |
| objectid); |
| if (ret && ret != -EEXIST) { |
| btrfs_abort_transaction(trans, root, ret); |
| goto fail; |
| } |
| } |
| fail: |
| pending->error = ret; |
| dir_item_existed: |
| trans->block_rsv = rsv; |
| trans->bytes_reserved = 0; |
| no_free_objectid: |
| kfree(new_root_item); |
| root_item_alloc_fail: |
| btrfs_free_path(path); |
| return ret; |
| } |
| |
| /* |
| * create all the snapshots we've scheduled for creation |
| */ |
| static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, |
| struct btrfs_fs_info *fs_info) |
| { |
| struct btrfs_pending_snapshot *pending, *next; |
| struct list_head *head = &trans->transaction->pending_snapshots; |
| int ret = 0; |
| |
| list_for_each_entry_safe(pending, next, head, list) { |
| list_del(&pending->list); |
| ret = create_pending_snapshot(trans, fs_info, pending); |
| if (ret) |
| break; |
| } |
| return ret; |
| } |
| |
| static void update_super_roots(struct btrfs_root *root) |
| { |
| struct btrfs_root_item *root_item; |
| struct btrfs_super_block *super; |
| |
| super = root->fs_info->super_copy; |
| |
| root_item = &root->fs_info->chunk_root->root_item; |
| super->chunk_root = root_item->bytenr; |
| super->chunk_root_generation = root_item->generation; |
| super->chunk_root_level = root_item->level; |
| |
| root_item = &root->fs_info->tree_root->root_item; |
| super->root = root_item->bytenr; |
| super->generation = root_item->generation; |
| super->root_level = root_item->level; |
| if (btrfs_test_opt(root, SPACE_CACHE)) |
| super->cache_generation = root_item->generation; |
| if (root->fs_info->update_uuid_tree_gen) |
| super->uuid_tree_generation = root_item->generation; |
| } |
| |
| int btrfs_transaction_in_commit(struct btrfs_fs_info *info) |
| { |
| struct btrfs_transaction *trans; |
| int ret = 0; |
| |
| spin_lock(&info->trans_lock); |
| trans = info->running_transaction; |
| if (trans) |
| ret = (trans->state >= TRANS_STATE_COMMIT_START); |
| spin_unlock(&info->trans_lock); |
| return ret; |
| } |
| |
| int btrfs_transaction_blocked(struct btrfs_fs_info *info) |
| { |
| struct btrfs_transaction *trans; |
| int ret = 0; |
| |
| spin_lock(&info->trans_lock); |
| trans = info->running_transaction; |
| if (trans) |
| ret = is_transaction_blocked(trans); |
| spin_unlock(&info->trans_lock); |
| return ret; |
| } |
| |
| /* |
| * wait for the current transaction commit to start and block subsequent |
| * transaction joins |
| */ |
| static void wait_current_trans_commit_start(struct btrfs_root *root, |
| struct btrfs_transaction *trans) |
| { |
| wait_event(root->fs_info->transaction_blocked_wait, |
| trans->state >= TRANS_STATE_COMMIT_START || |
| trans->aborted); |
| } |
| |
| /* |
| * wait for the current transaction to start and then become unblocked. |
| * caller holds ref. |
| */ |
| static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, |
| struct btrfs_transaction *trans) |
| { |
| wait_event(root->fs_info->transaction_wait, |
| trans->state >= TRANS_STATE_UNBLOCKED || |
| trans->aborted); |
| } |
| |
| /* |
| * commit transactions asynchronously. once btrfs_commit_transaction_async |
| * returns, any subsequent transaction will not be allowed to join. |
| */ |
| struct btrfs_async_commit { |
| struct btrfs_trans_handle *newtrans; |
| struct btrfs_root *root; |
| struct work_struct work; |
| }; |
| |
| static void do_async_commit(struct work_struct *work) |
| { |
| struct btrfs_async_commit *ac = |
| container_of(work, struct btrfs_async_commit, work); |
| |
| /* |
| * We've got freeze protection passed with the transaction. |
| * Tell lockdep about it. |
| */ |
| if (ac->newtrans->type < TRANS_JOIN_NOLOCK) |
| rwsem_acquire_read( |
| &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], |
| 0, 1, _THIS_IP_); |
| |
| current->journal_info = ac->newtrans; |
| |
| btrfs_commit_transaction(ac->newtrans, ac->root); |
| kfree(ac); |
| } |
| |
| int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, |
| int wait_for_unblock) |
| { |
| struct btrfs_async_commit *ac; |
| struct btrfs_transaction *cur_trans; |
| |
| ac = kmalloc(sizeof(*ac), GFP_NOFS); |
| if (!ac) |
| return -ENOMEM; |
| |
| INIT_WORK(&ac->work, do_async_commit); |
| ac->root = root; |
| ac->newtrans = btrfs_join_transaction(root); |
| if (IS_ERR(ac->newtrans)) { |
| int err = PTR_ERR(ac->newtrans); |
| kfree(ac); |
| return err; |
| } |
| |
| /* take transaction reference */ |
| cur_trans = trans->transaction; |
| atomic_inc(&cur_trans->use_count); |
| |
| btrfs_end_transaction(trans, root); |
| |
| /* |
| * Tell lockdep we've released the freeze rwsem, since the |
| * async commit thread will be the one to unlock it. |
| */ |
| if (trans->type < TRANS_JOIN_NOLOCK) |
| rwsem_release( |
| &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], |
| 1, _THIS_IP_); |
| |
| schedule_work(&ac->work); |
| |
| /* wait for transaction to start and unblock */ |
| if (wait_for_unblock) |
| wait_current_trans_commit_start_and_unblock(root, cur_trans); |
| else |
| wait_current_trans_commit_start(root, cur_trans); |
| |
| if (current->journal_info == trans) |
| current->journal_info = NULL; |
| |
| put_transaction(cur_trans); |
| return 0; |
| } |
| |
| |
| static void cleanup_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root, int err) |
| { |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| DEFINE_WAIT(wait); |
| |
| WARN_ON(trans->use_count > 1); |
| |
| btrfs_abort_transaction(trans, root, err); |
| |
| spin_lock(&root->fs_info->trans_lock); |
| |
| /* |
| * If the transaction is removed from the list, it means this |
| * transaction has been committed successfully, so it is impossible |
| * to call the cleanup function. |
| */ |
| BUG_ON(list_empty(&cur_trans->list)); |
| |
| list_del_init(&cur_trans->list); |
| if (cur_trans == root->fs_info->running_transaction) { |
| cur_trans->state = TRANS_STATE_COMMIT_DOING; |
| spin_unlock(&root->fs_info->trans_lock); |
| wait_event(cur_trans->writer_wait, |
| atomic_read(&cur_trans->num_writers) == 1); |
| |
| spin_lock(&root->fs_info->trans_lock); |
| } |
| spin_unlock(&root->fs_info->trans_lock); |
| |
| btrfs_cleanup_one_transaction(trans->transaction, root); |
| |
| spin_lock(&root->fs_info->trans_lock); |
| if (cur_trans == root->fs_info->running_transaction) |
| root->fs_info->running_transaction = NULL; |
| spin_unlock(&root->fs_info->trans_lock); |
| |
| put_transaction(cur_trans); |
| put_transaction(cur_trans); |
| |
| trace_btrfs_transaction_commit(root); |
| |
| btrfs_scrub_continue(root); |
| |
| if (current->journal_info == trans) |
| current->journal_info = NULL; |
| |
| kmem_cache_free(btrfs_trans_handle_cachep, trans); |
| } |
| |
| static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| int ret; |
| |
| ret = btrfs_run_delayed_items(trans, root); |
| if (ret) |
| return ret; |
| |
| /* |
| * running the delayed items may have added new refs. account |
| * them now so that they hinder processing of more delayed refs |
| * as little as possible. |
| */ |
| btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); |
| |
| /* |
| * rename don't use btrfs_join_transaction, so, once we |
| * set the transaction to blocked above, we aren't going |
| * to get any new ordered operations. We can safely run |
| * it here and no for sure that nothing new will be added |
| * to the list |
| */ |
| ret = btrfs_run_ordered_operations(trans, root, 1); |
| |
| return ret; |
| } |
| |
| static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) |
| { |
| if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) |
| return btrfs_start_all_delalloc_inodes(fs_info, 1); |
| return 0; |
| } |
| |
| static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) |
| { |
| if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) |
| btrfs_wait_all_ordered_extents(fs_info, 1); |
| } |
| |
| int btrfs_commit_transaction(struct btrfs_trans_handle *trans, |
| struct btrfs_root *root) |
| { |
| struct btrfs_transaction *cur_trans = trans->transaction; |
| struct btrfs_transaction *prev_trans = NULL; |
| int ret; |
| |
| ret = btrfs_run_ordered_operations(trans, root, 0); |
| if (ret) { |
| btrfs_abort_transaction(trans, root, ret); |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| /* Stop the commit early if ->aborted is set */ |
| if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { |
| ret = cur_trans->aborted; |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| /* make a pass through all the delayed refs we have so far |
| * any runnings procs may add more while we are here |
| */ |
| ret = btrfs_run_delayed_refs(trans, root, 0); |
| if (ret) { |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| btrfs_trans_release_metadata(trans, root); |
| trans->block_rsv = NULL; |
| if (trans->qgroup_reserved) { |
| btrfs_qgroup_free(root, trans->qgroup_reserved); |
| trans->qgroup_reserved = 0; |
| } |
| |
| cur_trans = trans->transaction; |
| |
| /* |
| * set the flushing flag so procs in this transaction have to |
| * start sending their work down. |
| */ |
| cur_trans->delayed_refs.flushing = 1; |
| smp_wmb(); |
| |
| if (!list_empty(&trans->new_bgs)) |
| btrfs_create_pending_block_groups(trans, root); |
| |
| ret = btrfs_run_delayed_refs(trans, root, 0); |
| if (ret) { |
| btrfs_end_transaction(trans, root); |
| return ret; |
| } |
| |
| spin_lock(&root->fs_info->trans_lock); |
| if (cur_trans->state >= TRANS_STATE_COMMIT_START) { |
| spin_unlock(&root->fs_info->trans_lock); |
| atomic_inc(&cur_trans->use_count); |
| ret = btrfs_end_transaction(trans, root); |
| |
| wait_for_commit(root, cur_trans); |
| |
| put_transaction(cur_trans); |
| |
| return ret; |
| } |
| |
| cur_trans->state = TRANS_STATE_COMMIT_START; |
| wake_up(&root->fs_info->transaction_blocked_wait); |
| |
| if (cur_trans->list.prev != &root->fs_info->trans_list) { |
| prev_trans = list_entry(cur_trans->list.prev, |
| struct btrfs_transaction, list); |
| if (prev_trans->state != TRANS_STATE_COMPLETED) { |
| atomic_inc(&prev_trans->use_count); |
| spin_unlock(&root->fs_info->trans_lock); |
| |
| wait_for_commit(root, prev_trans); |
| |
| put_transaction(prev_trans); |
| } else { |
| spin_unlock(&root->fs_info->trans_lock); |
| } |
| } else { |
| spin_unlock(&root->fs_info->trans_lock); |
| } |
| |
| extwriter_counter_dec(cur_trans, trans->type); |
| |
| ret = btrfs_start_delalloc_flush(root->fs_info); |
| if (ret) |
| goto cleanup_transaction; |
| |
| ret = btrfs_flush_all_pending_stuffs(trans, root); |
| if (ret) |
| goto cleanup_transaction; |
| |
| wait_event(cur_trans->writer_wait, |
| extwriter_counter_read(cur_trans) == 0); |
| |
| /* some pending stuffs might be added after the previous flush. */ |
| ret = btrfs_flush_all_pending_stuffs(trans, root); |
| if (ret) |
| goto cleanup_transaction; |
| |
| btrfs_wait_delalloc_flush(root->fs_info); |
| /* |
| * Ok now we need to make sure to block out any other joins while we |
| * commit the transaction. We could have started a join before setting |
| * COMMIT_DOING so make sure to wait for num_writers to == 1 again. |
| */ |
| spin_lock(&root->fs_info->trans_lock); |
| cur_trans->state = TRANS_STATE_COMMIT_DOING; |
| spin_unlock(&root->fs_info->trans_lock); |
| wait_event(cur_trans->writer_wait, |
| atomic_read(&cur_trans->num_writers) == 1); |
| |
| /* ->aborted might be set after the previous check, so check it */ |
| if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { |
| ret = cur_trans->aborted; |
| goto cleanup_transaction; |
| } |
| /* |
| * the reloc mutex makes sure that we stop |
| * the balancing code from coming in and moving |
| * extents around in the middle of the commit |
| */ |
| mutex_lock(&root->fs_info->reloc_mutex); |
| |
| /* |
| * We needn't worry about the delayed items because we will |
| * deal with them in create_pending_snapshot(), which is the |
| * core function of the snapshot creation. |
| */ |
| ret = create_pending_snapshots(trans, root->fs_info); |
| if (ret) { |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| goto cleanup_transaction; |
| } |
| |
| /* |
| * We insert the dir indexes of the snapshots and update the inode |
| * of the snapshots' parents after the snapshot creation, so there |
| * are some delayed items which are not dealt with. Now deal with |
| * them. |
| * |
| * We needn't worry that this operation will corrupt the snapshots, |
| * because all the tree which are snapshoted will be forced to COW |
| * the nodes and leaves. |
| */ |
| ret = btrfs_run_delayed_items(trans, root); |
| if (ret) { |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| goto cleanup_transaction; |
| } |
| |
| ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); |
| if (ret) { |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| goto cleanup_transaction; |
| } |
| |
| /* |
| * make sure none of the code above managed to slip in a |
| * delayed item |
| */ |
| btrfs_assert_delayed_root_empty(root); |
| |
| WARN_ON(cur_trans != trans->transaction); |
| |
| btrfs_scrub_pause(root); |
| /* btrfs_commit_tree_roots is responsible for getting the |
| * various roots consistent with each other. Every pointer |
| * in the tree of tree roots has to point to the most up to date |
| * root for every subvolume and other tree. So, we have to keep |
| * the tree logging code from jumping in and changing any |
| * of the trees. |
| * |
| * At this point in the commit, there can't be any tree-log |
| * writers, but a little lower down we drop the trans mutex |
| * and let new people in. By holding the tree_log_mutex |
| * from now until after the super is written, we avoid races |
| * with the tree-log code. |
| */ |
| mutex_lock(&root->fs_info->tree_log_mutex); |
| |
| ret = commit_fs_roots(trans, root); |
| if (ret) { |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| goto cleanup_transaction; |
| } |
| |
| /* commit_fs_roots gets rid of all the tree log roots, it is now |
| * safe to free the root of tree log roots |
| */ |
| btrfs_free_log_root_tree(trans, root->fs_info); |
| |
| ret = commit_cowonly_roots(trans, root); |
| if (ret) { |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| goto cleanup_transaction; |
| } |
| |
| /* |
| * The tasks which save the space cache and inode cache may also |
| * update ->aborted, check it. |
| */ |
| if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { |
| ret = cur_trans->aborted; |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| goto cleanup_transaction; |
| } |
| |
| btrfs_prepare_extent_commit(trans, root); |
| |
| cur_trans = root->fs_info->running_transaction; |
| |
| btrfs_set_root_node(&root->fs_info->tree_root->root_item, |
| root->fs_info->tree_root->node); |
| switch_commit_root(root->fs_info->tree_root); |
| |
| btrfs_set_root_node(&root->fs_info->chunk_root->root_item, |
| root->fs_info->chunk_root->node); |
| switch_commit_root(root->fs_info->chunk_root); |
| |
| assert_qgroups_uptodate(trans); |
| update_super_roots(root); |
| |
| if (!root->fs_info->log_root_recovering) { |
| btrfs_set_super_log_root(root->fs_info->super_copy, 0); |
| btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); |
| } |
| |
| memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, |
| sizeof(*root->fs_info->super_copy)); |
| |
| spin_lock(&root->fs_info->trans_lock); |
| cur_trans->state = TRANS_STATE_UNBLOCKED; |
| root->fs_info->running_transaction = NULL; |
| spin_unlock(&root->fs_info->trans_lock); |
| mutex_unlock(&root->fs_info->reloc_mutex); |
| |
| wake_up(&root->fs_info->transaction_wait); |
| |
| ret = btrfs_write_and_wait_transaction(trans, root); |
| if (ret) { |
| btrfs_error(root->fs_info, ret, |
| "Error while writing out transaction"); |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| goto cleanup_transaction; |
| } |
| |
| ret = write_ctree_super(trans, root, 0); |
| if (ret) { |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| goto cleanup_transaction; |
| } |
| |
| /* |
| * the super is written, we can safely allow the tree-loggers |
| * to go about their business |
| */ |
| mutex_unlock(&root->fs_info->tree_log_mutex); |
| |
| btrfs_finish_extent_commit(trans, root); |
| |
| root->fs_info->last_trans_committed = cur_trans->transid; |
| /* |
| * We needn't acquire the lock here because there is no other task |
| * which can change it. |
| */ |
| cur_trans->state = TRANS_STATE_COMPLETED; |
| wake_up(&cur_trans->commit_wait); |
| |
| spin_lock(&root->fs_info->trans_lock); |
| list_del_init(&cur_trans->list); |
| spin_unlock(&root->fs_info->trans_lock); |
| |
| put_transaction(cur_trans); |
| put_transaction(cur_trans); |
| |
| if (trans->type & __TRANS_FREEZABLE) |
| sb_end_intwrite(root->fs_info->sb); |
| |
| trace_btrfs_transaction_commit(root); |
| |
| btrfs_scrub_continue(root); |
| |
| if (current->journal_info == trans) |
| current->journal_info = NULL; |
| |
| kmem_cache_free(btrfs_trans_handle_cachep, trans); |
| |
| if (current != root->fs_info->transaction_kthread) |
| btrfs_run_delayed_iputs(root); |
| |
| return ret; |
| |
| cleanup_transaction: |
| btrfs_trans_release_metadata(trans, root); |
| trans->block_rsv = NULL; |
| if (trans->qgroup_reserved) { |
| btrfs_qgroup_free(root, trans->qgroup_reserved); |
| trans->qgroup_reserved = 0; |
| } |
| btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); |
| if (current->journal_info == trans) |
| current->journal_info = NULL; |
| cleanup_transaction(trans, root, ret); |
| |
| return ret; |
| } |
| |
| /* |
| * return < 0 if error |
| * 0 if there are no more dead_roots at the time of call |
| * 1 there are more to be processed, call me again |
| * |
| * The return value indicates there are certainly more snapshots to delete, but |
| * if there comes a new one during processing, it may return 0. We don't mind, |
| * because btrfs_commit_super will poke cleaner thread and it will process it a |
| * few seconds later. |
| */ |
| int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) |
| { |
| int ret; |
| struct btrfs_fs_info *fs_info = root->fs_info; |
| |
| spin_lock(&fs_info->trans_lock); |
| if (list_empty(&fs_info->dead_roots)) { |
| spin_unlock(&fs_info->trans_lock); |
| return 0; |
| } |
| root = list_first_entry(&fs_info->dead_roots, |
| struct btrfs_root, root_list); |
| list_del_init(&root->root_list); |
| spin_unlock(&fs_info->trans_lock); |
| |
| pr_debug("btrfs: cleaner removing %llu\n", root->objectid); |
| |
| btrfs_kill_all_delayed_nodes(root); |
| |
| if (btrfs_header_backref_rev(root->node) < |
| BTRFS_MIXED_BACKREF_REV) |
| ret = btrfs_drop_snapshot(root, NULL, 0, 0); |
| else |
| ret = btrfs_drop_snapshot(root, NULL, 1, 0); |
| /* |
| * If we encounter a transaction abort during snapshot cleaning, we |
| * don't want to crash here |
| */ |
| return (ret < 0) ? 0 : 1; |
| } |