| /* |
| * IDE I/O functions |
| * |
| * Basic PIO and command management functionality. |
| * |
| * This code was split off from ide.c. See ide.c for history and original |
| * copyrights. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2, or (at your option) any |
| * later version. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * For the avoidance of doubt the "preferred form" of this code is one which |
| * is in an open non patent encumbered format. Where cryptographic key signing |
| * forms part of the process of creating an executable the information |
| * including keys needed to generate an equivalently functional executable |
| * are deemed to be part of the source code. |
| */ |
| |
| |
| #include <linux/config.h> |
| #include <linux/module.h> |
| #include <linux/types.h> |
| #include <linux/string.h> |
| #include <linux/kernel.h> |
| #include <linux/timer.h> |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/major.h> |
| #include <linux/errno.h> |
| #include <linux/genhd.h> |
| #include <linux/blkpg.h> |
| #include <linux/slab.h> |
| #include <linux/init.h> |
| #include <linux/pci.h> |
| #include <linux/delay.h> |
| #include <linux/ide.h> |
| #include <linux/completion.h> |
| #include <linux/reboot.h> |
| #include <linux/cdrom.h> |
| #include <linux/seq_file.h> |
| #include <linux/device.h> |
| #include <linux/kmod.h> |
| #include <linux/scatterlist.h> |
| |
| #include <asm/byteorder.h> |
| #include <asm/irq.h> |
| #include <asm/uaccess.h> |
| #include <asm/io.h> |
| #include <asm/bitops.h> |
| |
| void ide_softirq_done(struct request *rq) |
| { |
| request_queue_t *q = rq->q; |
| |
| add_disk_randomness(rq->rq_disk); |
| end_that_request_chunk(rq, 1, rq->data_len); |
| |
| spin_lock_irq(q->queue_lock); |
| end_that_request_last(rq, 1); |
| spin_unlock_irq(q->queue_lock); |
| } |
| |
| int __ide_end_request(ide_drive_t *drive, struct request *rq, int uptodate, |
| int nr_sectors) |
| { |
| unsigned int nbytes; |
| int ret = 1; |
| |
| BUG_ON(!(rq->flags & REQ_STARTED)); |
| |
| /* |
| * if failfast is set on a request, override number of sectors and |
| * complete the whole request right now |
| */ |
| if (blk_noretry_request(rq) && end_io_error(uptodate)) |
| nr_sectors = rq->hard_nr_sectors; |
| |
| if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors) |
| rq->errors = -EIO; |
| |
| /* |
| * decide whether to reenable DMA -- 3 is a random magic for now, |
| * if we DMA timeout more than 3 times, just stay in PIO |
| */ |
| if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) { |
| drive->state = 0; |
| HWGROUP(drive)->hwif->ide_dma_on(drive); |
| } |
| |
| /* |
| * For partial completions (or non fs/pc requests), use the regular |
| * direct completion path. Same thing for requests that failed, to |
| * preserve the ->errors value we use the normal completion path |
| * for those |
| */ |
| nbytes = nr_sectors << 9; |
| if (!rq->errors && rq_all_done(rq, nbytes)) { |
| rq->data_len = nbytes; |
| blkdev_dequeue_request(rq); |
| HWGROUP(drive)->rq = NULL; |
| blk_complete_request(rq); |
| ret = 0; |
| } else { |
| if (!end_that_request_first(rq, uptodate, nr_sectors)) { |
| add_disk_randomness(rq->rq_disk); |
| blkdev_dequeue_request(rq); |
| HWGROUP(drive)->rq = NULL; |
| end_that_request_last(rq, uptodate); |
| ret = 0; |
| } |
| } |
| |
| return ret; |
| } |
| EXPORT_SYMBOL(__ide_end_request); |
| |
| /** |
| * ide_end_request - complete an IDE I/O |
| * @drive: IDE device for the I/O |
| * @uptodate: |
| * @nr_sectors: number of sectors completed |
| * |
| * This is our end_request wrapper function. We complete the I/O |
| * update random number input and dequeue the request, which if |
| * it was tagged may be out of order. |
| */ |
| |
| int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors) |
| { |
| struct request *rq; |
| unsigned long flags; |
| int ret = 1; |
| |
| /* |
| * room for locking improvements here, the calls below don't |
| * need the queue lock held at all |
| */ |
| spin_lock_irqsave(&ide_lock, flags); |
| rq = HWGROUP(drive)->rq; |
| |
| if (!nr_sectors) |
| nr_sectors = rq->hard_cur_sectors; |
| |
| ret = __ide_end_request(drive, rq, uptodate, nr_sectors); |
| |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return ret; |
| } |
| EXPORT_SYMBOL(ide_end_request); |
| |
| /* |
| * Power Management state machine. This one is rather trivial for now, |
| * we should probably add more, like switching back to PIO on suspend |
| * to help some BIOSes, re-do the door locking on resume, etc... |
| */ |
| |
| enum { |
| ide_pm_flush_cache = ide_pm_state_start_suspend, |
| idedisk_pm_standby, |
| |
| idedisk_pm_idle = ide_pm_state_start_resume, |
| ide_pm_restore_dma, |
| }; |
| |
| static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error) |
| { |
| if (drive->media != ide_disk) |
| return; |
| |
| switch (rq->pm->pm_step) { |
| case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */ |
| if (rq->pm->pm_state == PM_EVENT_FREEZE) |
| rq->pm->pm_step = ide_pm_state_completed; |
| else |
| rq->pm->pm_step = idedisk_pm_standby; |
| break; |
| case idedisk_pm_standby: /* Suspend step 2 (standby) complete */ |
| rq->pm->pm_step = ide_pm_state_completed; |
| break; |
| case idedisk_pm_idle: /* Resume step 1 (idle) complete */ |
| rq->pm->pm_step = ide_pm_restore_dma; |
| break; |
| } |
| } |
| |
| static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq) |
| { |
| ide_task_t *args = rq->special; |
| |
| memset(args, 0, sizeof(*args)); |
| |
| if (drive->media != ide_disk) { |
| /* skip idedisk_pm_idle for ATAPI devices */ |
| if (rq->pm->pm_step == idedisk_pm_idle) |
| rq->pm->pm_step = ide_pm_restore_dma; |
| } |
| |
| switch (rq->pm->pm_step) { |
| case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */ |
| if (drive->media != ide_disk) |
| break; |
| /* Not supported? Switch to next step now. */ |
| if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) { |
| ide_complete_power_step(drive, rq, 0, 0); |
| return ide_stopped; |
| } |
| if (ide_id_has_flush_cache_ext(drive->id)) |
| args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE_EXT; |
| else |
| args->tfRegister[IDE_COMMAND_OFFSET] = WIN_FLUSH_CACHE; |
| args->command_type = IDE_DRIVE_TASK_NO_DATA; |
| args->handler = &task_no_data_intr; |
| return do_rw_taskfile(drive, args); |
| |
| case idedisk_pm_standby: /* Suspend step 2 (standby) */ |
| args->tfRegister[IDE_COMMAND_OFFSET] = WIN_STANDBYNOW1; |
| args->command_type = IDE_DRIVE_TASK_NO_DATA; |
| args->handler = &task_no_data_intr; |
| return do_rw_taskfile(drive, args); |
| |
| case idedisk_pm_idle: /* Resume step 1 (idle) */ |
| args->tfRegister[IDE_COMMAND_OFFSET] = WIN_IDLEIMMEDIATE; |
| args->command_type = IDE_DRIVE_TASK_NO_DATA; |
| args->handler = task_no_data_intr; |
| return do_rw_taskfile(drive, args); |
| |
| case ide_pm_restore_dma: /* Resume step 2 (restore DMA) */ |
| /* |
| * Right now, all we do is call hwif->ide_dma_check(drive), |
| * we could be smarter and check for current xfer_speed |
| * in struct drive etc... |
| */ |
| if ((drive->id->capability & 1) == 0) |
| break; |
| if (drive->hwif->ide_dma_check == NULL) |
| break; |
| drive->hwif->ide_dma_check(drive); |
| break; |
| } |
| rq->pm->pm_step = ide_pm_state_completed; |
| return ide_stopped; |
| } |
| |
| /** |
| * ide_complete_pm_request - end the current Power Management request |
| * @drive: target drive |
| * @rq: request |
| * |
| * This function cleans up the current PM request and stops the queue |
| * if necessary. |
| */ |
| static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq) |
| { |
| unsigned long flags; |
| |
| #ifdef DEBUG_PM |
| printk("%s: completing PM request, %s\n", drive->name, |
| blk_pm_suspend_request(rq) ? "suspend" : "resume"); |
| #endif |
| spin_lock_irqsave(&ide_lock, flags); |
| if (blk_pm_suspend_request(rq)) { |
| blk_stop_queue(drive->queue); |
| } else { |
| drive->blocked = 0; |
| blk_start_queue(drive->queue); |
| } |
| blkdev_dequeue_request(rq); |
| HWGROUP(drive)->rq = NULL; |
| end_that_request_last(rq, 1); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| |
| /* |
| * FIXME: probably move this somewhere else, name is bad too :) |
| */ |
| u64 ide_get_error_location(ide_drive_t *drive, char *args) |
| { |
| u32 high, low; |
| u8 hcyl, lcyl, sect; |
| u64 sector; |
| |
| high = 0; |
| hcyl = args[5]; |
| lcyl = args[4]; |
| sect = args[3]; |
| |
| if (ide_id_has_flush_cache_ext(drive->id)) { |
| low = (hcyl << 16) | (lcyl << 8) | sect; |
| HWIF(drive)->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); |
| high = ide_read_24(drive); |
| } else { |
| u8 cur = HWIF(drive)->INB(IDE_SELECT_REG); |
| if (cur & 0x40) { |
| high = cur & 0xf; |
| low = (hcyl << 16) | (lcyl << 8) | sect; |
| } else { |
| low = hcyl * drive->head * drive->sect; |
| low += lcyl * drive->sect; |
| low += sect - 1; |
| } |
| } |
| |
| sector = ((u64) high << 24) | low; |
| return sector; |
| } |
| EXPORT_SYMBOL(ide_get_error_location); |
| |
| /** |
| * ide_end_drive_cmd - end an explicit drive command |
| * @drive: command |
| * @stat: status bits |
| * @err: error bits |
| * |
| * Clean up after success/failure of an explicit drive command. |
| * These get thrown onto the queue so they are synchronized with |
| * real I/O operations on the drive. |
| * |
| * In LBA48 mode we have to read the register set twice to get |
| * all the extra information out. |
| */ |
| |
| void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| unsigned long flags; |
| struct request *rq; |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| rq = HWGROUP(drive)->rq; |
| spin_unlock_irqrestore(&ide_lock, flags); |
| |
| if (rq->flags & REQ_DRIVE_CMD) { |
| u8 *args = (u8 *) rq->buffer; |
| if (rq->errors == 0) |
| rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); |
| |
| if (args) { |
| args[0] = stat; |
| args[1] = err; |
| args[2] = hwif->INB(IDE_NSECTOR_REG); |
| } |
| } else if (rq->flags & REQ_DRIVE_TASK) { |
| u8 *args = (u8 *) rq->buffer; |
| if (rq->errors == 0) |
| rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); |
| |
| if (args) { |
| args[0] = stat; |
| args[1] = err; |
| args[2] = hwif->INB(IDE_NSECTOR_REG); |
| args[3] = hwif->INB(IDE_SECTOR_REG); |
| args[4] = hwif->INB(IDE_LCYL_REG); |
| args[5] = hwif->INB(IDE_HCYL_REG); |
| args[6] = hwif->INB(IDE_SELECT_REG); |
| } |
| } else if (rq->flags & REQ_DRIVE_TASKFILE) { |
| ide_task_t *args = (ide_task_t *) rq->special; |
| if (rq->errors == 0) |
| rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT); |
| |
| if (args) { |
| if (args->tf_in_flags.b.data) { |
| u16 data = hwif->INW(IDE_DATA_REG); |
| args->tfRegister[IDE_DATA_OFFSET] = (data) & 0xFF; |
| args->hobRegister[IDE_DATA_OFFSET] = (data >> 8) & 0xFF; |
| } |
| args->tfRegister[IDE_ERROR_OFFSET] = err; |
| /* be sure we're looking at the low order bits */ |
| hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG); |
| args->tfRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); |
| args->tfRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); |
| args->tfRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); |
| args->tfRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); |
| args->tfRegister[IDE_SELECT_OFFSET] = hwif->INB(IDE_SELECT_REG); |
| args->tfRegister[IDE_STATUS_OFFSET] = stat; |
| |
| if (drive->addressing == 1) { |
| hwif->OUTB(drive->ctl|0x80, IDE_CONTROL_REG); |
| args->hobRegister[IDE_FEATURE_OFFSET] = hwif->INB(IDE_FEATURE_REG); |
| args->hobRegister[IDE_NSECTOR_OFFSET] = hwif->INB(IDE_NSECTOR_REG); |
| args->hobRegister[IDE_SECTOR_OFFSET] = hwif->INB(IDE_SECTOR_REG); |
| args->hobRegister[IDE_LCYL_OFFSET] = hwif->INB(IDE_LCYL_REG); |
| args->hobRegister[IDE_HCYL_OFFSET] = hwif->INB(IDE_HCYL_REG); |
| } |
| } |
| } else if (blk_pm_request(rq)) { |
| #ifdef DEBUG_PM |
| printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n", |
| drive->name, rq->pm->pm_step, stat, err); |
| #endif |
| ide_complete_power_step(drive, rq, stat, err); |
| if (rq->pm->pm_step == ide_pm_state_completed) |
| ide_complete_pm_request(drive, rq); |
| return; |
| } |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| blkdev_dequeue_request(rq); |
| HWGROUP(drive)->rq = NULL; |
| rq->errors = err; |
| end_that_request_last(rq, !rq->errors); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| |
| EXPORT_SYMBOL(ide_end_drive_cmd); |
| |
| /** |
| * try_to_flush_leftover_data - flush junk |
| * @drive: drive to flush |
| * |
| * try_to_flush_leftover_data() is invoked in response to a drive |
| * unexpectedly having its DRQ_STAT bit set. As an alternative to |
| * resetting the drive, this routine tries to clear the condition |
| * by read a sector's worth of data from the drive. Of course, |
| * this may not help if the drive is *waiting* for data from *us*. |
| */ |
| static void try_to_flush_leftover_data (ide_drive_t *drive) |
| { |
| int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS; |
| |
| if (drive->media != ide_disk) |
| return; |
| while (i > 0) { |
| u32 buffer[16]; |
| u32 wcount = (i > 16) ? 16 : i; |
| |
| i -= wcount; |
| HWIF(drive)->ata_input_data(drive, buffer, wcount); |
| } |
| } |
| |
| static void ide_kill_rq(ide_drive_t *drive, struct request *rq) |
| { |
| if (rq->rq_disk) { |
| ide_driver_t *drv; |
| |
| drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| drv->end_request(drive, 0, 0); |
| } else |
| ide_end_request(drive, 0, 0); |
| } |
| |
| static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| |
| if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { |
| /* other bits are useless when BUSY */ |
| rq->errors |= ERROR_RESET; |
| } else if (stat & ERR_STAT) { |
| /* err has different meaning on cdrom and tape */ |
| if (err == ABRT_ERR) { |
| if (drive->select.b.lba && |
| /* some newer drives don't support WIN_SPECIFY */ |
| hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY) |
| return ide_stopped; |
| } else if ((err & BAD_CRC) == BAD_CRC) { |
| /* UDMA crc error, just retry the operation */ |
| drive->crc_count++; |
| } else if (err & (BBD_ERR | ECC_ERR)) { |
| /* retries won't help these */ |
| rq->errors = ERROR_MAX; |
| } else if (err & TRK0_ERR) { |
| /* help it find track zero */ |
| rq->errors |= ERROR_RECAL; |
| } |
| } |
| |
| if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ) |
| try_to_flush_leftover_data(drive); |
| |
| if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) |
| /* force an abort */ |
| hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); |
| |
| if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) |
| ide_kill_rq(drive, rq); |
| else { |
| if ((rq->errors & ERROR_RESET) == ERROR_RESET) { |
| ++rq->errors; |
| return ide_do_reset(drive); |
| } |
| if ((rq->errors & ERROR_RECAL) == ERROR_RECAL) |
| drive->special.b.recalibrate = 1; |
| ++rq->errors; |
| } |
| return ide_stopped; |
| } |
| |
| static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| |
| if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) { |
| /* other bits are useless when BUSY */ |
| rq->errors |= ERROR_RESET; |
| } else { |
| /* add decoding error stuff */ |
| } |
| |
| if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT)) |
| /* force an abort */ |
| hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG); |
| |
| if (rq->errors >= ERROR_MAX) { |
| ide_kill_rq(drive, rq); |
| } else { |
| if ((rq->errors & ERROR_RESET) == ERROR_RESET) { |
| ++rq->errors; |
| return ide_do_reset(drive); |
| } |
| ++rq->errors; |
| } |
| |
| return ide_stopped; |
| } |
| |
| ide_startstop_t |
| __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err) |
| { |
| if (drive->media == ide_disk) |
| return ide_ata_error(drive, rq, stat, err); |
| return ide_atapi_error(drive, rq, stat, err); |
| } |
| |
| EXPORT_SYMBOL_GPL(__ide_error); |
| |
| /** |
| * ide_error - handle an error on the IDE |
| * @drive: drive the error occurred on |
| * @msg: message to report |
| * @stat: status bits |
| * |
| * ide_error() takes action based on the error returned by the drive. |
| * For normal I/O that may well include retries. We deal with |
| * both new-style (taskfile) and old style command handling here. |
| * In the case of taskfile command handling there is work left to |
| * do |
| */ |
| |
| ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat) |
| { |
| struct request *rq; |
| u8 err; |
| |
| err = ide_dump_status(drive, msg, stat); |
| |
| if ((rq = HWGROUP(drive)->rq) == NULL) |
| return ide_stopped; |
| |
| /* retry only "normal" I/O: */ |
| if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { |
| rq->errors = 1; |
| ide_end_drive_cmd(drive, stat, err); |
| return ide_stopped; |
| } |
| |
| if (rq->rq_disk) { |
| ide_driver_t *drv; |
| |
| drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| return drv->error(drive, rq, stat, err); |
| } else |
| return __ide_error(drive, rq, stat, err); |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_error); |
| |
| ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq) |
| { |
| if (drive->media != ide_disk) |
| rq->errors |= ERROR_RESET; |
| |
| ide_kill_rq(drive, rq); |
| |
| return ide_stopped; |
| } |
| |
| EXPORT_SYMBOL_GPL(__ide_abort); |
| |
| /** |
| * ide_abort - abort pending IDE operations |
| * @drive: drive the error occurred on |
| * @msg: message to report |
| * |
| * ide_abort kills and cleans up when we are about to do a |
| * host initiated reset on active commands. Longer term we |
| * want handlers to have sensible abort handling themselves |
| * |
| * This differs fundamentally from ide_error because in |
| * this case the command is doing just fine when we |
| * blow it away. |
| */ |
| |
| ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg) |
| { |
| struct request *rq; |
| |
| if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL) |
| return ide_stopped; |
| |
| /* retry only "normal" I/O: */ |
| if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK | REQ_DRIVE_TASKFILE)) { |
| rq->errors = 1; |
| ide_end_drive_cmd(drive, BUSY_STAT, 0); |
| return ide_stopped; |
| } |
| |
| if (rq->rq_disk) { |
| ide_driver_t *drv; |
| |
| drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| return drv->abort(drive, rq); |
| } else |
| return __ide_abort(drive, rq); |
| } |
| |
| /** |
| * ide_cmd - issue a simple drive command |
| * @drive: drive the command is for |
| * @cmd: command byte |
| * @nsect: sector byte |
| * @handler: handler for the command completion |
| * |
| * Issue a simple drive command with interrupts. |
| * The drive must be selected beforehand. |
| */ |
| |
| static void ide_cmd (ide_drive_t *drive, u8 cmd, u8 nsect, |
| ide_handler_t *handler) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| if (IDE_CONTROL_REG) |
| hwif->OUTB(drive->ctl,IDE_CONTROL_REG); /* clear nIEN */ |
| SELECT_MASK(drive,0); |
| hwif->OUTB(nsect,IDE_NSECTOR_REG); |
| ide_execute_command(drive, cmd, handler, WAIT_CMD, NULL); |
| } |
| |
| /** |
| * drive_cmd_intr - drive command completion interrupt |
| * @drive: drive the completion interrupt occurred on |
| * |
| * drive_cmd_intr() is invoked on completion of a special DRIVE_CMD. |
| * We do any necessary data reading and then wait for the drive to |
| * go non busy. At that point we may read the error data and complete |
| * the request |
| */ |
| |
| static ide_startstop_t drive_cmd_intr (ide_drive_t *drive) |
| { |
| struct request *rq = HWGROUP(drive)->rq; |
| ide_hwif_t *hwif = HWIF(drive); |
| u8 *args = (u8 *) rq->buffer; |
| u8 stat = hwif->INB(IDE_STATUS_REG); |
| int retries = 10; |
| |
| local_irq_enable(); |
| if ((stat & DRQ_STAT) && args && args[3]) { |
| u8 io_32bit = drive->io_32bit; |
| drive->io_32bit = 0; |
| hwif->ata_input_data(drive, &args[4], args[3] * SECTOR_WORDS); |
| drive->io_32bit = io_32bit; |
| while (((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) && retries--) |
| udelay(100); |
| } |
| |
| if (!OK_STAT(stat, READY_STAT, BAD_STAT)) |
| return ide_error(drive, "drive_cmd", stat); |
| /* calls ide_end_drive_cmd */ |
| ide_end_drive_cmd(drive, stat, hwif->INB(IDE_ERROR_REG)); |
| return ide_stopped; |
| } |
| |
| static void ide_init_specify_cmd(ide_drive_t *drive, ide_task_t *task) |
| { |
| task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; |
| task->tfRegister[IDE_SECTOR_OFFSET] = drive->sect; |
| task->tfRegister[IDE_LCYL_OFFSET] = drive->cyl; |
| task->tfRegister[IDE_HCYL_OFFSET] = drive->cyl>>8; |
| task->tfRegister[IDE_SELECT_OFFSET] = ((drive->head-1)|drive->select.all)&0xBF; |
| task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SPECIFY; |
| |
| task->handler = &set_geometry_intr; |
| } |
| |
| static void ide_init_restore_cmd(ide_drive_t *drive, ide_task_t *task) |
| { |
| task->tfRegister[IDE_NSECTOR_OFFSET] = drive->sect; |
| task->tfRegister[IDE_COMMAND_OFFSET] = WIN_RESTORE; |
| |
| task->handler = &recal_intr; |
| } |
| |
| static void ide_init_setmult_cmd(ide_drive_t *drive, ide_task_t *task) |
| { |
| task->tfRegister[IDE_NSECTOR_OFFSET] = drive->mult_req; |
| task->tfRegister[IDE_COMMAND_OFFSET] = WIN_SETMULT; |
| |
| task->handler = &set_multmode_intr; |
| } |
| |
| static ide_startstop_t ide_disk_special(ide_drive_t *drive) |
| { |
| special_t *s = &drive->special; |
| ide_task_t args; |
| |
| memset(&args, 0, sizeof(ide_task_t)); |
| args.command_type = IDE_DRIVE_TASK_NO_DATA; |
| |
| if (s->b.set_geometry) { |
| s->b.set_geometry = 0; |
| ide_init_specify_cmd(drive, &args); |
| } else if (s->b.recalibrate) { |
| s->b.recalibrate = 0; |
| ide_init_restore_cmd(drive, &args); |
| } else if (s->b.set_multmode) { |
| s->b.set_multmode = 0; |
| if (drive->mult_req > drive->id->max_multsect) |
| drive->mult_req = drive->id->max_multsect; |
| ide_init_setmult_cmd(drive, &args); |
| } else if (s->all) { |
| int special = s->all; |
| s->all = 0; |
| printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special); |
| return ide_stopped; |
| } |
| |
| do_rw_taskfile(drive, &args); |
| |
| return ide_started; |
| } |
| |
| /** |
| * do_special - issue some special commands |
| * @drive: drive the command is for |
| * |
| * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT |
| * commands to a drive. It used to do much more, but has been scaled |
| * back. |
| */ |
| |
| static ide_startstop_t do_special (ide_drive_t *drive) |
| { |
| special_t *s = &drive->special; |
| |
| #ifdef DEBUG |
| printk("%s: do_special: 0x%02x\n", drive->name, s->all); |
| #endif |
| if (s->b.set_tune) { |
| s->b.set_tune = 0; |
| if (HWIF(drive)->tuneproc != NULL) |
| HWIF(drive)->tuneproc(drive, drive->tune_req); |
| return ide_stopped; |
| } else { |
| if (drive->media == ide_disk) |
| return ide_disk_special(drive); |
| |
| s->all = 0; |
| drive->mult_req = 0; |
| return ide_stopped; |
| } |
| } |
| |
| void ide_map_sg(ide_drive_t *drive, struct request *rq) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| struct scatterlist *sg = hwif->sg_table; |
| |
| if (hwif->sg_mapped) /* needed by ide-scsi */ |
| return; |
| |
| if ((rq->flags & REQ_DRIVE_TASKFILE) == 0) { |
| hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg); |
| } else { |
| sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE); |
| hwif->sg_nents = 1; |
| } |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_map_sg); |
| |
| void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq) |
| { |
| ide_hwif_t *hwif = drive->hwif; |
| |
| hwif->nsect = hwif->nleft = rq->nr_sectors; |
| hwif->cursg = hwif->cursg_ofs = 0; |
| } |
| |
| EXPORT_SYMBOL_GPL(ide_init_sg_cmd); |
| |
| /** |
| * execute_drive_command - issue special drive command |
| * @drive: the drive to issue the command on |
| * @rq: the request structure holding the command |
| * |
| * execute_drive_cmd() issues a special drive command, usually |
| * initiated by ioctl() from the external hdparm program. The |
| * command can be a drive command, drive task or taskfile |
| * operation. Weirdly you can call it with NULL to wait for |
| * all commands to finish. Don't do this as that is due to change |
| */ |
| |
| static ide_startstop_t execute_drive_cmd (ide_drive_t *drive, |
| struct request *rq) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| if (rq->flags & REQ_DRIVE_TASKFILE) { |
| ide_task_t *args = rq->special; |
| |
| if (!args) |
| goto done; |
| |
| hwif->data_phase = args->data_phase; |
| |
| switch (hwif->data_phase) { |
| case TASKFILE_MULTI_OUT: |
| case TASKFILE_OUT: |
| case TASKFILE_MULTI_IN: |
| case TASKFILE_IN: |
| ide_init_sg_cmd(drive, rq); |
| ide_map_sg(drive, rq); |
| default: |
| break; |
| } |
| |
| if (args->tf_out_flags.all != 0) |
| return flagged_taskfile(drive, args); |
| return do_rw_taskfile(drive, args); |
| } else if (rq->flags & REQ_DRIVE_TASK) { |
| u8 *args = rq->buffer; |
| u8 sel; |
| |
| if (!args) |
| goto done; |
| #ifdef DEBUG |
| printk("%s: DRIVE_TASK_CMD ", drive->name); |
| printk("cmd=0x%02x ", args[0]); |
| printk("fr=0x%02x ", args[1]); |
| printk("ns=0x%02x ", args[2]); |
| printk("sc=0x%02x ", args[3]); |
| printk("lcyl=0x%02x ", args[4]); |
| printk("hcyl=0x%02x ", args[5]); |
| printk("sel=0x%02x\n", args[6]); |
| #endif |
| hwif->OUTB(args[1], IDE_FEATURE_REG); |
| hwif->OUTB(args[3], IDE_SECTOR_REG); |
| hwif->OUTB(args[4], IDE_LCYL_REG); |
| hwif->OUTB(args[5], IDE_HCYL_REG); |
| sel = (args[6] & ~0x10); |
| if (drive->select.b.unit) |
| sel |= 0x10; |
| hwif->OUTB(sel, IDE_SELECT_REG); |
| ide_cmd(drive, args[0], args[2], &drive_cmd_intr); |
| return ide_started; |
| } else if (rq->flags & REQ_DRIVE_CMD) { |
| u8 *args = rq->buffer; |
| |
| if (!args) |
| goto done; |
| #ifdef DEBUG |
| printk("%s: DRIVE_CMD ", drive->name); |
| printk("cmd=0x%02x ", args[0]); |
| printk("sc=0x%02x ", args[1]); |
| printk("fr=0x%02x ", args[2]); |
| printk("xx=0x%02x\n", args[3]); |
| #endif |
| if (args[0] == WIN_SMART) { |
| hwif->OUTB(0x4f, IDE_LCYL_REG); |
| hwif->OUTB(0xc2, IDE_HCYL_REG); |
| hwif->OUTB(args[2],IDE_FEATURE_REG); |
| hwif->OUTB(args[1],IDE_SECTOR_REG); |
| ide_cmd(drive, args[0], args[3], &drive_cmd_intr); |
| return ide_started; |
| } |
| hwif->OUTB(args[2],IDE_FEATURE_REG); |
| ide_cmd(drive, args[0], args[1], &drive_cmd_intr); |
| return ide_started; |
| } |
| |
| done: |
| /* |
| * NULL is actually a valid way of waiting for |
| * all current requests to be flushed from the queue. |
| */ |
| #ifdef DEBUG |
| printk("%s: DRIVE_CMD (null)\n", drive->name); |
| #endif |
| ide_end_drive_cmd(drive, |
| hwif->INB(IDE_STATUS_REG), |
| hwif->INB(IDE_ERROR_REG)); |
| return ide_stopped; |
| } |
| |
| /** |
| * start_request - start of I/O and command issuing for IDE |
| * |
| * start_request() initiates handling of a new I/O request. It |
| * accepts commands and I/O (read/write) requests. It also does |
| * the final remapping for weird stuff like EZDrive. Once |
| * device mapper can work sector level the EZDrive stuff can go away |
| * |
| * FIXME: this function needs a rename |
| */ |
| |
| static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq) |
| { |
| ide_startstop_t startstop; |
| sector_t block; |
| |
| BUG_ON(!(rq->flags & REQ_STARTED)); |
| |
| #ifdef DEBUG |
| printk("%s: start_request: current=0x%08lx\n", |
| HWIF(drive)->name, (unsigned long) rq); |
| #endif |
| |
| /* bail early if we've exceeded max_failures */ |
| if (drive->max_failures && (drive->failures > drive->max_failures)) { |
| goto kill_rq; |
| } |
| |
| block = rq->sector; |
| if (blk_fs_request(rq) && |
| (drive->media == ide_disk || drive->media == ide_floppy)) { |
| block += drive->sect0; |
| } |
| /* Yecch - this will shift the entire interval, |
| possibly killing some innocent following sector */ |
| if (block == 0 && drive->remap_0_to_1 == 1) |
| block = 1; /* redirect MBR access to EZ-Drive partn table */ |
| |
| if (blk_pm_suspend_request(rq) && |
| rq->pm->pm_step == ide_pm_state_start_suspend) |
| /* Mark drive blocked when starting the suspend sequence. */ |
| drive->blocked = 1; |
| else if (blk_pm_resume_request(rq) && |
| rq->pm->pm_step == ide_pm_state_start_resume) { |
| /* |
| * The first thing we do on wakeup is to wait for BSY bit to |
| * go away (with a looong timeout) as a drive on this hwif may |
| * just be POSTing itself. |
| * We do that before even selecting as the "other" device on |
| * the bus may be broken enough to walk on our toes at this |
| * point. |
| */ |
| int rc; |
| #ifdef DEBUG_PM |
| printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name); |
| #endif |
| rc = ide_wait_not_busy(HWIF(drive), 35000); |
| if (rc) |
| printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name); |
| SELECT_DRIVE(drive); |
| HWIF(drive)->OUTB(8, HWIF(drive)->io_ports[IDE_CONTROL_OFFSET]); |
| rc = ide_wait_not_busy(HWIF(drive), 10000); |
| if (rc) |
| printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name); |
| } |
| |
| SELECT_DRIVE(drive); |
| if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) { |
| printk(KERN_ERR "%s: drive not ready for command\n", drive->name); |
| return startstop; |
| } |
| if (!drive->special.all) { |
| ide_driver_t *drv; |
| |
| if (rq->flags & (REQ_DRIVE_CMD | REQ_DRIVE_TASK)) |
| return execute_drive_cmd(drive, rq); |
| else if (rq->flags & REQ_DRIVE_TASKFILE) |
| return execute_drive_cmd(drive, rq); |
| else if (blk_pm_request(rq)) { |
| #ifdef DEBUG_PM |
| printk("%s: start_power_step(step: %d)\n", |
| drive->name, rq->pm->pm_step); |
| #endif |
| startstop = ide_start_power_step(drive, rq); |
| if (startstop == ide_stopped && |
| rq->pm->pm_step == ide_pm_state_completed) |
| ide_complete_pm_request(drive, rq); |
| return startstop; |
| } |
| |
| drv = *(ide_driver_t **)rq->rq_disk->private_data; |
| return drv->do_request(drive, rq, block); |
| } |
| return do_special(drive); |
| kill_rq: |
| ide_kill_rq(drive, rq); |
| return ide_stopped; |
| } |
| |
| /** |
| * ide_stall_queue - pause an IDE device |
| * @drive: drive to stall |
| * @timeout: time to stall for (jiffies) |
| * |
| * ide_stall_queue() can be used by a drive to give excess bandwidth back |
| * to the hwgroup by sleeping for timeout jiffies. |
| */ |
| |
| void ide_stall_queue (ide_drive_t *drive, unsigned long timeout) |
| { |
| if (timeout > WAIT_WORSTCASE) |
| timeout = WAIT_WORSTCASE; |
| drive->sleep = timeout + jiffies; |
| drive->sleeping = 1; |
| } |
| |
| EXPORT_SYMBOL(ide_stall_queue); |
| |
| #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time) |
| |
| /** |
| * choose_drive - select a drive to service |
| * @hwgroup: hardware group to select on |
| * |
| * choose_drive() selects the next drive which will be serviced. |
| * This is necessary because the IDE layer can't issue commands |
| * to both drives on the same cable, unlike SCSI. |
| */ |
| |
| static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup) |
| { |
| ide_drive_t *drive, *best; |
| |
| repeat: |
| best = NULL; |
| drive = hwgroup->drive; |
| |
| /* |
| * drive is doing pre-flush, ordered write, post-flush sequence. even |
| * though that is 3 requests, it must be seen as a single transaction. |
| * we must not preempt this drive until that is complete |
| */ |
| if (blk_queue_flushing(drive->queue)) { |
| /* |
| * small race where queue could get replugged during |
| * the 3-request flush cycle, just yank the plug since |
| * we want it to finish asap |
| */ |
| blk_remove_plug(drive->queue); |
| return drive; |
| } |
| |
| do { |
| if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep)) |
| && !elv_queue_empty(drive->queue)) { |
| if (!best |
| || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep))) |
| || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best)))) |
| { |
| if (!blk_queue_plugged(drive->queue)) |
| best = drive; |
| } |
| } |
| } while ((drive = drive->next) != hwgroup->drive); |
| if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) { |
| long t = (signed long)(WAKEUP(best) - jiffies); |
| if (t >= WAIT_MIN_SLEEP) { |
| /* |
| * We *may* have some time to spare, but first let's see if |
| * someone can potentially benefit from our nice mood today.. |
| */ |
| drive = best->next; |
| do { |
| if (!drive->sleeping |
| && time_before(jiffies - best->service_time, WAKEUP(drive)) |
| && time_before(WAKEUP(drive), jiffies + t)) |
| { |
| ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP)); |
| goto repeat; |
| } |
| } while ((drive = drive->next) != best); |
| } |
| } |
| return best; |
| } |
| |
| /* |
| * Issue a new request to a drive from hwgroup |
| * Caller must have already done spin_lock_irqsave(&ide_lock, ..); |
| * |
| * A hwgroup is a serialized group of IDE interfaces. Usually there is |
| * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640) |
| * may have both interfaces in a single hwgroup to "serialize" access. |
| * Or possibly multiple ISA interfaces can share a common IRQ by being grouped |
| * together into one hwgroup for serialized access. |
| * |
| * Note also that several hwgroups can end up sharing a single IRQ, |
| * possibly along with many other devices. This is especially common in |
| * PCI-based systems with off-board IDE controller cards. |
| * |
| * The IDE driver uses the single global ide_lock spinlock to protect |
| * access to the request queues, and to protect the hwgroup->busy flag. |
| * |
| * The first thread into the driver for a particular hwgroup sets the |
| * hwgroup->busy flag to indicate that this hwgroup is now active, |
| * and then initiates processing of the top request from the request queue. |
| * |
| * Other threads attempting entry notice the busy setting, and will simply |
| * queue their new requests and exit immediately. Note that hwgroup->busy |
| * remains set even when the driver is merely awaiting the next interrupt. |
| * Thus, the meaning is "this hwgroup is busy processing a request". |
| * |
| * When processing of a request completes, the completing thread or IRQ-handler |
| * will start the next request from the queue. If no more work remains, |
| * the driver will clear the hwgroup->busy flag and exit. |
| * |
| * The ide_lock (spinlock) is used to protect all access to the |
| * hwgroup->busy flag, but is otherwise not needed for most processing in |
| * the driver. This makes the driver much more friendlier to shared IRQs |
| * than previous designs, while remaining 100% (?) SMP safe and capable. |
| */ |
| static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq) |
| { |
| ide_drive_t *drive; |
| ide_hwif_t *hwif; |
| struct request *rq; |
| ide_startstop_t startstop; |
| int loops = 0; |
| |
| /* for atari only: POSSIBLY BROKEN HERE(?) */ |
| ide_get_lock(ide_intr, hwgroup); |
| |
| /* caller must own ide_lock */ |
| BUG_ON(!irqs_disabled()); |
| |
| while (!hwgroup->busy) { |
| hwgroup->busy = 1; |
| drive = choose_drive(hwgroup); |
| if (drive == NULL) { |
| int sleeping = 0; |
| unsigned long sleep = 0; /* shut up, gcc */ |
| hwgroup->rq = NULL; |
| drive = hwgroup->drive; |
| do { |
| if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) { |
| sleeping = 1; |
| sleep = drive->sleep; |
| } |
| } while ((drive = drive->next) != hwgroup->drive); |
| if (sleeping) { |
| /* |
| * Take a short snooze, and then wake up this hwgroup again. |
| * This gives other hwgroups on the same a chance to |
| * play fairly with us, just in case there are big differences |
| * in relative throughputs.. don't want to hog the cpu too much. |
| */ |
| if (time_before(sleep, jiffies + WAIT_MIN_SLEEP)) |
| sleep = jiffies + WAIT_MIN_SLEEP; |
| #if 1 |
| if (timer_pending(&hwgroup->timer)) |
| printk(KERN_CRIT "ide_set_handler: timer already active\n"); |
| #endif |
| /* so that ide_timer_expiry knows what to do */ |
| hwgroup->sleeping = 1; |
| mod_timer(&hwgroup->timer, sleep); |
| /* we purposely leave hwgroup->busy==1 |
| * while sleeping */ |
| } else { |
| /* Ugly, but how can we sleep for the lock |
| * otherwise? perhaps from tq_disk? |
| */ |
| |
| /* for atari only */ |
| ide_release_lock(); |
| hwgroup->busy = 0; |
| } |
| |
| /* no more work for this hwgroup (for now) */ |
| return; |
| } |
| again: |
| hwif = HWIF(drive); |
| if (hwgroup->hwif->sharing_irq && |
| hwif != hwgroup->hwif && |
| hwif->io_ports[IDE_CONTROL_OFFSET]) { |
| /* set nIEN for previous hwif */ |
| SELECT_INTERRUPT(drive); |
| } |
| hwgroup->hwif = hwif; |
| hwgroup->drive = drive; |
| drive->sleeping = 0; |
| drive->service_start = jiffies; |
| |
| if (blk_queue_plugged(drive->queue)) { |
| printk(KERN_ERR "ide: huh? queue was plugged!\n"); |
| break; |
| } |
| |
| /* |
| * we know that the queue isn't empty, but this can happen |
| * if the q->prep_rq_fn() decides to kill a request |
| */ |
| rq = elv_next_request(drive->queue); |
| if (!rq) { |
| hwgroup->busy = 0; |
| break; |
| } |
| |
| /* |
| * Sanity: don't accept a request that isn't a PM request |
| * if we are currently power managed. This is very important as |
| * blk_stop_queue() doesn't prevent the elv_next_request() |
| * above to return us whatever is in the queue. Since we call |
| * ide_do_request() ourselves, we end up taking requests while |
| * the queue is blocked... |
| * |
| * We let requests forced at head of queue with ide-preempt |
| * though. I hope that doesn't happen too much, hopefully not |
| * unless the subdriver triggers such a thing in its own PM |
| * state machine. |
| * |
| * We count how many times we loop here to make sure we service |
| * all drives in the hwgroup without looping for ever |
| */ |
| if (drive->blocked && !blk_pm_request(rq) && !(rq->flags & REQ_PREEMPT)) { |
| drive = drive->next ? drive->next : hwgroup->drive; |
| if (loops++ < 4 && !blk_queue_plugged(drive->queue)) |
| goto again; |
| /* We clear busy, there should be no pending ATA command at this point. */ |
| hwgroup->busy = 0; |
| break; |
| } |
| |
| hwgroup->rq = rq; |
| |
| /* |
| * Some systems have trouble with IDE IRQs arriving while |
| * the driver is still setting things up. So, here we disable |
| * the IRQ used by this interface while the request is being started. |
| * This may look bad at first, but pretty much the same thing |
| * happens anyway when any interrupt comes in, IDE or otherwise |
| * -- the kernel masks the IRQ while it is being handled. |
| */ |
| if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) |
| disable_irq_nosync(hwif->irq); |
| spin_unlock(&ide_lock); |
| local_irq_enable(); |
| /* allow other IRQs while we start this request */ |
| startstop = start_request(drive, rq); |
| spin_lock_irq(&ide_lock); |
| if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq) |
| enable_irq(hwif->irq); |
| if (startstop == ide_stopped) |
| hwgroup->busy = 0; |
| } |
| } |
| |
| /* |
| * Passes the stuff to ide_do_request |
| */ |
| void do_ide_request(request_queue_t *q) |
| { |
| ide_drive_t *drive = q->queuedata; |
| |
| ide_do_request(HWGROUP(drive), IDE_NO_IRQ); |
| } |
| |
| /* |
| * un-busy the hwgroup etc, and clear any pending DMA status. we want to |
| * retry the current request in pio mode instead of risking tossing it |
| * all away |
| */ |
| static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) |
| { |
| ide_hwif_t *hwif = HWIF(drive); |
| struct request *rq; |
| ide_startstop_t ret = ide_stopped; |
| |
| /* |
| * end current dma transaction |
| */ |
| |
| if (error < 0) { |
| printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); |
| (void)HWIF(drive)->ide_dma_end(drive); |
| ret = ide_error(drive, "dma timeout error", |
| hwif->INB(IDE_STATUS_REG)); |
| } else { |
| printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); |
| (void) hwif->ide_dma_timeout(drive); |
| } |
| |
| /* |
| * disable dma for now, but remember that we did so because of |
| * a timeout -- we'll reenable after we finish this next request |
| * (or rather the first chunk of it) in pio. |
| */ |
| drive->retry_pio++; |
| drive->state = DMA_PIO_RETRY; |
| (void) hwif->ide_dma_off_quietly(drive); |
| |
| /* |
| * un-busy drive etc (hwgroup->busy is cleared on return) and |
| * make sure request is sane |
| */ |
| rq = HWGROUP(drive)->rq; |
| HWGROUP(drive)->rq = NULL; |
| |
| rq->errors = 0; |
| |
| if (!rq->bio) |
| goto out; |
| |
| rq->sector = rq->bio->bi_sector; |
| rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; |
| rq->hard_cur_sectors = rq->current_nr_sectors; |
| rq->buffer = bio_data(rq->bio); |
| out: |
| return ret; |
| } |
| |
| /** |
| * ide_timer_expiry - handle lack of an IDE interrupt |
| * @data: timer callback magic (hwgroup) |
| * |
| * An IDE command has timed out before the expected drive return |
| * occurred. At this point we attempt to clean up the current |
| * mess. If the current handler includes an expiry handler then |
| * we invoke the expiry handler, and providing it is happy the |
| * work is done. If that fails we apply generic recovery rules |
| * invoking the handler and checking the drive DMA status. We |
| * have an excessively incestuous relationship with the DMA |
| * logic that wants cleaning up. |
| */ |
| |
| void ide_timer_expiry (unsigned long data) |
| { |
| ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data; |
| ide_handler_t *handler; |
| ide_expiry_t *expiry; |
| unsigned long flags; |
| unsigned long wait = -1; |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| |
| if ((handler = hwgroup->handler) == NULL) { |
| /* |
| * Either a marginal timeout occurred |
| * (got the interrupt just as timer expired), |
| * or we were "sleeping" to give other devices a chance. |
| * Either way, we don't really want to complain about anything. |
| */ |
| if (hwgroup->sleeping) { |
| hwgroup->sleeping = 0; |
| hwgroup->busy = 0; |
| } |
| } else { |
| ide_drive_t *drive = hwgroup->drive; |
| if (!drive) { |
| printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n"); |
| hwgroup->handler = NULL; |
| } else { |
| ide_hwif_t *hwif; |
| ide_startstop_t startstop = ide_stopped; |
| if (!hwgroup->busy) { |
| hwgroup->busy = 1; /* paranoia */ |
| printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name); |
| } |
| if ((expiry = hwgroup->expiry) != NULL) { |
| /* continue */ |
| if ((wait = expiry(drive)) > 0) { |
| /* reset timer */ |
| hwgroup->timer.expires = jiffies + wait; |
| add_timer(&hwgroup->timer); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return; |
| } |
| } |
| hwgroup->handler = NULL; |
| /* |
| * We need to simulate a real interrupt when invoking |
| * the handler() function, which means we need to |
| * globally mask the specific IRQ: |
| */ |
| spin_unlock(&ide_lock); |
| hwif = HWIF(drive); |
| #if DISABLE_IRQ_NOSYNC |
| disable_irq_nosync(hwif->irq); |
| #else |
| /* disable_irq_nosync ?? */ |
| disable_irq(hwif->irq); |
| #endif /* DISABLE_IRQ_NOSYNC */ |
| /* local CPU only, |
| * as if we were handling an interrupt */ |
| local_irq_disable(); |
| if (hwgroup->polling) { |
| startstop = handler(drive); |
| } else if (drive_is_ready(drive)) { |
| if (drive->waiting_for_dma) |
| (void) hwgroup->hwif->ide_dma_lostirq(drive); |
| (void)ide_ack_intr(hwif); |
| printk(KERN_WARNING "%s: lost interrupt\n", drive->name); |
| startstop = handler(drive); |
| } else { |
| if (drive->waiting_for_dma) { |
| startstop = ide_dma_timeout_retry(drive, wait); |
| } else |
| startstop = |
| ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG)); |
| } |
| drive->service_time = jiffies - drive->service_start; |
| spin_lock_irq(&ide_lock); |
| enable_irq(hwif->irq); |
| if (startstop == ide_stopped) |
| hwgroup->busy = 0; |
| } |
| } |
| ide_do_request(hwgroup, IDE_NO_IRQ); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| } |
| |
| /** |
| * unexpected_intr - handle an unexpected IDE interrupt |
| * @irq: interrupt line |
| * @hwgroup: hwgroup being processed |
| * |
| * There's nothing really useful we can do with an unexpected interrupt, |
| * other than reading the status register (to clear it), and logging it. |
| * There should be no way that an irq can happen before we're ready for it, |
| * so we needn't worry much about losing an "important" interrupt here. |
| * |
| * On laptops (and "green" PCs), an unexpected interrupt occurs whenever |
| * the drive enters "idle", "standby", or "sleep" mode, so if the status |
| * looks "good", we just ignore the interrupt completely. |
| * |
| * This routine assumes __cli() is in effect when called. |
| * |
| * If an unexpected interrupt happens on irq15 while we are handling irq14 |
| * and if the two interfaces are "serialized" (CMD640), then it looks like |
| * we could screw up by interfering with a new request being set up for |
| * irq15. |
| * |
| * In reality, this is a non-issue. The new command is not sent unless |
| * the drive is ready to accept one, in which case we know the drive is |
| * not trying to interrupt us. And ide_set_handler() is always invoked |
| * before completing the issuance of any new drive command, so we will not |
| * be accidentally invoked as a result of any valid command completion |
| * interrupt. |
| * |
| * Note that we must walk the entire hwgroup here. We know which hwif |
| * is doing the current command, but we don't know which hwif burped |
| * mysteriously. |
| */ |
| |
| static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup) |
| { |
| u8 stat; |
| ide_hwif_t *hwif = hwgroup->hwif; |
| |
| /* |
| * handle the unexpected interrupt |
| */ |
| do { |
| if (hwif->irq == irq) { |
| stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); |
| if (!OK_STAT(stat, READY_STAT, BAD_STAT)) { |
| /* Try to not flood the console with msgs */ |
| static unsigned long last_msgtime, count; |
| ++count; |
| if (time_after(jiffies, last_msgtime + HZ)) { |
| last_msgtime = jiffies; |
| printk(KERN_ERR "%s%s: unexpected interrupt, " |
| "status=0x%02x, count=%ld\n", |
| hwif->name, |
| (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count); |
| } |
| } |
| } |
| } while ((hwif = hwif->next) != hwgroup->hwif); |
| } |
| |
| /** |
| * ide_intr - default IDE interrupt handler |
| * @irq: interrupt number |
| * @dev_id: hwif group |
| * @regs: unused weirdness from the kernel irq layer |
| * |
| * This is the default IRQ handler for the IDE layer. You should |
| * not need to override it. If you do be aware it is subtle in |
| * places |
| * |
| * hwgroup->hwif is the interface in the group currently performing |
| * a command. hwgroup->drive is the drive and hwgroup->handler is |
| * the IRQ handler to call. As we issue a command the handlers |
| * step through multiple states, reassigning the handler to the |
| * next step in the process. Unlike a smart SCSI controller IDE |
| * expects the main processor to sequence the various transfer |
| * stages. We also manage a poll timer to catch up with most |
| * timeout situations. There are still a few where the handlers |
| * don't ever decide to give up. |
| * |
| * The handler eventually returns ide_stopped to indicate the |
| * request completed. At this point we issue the next request |
| * on the hwgroup and the process begins again. |
| */ |
| |
| irqreturn_t ide_intr (int irq, void *dev_id, struct pt_regs *regs) |
| { |
| unsigned long flags; |
| ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id; |
| ide_hwif_t *hwif; |
| ide_drive_t *drive; |
| ide_handler_t *handler; |
| ide_startstop_t startstop; |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| hwif = hwgroup->hwif; |
| |
| if (!ide_ack_intr(hwif)) { |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return IRQ_NONE; |
| } |
| |
| if ((handler = hwgroup->handler) == NULL || hwgroup->polling) { |
| /* |
| * Not expecting an interrupt from this drive. |
| * That means this could be: |
| * (1) an interrupt from another PCI device |
| * sharing the same PCI INT# as us. |
| * or (2) a drive just entered sleep or standby mode, |
| * and is interrupting to let us know. |
| * or (3) a spurious interrupt of unknown origin. |
| * |
| * For PCI, we cannot tell the difference, |
| * so in that case we just ignore it and hope it goes away. |
| * |
| * FIXME: unexpected_intr should be hwif-> then we can |
| * remove all the ifdef PCI crap |
| */ |
| #ifdef CONFIG_BLK_DEV_IDEPCI |
| if (hwif->pci_dev && !hwif->pci_dev->vendor) |
| #endif /* CONFIG_BLK_DEV_IDEPCI */ |
| { |
| /* |
| * Probably not a shared PCI interrupt, |
| * so we can safely try to do something about it: |
| */ |
| unexpected_intr(irq, hwgroup); |
| #ifdef CONFIG_BLK_DEV_IDEPCI |
| } else { |
| /* |
| * Whack the status register, just in case |
| * we have a leftover pending IRQ. |
| */ |
| (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); |
| #endif /* CONFIG_BLK_DEV_IDEPCI */ |
| } |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return IRQ_NONE; |
| } |
| drive = hwgroup->drive; |
| if (!drive) { |
| /* |
| * This should NEVER happen, and there isn't much |
| * we could do about it here. |
| * |
| * [Note - this can occur if the drive is hot unplugged] |
| */ |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return IRQ_HANDLED; |
| } |
| if (!drive_is_ready(drive)) { |
| /* |
| * This happens regularly when we share a PCI IRQ with |
| * another device. Unfortunately, it can also happen |
| * with some buggy drives that trigger the IRQ before |
| * their status register is up to date. Hopefully we have |
| * enough advance overhead that the latter isn't a problem. |
| */ |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return IRQ_NONE; |
| } |
| if (!hwgroup->busy) { |
| hwgroup->busy = 1; /* paranoia */ |
| printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name); |
| } |
| hwgroup->handler = NULL; |
| del_timer(&hwgroup->timer); |
| spin_unlock(&ide_lock); |
| |
| if (drive->unmask) |
| local_irq_enable(); |
| /* service this interrupt, may set handler for next interrupt */ |
| startstop = handler(drive); |
| spin_lock_irq(&ide_lock); |
| |
| /* |
| * Note that handler() may have set things up for another |
| * interrupt to occur soon, but it cannot happen until |
| * we exit from this routine, because it will be the |
| * same irq as is currently being serviced here, and Linux |
| * won't allow another of the same (on any CPU) until we return. |
| */ |
| drive->service_time = jiffies - drive->service_start; |
| if (startstop == ide_stopped) { |
| if (hwgroup->handler == NULL) { /* paranoia */ |
| hwgroup->busy = 0; |
| ide_do_request(hwgroup, hwif->irq); |
| } else { |
| printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler " |
| "on exit\n", drive->name); |
| } |
| } |
| spin_unlock_irqrestore(&ide_lock, flags); |
| return IRQ_HANDLED; |
| } |
| |
| /** |
| * ide_init_drive_cmd - initialize a drive command request |
| * @rq: request object |
| * |
| * Initialize a request before we fill it in and send it down to |
| * ide_do_drive_cmd. Commands must be set up by this function. Right |
| * now it doesn't do a lot, but if that changes abusers will have a |
| * nasty suprise. |
| */ |
| |
| void ide_init_drive_cmd (struct request *rq) |
| { |
| memset(rq, 0, sizeof(*rq)); |
| rq->flags = REQ_DRIVE_CMD; |
| rq->ref_count = 1; |
| } |
| |
| EXPORT_SYMBOL(ide_init_drive_cmd); |
| |
| /** |
| * ide_do_drive_cmd - issue IDE special command |
| * @drive: device to issue command |
| * @rq: request to issue |
| * @action: action for processing |
| * |
| * This function issues a special IDE device request |
| * onto the request queue. |
| * |
| * If action is ide_wait, then the rq is queued at the end of the |
| * request queue, and the function sleeps until it has been processed. |
| * This is for use when invoked from an ioctl handler. |
| * |
| * If action is ide_preempt, then the rq is queued at the head of |
| * the request queue, displacing the currently-being-processed |
| * request and this function returns immediately without waiting |
| * for the new rq to be completed. This is VERY DANGEROUS, and is |
| * intended for careful use by the ATAPI tape/cdrom driver code. |
| * |
| * If action is ide_end, then the rq is queued at the end of the |
| * request queue, and the function returns immediately without waiting |
| * for the new rq to be completed. This is again intended for careful |
| * use by the ATAPI tape/cdrom driver code. |
| */ |
| |
| int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action) |
| { |
| unsigned long flags; |
| ide_hwgroup_t *hwgroup = HWGROUP(drive); |
| DECLARE_COMPLETION(wait); |
| int where = ELEVATOR_INSERT_BACK, err; |
| int must_wait = (action == ide_wait || action == ide_head_wait); |
| |
| rq->errors = 0; |
| rq->rq_status = RQ_ACTIVE; |
| |
| /* |
| * we need to hold an extra reference to request for safe inspection |
| * after completion |
| */ |
| if (must_wait) { |
| rq->ref_count++; |
| rq->waiting = &wait; |
| rq->end_io = blk_end_sync_rq; |
| } |
| |
| spin_lock_irqsave(&ide_lock, flags); |
| if (action == ide_preempt) |
| hwgroup->rq = NULL; |
| if (action == ide_preempt || action == ide_head_wait) { |
| where = ELEVATOR_INSERT_FRONT; |
| rq->flags |= REQ_PREEMPT; |
| } |
| __elv_add_request(drive->queue, rq, where, 0); |
| ide_do_request(hwgroup, IDE_NO_IRQ); |
| spin_unlock_irqrestore(&ide_lock, flags); |
| |
| err = 0; |
| if (must_wait) { |
| wait_for_completion(&wait); |
| rq->waiting = NULL; |
| if (rq->errors) |
| err = -EIO; |
| |
| blk_put_request(rq); |
| } |
| |
| return err; |
| } |
| |
| EXPORT_SYMBOL(ide_do_drive_cmd); |