| #include <asm/delay.h> |
| #include <asm/arch/irq.h> |
| #include <asm/arch/hwregs/intr_vect.h> |
| #include <asm/arch/hwregs/intr_vect_defs.h> |
| #include <asm/tlbflush.h> |
| #include <asm/mmu_context.h> |
| #include <asm/arch/hwregs/mmu_defs_asm.h> |
| #include <asm/arch/hwregs/supp_reg.h> |
| #include <asm/atomic.h> |
| |
| #include <linux/err.h> |
| #include <linux/init.h> |
| #include <linux/timex.h> |
| #include <linux/sched.h> |
| #include <linux/kernel.h> |
| #include <linux/cpumask.h> |
| #include <linux/interrupt.h> |
| |
| #define IPI_SCHEDULE 1 |
| #define IPI_CALL 2 |
| #define IPI_FLUSH_TLB 4 |
| |
| #define FLUSH_ALL (void*)0xffffffff |
| |
| /* Vector of locks used for various atomic operations */ |
| spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED}; |
| |
| /* CPU masks */ |
| cpumask_t cpu_online_map = CPU_MASK_NONE; |
| cpumask_t phys_cpu_present_map = CPU_MASK_NONE; |
| |
| /* Variables used during SMP boot */ |
| volatile int cpu_now_booting = 0; |
| volatile struct thread_info *smp_init_current_idle_thread; |
| |
| /* Variables used during IPI */ |
| static DEFINE_SPINLOCK(call_lock); |
| static DEFINE_SPINLOCK(tlbstate_lock); |
| |
| struct call_data_struct { |
| void (*func) (void *info); |
| void *info; |
| int wait; |
| }; |
| |
| static struct call_data_struct * call_data; |
| |
| static struct mm_struct* flush_mm; |
| static struct vm_area_struct* flush_vma; |
| static unsigned long flush_addr; |
| |
| extern int setup_irq(int, struct irqaction *); |
| |
| /* Mode registers */ |
| static unsigned long irq_regs[NR_CPUS] = |
| { |
| regi_irq, |
| regi_irq2 |
| }; |
| |
| static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| static int send_ipi(int vector, int wait, cpumask_t cpu_mask); |
| static struct irqaction irq_ipi = { crisv32_ipi_interrupt, SA_INTERRUPT, |
| CPU_MASK_NONE, "ipi", NULL, NULL}; |
| |
| extern void cris_mmu_init(void); |
| extern void cris_timer_init(void); |
| |
| /* SMP initialization */ |
| void __init smp_prepare_cpus(unsigned int max_cpus) |
| { |
| int i; |
| |
| /* From now on we can expect IPIs so set them up */ |
| setup_irq(IPI_INTR_VECT, &irq_ipi); |
| |
| /* Mark all possible CPUs as present */ |
| for (i = 0; i < max_cpus; i++) |
| cpu_set(i, phys_cpu_present_map); |
| } |
| |
| void __devinit smp_prepare_boot_cpu(void) |
| { |
| /* PGD pointer has moved after per_cpu initialization so |
| * update the MMU. |
| */ |
| pgd_t **pgd; |
| pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id()); |
| |
| SUPP_BANK_SEL(1); |
| SUPP_REG_WR(RW_MM_TLB_PGD, pgd); |
| SUPP_BANK_SEL(2); |
| SUPP_REG_WR(RW_MM_TLB_PGD, pgd); |
| |
| cpu_set(0, cpu_online_map); |
| cpu_set(0, phys_cpu_present_map); |
| } |
| |
| void __init smp_cpus_done(unsigned int max_cpus) |
| { |
| } |
| |
| /* Bring one cpu online.*/ |
| static int __init |
| smp_boot_one_cpu(int cpuid) |
| { |
| unsigned timeout; |
| struct task_struct *idle; |
| |
| idle = fork_idle(cpuid); |
| if (IS_ERR(idle)) |
| panic("SMP: fork failed for CPU:%d", cpuid); |
| |
| idle->thread_info->cpu = cpuid; |
| |
| /* Information to the CPU that is about to boot */ |
| smp_init_current_idle_thread = idle->thread_info; |
| cpu_now_booting = cpuid; |
| |
| /* Wait for CPU to come online */ |
| for (timeout = 0; timeout < 10000; timeout++) { |
| if(cpu_online(cpuid)) { |
| cpu_now_booting = 0; |
| smp_init_current_idle_thread = NULL; |
| return 0; /* CPU online */ |
| } |
| udelay(100); |
| barrier(); |
| } |
| |
| put_task_struct(idle); |
| idle = NULL; |
| |
| printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid); |
| return -1; |
| } |
| |
| /* Secondary CPUs starts uing C here. Here we need to setup CPU |
| * specific stuff such as the local timer and the MMU. */ |
| void __init smp_callin(void) |
| { |
| extern void cpu_idle(void); |
| |
| int cpu = cpu_now_booting; |
| reg_intr_vect_rw_mask vect_mask = {0}; |
| |
| /* Initialise the idle task for this CPU */ |
| atomic_inc(&init_mm.mm_count); |
| current->active_mm = &init_mm; |
| |
| /* Set up MMU */ |
| cris_mmu_init(); |
| __flush_tlb_all(); |
| |
| /* Setup local timer. */ |
| cris_timer_init(); |
| |
| /* Enable IRQ and idle */ |
| REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask); |
| unmask_irq(IPI_INTR_VECT); |
| unmask_irq(TIMER_INTR_VECT); |
| local_irq_enable(); |
| |
| cpu_set(cpu, cpu_online_map); |
| cpu_idle(); |
| } |
| |
| /* Stop execution on this CPU.*/ |
| void stop_this_cpu(void* dummy) |
| { |
| local_irq_disable(); |
| asm volatile("halt"); |
| } |
| |
| /* Other calls */ |
| void smp_send_stop(void) |
| { |
| smp_call_function(stop_this_cpu, NULL, 1, 0); |
| } |
| |
| int setup_profiling_timer(unsigned int multiplier) |
| { |
| return -EINVAL; |
| } |
| |
| |
| /* cache_decay_ticks is used by the scheduler to decide if a process |
| * is "hot" on one CPU. A higher value means a higher penalty to move |
| * a process to another CPU. Our cache is rather small so we report |
| * 1 tick. |
| */ |
| unsigned long cache_decay_ticks = 1; |
| |
| int __devinit __cpu_up(unsigned int cpu) |
| { |
| smp_boot_one_cpu(cpu); |
| return cpu_online(cpu) ? 0 : -ENOSYS; |
| } |
| |
| void smp_send_reschedule(int cpu) |
| { |
| cpumask_t cpu_mask = CPU_MASK_NONE; |
| cpu_set(cpu, cpu_mask); |
| send_ipi(IPI_SCHEDULE, 0, cpu_mask); |
| } |
| |
| /* TLB flushing |
| * |
| * Flush needs to be done on the local CPU and on any other CPU that |
| * may have the same mapping. The mm->cpu_vm_mask is used to keep track |
| * of which CPUs that a specific process has been executed on. |
| */ |
| void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr) |
| { |
| unsigned long flags; |
| cpumask_t cpu_mask; |
| |
| spin_lock_irqsave(&tlbstate_lock, flags); |
| cpu_mask = (mm == FLUSH_ALL ? CPU_MASK_ALL : mm->cpu_vm_mask); |
| cpu_clear(smp_processor_id(), cpu_mask); |
| flush_mm = mm; |
| flush_vma = vma; |
| flush_addr = addr; |
| send_ipi(IPI_FLUSH_TLB, 1, cpu_mask); |
| spin_unlock_irqrestore(&tlbstate_lock, flags); |
| } |
| |
| void flush_tlb_all(void) |
| { |
| __flush_tlb_all(); |
| flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0); |
| } |
| |
| void flush_tlb_mm(struct mm_struct *mm) |
| { |
| __flush_tlb_mm(mm); |
| flush_tlb_common(mm, FLUSH_ALL, 0); |
| /* No more mappings in other CPUs */ |
| cpus_clear(mm->cpu_vm_mask); |
| cpu_set(smp_processor_id(), mm->cpu_vm_mask); |
| } |
| |
| void flush_tlb_page(struct vm_area_struct *vma, |
| unsigned long addr) |
| { |
| __flush_tlb_page(vma, addr); |
| flush_tlb_common(vma->vm_mm, vma, addr); |
| } |
| |
| /* Inter processor interrupts |
| * |
| * The IPIs are used for: |
| * * Force a schedule on a CPU |
| * * FLush TLB on other CPUs |
| * * Call a function on other CPUs |
| */ |
| |
| int send_ipi(int vector, int wait, cpumask_t cpu_mask) |
| { |
| int i = 0; |
| reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi); |
| int ret = 0; |
| |
| /* Calculate CPUs to send to. */ |
| cpus_and(cpu_mask, cpu_mask, cpu_online_map); |
| |
| /* Send the IPI. */ |
| for_each_cpu_mask(i, cpu_mask) |
| { |
| ipi.vector |= vector; |
| REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi); |
| } |
| |
| /* Wait for IPI to finish on other CPUS */ |
| if (wait) { |
| for_each_cpu_mask(i, cpu_mask) { |
| int j; |
| for (j = 0 ; j < 1000; j++) { |
| ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi); |
| if (!ipi.vector) |
| break; |
| udelay(100); |
| } |
| |
| /* Timeout? */ |
| if (ipi.vector) { |
| printk("SMP call timeout from %d to %d\n", smp_processor_id(), i); |
| ret = -ETIMEDOUT; |
| dump_stack(); |
| } |
| } |
| } |
| return ret; |
| } |
| |
| /* |
| * You must not call this function with disabled interrupts or from a |
| * hardware interrupt handler or from a bottom half handler. |
| */ |
| int smp_call_function(void (*func)(void *info), void *info, |
| int nonatomic, int wait) |
| { |
| cpumask_t cpu_mask = CPU_MASK_ALL; |
| struct call_data_struct data; |
| int ret; |
| |
| cpu_clear(smp_processor_id(), cpu_mask); |
| |
| WARN_ON(irqs_disabled()); |
| |
| data.func = func; |
| data.info = info; |
| data.wait = wait; |
| |
| spin_lock(&call_lock); |
| call_data = &data; |
| ret = send_ipi(IPI_CALL, wait, cpu_mask); |
| spin_unlock(&call_lock); |
| |
| return ret; |
| } |
| |
| irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| void (*func) (void *info) = call_data->func; |
| void *info = call_data->info; |
| reg_intr_vect_rw_ipi ipi; |
| |
| ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi); |
| |
| if (ipi.vector & IPI_CALL) { |
| func(info); |
| } |
| if (ipi.vector & IPI_FLUSH_TLB) { |
| if (flush_mm == FLUSH_ALL) |
| __flush_tlb_all(); |
| else if (flush_vma == FLUSH_ALL) |
| __flush_tlb_mm(flush_mm); |
| else |
| __flush_tlb_page(flush_vma, flush_addr); |
| } |
| |
| ipi.vector = 0; |
| REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi); |
| |
| return IRQ_HANDLED; |
| } |
| |