blob: 66df6f8bc0deb1991fbc4468fb334bc28b361aaa [file] [log] [blame]
/*
* Copyright (c) 2004-2011 Atheros Communications Inc.
* Copyright (c) 2011-2012 Qualcomm Atheros, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <linux/ip.h>
#include <linux/in.h>
#include "core.h"
#include "debug.h"
#include "testmode.h"
#include "trace.h"
#include "../regd.h"
#include "../regd_common.h"
static int ath6kl_wmi_sync_point(struct wmi *wmi, u8 if_idx);
static const s32 wmi_rate_tbl[][2] = {
/* {W/O SGI, with SGI} */
{1000, 1000},
{2000, 2000},
{5500, 5500},
{11000, 11000},
{6000, 6000},
{9000, 9000},
{12000, 12000},
{18000, 18000},
{24000, 24000},
{36000, 36000},
{48000, 48000},
{54000, 54000},
{6500, 7200},
{13000, 14400},
{19500, 21700},
{26000, 28900},
{39000, 43300},
{52000, 57800},
{58500, 65000},
{65000, 72200},
{13500, 15000},
{27000, 30000},
{40500, 45000},
{54000, 60000},
{81000, 90000},
{108000, 120000},
{121500, 135000},
{135000, 150000},
{0, 0}
};
static const s32 wmi_rate_tbl_mcs15[][2] = {
/* {W/O SGI, with SGI} */
{1000, 1000},
{2000, 2000},
{5500, 5500},
{11000, 11000},
{6000, 6000},
{9000, 9000},
{12000, 12000},
{18000, 18000},
{24000, 24000},
{36000, 36000},
{48000, 48000},
{54000, 54000},
{6500, 7200}, /* HT 20, MCS 0 */
{13000, 14400},
{19500, 21700},
{26000, 28900},
{39000, 43300},
{52000, 57800},
{58500, 65000},
{65000, 72200},
{13000, 14400}, /* HT 20, MCS 8 */
{26000, 28900},
{39000, 43300},
{52000, 57800},
{78000, 86700},
{104000, 115600},
{117000, 130000},
{130000, 144400}, /* HT 20, MCS 15 */
{13500, 15000}, /*HT 40, MCS 0 */
{27000, 30000},
{40500, 45000},
{54000, 60000},
{81000, 90000},
{108000, 120000},
{121500, 135000},
{135000, 150000},
{27000, 30000}, /*HT 40, MCS 8 */
{54000, 60000},
{81000, 90000},
{108000, 120000},
{162000, 180000},
{216000, 240000},
{243000, 270000},
{270000, 300000}, /*HT 40, MCS 15 */
{0, 0}
};
/* 802.1d to AC mapping. Refer pg 57 of WMM-test-plan-v1.2 */
static const u8 up_to_ac[] = {
WMM_AC_BE,
WMM_AC_BK,
WMM_AC_BK,
WMM_AC_BE,
WMM_AC_VI,
WMM_AC_VI,
WMM_AC_VO,
WMM_AC_VO,
};
void ath6kl_wmi_set_control_ep(struct wmi *wmi, enum htc_endpoint_id ep_id)
{
if (WARN_ON(ep_id == ENDPOINT_UNUSED || ep_id >= ENDPOINT_MAX))
return;
wmi->ep_id = ep_id;
}
enum htc_endpoint_id ath6kl_wmi_get_control_ep(struct wmi *wmi)
{
return wmi->ep_id;
}
struct ath6kl_vif *ath6kl_get_vif_by_index(struct ath6kl *ar, u8 if_idx)
{
struct ath6kl_vif *vif, *found = NULL;
if (WARN_ON(if_idx > (ar->vif_max - 1)))
return NULL;
/* FIXME: Locking */
spin_lock_bh(&ar->list_lock);
list_for_each_entry(vif, &ar->vif_list, list) {
if (vif->fw_vif_idx == if_idx) {
found = vif;
break;
}
}
spin_unlock_bh(&ar->list_lock);
return found;
}
/* Performs DIX to 802.3 encapsulation for transmit packets.
* Assumes the entire DIX header is contiguous and that there is
* enough room in the buffer for a 802.3 mac header and LLC+SNAP headers.
*/
int ath6kl_wmi_dix_2_dot3(struct wmi *wmi, struct sk_buff *skb)
{
struct ath6kl_llc_snap_hdr *llc_hdr;
struct ethhdr *eth_hdr;
size_t new_len;
__be16 type;
u8 *datap;
u16 size;
if (WARN_ON(skb == NULL))
return -EINVAL;
size = sizeof(struct ath6kl_llc_snap_hdr) + sizeof(struct wmi_data_hdr);
if (skb_headroom(skb) < size)
return -ENOMEM;
eth_hdr = (struct ethhdr *) skb->data;
type = eth_hdr->h_proto;
if (!is_ethertype(be16_to_cpu(type))) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"%s: pkt is already in 802.3 format\n", __func__);
return 0;
}
new_len = skb->len - sizeof(*eth_hdr) + sizeof(*llc_hdr);
skb_push(skb, sizeof(struct ath6kl_llc_snap_hdr));
datap = skb->data;
eth_hdr->h_proto = cpu_to_be16(new_len);
memcpy(datap, eth_hdr, sizeof(*eth_hdr));
llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap + sizeof(*eth_hdr));
llc_hdr->dsap = 0xAA;
llc_hdr->ssap = 0xAA;
llc_hdr->cntl = 0x03;
llc_hdr->org_code[0] = 0x0;
llc_hdr->org_code[1] = 0x0;
llc_hdr->org_code[2] = 0x0;
llc_hdr->eth_type = type;
return 0;
}
static int ath6kl_wmi_meta_add(struct wmi *wmi, struct sk_buff *skb,
u8 *version, void *tx_meta_info)
{
struct wmi_tx_meta_v1 *v1;
struct wmi_tx_meta_v2 *v2;
if (WARN_ON(skb == NULL || version == NULL))
return -EINVAL;
switch (*version) {
case WMI_META_VERSION_1:
skb_push(skb, WMI_MAX_TX_META_SZ);
v1 = (struct wmi_tx_meta_v1 *) skb->data;
v1->pkt_id = 0;
v1->rate_plcy_id = 0;
*version = WMI_META_VERSION_1;
break;
case WMI_META_VERSION_2:
skb_push(skb, WMI_MAX_TX_META_SZ);
v2 = (struct wmi_tx_meta_v2 *) skb->data;
memcpy(v2, (struct wmi_tx_meta_v2 *) tx_meta_info,
sizeof(struct wmi_tx_meta_v2));
break;
}
return 0;
}
int ath6kl_wmi_data_hdr_add(struct wmi *wmi, struct sk_buff *skb,
u8 msg_type, u32 flags,
enum wmi_data_hdr_data_type data_type,
u8 meta_ver, void *tx_meta_info, u8 if_idx)
{
struct wmi_data_hdr *data_hdr;
int ret;
if (WARN_ON(skb == NULL || (if_idx > wmi->parent_dev->vif_max - 1)))
return -EINVAL;
if (tx_meta_info) {
ret = ath6kl_wmi_meta_add(wmi, skb, &meta_ver, tx_meta_info);
if (ret)
return ret;
}
skb_push(skb, sizeof(struct wmi_data_hdr));
data_hdr = (struct wmi_data_hdr *)skb->data;
memset(data_hdr, 0, sizeof(struct wmi_data_hdr));
data_hdr->info = msg_type << WMI_DATA_HDR_MSG_TYPE_SHIFT;
data_hdr->info |= data_type << WMI_DATA_HDR_DATA_TYPE_SHIFT;
if (flags & WMI_DATA_HDR_FLAGS_MORE)
data_hdr->info |= WMI_DATA_HDR_MORE;
if (flags & WMI_DATA_HDR_FLAGS_EOSP)
data_hdr->info3 |= cpu_to_le16(WMI_DATA_HDR_EOSP);
data_hdr->info2 |= cpu_to_le16(meta_ver << WMI_DATA_HDR_META_SHIFT);
data_hdr->info3 |= cpu_to_le16(if_idx & WMI_DATA_HDR_IF_IDX_MASK);
return 0;
}
u8 ath6kl_wmi_determine_user_priority(u8 *pkt, u32 layer2_pri)
{
struct iphdr *ip_hdr = (struct iphdr *) pkt;
u8 ip_pri;
/*
* Determine IPTOS priority
*
* IP-TOS - 8bits
* : DSCP(6-bits) ECN(2-bits)
* : DSCP - P2 P1 P0 X X X
* where (P2 P1 P0) form 802.1D
*/
ip_pri = ip_hdr->tos >> 5;
ip_pri &= 0x7;
if ((layer2_pri & 0x7) > ip_pri)
return (u8) layer2_pri & 0x7;
else
return ip_pri;
}
u8 ath6kl_wmi_get_traffic_class(u8 user_priority)
{
return up_to_ac[user_priority & 0x7];
}
int ath6kl_wmi_implicit_create_pstream(struct wmi *wmi, u8 if_idx,
struct sk_buff *skb,
u32 layer2_priority, bool wmm_enabled,
u8 *ac)
{
struct wmi_data_hdr *data_hdr;
struct ath6kl_llc_snap_hdr *llc_hdr;
struct wmi_create_pstream_cmd cmd;
u32 meta_size, hdr_size;
u16 ip_type = IP_ETHERTYPE;
u8 stream_exist, usr_pri;
u8 traffic_class = WMM_AC_BE;
u8 *datap;
if (WARN_ON(skb == NULL))
return -EINVAL;
datap = skb->data;
data_hdr = (struct wmi_data_hdr *) datap;
meta_size = ((le16_to_cpu(data_hdr->info2) >> WMI_DATA_HDR_META_SHIFT) &
WMI_DATA_HDR_META_MASK) ? WMI_MAX_TX_META_SZ : 0;
if (!wmm_enabled) {
/* If WMM is disabled all traffic goes as BE traffic */
usr_pri = 0;
} else {
hdr_size = sizeof(struct ethhdr);
llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap +
sizeof(struct
wmi_data_hdr) +
meta_size + hdr_size);
if (llc_hdr->eth_type == htons(ip_type)) {
/*
* Extract the endpoint info from the TOS field
* in the IP header.
*/
usr_pri =
ath6kl_wmi_determine_user_priority(((u8 *) llc_hdr) +
sizeof(struct ath6kl_llc_snap_hdr),
layer2_priority);
} else {
usr_pri = layer2_priority & 0x7;
}
/*
* Queue the EAPOL frames in the same WMM_AC_VO queue
* as that of management frames.
*/
if (skb->protocol == cpu_to_be16(ETH_P_PAE))
usr_pri = WMI_VOICE_USER_PRIORITY;
}
/*
* workaround for WMM S5
*
* FIXME: wmi->traffic_class is always 100 so this test doesn't
* make sense
*/
if ((wmi->traffic_class == WMM_AC_VI) &&
((usr_pri == 5) || (usr_pri == 4)))
usr_pri = 1;
/* Convert user priority to traffic class */
traffic_class = up_to_ac[usr_pri & 0x7];
wmi_data_hdr_set_up(data_hdr, usr_pri);
spin_lock_bh(&wmi->lock);
stream_exist = wmi->fat_pipe_exist;
spin_unlock_bh(&wmi->lock);
if (!(stream_exist & (1 << traffic_class))) {
memset(&cmd, 0, sizeof(cmd));
cmd.traffic_class = traffic_class;
cmd.user_pri = usr_pri;
cmd.inactivity_int =
cpu_to_le32(WMI_IMPLICIT_PSTREAM_INACTIVITY_INT);
/* Implicit streams are created with TSID 0xFF */
cmd.tsid = WMI_IMPLICIT_PSTREAM;
ath6kl_wmi_create_pstream_cmd(wmi, if_idx, &cmd);
}
*ac = traffic_class;
return 0;
}
int ath6kl_wmi_dot11_hdr_remove(struct wmi *wmi, struct sk_buff *skb)
{
struct ieee80211_hdr_3addr *pwh, wh;
struct ath6kl_llc_snap_hdr *llc_hdr;
struct ethhdr eth_hdr;
u32 hdr_size;
u8 *datap;
__le16 sub_type;
if (WARN_ON(skb == NULL))
return -EINVAL;
datap = skb->data;
pwh = (struct ieee80211_hdr_3addr *) datap;
sub_type = pwh->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
memcpy((u8 *) &wh, datap, sizeof(struct ieee80211_hdr_3addr));
/* Strip off the 802.11 header */
if (sub_type == cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
hdr_size = roundup(sizeof(struct ieee80211_qos_hdr),
sizeof(u32));
skb_pull(skb, hdr_size);
} else if (sub_type == cpu_to_le16(IEEE80211_STYPE_DATA)) {
skb_pull(skb, sizeof(struct ieee80211_hdr_3addr));
}
datap = skb->data;
llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap);
memset(&eth_hdr, 0, sizeof(eth_hdr));
eth_hdr.h_proto = llc_hdr->eth_type;
switch ((le16_to_cpu(wh.frame_control)) &
(IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
case IEEE80211_FCTL_TODS:
memcpy(eth_hdr.h_dest, wh.addr3, ETH_ALEN);
memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN);
break;
case IEEE80211_FCTL_FROMDS:
memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN);
memcpy(eth_hdr.h_source, wh.addr3, ETH_ALEN);
break;
case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
break;
default:
memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN);
memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN);
break;
}
skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr));
skb_push(skb, sizeof(eth_hdr));
datap = skb->data;
memcpy(datap, &eth_hdr, sizeof(eth_hdr));
return 0;
}
/*
* Performs 802.3 to DIX encapsulation for received packets.
* Assumes the entire 802.3 header is contiguous.
*/
int ath6kl_wmi_dot3_2_dix(struct sk_buff *skb)
{
struct ath6kl_llc_snap_hdr *llc_hdr;
struct ethhdr eth_hdr;
u8 *datap;
if (WARN_ON(skb == NULL))
return -EINVAL;
datap = skb->data;
memcpy(&eth_hdr, datap, sizeof(eth_hdr));
llc_hdr = (struct ath6kl_llc_snap_hdr *) (datap + sizeof(eth_hdr));
eth_hdr.h_proto = llc_hdr->eth_type;
skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr));
datap = skb->data;
memcpy(datap, &eth_hdr, sizeof(eth_hdr));
return 0;
}
static int ath6kl_wmi_tx_complete_event_rx(u8 *datap, int len)
{
struct tx_complete_msg_v1 *msg_v1;
struct wmi_tx_complete_event *evt;
int index;
u16 size;
evt = (struct wmi_tx_complete_event *) datap;
ath6kl_dbg(ATH6KL_DBG_WMI, "comp: %d %d %d\n",
evt->num_msg, evt->msg_len, evt->msg_type);
for (index = 0; index < evt->num_msg; index++) {
size = sizeof(struct wmi_tx_complete_event) +
(index * sizeof(struct tx_complete_msg_v1));
msg_v1 = (struct tx_complete_msg_v1 *)(datap + size);
ath6kl_dbg(ATH6KL_DBG_WMI, "msg: %d %d %d %d\n",
msg_v1->status, msg_v1->pkt_id,
msg_v1->rate_idx, msg_v1->ack_failures);
}
return 0;
}
static int ath6kl_wmi_remain_on_chnl_event_rx(struct wmi *wmi, u8 *datap,
int len, struct ath6kl_vif *vif)
{
struct wmi_remain_on_chnl_event *ev;
u32 freq;
u32 dur;
struct ieee80211_channel *chan;
struct ath6kl *ar = wmi->parent_dev;
u32 id;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_remain_on_chnl_event *) datap;
freq = le32_to_cpu(ev->freq);
dur = le32_to_cpu(ev->duration);
ath6kl_dbg(ATH6KL_DBG_WMI, "remain_on_chnl: freq=%u dur=%u\n",
freq, dur);
chan = ieee80211_get_channel(ar->wiphy, freq);
if (!chan) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"remain_on_chnl: Unknown channel (freq=%u)\n",
freq);
return -EINVAL;
}
id = vif->last_roc_id;
cfg80211_ready_on_channel(&vif->wdev, id, chan,
dur, GFP_ATOMIC);
return 0;
}
static int ath6kl_wmi_cancel_remain_on_chnl_event_rx(struct wmi *wmi,
u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_cancel_remain_on_chnl_event *ev;
u32 freq;
u32 dur;
struct ieee80211_channel *chan;
struct ath6kl *ar = wmi->parent_dev;
u32 id;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_cancel_remain_on_chnl_event *) datap;
freq = le32_to_cpu(ev->freq);
dur = le32_to_cpu(ev->duration);
ath6kl_dbg(ATH6KL_DBG_WMI,
"cancel_remain_on_chnl: freq=%u dur=%u status=%u\n",
freq, dur, ev->status);
chan = ieee80211_get_channel(ar->wiphy, freq);
if (!chan) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"cancel_remain_on_chnl: Unknown channel (freq=%u)\n",
freq);
return -EINVAL;
}
if (vif->last_cancel_roc_id &&
vif->last_cancel_roc_id + 1 == vif->last_roc_id)
id = vif->last_cancel_roc_id; /* event for cancel command */
else
id = vif->last_roc_id; /* timeout on uncanceled r-o-c */
vif->last_cancel_roc_id = 0;
cfg80211_remain_on_channel_expired(&vif->wdev, id, chan, GFP_ATOMIC);
return 0;
}
static int ath6kl_wmi_tx_status_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_tx_status_event *ev;
u32 id;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_tx_status_event *) datap;
id = le32_to_cpu(ev->id);
ath6kl_dbg(ATH6KL_DBG_WMI, "tx_status: id=%x ack_status=%u\n",
id, ev->ack_status);
if (wmi->last_mgmt_tx_frame) {
cfg80211_mgmt_tx_status(&vif->wdev, id,
wmi->last_mgmt_tx_frame,
wmi->last_mgmt_tx_frame_len,
!!ev->ack_status, GFP_ATOMIC);
kfree(wmi->last_mgmt_tx_frame);
wmi->last_mgmt_tx_frame = NULL;
wmi->last_mgmt_tx_frame_len = 0;
}
return 0;
}
static int ath6kl_wmi_rx_probe_req_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_p2p_rx_probe_req_event *ev;
u32 freq;
u16 dlen;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_p2p_rx_probe_req_event *) datap;
freq = le32_to_cpu(ev->freq);
dlen = le16_to_cpu(ev->len);
if (datap + len < ev->data + dlen) {
ath6kl_err("invalid wmi_p2p_rx_probe_req_event: len=%d dlen=%u\n",
len, dlen);
return -EINVAL;
}
ath6kl_dbg(ATH6KL_DBG_WMI,
"rx_probe_req: len=%u freq=%u probe_req_report=%d\n",
dlen, freq, vif->probe_req_report);
if (vif->probe_req_report || vif->nw_type == AP_NETWORK)
cfg80211_rx_mgmt(&vif->wdev, freq, 0, ev->data, dlen, 0);
return 0;
}
static int ath6kl_wmi_p2p_capabilities_event_rx(u8 *datap, int len)
{
struct wmi_p2p_capabilities_event *ev;
u16 dlen;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_p2p_capabilities_event *) datap;
dlen = le16_to_cpu(ev->len);
ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_capab: len=%u\n", dlen);
return 0;
}
static int ath6kl_wmi_rx_action_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_rx_action_event *ev;
u32 freq;
u16 dlen;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_rx_action_event *) datap;
freq = le32_to_cpu(ev->freq);
dlen = le16_to_cpu(ev->len);
if (datap + len < ev->data + dlen) {
ath6kl_err("invalid wmi_rx_action_event: len=%d dlen=%u\n",
len, dlen);
return -EINVAL;
}
ath6kl_dbg(ATH6KL_DBG_WMI, "rx_action: len=%u freq=%u\n", dlen, freq);
cfg80211_rx_mgmt(&vif->wdev, freq, 0, ev->data, dlen, 0);
return 0;
}
static int ath6kl_wmi_p2p_info_event_rx(u8 *datap, int len)
{
struct wmi_p2p_info_event *ev;
u32 flags;
u16 dlen;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_p2p_info_event *) datap;
flags = le32_to_cpu(ev->info_req_flags);
dlen = le16_to_cpu(ev->len);
ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: flags=%x len=%d\n", flags, dlen);
if (flags & P2P_FLAG_CAPABILITIES_REQ) {
struct wmi_p2p_capabilities *cap;
if (dlen < sizeof(*cap))
return -EINVAL;
cap = (struct wmi_p2p_capabilities *) ev->data;
ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: GO Power Save = %d\n",
cap->go_power_save);
}
if (flags & P2P_FLAG_MACADDR_REQ) {
struct wmi_p2p_macaddr *mac;
if (dlen < sizeof(*mac))
return -EINVAL;
mac = (struct wmi_p2p_macaddr *) ev->data;
ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: MAC Address = %pM\n",
mac->mac_addr);
}
if (flags & P2P_FLAG_HMODEL_REQ) {
struct wmi_p2p_hmodel *mod;
if (dlen < sizeof(*mod))
return -EINVAL;
mod = (struct wmi_p2p_hmodel *) ev->data;
ath6kl_dbg(ATH6KL_DBG_WMI, "p2p_info: P2P Model = %d (%s)\n",
mod->p2p_model,
mod->p2p_model ? "host" : "firmware");
}
return 0;
}
static inline struct sk_buff *ath6kl_wmi_get_new_buf(u32 size)
{
struct sk_buff *skb;
skb = ath6kl_buf_alloc(size);
if (!skb)
return NULL;
skb_put(skb, size);
if (size)
memset(skb->data, 0, size);
return skb;
}
/* Send a "simple" wmi command -- one with no arguments */
static int ath6kl_wmi_simple_cmd(struct wmi *wmi, u8 if_idx,
enum wmi_cmd_id cmd_id)
{
struct sk_buff *skb;
int ret;
skb = ath6kl_wmi_get_new_buf(0);
if (!skb)
return -ENOMEM;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, cmd_id, NO_SYNC_WMIFLAG);
return ret;
}
static int ath6kl_wmi_ready_event_rx(struct wmi *wmi, u8 *datap, int len)
{
struct wmi_ready_event_2 *ev = (struct wmi_ready_event_2 *) datap;
if (len < sizeof(struct wmi_ready_event_2))
return -EINVAL;
ath6kl_ready_event(wmi->parent_dev, ev->mac_addr,
le32_to_cpu(ev->sw_version),
le32_to_cpu(ev->abi_version), ev->phy_cap);
return 0;
}
/*
* Mechanism to modify the roaming behavior in the firmware. The lower rssi
* at which the station has to roam can be passed with
* WMI_SET_LRSSI_SCAN_PARAMS. Subtract 96 from RSSI to get the signal level
* in dBm.
*/
int ath6kl_wmi_set_roam_lrssi_cmd(struct wmi *wmi, u8 lrssi)
{
struct sk_buff *skb;
struct roam_ctrl_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct roam_ctrl_cmd *) skb->data;
cmd->info.params.lrssi_scan_period = cpu_to_le16(DEF_LRSSI_SCAN_PERIOD);
cmd->info.params.lrssi_scan_threshold = a_cpu_to_sle16(lrssi +
DEF_SCAN_FOR_ROAM_INTVL);
cmd->info.params.lrssi_roam_threshold = a_cpu_to_sle16(lrssi);
cmd->info.params.roam_rssi_floor = DEF_LRSSI_ROAM_FLOOR;
cmd->roam_ctrl = WMI_SET_LRSSI_SCAN_PARAMS;
ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_SET_ROAM_CTRL_CMDID,
NO_SYNC_WMIFLAG);
return 0;
}
int ath6kl_wmi_force_roam_cmd(struct wmi *wmi, const u8 *bssid)
{
struct sk_buff *skb;
struct roam_ctrl_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct roam_ctrl_cmd *) skb->data;
memcpy(cmd->info.bssid, bssid, ETH_ALEN);
cmd->roam_ctrl = WMI_FORCE_ROAM;
ath6kl_dbg(ATH6KL_DBG_WMI, "force roam to %pM\n", bssid);
return ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_SET_ROAM_CTRL_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_ap_set_beacon_intvl_cmd(struct wmi *wmi, u8 if_idx,
u32 beacon_intvl)
{
struct sk_buff *skb;
struct set_beacon_int_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct set_beacon_int_cmd *) skb->data;
cmd->beacon_intvl = cpu_to_le32(beacon_intvl);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_SET_BEACON_INT_CMDID, NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_ap_set_dtim_cmd(struct wmi *wmi, u8 if_idx, u32 dtim_period)
{
struct sk_buff *skb;
struct set_dtim_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct set_dtim_cmd *) skb->data;
cmd->dtim_period = cpu_to_le32(dtim_period);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_AP_SET_DTIM_CMDID, NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_set_roam_mode_cmd(struct wmi *wmi, enum wmi_roam_mode mode)
{
struct sk_buff *skb;
struct roam_ctrl_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct roam_ctrl_cmd *) skb->data;
cmd->info.roam_mode = mode;
cmd->roam_ctrl = WMI_SET_ROAM_MODE;
ath6kl_dbg(ATH6KL_DBG_WMI, "set roam mode %d\n", mode);
return ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_SET_ROAM_CTRL_CMDID,
NO_SYNC_WMIFLAG);
}
static int ath6kl_wmi_connect_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_connect_event *ev;
u8 *pie, *peie;
if (len < sizeof(struct wmi_connect_event))
return -EINVAL;
ev = (struct wmi_connect_event *) datap;
if (vif->nw_type == AP_NETWORK) {
/* AP mode start/STA connected event */
struct net_device *dev = vif->ndev;
if (memcmp(dev->dev_addr, ev->u.ap_bss.bssid, ETH_ALEN) == 0) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"%s: freq %d bssid %pM (AP started)\n",
__func__, le16_to_cpu(ev->u.ap_bss.ch),
ev->u.ap_bss.bssid);
ath6kl_connect_ap_mode_bss(
vif, le16_to_cpu(ev->u.ap_bss.ch));
} else {
ath6kl_dbg(ATH6KL_DBG_WMI,
"%s: aid %u mac_addr %pM auth=%u keymgmt=%u cipher=%u apsd_info=%u (STA connected)\n",
__func__, ev->u.ap_sta.aid,
ev->u.ap_sta.mac_addr,
ev->u.ap_sta.auth,
ev->u.ap_sta.keymgmt,
le16_to_cpu(ev->u.ap_sta.cipher),
ev->u.ap_sta.apsd_info);
ath6kl_connect_ap_mode_sta(
vif, ev->u.ap_sta.aid, ev->u.ap_sta.mac_addr,
ev->u.ap_sta.keymgmt,
le16_to_cpu(ev->u.ap_sta.cipher),
ev->u.ap_sta.auth, ev->assoc_req_len,
ev->assoc_info + ev->beacon_ie_len,
ev->u.ap_sta.apsd_info);
}
return 0;
}
/* STA/IBSS mode connection event */
ath6kl_dbg(ATH6KL_DBG_WMI,
"wmi event connect freq %d bssid %pM listen_intvl %d beacon_intvl %d type %d\n",
le16_to_cpu(ev->u.sta.ch), ev->u.sta.bssid,
le16_to_cpu(ev->u.sta.listen_intvl),
le16_to_cpu(ev->u.sta.beacon_intvl),
le32_to_cpu(ev->u.sta.nw_type));
/* Start of assoc rsp IEs */
pie = ev->assoc_info + ev->beacon_ie_len +
ev->assoc_req_len + (sizeof(u16) * 3); /* capinfo, status, aid */
/* End of assoc rsp IEs */
peie = ev->assoc_info + ev->beacon_ie_len + ev->assoc_req_len +
ev->assoc_resp_len;
while (pie < peie) {
switch (*pie) {
case WLAN_EID_VENDOR_SPECIFIC:
if (pie[1] > 3 && pie[2] == 0x00 && pie[3] == 0x50 &&
pie[4] == 0xf2 && pie[5] == WMM_OUI_TYPE) {
/* WMM OUT (00:50:F2) */
if (pie[1] > 5 &&
pie[6] == WMM_PARAM_OUI_SUBTYPE)
wmi->is_wmm_enabled = true;
}
break;
}
if (wmi->is_wmm_enabled)
break;
pie += pie[1] + 2;
}
ath6kl_connect_event(vif, le16_to_cpu(ev->u.sta.ch),
ev->u.sta.bssid,
le16_to_cpu(ev->u.sta.listen_intvl),
le16_to_cpu(ev->u.sta.beacon_intvl),
le32_to_cpu(ev->u.sta.nw_type),
ev->beacon_ie_len, ev->assoc_req_len,
ev->assoc_resp_len, ev->assoc_info);
return 0;
}
static struct country_code_to_enum_rd *
ath6kl_regd_find_country(u16 countryCode)
{
int i;
for (i = 0; i < ARRAY_SIZE(allCountries); i++) {
if (allCountries[i].countryCode == countryCode)
return &allCountries[i];
}
return NULL;
}
static struct reg_dmn_pair_mapping *
ath6kl_get_regpair(u16 regdmn)
{
int i;
if (regdmn == NO_ENUMRD)
return NULL;
for (i = 0; i < ARRAY_SIZE(regDomainPairs); i++) {
if (regDomainPairs[i].reg_domain == regdmn)
return &regDomainPairs[i];
}
return NULL;
}
static struct country_code_to_enum_rd *
ath6kl_regd_find_country_by_rd(u16 regdmn)
{
int i;
for (i = 0; i < ARRAY_SIZE(allCountries); i++) {
if (allCountries[i].regDmnEnum == regdmn)
return &allCountries[i];
}
return NULL;
}
static void ath6kl_wmi_regdomain_event(struct wmi *wmi, u8 *datap, int len)
{
struct ath6kl_wmi_regdomain *ev;
struct country_code_to_enum_rd *country = NULL;
struct reg_dmn_pair_mapping *regpair = NULL;
char alpha2[2];
u32 reg_code;
ev = (struct ath6kl_wmi_regdomain *) datap;
reg_code = le32_to_cpu(ev->reg_code);
if ((reg_code >> ATH6KL_COUNTRY_RD_SHIFT) & COUNTRY_ERD_FLAG) {
country = ath6kl_regd_find_country((u16) reg_code);
} else if (!(((u16) reg_code & WORLD_SKU_MASK) == WORLD_SKU_PREFIX)) {
regpair = ath6kl_get_regpair((u16) reg_code);
country = ath6kl_regd_find_country_by_rd((u16) reg_code);
if (regpair)
ath6kl_dbg(ATH6KL_DBG_WMI, "Regpair used: 0x%0x\n",
regpair->reg_domain);
else
ath6kl_warn("Regpair not found reg_code 0x%0x\n",
reg_code);
}
if (country && wmi->parent_dev->wiphy_registered) {
alpha2[0] = country->isoName[0];
alpha2[1] = country->isoName[1];
regulatory_hint(wmi->parent_dev->wiphy, alpha2);
ath6kl_dbg(ATH6KL_DBG_WMI, "Country alpha2 being used: %c%c\n",
alpha2[0], alpha2[1]);
}
}
static int ath6kl_wmi_disconnect_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_disconnect_event *ev;
wmi->traffic_class = 100;
if (len < sizeof(struct wmi_disconnect_event))
return -EINVAL;
ev = (struct wmi_disconnect_event *) datap;
ath6kl_dbg(ATH6KL_DBG_WMI,
"wmi event disconnect proto_reason %d bssid %pM wmi_reason %d assoc_resp_len %d\n",
le16_to_cpu(ev->proto_reason_status), ev->bssid,
ev->disconn_reason, ev->assoc_resp_len);
wmi->is_wmm_enabled = false;
ath6kl_disconnect_event(vif, ev->disconn_reason,
ev->bssid, ev->assoc_resp_len, ev->assoc_info,
le16_to_cpu(ev->proto_reason_status));
return 0;
}
static int ath6kl_wmi_peer_node_event_rx(struct wmi *wmi, u8 *datap, int len)
{
struct wmi_peer_node_event *ev;
if (len < sizeof(struct wmi_peer_node_event))
return -EINVAL;
ev = (struct wmi_peer_node_event *) datap;
if (ev->event_code == PEER_NODE_JOIN_EVENT)
ath6kl_dbg(ATH6KL_DBG_WMI, "joined node with mac addr: %pM\n",
ev->peer_mac_addr);
else if (ev->event_code == PEER_NODE_LEAVE_EVENT)
ath6kl_dbg(ATH6KL_DBG_WMI, "left node with mac addr: %pM\n",
ev->peer_mac_addr);
return 0;
}
static int ath6kl_wmi_tkip_micerr_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_tkip_micerr_event *ev;
if (len < sizeof(struct wmi_tkip_micerr_event))
return -EINVAL;
ev = (struct wmi_tkip_micerr_event *) datap;
ath6kl_tkip_micerr_event(vif, ev->key_id, ev->is_mcast);
return 0;
}
void ath6kl_wmi_sscan_timer(unsigned long ptr)
{
struct ath6kl_vif *vif = (struct ath6kl_vif *) ptr;
cfg80211_sched_scan_results(vif->ar->wiphy, 0);
}
static int ath6kl_wmi_bssinfo_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_bss_info_hdr2 *bih;
u8 *buf;
struct ieee80211_channel *channel;
struct ath6kl *ar = wmi->parent_dev;
struct cfg80211_bss *bss;
if (len <= sizeof(struct wmi_bss_info_hdr2))
return -EINVAL;
bih = (struct wmi_bss_info_hdr2 *) datap;
buf = datap + sizeof(struct wmi_bss_info_hdr2);
len -= sizeof(struct wmi_bss_info_hdr2);
ath6kl_dbg(ATH6KL_DBG_WMI,
"bss info evt - ch %u, snr %d, rssi %d, bssid \"%pM\" "
"frame_type=%d\n",
bih->ch, bih->snr, bih->snr - 95, bih->bssid,
bih->frame_type);
if (bih->frame_type != BEACON_FTYPE &&
bih->frame_type != PROBERESP_FTYPE)
return 0; /* Only update BSS table for now */
if (bih->frame_type == BEACON_FTYPE &&
test_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags)) {
clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
NONE_BSS_FILTER, 0);
}
channel = ieee80211_get_channel(ar->wiphy, le16_to_cpu(bih->ch));
if (channel == NULL)
return -EINVAL;
if (len < 8 + 2 + 2)
return -EINVAL;
if (bih->frame_type == BEACON_FTYPE &&
test_bit(CONNECTED, &vif->flags) &&
memcmp(bih->bssid, vif->bssid, ETH_ALEN) == 0) {
const u8 *tim;
tim = cfg80211_find_ie(WLAN_EID_TIM, buf + 8 + 2 + 2,
len - 8 - 2 - 2);
if (tim && tim[1] >= 2) {
vif->assoc_bss_dtim_period = tim[3];
set_bit(DTIM_PERIOD_AVAIL, &vif->flags);
}
}
bss = cfg80211_inform_bss(ar->wiphy, channel,
bih->frame_type == BEACON_FTYPE ?
CFG80211_BSS_FTYPE_BEACON :
CFG80211_BSS_FTYPE_PRESP,
bih->bssid, get_unaligned_le64((__le64 *)buf),
get_unaligned_le16(((__le16 *)buf) + 5),
get_unaligned_le16(((__le16 *)buf) + 4),
buf + 8 + 2 + 2, len - 8 - 2 - 2,
(bih->snr - 95) * 100, GFP_ATOMIC);
if (bss == NULL)
return -ENOMEM;
cfg80211_put_bss(ar->wiphy, bss);
/*
* Firmware doesn't return any event when scheduled scan has
* finished, so we need to use a timer to find out when there are
* no more results.
*
* The timer is started from the first bss info received, otherwise
* the timer would not ever fire if the scan interval is short
* enough.
*/
if (test_bit(SCHED_SCANNING, &vif->flags) &&
!timer_pending(&vif->sched_scan_timer)) {
mod_timer(&vif->sched_scan_timer, jiffies +
msecs_to_jiffies(ATH6KL_SCHED_SCAN_RESULT_DELAY));
}
return 0;
}
/* Inactivity timeout of a fatpipe(pstream) at the target */
static int ath6kl_wmi_pstream_timeout_event_rx(struct wmi *wmi, u8 *datap,
int len)
{
struct wmi_pstream_timeout_event *ev;
if (len < sizeof(struct wmi_pstream_timeout_event))
return -EINVAL;
ev = (struct wmi_pstream_timeout_event *) datap;
if (ev->traffic_class >= WMM_NUM_AC) {
ath6kl_err("invalid traffic class: %d\n", ev->traffic_class);
return -EINVAL;
}
/*
* When the pstream (fat pipe == AC) timesout, it means there were
* no thinStreams within this pstream & it got implicitly created
* due to data flow on this AC. We start the inactivity timer only
* for implicitly created pstream. Just reset the host state.
*/
spin_lock_bh(&wmi->lock);
wmi->stream_exist_for_ac[ev->traffic_class] = 0;
wmi->fat_pipe_exist &= ~(1 << ev->traffic_class);
spin_unlock_bh(&wmi->lock);
/* Indicate inactivity to driver layer for this fatpipe (pstream) */
ath6kl_indicate_tx_activity(wmi->parent_dev, ev->traffic_class, false);
return 0;
}
static int ath6kl_wmi_bitrate_reply_rx(struct wmi *wmi, u8 *datap, int len)
{
struct wmi_bit_rate_reply *reply;
s32 rate;
u32 sgi, index;
if (len < sizeof(struct wmi_bit_rate_reply))
return -EINVAL;
reply = (struct wmi_bit_rate_reply *) datap;
ath6kl_dbg(ATH6KL_DBG_WMI, "rateindex %d\n", reply->rate_index);
if (reply->rate_index == (s8) RATE_AUTO) {
rate = RATE_AUTO;
} else {
index = reply->rate_index & 0x7f;
if (WARN_ON_ONCE(index > (RATE_MCS_7_40 + 1)))
return -EINVAL;
sgi = (reply->rate_index & 0x80) ? 1 : 0;
rate = wmi_rate_tbl[index][sgi];
}
ath6kl_wakeup_event(wmi->parent_dev);
return 0;
}
static int ath6kl_wmi_test_rx(struct wmi *wmi, u8 *datap, int len)
{
ath6kl_tm_rx_event(wmi->parent_dev, datap, len);
return 0;
}
static int ath6kl_wmi_ratemask_reply_rx(struct wmi *wmi, u8 *datap, int len)
{
if (len < sizeof(struct wmi_fix_rates_reply))
return -EINVAL;
ath6kl_wakeup_event(wmi->parent_dev);
return 0;
}
static int ath6kl_wmi_ch_list_reply_rx(struct wmi *wmi, u8 *datap, int len)
{
if (len < sizeof(struct wmi_channel_list_reply))
return -EINVAL;
ath6kl_wakeup_event(wmi->parent_dev);
return 0;
}
static int ath6kl_wmi_tx_pwr_reply_rx(struct wmi *wmi, u8 *datap, int len)
{
struct wmi_tx_pwr_reply *reply;
if (len < sizeof(struct wmi_tx_pwr_reply))
return -EINVAL;
reply = (struct wmi_tx_pwr_reply *) datap;
ath6kl_txpwr_rx_evt(wmi->parent_dev, reply->dbM);
return 0;
}
static int ath6kl_wmi_keepalive_reply_rx(struct wmi *wmi, u8 *datap, int len)
{
if (len < sizeof(struct wmi_get_keepalive_cmd))
return -EINVAL;
ath6kl_wakeup_event(wmi->parent_dev);
return 0;
}
static int ath6kl_wmi_scan_complete_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_scan_complete_event *ev;
ev = (struct wmi_scan_complete_event *) datap;
ath6kl_scan_complete_evt(vif, a_sle32_to_cpu(ev->status));
wmi->is_probe_ssid = false;
return 0;
}
static int ath6kl_wmi_neighbor_report_event_rx(struct wmi *wmi, u8 *datap,
int len, struct ath6kl_vif *vif)
{
struct wmi_neighbor_report_event *ev;
u8 i;
if (len < sizeof(*ev))
return -EINVAL;
ev = (struct wmi_neighbor_report_event *) datap;
if (sizeof(*ev) + ev->num_neighbors * sizeof(struct wmi_neighbor_info)
> len) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"truncated neighbor event (num=%d len=%d)\n",
ev->num_neighbors, len);
return -EINVAL;
}
for (i = 0; i < ev->num_neighbors; i++) {
ath6kl_dbg(ATH6KL_DBG_WMI, "neighbor %d/%d - %pM 0x%x\n",
i + 1, ev->num_neighbors, ev->neighbor[i].bssid,
ev->neighbor[i].bss_flags);
cfg80211_pmksa_candidate_notify(vif->ndev, i,
ev->neighbor[i].bssid,
!!(ev->neighbor[i].bss_flags &
WMI_PREAUTH_CAPABLE_BSS),
GFP_ATOMIC);
}
return 0;
}
/*
* Target is reporting a programming error. This is for
* developer aid only. Target only checks a few common violations
* and it is responsibility of host to do all error checking.
* Behavior of target after wmi error event is undefined.
* A reset is recommended.
*/
static int ath6kl_wmi_error_event_rx(struct wmi *wmi, u8 *datap, int len)
{
const char *type = "unknown error";
struct wmi_cmd_error_event *ev;
ev = (struct wmi_cmd_error_event *) datap;
switch (ev->err_code) {
case INVALID_PARAM:
type = "invalid parameter";
break;
case ILLEGAL_STATE:
type = "invalid state";
break;
case INTERNAL_ERROR:
type = "internal error";
break;
}
ath6kl_dbg(ATH6KL_DBG_WMI, "programming error, cmd=%d %s\n",
ev->cmd_id, type);
return 0;
}
static int ath6kl_wmi_stats_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
ath6kl_tgt_stats_event(vif, datap, len);
return 0;
}
static u8 ath6kl_wmi_get_upper_threshold(s16 rssi,
struct sq_threshold_params *sq_thresh,
u32 size)
{
u32 index;
u8 threshold = (u8) sq_thresh->upper_threshold[size - 1];
/* The list is already in sorted order. Get the next lower value */
for (index = 0; index < size; index++) {
if (rssi < sq_thresh->upper_threshold[index]) {
threshold = (u8) sq_thresh->upper_threshold[index];
break;
}
}
return threshold;
}
static u8 ath6kl_wmi_get_lower_threshold(s16 rssi,
struct sq_threshold_params *sq_thresh,
u32 size)
{
u32 index;
u8 threshold = (u8) sq_thresh->lower_threshold[size - 1];
/* The list is already in sorted order. Get the next lower value */
for (index = 0; index < size; index++) {
if (rssi > sq_thresh->lower_threshold[index]) {
threshold = (u8) sq_thresh->lower_threshold[index];
break;
}
}
return threshold;
}
static int ath6kl_wmi_send_rssi_threshold_params(struct wmi *wmi,
struct wmi_rssi_threshold_params_cmd *rssi_cmd)
{
struct sk_buff *skb;
struct wmi_rssi_threshold_params_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_rssi_threshold_params_cmd *) skb->data;
memcpy(cmd, rssi_cmd, sizeof(struct wmi_rssi_threshold_params_cmd));
return ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_RSSI_THRESHOLD_PARAMS_CMDID,
NO_SYNC_WMIFLAG);
}
static int ath6kl_wmi_rssi_threshold_event_rx(struct wmi *wmi, u8 *datap,
int len)
{
struct wmi_rssi_threshold_event *reply;
struct wmi_rssi_threshold_params_cmd cmd;
struct sq_threshold_params *sq_thresh;
enum wmi_rssi_threshold_val new_threshold;
u8 upper_rssi_threshold, lower_rssi_threshold;
s16 rssi;
int ret;
if (len < sizeof(struct wmi_rssi_threshold_event))
return -EINVAL;
reply = (struct wmi_rssi_threshold_event *) datap;
new_threshold = (enum wmi_rssi_threshold_val) reply->range;
rssi = a_sle16_to_cpu(reply->rssi);
sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_RSSI];
/*
* Identify the threshold breached and communicate that to the app.
* After that install a new set of thresholds based on the signal
* quality reported by the target
*/
if (new_threshold) {
/* Upper threshold breached */
if (rssi < sq_thresh->upper_threshold[0]) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"spurious upper rssi threshold event: %d\n",
rssi);
} else if ((rssi < sq_thresh->upper_threshold[1]) &&
(rssi >= sq_thresh->upper_threshold[0])) {
new_threshold = WMI_RSSI_THRESHOLD1_ABOVE;
} else if ((rssi < sq_thresh->upper_threshold[2]) &&
(rssi >= sq_thresh->upper_threshold[1])) {
new_threshold = WMI_RSSI_THRESHOLD2_ABOVE;
} else if ((rssi < sq_thresh->upper_threshold[3]) &&
(rssi >= sq_thresh->upper_threshold[2])) {
new_threshold = WMI_RSSI_THRESHOLD3_ABOVE;
} else if ((rssi < sq_thresh->upper_threshold[4]) &&
(rssi >= sq_thresh->upper_threshold[3])) {
new_threshold = WMI_RSSI_THRESHOLD4_ABOVE;
} else if ((rssi < sq_thresh->upper_threshold[5]) &&
(rssi >= sq_thresh->upper_threshold[4])) {
new_threshold = WMI_RSSI_THRESHOLD5_ABOVE;
} else if (rssi >= sq_thresh->upper_threshold[5]) {
new_threshold = WMI_RSSI_THRESHOLD6_ABOVE;
}
} else {
/* Lower threshold breached */
if (rssi > sq_thresh->lower_threshold[0]) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"spurious lower rssi threshold event: %d %d\n",
rssi, sq_thresh->lower_threshold[0]);
} else if ((rssi > sq_thresh->lower_threshold[1]) &&
(rssi <= sq_thresh->lower_threshold[0])) {
new_threshold = WMI_RSSI_THRESHOLD6_BELOW;
} else if ((rssi > sq_thresh->lower_threshold[2]) &&
(rssi <= sq_thresh->lower_threshold[1])) {
new_threshold = WMI_RSSI_THRESHOLD5_BELOW;
} else if ((rssi > sq_thresh->lower_threshold[3]) &&
(rssi <= sq_thresh->lower_threshold[2])) {
new_threshold = WMI_RSSI_THRESHOLD4_BELOW;
} else if ((rssi > sq_thresh->lower_threshold[4]) &&
(rssi <= sq_thresh->lower_threshold[3])) {
new_threshold = WMI_RSSI_THRESHOLD3_BELOW;
} else if ((rssi > sq_thresh->lower_threshold[5]) &&
(rssi <= sq_thresh->lower_threshold[4])) {
new_threshold = WMI_RSSI_THRESHOLD2_BELOW;
} else if (rssi <= sq_thresh->lower_threshold[5]) {
new_threshold = WMI_RSSI_THRESHOLD1_BELOW;
}
}
/* Calculate and install the next set of thresholds */
lower_rssi_threshold = ath6kl_wmi_get_lower_threshold(rssi, sq_thresh,
sq_thresh->lower_threshold_valid_count);
upper_rssi_threshold = ath6kl_wmi_get_upper_threshold(rssi, sq_thresh,
sq_thresh->upper_threshold_valid_count);
/* Issue a wmi command to install the thresholds */
cmd.thresh_above1_val = a_cpu_to_sle16(upper_rssi_threshold);
cmd.thresh_below1_val = a_cpu_to_sle16(lower_rssi_threshold);
cmd.weight = sq_thresh->weight;
cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval);
ret = ath6kl_wmi_send_rssi_threshold_params(wmi, &cmd);
if (ret) {
ath6kl_err("unable to configure rssi thresholds\n");
return -EIO;
}
return 0;
}
static int ath6kl_wmi_cac_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_cac_event *reply;
struct ieee80211_tspec_ie *ts;
u16 active_tsids, tsinfo;
u8 tsid, index;
u8 ts_id;
if (len < sizeof(struct wmi_cac_event))
return -EINVAL;
reply = (struct wmi_cac_event *) datap;
if (reply->ac >= WMM_NUM_AC) {
ath6kl_err("invalid AC: %d\n", reply->ac);
return -EINVAL;
}
if ((reply->cac_indication == CAC_INDICATION_ADMISSION_RESP) &&
(reply->status_code != IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED)) {
ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion);
tsinfo = le16_to_cpu(ts->tsinfo);
tsid = (tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) &
IEEE80211_WMM_IE_TSPEC_TID_MASK;
ath6kl_wmi_delete_pstream_cmd(wmi, vif->fw_vif_idx,
reply->ac, tsid);
} else if (reply->cac_indication == CAC_INDICATION_NO_RESP) {
/*
* Following assumes that there is only one outstanding
* ADDTS request when this event is received
*/
spin_lock_bh(&wmi->lock);
active_tsids = wmi->stream_exist_for_ac[reply->ac];
spin_unlock_bh(&wmi->lock);
for (index = 0; index < sizeof(active_tsids) * 8; index++) {
if ((active_tsids >> index) & 1)
break;
}
if (index < (sizeof(active_tsids) * 8))
ath6kl_wmi_delete_pstream_cmd(wmi, vif->fw_vif_idx,
reply->ac, index);
}
/*
* Clear active tsids and Add missing handling
* for delete qos stream from AP
*/
else if (reply->cac_indication == CAC_INDICATION_DELETE) {
ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion);
tsinfo = le16_to_cpu(ts->tsinfo);
ts_id = ((tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) &
IEEE80211_WMM_IE_TSPEC_TID_MASK);
spin_lock_bh(&wmi->lock);
wmi->stream_exist_for_ac[reply->ac] &= ~(1 << ts_id);
active_tsids = wmi->stream_exist_for_ac[reply->ac];
spin_unlock_bh(&wmi->lock);
/* Indicate stream inactivity to driver layer only if all tsids
* within this AC are deleted.
*/
if (!active_tsids) {
ath6kl_indicate_tx_activity(wmi->parent_dev, reply->ac,
false);
wmi->fat_pipe_exist &= ~(1 << reply->ac);
}
}
return 0;
}
static int ath6kl_wmi_txe_notify_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_txe_notify_event *ev;
u32 rate, pkts;
if (len < sizeof(*ev))
return -EINVAL;
if (vif->nw_type != INFRA_NETWORK ||
!test_bit(ATH6KL_FW_CAPABILITY_TX_ERR_NOTIFY,
vif->ar->fw_capabilities))
return -EOPNOTSUPP;
if (vif->sme_state != SME_CONNECTED)
return -ENOTCONN;
ev = (struct wmi_txe_notify_event *) datap;
rate = le32_to_cpu(ev->rate);
pkts = le32_to_cpu(ev->pkts);
ath6kl_dbg(ATH6KL_DBG_WMI, "TXE notify event: peer %pM rate %d%% pkts %d intvl %ds\n",
vif->bssid, rate, pkts, vif->txe_intvl);
cfg80211_cqm_txe_notify(vif->ndev, vif->bssid, pkts,
rate, vif->txe_intvl, GFP_KERNEL);
return 0;
}
int ath6kl_wmi_set_txe_notify(struct wmi *wmi, u8 idx,
u32 rate, u32 pkts, u32 intvl)
{
struct sk_buff *skb;
struct wmi_txe_notify_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_txe_notify_cmd *) skb->data;
cmd->rate = cpu_to_le32(rate);
cmd->pkts = cpu_to_le32(pkts);
cmd->intvl = cpu_to_le32(intvl);
return ath6kl_wmi_cmd_send(wmi, idx, skb, WMI_SET_TXE_NOTIFY_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_set_rssi_filter_cmd(struct wmi *wmi, u8 if_idx, s8 rssi)
{
struct sk_buff *skb;
struct wmi_set_rssi_filter_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_rssi_filter_cmd *) skb->data;
cmd->rssi = rssi;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_RSSI_FILTER_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
static int ath6kl_wmi_send_snr_threshold_params(struct wmi *wmi,
struct wmi_snr_threshold_params_cmd *snr_cmd)
{
struct sk_buff *skb;
struct wmi_snr_threshold_params_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_snr_threshold_params_cmd *) skb->data;
memcpy(cmd, snr_cmd, sizeof(struct wmi_snr_threshold_params_cmd));
return ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_SNR_THRESHOLD_PARAMS_CMDID,
NO_SYNC_WMIFLAG);
}
static int ath6kl_wmi_snr_threshold_event_rx(struct wmi *wmi, u8 *datap,
int len)
{
struct wmi_snr_threshold_event *reply;
struct sq_threshold_params *sq_thresh;
struct wmi_snr_threshold_params_cmd cmd;
enum wmi_snr_threshold_val new_threshold;
u8 upper_snr_threshold, lower_snr_threshold;
s16 snr;
int ret;
if (len < sizeof(struct wmi_snr_threshold_event))
return -EINVAL;
reply = (struct wmi_snr_threshold_event *) datap;
new_threshold = (enum wmi_snr_threshold_val) reply->range;
snr = reply->snr;
sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_SNR];
/*
* Identify the threshold breached and communicate that to the app.
* After that install a new set of thresholds based on the signal
* quality reported by the target.
*/
if (new_threshold) {
/* Upper threshold breached */
if (snr < sq_thresh->upper_threshold[0]) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"spurious upper snr threshold event: %d\n",
snr);
} else if ((snr < sq_thresh->upper_threshold[1]) &&
(snr >= sq_thresh->upper_threshold[0])) {
new_threshold = WMI_SNR_THRESHOLD1_ABOVE;
} else if ((snr < sq_thresh->upper_threshold[2]) &&
(snr >= sq_thresh->upper_threshold[1])) {
new_threshold = WMI_SNR_THRESHOLD2_ABOVE;
} else if ((snr < sq_thresh->upper_threshold[3]) &&
(snr >= sq_thresh->upper_threshold[2])) {
new_threshold = WMI_SNR_THRESHOLD3_ABOVE;
} else if (snr >= sq_thresh->upper_threshold[3]) {
new_threshold = WMI_SNR_THRESHOLD4_ABOVE;
}
} else {
/* Lower threshold breached */
if (snr > sq_thresh->lower_threshold[0]) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"spurious lower snr threshold event: %d\n",
sq_thresh->lower_threshold[0]);
} else if ((snr > sq_thresh->lower_threshold[1]) &&
(snr <= sq_thresh->lower_threshold[0])) {
new_threshold = WMI_SNR_THRESHOLD4_BELOW;
} else if ((snr > sq_thresh->lower_threshold[2]) &&
(snr <= sq_thresh->lower_threshold[1])) {
new_threshold = WMI_SNR_THRESHOLD3_BELOW;
} else if ((snr > sq_thresh->lower_threshold[3]) &&
(snr <= sq_thresh->lower_threshold[2])) {
new_threshold = WMI_SNR_THRESHOLD2_BELOW;
} else if (snr <= sq_thresh->lower_threshold[3]) {
new_threshold = WMI_SNR_THRESHOLD1_BELOW;
}
}
/* Calculate and install the next set of thresholds */
lower_snr_threshold = ath6kl_wmi_get_lower_threshold(snr, sq_thresh,
sq_thresh->lower_threshold_valid_count);
upper_snr_threshold = ath6kl_wmi_get_upper_threshold(snr, sq_thresh,
sq_thresh->upper_threshold_valid_count);
/* Issue a wmi command to install the thresholds */
cmd.thresh_above1_val = upper_snr_threshold;
cmd.thresh_below1_val = lower_snr_threshold;
cmd.weight = sq_thresh->weight;
cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval);
ath6kl_dbg(ATH6KL_DBG_WMI,
"snr: %d, threshold: %d, lower: %d, upper: %d\n",
snr, new_threshold,
lower_snr_threshold, upper_snr_threshold);
ret = ath6kl_wmi_send_snr_threshold_params(wmi, &cmd);
if (ret) {
ath6kl_err("unable to configure snr threshold\n");
return -EIO;
}
return 0;
}
static int ath6kl_wmi_aplist_event_rx(struct wmi *wmi, u8 *datap, int len)
{
u16 ap_info_entry_size;
struct wmi_aplist_event *ev = (struct wmi_aplist_event *) datap;
struct wmi_ap_info_v1 *ap_info_v1;
u8 index;
if (len < sizeof(struct wmi_aplist_event) ||
ev->ap_list_ver != APLIST_VER1)
return -EINVAL;
ap_info_entry_size = sizeof(struct wmi_ap_info_v1);
ap_info_v1 = (struct wmi_ap_info_v1 *) ev->ap_list;
ath6kl_dbg(ATH6KL_DBG_WMI,
"number of APs in aplist event: %d\n", ev->num_ap);
if (len < (int) (sizeof(struct wmi_aplist_event) +
(ev->num_ap - 1) * ap_info_entry_size))
return -EINVAL;
/* AP list version 1 contents */
for (index = 0; index < ev->num_ap; index++) {
ath6kl_dbg(ATH6KL_DBG_WMI, "AP#%d BSSID %pM Channel %d\n",
index, ap_info_v1->bssid, ap_info_v1->channel);
ap_info_v1++;
}
return 0;
}
int ath6kl_wmi_cmd_send(struct wmi *wmi, u8 if_idx, struct sk_buff *skb,
enum wmi_cmd_id cmd_id, enum wmi_sync_flag sync_flag)
{
struct wmi_cmd_hdr *cmd_hdr;
enum htc_endpoint_id ep_id = wmi->ep_id;
int ret;
u16 info1;
if (WARN_ON(skb == NULL ||
(if_idx > (wmi->parent_dev->vif_max - 1)))) {
dev_kfree_skb(skb);
return -EINVAL;
}
ath6kl_dbg(ATH6KL_DBG_WMI, "wmi tx id %d len %d flag %d\n",
cmd_id, skb->len, sync_flag);
ath6kl_dbg_dump(ATH6KL_DBG_WMI_DUMP, NULL, "wmi tx ",
skb->data, skb->len);
if (sync_flag >= END_WMIFLAG) {
dev_kfree_skb(skb);
return -EINVAL;
}
if ((sync_flag == SYNC_BEFORE_WMIFLAG) ||
(sync_flag == SYNC_BOTH_WMIFLAG)) {
/*
* Make sure all data currently queued is transmitted before
* the cmd execution. Establish a new sync point.
*/
ath6kl_wmi_sync_point(wmi, if_idx);
}
skb_push(skb, sizeof(struct wmi_cmd_hdr));
cmd_hdr = (struct wmi_cmd_hdr *) skb->data;
cmd_hdr->cmd_id = cpu_to_le16(cmd_id);
info1 = if_idx & WMI_CMD_HDR_IF_ID_MASK;
cmd_hdr->info1 = cpu_to_le16(info1);
/* Only for OPT_TX_CMD, use BE endpoint. */
if (cmd_id == WMI_OPT_TX_FRAME_CMDID) {
ret = ath6kl_wmi_data_hdr_add(wmi, skb, OPT_MSGTYPE,
false, false, 0, NULL, if_idx);
if (ret) {
dev_kfree_skb(skb);
return ret;
}
ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev, WMM_AC_BE);
}
ath6kl_control_tx(wmi->parent_dev, skb, ep_id);
if ((sync_flag == SYNC_AFTER_WMIFLAG) ||
(sync_flag == SYNC_BOTH_WMIFLAG)) {
/*
* Make sure all new data queued waits for the command to
* execute. Establish a new sync point.
*/
ath6kl_wmi_sync_point(wmi, if_idx);
}
return 0;
}
int ath6kl_wmi_connect_cmd(struct wmi *wmi, u8 if_idx,
enum network_type nw_type,
enum dot11_auth_mode dot11_auth_mode,
enum auth_mode auth_mode,
enum crypto_type pairwise_crypto,
u8 pairwise_crypto_len,
enum crypto_type group_crypto,
u8 group_crypto_len, int ssid_len, u8 *ssid,
u8 *bssid, u16 channel, u32 ctrl_flags,
u8 nw_subtype)
{
struct sk_buff *skb;
struct wmi_connect_cmd *cc;
int ret;
ath6kl_dbg(ATH6KL_DBG_WMI,
"wmi connect bssid %pM freq %d flags 0x%x ssid_len %d "
"type %d dot11_auth %d auth %d pairwise %d group %d\n",
bssid, channel, ctrl_flags, ssid_len, nw_type,
dot11_auth_mode, auth_mode, pairwise_crypto, group_crypto);
ath6kl_dbg_dump(ATH6KL_DBG_WMI, NULL, "ssid ", ssid, ssid_len);
wmi->traffic_class = 100;
if ((pairwise_crypto == NONE_CRYPT) && (group_crypto != NONE_CRYPT))
return -EINVAL;
if ((pairwise_crypto != NONE_CRYPT) && (group_crypto == NONE_CRYPT))
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_connect_cmd));
if (!skb)
return -ENOMEM;
cc = (struct wmi_connect_cmd *) skb->data;
if (ssid_len)
memcpy(cc->ssid, ssid, ssid_len);
cc->ssid_len = ssid_len;
cc->nw_type = nw_type;
cc->dot11_auth_mode = dot11_auth_mode;
cc->auth_mode = auth_mode;
cc->prwise_crypto_type = pairwise_crypto;
cc->prwise_crypto_len = pairwise_crypto_len;
cc->grp_crypto_type = group_crypto;
cc->grp_crypto_len = group_crypto_len;
cc->ch = cpu_to_le16(channel);
cc->ctrl_flags = cpu_to_le32(ctrl_flags);
cc->nw_subtype = nw_subtype;
if (bssid != NULL)
memcpy(cc->bssid, bssid, ETH_ALEN);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_CONNECT_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_reconnect_cmd(struct wmi *wmi, u8 if_idx, u8 *bssid,
u16 channel)
{
struct sk_buff *skb;
struct wmi_reconnect_cmd *cc;
int ret;
ath6kl_dbg(ATH6KL_DBG_WMI, "wmi reconnect bssid %pM freq %d\n",
bssid, channel);
wmi->traffic_class = 100;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_reconnect_cmd));
if (!skb)
return -ENOMEM;
cc = (struct wmi_reconnect_cmd *) skb->data;
cc->channel = cpu_to_le16(channel);
if (bssid != NULL)
memcpy(cc->bssid, bssid, ETH_ALEN);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_RECONNECT_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_disconnect_cmd(struct wmi *wmi, u8 if_idx)
{
int ret;
ath6kl_dbg(ATH6KL_DBG_WMI, "wmi disconnect\n");
wmi->traffic_class = 100;
/* Disconnect command does not need to do a SYNC before. */
ret = ath6kl_wmi_simple_cmd(wmi, if_idx, WMI_DISCONNECT_CMDID);
return ret;
}
/* ath6kl_wmi_start_scan_cmd is to be deprecated. Use
* ath6kl_wmi_begin_scan_cmd instead. The new function supports P2P
* mgmt operations using station interface.
*/
static int ath6kl_wmi_startscan_cmd(struct wmi *wmi, u8 if_idx,
enum wmi_scan_type scan_type,
u32 force_fgscan, u32 is_legacy,
u32 home_dwell_time,
u32 force_scan_interval,
s8 num_chan, u16 *ch_list)
{
struct sk_buff *skb;
struct wmi_start_scan_cmd *sc;
s8 size;
int i, ret;
size = sizeof(struct wmi_start_scan_cmd);
if ((scan_type != WMI_LONG_SCAN) && (scan_type != WMI_SHORT_SCAN))
return -EINVAL;
if (num_chan > WMI_MAX_CHANNELS)
return -EINVAL;
if (num_chan)
size += sizeof(u16) * (num_chan - 1);
skb = ath6kl_wmi_get_new_buf(size);
if (!skb)
return -ENOMEM;
sc = (struct wmi_start_scan_cmd *) skb->data;
sc->scan_type = scan_type;
sc->force_fg_scan = cpu_to_le32(force_fgscan);
sc->is_legacy = cpu_to_le32(is_legacy);
sc->home_dwell_time = cpu_to_le32(home_dwell_time);
sc->force_scan_intvl = cpu_to_le32(force_scan_interval);
sc->num_ch = num_chan;
for (i = 0; i < num_chan; i++)
sc->ch_list[i] = cpu_to_le16(ch_list[i]);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_START_SCAN_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
/*
* beginscan supports (compared to old startscan) P2P mgmt operations using
* station interface, send additional information like supported rates to
* advertise and xmit rates for probe requests
*/
int ath6kl_wmi_beginscan_cmd(struct wmi *wmi, u8 if_idx,
enum wmi_scan_type scan_type,
u32 force_fgscan, u32 is_legacy,
u32 home_dwell_time, u32 force_scan_interval,
s8 num_chan, u16 *ch_list, u32 no_cck, u32 *rates)
{
struct ieee80211_supported_band *sband;
struct sk_buff *skb;
struct wmi_begin_scan_cmd *sc;
s8 size, *supp_rates;
int i, band, ret;
struct ath6kl *ar = wmi->parent_dev;
int num_rates;
u32 ratemask;
if (!test_bit(ATH6KL_FW_CAPABILITY_STA_P2PDEV_DUPLEX,
ar->fw_capabilities)) {
return ath6kl_wmi_startscan_cmd(wmi, if_idx,
scan_type, force_fgscan,
is_legacy, home_dwell_time,
force_scan_interval,
num_chan, ch_list);
}
size = sizeof(struct wmi_begin_scan_cmd);
if ((scan_type != WMI_LONG_SCAN) && (scan_type != WMI_SHORT_SCAN))
return -EINVAL;
if (num_chan > WMI_MAX_CHANNELS)
return -EINVAL;
if (num_chan)
size += sizeof(u16) * (num_chan - 1);
skb = ath6kl_wmi_get_new_buf(size);
if (!skb)
return -ENOMEM;
sc = (struct wmi_begin_scan_cmd *) skb->data;
sc->scan_type = scan_type;
sc->force_fg_scan = cpu_to_le32(force_fgscan);
sc->is_legacy = cpu_to_le32(is_legacy);
sc->home_dwell_time = cpu_to_le32(home_dwell_time);
sc->force_scan_intvl = cpu_to_le32(force_scan_interval);
sc->no_cck = cpu_to_le32(no_cck);
sc->num_ch = num_chan;
for (band = 0; band < NUM_NL80211_BANDS; band++) {
sband = ar->wiphy->bands[band];
if (!sband)
continue;
if (WARN_ON(band >= ATH6KL_NUM_BANDS))
break;
ratemask = rates[band];
supp_rates = sc->supp_rates[band].rates;
num_rates = 0;
for (i = 0; i < sband->n_bitrates; i++) {
if ((BIT(i) & ratemask) == 0)
continue; /* skip rate */
supp_rates[num_rates++] =
(u8) (sband->bitrates[i].bitrate / 5);
}
sc->supp_rates[band].nrates = num_rates;
}
for (i = 0; i < num_chan; i++)
sc->ch_list[i] = cpu_to_le16(ch_list[i]);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_BEGIN_SCAN_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_enable_sched_scan_cmd(struct wmi *wmi, u8 if_idx, bool enable)
{
struct sk_buff *skb;
struct wmi_enable_sched_scan_cmd *sc;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*sc));
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI, "%s scheduled scan on vif %d\n",
enable ? "enabling" : "disabling", if_idx);
sc = (struct wmi_enable_sched_scan_cmd *) skb->data;
sc->enable = enable ? 1 : 0;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_ENABLE_SCHED_SCAN_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_scanparams_cmd(struct wmi *wmi, u8 if_idx,
u16 fg_start_sec,
u16 fg_end_sec, u16 bg_sec,
u16 minact_chdw_msec, u16 maxact_chdw_msec,
u16 pas_chdw_msec, u8 short_scan_ratio,
u8 scan_ctrl_flag, u32 max_dfsch_act_time,
u16 maxact_scan_per_ssid)
{
struct sk_buff *skb;
struct wmi_scan_params_cmd *sc;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*sc));
if (!skb)
return -ENOMEM;
sc = (struct wmi_scan_params_cmd *) skb->data;
sc->fg_start_period = cpu_to_le16(fg_start_sec);
sc->fg_end_period = cpu_to_le16(fg_end_sec);
sc->bg_period = cpu_to_le16(bg_sec);
sc->minact_chdwell_time = cpu_to_le16(minact_chdw_msec);
sc->maxact_chdwell_time = cpu_to_le16(maxact_chdw_msec);
sc->pas_chdwell_time = cpu_to_le16(pas_chdw_msec);
sc->short_scan_ratio = short_scan_ratio;
sc->scan_ctrl_flags = scan_ctrl_flag;
sc->max_dfsch_act_time = cpu_to_le32(max_dfsch_act_time);
sc->maxact_scan_per_ssid = cpu_to_le16(maxact_scan_per_ssid);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_SCAN_PARAMS_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_bssfilter_cmd(struct wmi *wmi, u8 if_idx, u8 filter, u32 ie_mask)
{
struct sk_buff *skb;
struct wmi_bss_filter_cmd *cmd;
int ret;
if (filter >= LAST_BSS_FILTER)
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_bss_filter_cmd *) skb->data;
cmd->bss_filter = filter;
cmd->ie_mask = cpu_to_le32(ie_mask);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_BSS_FILTER_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_probedssid_cmd(struct wmi *wmi, u8 if_idx, u8 index, u8 flag,
u8 ssid_len, u8 *ssid)
{
struct sk_buff *skb;
struct wmi_probed_ssid_cmd *cmd;
int ret;
if (index >= MAX_PROBED_SSIDS)
return -EINVAL;
if (ssid_len > sizeof(cmd->ssid))
return -EINVAL;
if ((flag & (DISABLE_SSID_FLAG | ANY_SSID_FLAG)) && (ssid_len > 0))
return -EINVAL;
if ((flag & SPECIFIC_SSID_FLAG) && !ssid_len)
return -EINVAL;
if (flag & SPECIFIC_SSID_FLAG)
wmi->is_probe_ssid = true;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_probed_ssid_cmd *) skb->data;
cmd->entry_index = index;
cmd->flag = flag;
cmd->ssid_len = ssid_len;
memcpy(cmd->ssid, ssid, ssid_len);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_PROBED_SSID_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_listeninterval_cmd(struct wmi *wmi, u8 if_idx,
u16 listen_interval,
u16 listen_beacons)
{
struct sk_buff *skb;
struct wmi_listen_int_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_listen_int_cmd *) skb->data;
cmd->listen_intvl = cpu_to_le16(listen_interval);
cmd->num_beacons = cpu_to_le16(listen_beacons);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_LISTEN_INT_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_bmisstime_cmd(struct wmi *wmi, u8 if_idx,
u16 bmiss_time, u16 num_beacons)
{
struct sk_buff *skb;
struct wmi_bmiss_time_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_bmiss_time_cmd *) skb->data;
cmd->bmiss_time = cpu_to_le16(bmiss_time);
cmd->num_beacons = cpu_to_le16(num_beacons);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_BMISS_TIME_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_powermode_cmd(struct wmi *wmi, u8 if_idx, u8 pwr_mode)
{
struct sk_buff *skb;
struct wmi_power_mode_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_power_mode_cmd *) skb->data;
cmd->pwr_mode = pwr_mode;
wmi->pwr_mode = pwr_mode;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_POWER_MODE_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_pmparams_cmd(struct wmi *wmi, u8 if_idx, u16 idle_period,
u16 ps_poll_num, u16 dtim_policy,
u16 tx_wakeup_policy, u16 num_tx_to_wakeup,
u16 ps_fail_event_policy)
{
struct sk_buff *skb;
struct wmi_power_params_cmd *pm;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*pm));
if (!skb)
return -ENOMEM;
pm = (struct wmi_power_params_cmd *)skb->data;
pm->idle_period = cpu_to_le16(idle_period);
pm->pspoll_number = cpu_to_le16(ps_poll_num);
pm->dtim_policy = cpu_to_le16(dtim_policy);
pm->tx_wakeup_policy = cpu_to_le16(tx_wakeup_policy);
pm->num_tx_to_wakeup = cpu_to_le16(num_tx_to_wakeup);
pm->ps_fail_event_policy = cpu_to_le16(ps_fail_event_policy);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_POWER_PARAMS_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_disctimeout_cmd(struct wmi *wmi, u8 if_idx, u8 timeout)
{
struct sk_buff *skb;
struct wmi_disc_timeout_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_disc_timeout_cmd *) skb->data;
cmd->discon_timeout = timeout;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_DISC_TIMEOUT_CMDID,
NO_SYNC_WMIFLAG);
if (ret == 0)
ath6kl_debug_set_disconnect_timeout(wmi->parent_dev, timeout);
return ret;
}
int ath6kl_wmi_addkey_cmd(struct wmi *wmi, u8 if_idx, u8 key_index,
enum crypto_type key_type,
u8 key_usage, u8 key_len,
u8 *key_rsc, unsigned int key_rsc_len,
u8 *key_material,
u8 key_op_ctrl, u8 *mac_addr,
enum wmi_sync_flag sync_flag)
{
struct sk_buff *skb;
struct wmi_add_cipher_key_cmd *cmd;
int ret;
ath6kl_dbg(ATH6KL_DBG_WMI,
"addkey cmd: key_index=%u key_type=%d key_usage=%d key_len=%d key_op_ctrl=%d\n",
key_index, key_type, key_usage, key_len, key_op_ctrl);
if ((key_index > WMI_MAX_KEY_INDEX) || (key_len > WMI_MAX_KEY_LEN) ||
(key_material == NULL) || key_rsc_len > 8)
return -EINVAL;
if ((WEP_CRYPT != key_type) && (NULL == key_rsc))
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_add_cipher_key_cmd *) skb->data;
cmd->key_index = key_index;
cmd->key_type = key_type;
cmd->key_usage = key_usage;
cmd->key_len = key_len;
memcpy(cmd->key, key_material, key_len);
if (key_rsc != NULL)
memcpy(cmd->key_rsc, key_rsc, key_rsc_len);
cmd->key_op_ctrl = key_op_ctrl;
if (mac_addr)
memcpy(cmd->key_mac_addr, mac_addr, ETH_ALEN);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_ADD_CIPHER_KEY_CMDID,
sync_flag);
return ret;
}
int ath6kl_wmi_add_krk_cmd(struct wmi *wmi, u8 if_idx, const u8 *krk)
{
struct sk_buff *skb;
struct wmi_add_krk_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_add_krk_cmd *) skb->data;
memcpy(cmd->krk, krk, WMI_KRK_LEN);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_ADD_KRK_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_deletekey_cmd(struct wmi *wmi, u8 if_idx, u8 key_index)
{
struct sk_buff *skb;
struct wmi_delete_cipher_key_cmd *cmd;
int ret;
if (key_index > WMI_MAX_KEY_INDEX)
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_delete_cipher_key_cmd *) skb->data;
cmd->key_index = key_index;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_DELETE_CIPHER_KEY_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_setpmkid_cmd(struct wmi *wmi, u8 if_idx, const u8 *bssid,
const u8 *pmkid, bool set)
{
struct sk_buff *skb;
struct wmi_setpmkid_cmd *cmd;
int ret;
if (bssid == NULL)
return -EINVAL;
if (set && pmkid == NULL)
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_setpmkid_cmd *) skb->data;
memcpy(cmd->bssid, bssid, ETH_ALEN);
if (set) {
memcpy(cmd->pmkid, pmkid, sizeof(cmd->pmkid));
cmd->enable = PMKID_ENABLE;
} else {
memset(cmd->pmkid, 0, sizeof(cmd->pmkid));
cmd->enable = PMKID_DISABLE;
}
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_PMKID_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
static int ath6kl_wmi_data_sync_send(struct wmi *wmi, struct sk_buff *skb,
enum htc_endpoint_id ep_id, u8 if_idx)
{
struct wmi_data_hdr *data_hdr;
int ret;
if (WARN_ON(skb == NULL || ep_id == wmi->ep_id)) {
dev_kfree_skb(skb);
return -EINVAL;
}
skb_push(skb, sizeof(struct wmi_data_hdr));
data_hdr = (struct wmi_data_hdr *) skb->data;
data_hdr->info = SYNC_MSGTYPE << WMI_DATA_HDR_MSG_TYPE_SHIFT;
data_hdr->info3 = cpu_to_le16(if_idx & WMI_DATA_HDR_IF_IDX_MASK);
ret = ath6kl_control_tx(wmi->parent_dev, skb, ep_id);
return ret;
}
static int ath6kl_wmi_sync_point(struct wmi *wmi, u8 if_idx)
{
struct sk_buff *skb;
struct wmi_sync_cmd *cmd;
struct wmi_data_sync_bufs data_sync_bufs[WMM_NUM_AC];
enum htc_endpoint_id ep_id;
u8 index, num_pri_streams = 0;
int ret = 0;
memset(data_sync_bufs, 0, sizeof(data_sync_bufs));
spin_lock_bh(&wmi->lock);
for (index = 0; index < WMM_NUM_AC; index++) {
if (wmi->fat_pipe_exist & (1 << index)) {
num_pri_streams++;
data_sync_bufs[num_pri_streams - 1].traffic_class =
index;
}
}
spin_unlock_bh(&wmi->lock);
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_sync_cmd *) skb->data;
/*
* In the SYNC cmd sent on the control Ep, send a bitmap
* of the data eps on which the Data Sync will be sent
*/
cmd->data_sync_map = wmi->fat_pipe_exist;
for (index = 0; index < num_pri_streams; index++) {
data_sync_bufs[index].skb = ath6kl_buf_alloc(0);
if (data_sync_bufs[index].skb == NULL) {
ret = -ENOMEM;
break;
}
}
/*
* If buffer allocation for any of the dataSync fails,
* then do not send the Synchronize cmd on the control ep
*/
if (ret)
goto free_cmd_skb;
/*
* Send sync cmd followed by sync data messages on all
* endpoints being used
*/
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SYNCHRONIZE_CMDID,
NO_SYNC_WMIFLAG);
if (ret)
goto free_data_skb;
for (index = 0; index < num_pri_streams; index++) {
if (WARN_ON(!data_sync_bufs[index].skb)) {
ret = -ENOMEM;
goto free_data_skb;
}
ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev,
data_sync_bufs[index].
traffic_class);
ret =
ath6kl_wmi_data_sync_send(wmi, data_sync_bufs[index].skb,
ep_id, if_idx);
data_sync_bufs[index].skb = NULL;
if (ret)
goto free_data_skb;
}
return 0;
free_cmd_skb:
/* free up any resources left over (possibly due to an error) */
dev_kfree_skb(skb);
free_data_skb:
for (index = 0; index < num_pri_streams; index++)
dev_kfree_skb((struct sk_buff *)data_sync_bufs[index].skb);
return ret;
}
int ath6kl_wmi_create_pstream_cmd(struct wmi *wmi, u8 if_idx,
struct wmi_create_pstream_cmd *params)
{
struct sk_buff *skb;
struct wmi_create_pstream_cmd *cmd;
u8 fatpipe_exist_for_ac = 0;
s32 min_phy = 0;
s32 nominal_phy = 0;
int ret;
if (!((params->user_pri <= 0x7) &&
(up_to_ac[params->user_pri & 0x7] == params->traffic_class) &&
(params->traffic_direc == UPLINK_TRAFFIC ||
params->traffic_direc == DNLINK_TRAFFIC ||
params->traffic_direc == BIDIR_TRAFFIC) &&
(params->traffic_type == TRAFFIC_TYPE_APERIODIC ||
params->traffic_type == TRAFFIC_TYPE_PERIODIC) &&
(params->voice_psc_cap == DISABLE_FOR_THIS_AC ||
params->voice_psc_cap == ENABLE_FOR_THIS_AC ||
params->voice_psc_cap == ENABLE_FOR_ALL_AC) &&
(params->tsid == WMI_IMPLICIT_PSTREAM ||
params->tsid <= WMI_MAX_THINSTREAM))) {
return -EINVAL;
}
/*
* Check nominal PHY rate is >= minimalPHY,
* so that DUT can allow TSRS IE
*/
/* Get the physical rate (units of bps) */
min_phy = ((le32_to_cpu(params->min_phy_rate) / 1000) / 1000);
/* Check minimal phy < nominal phy rate */
if (params->nominal_phy >= min_phy) {
/* unit of 500 kbps */
nominal_phy = (params->nominal_phy * 1000) / 500;
ath6kl_dbg(ATH6KL_DBG_WMI,
"TSRS IE enabled::MinPhy %x->NominalPhy ===> %x\n",
min_phy, nominal_phy);
params->nominal_phy = nominal_phy;
} else {
params->nominal_phy = 0;
}
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI,
"sending create_pstream_cmd: ac=%d tsid:%d\n",
params->traffic_class, params->tsid);
cmd = (struct wmi_create_pstream_cmd *) skb->data;
memcpy(cmd, params, sizeof(*cmd));
/* This is an implicitly created Fat pipe */
if ((u32) params->tsid == (u32) WMI_IMPLICIT_PSTREAM) {
spin_lock_bh(&wmi->lock);
fatpipe_exist_for_ac = (wmi->fat_pipe_exist &
(1 << params->traffic_class));
wmi->fat_pipe_exist |= (1 << params->traffic_class);
spin_unlock_bh(&wmi->lock);
} else {
/* explicitly created thin stream within a fat pipe */
spin_lock_bh(&wmi->lock);
fatpipe_exist_for_ac = (wmi->fat_pipe_exist &
(1 << params->traffic_class));
wmi->stream_exist_for_ac[params->traffic_class] |=
(1 << params->tsid);
/*
* If a thinstream becomes active, the fat pipe automatically
* becomes active
*/
wmi->fat_pipe_exist |= (1 << params->traffic_class);
spin_unlock_bh(&wmi->lock);
}
/*
* Indicate activty change to driver layer only if this is the
* first TSID to get created in this AC explicitly or an implicit
* fat pipe is getting created.
*/
if (!fatpipe_exist_for_ac)
ath6kl_indicate_tx_activity(wmi->parent_dev,
params->traffic_class, true);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_CREATE_PSTREAM_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_delete_pstream_cmd(struct wmi *wmi, u8 if_idx, u8 traffic_class,
u8 tsid)
{
struct sk_buff *skb;
struct wmi_delete_pstream_cmd *cmd;
u16 active_tsids = 0;
int ret;
if (traffic_class >= WMM_NUM_AC) {
ath6kl_err("invalid traffic class: %d\n", traffic_class);
return -EINVAL;
}
if (tsid >= 16) {
ath6kl_err("invalid tsid: %d\n", tsid);
return -EINVAL;
}
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_delete_pstream_cmd *) skb->data;
cmd->traffic_class = traffic_class;
cmd->tsid = tsid;
spin_lock_bh(&wmi->lock);
active_tsids = wmi->stream_exist_for_ac[traffic_class];
spin_unlock_bh(&wmi->lock);
if (!(active_tsids & (1 << tsid))) {
dev_kfree_skb(skb);
ath6kl_dbg(ATH6KL_DBG_WMI,
"TSID %d doesn't exist for traffic class: %d\n",
tsid, traffic_class);
return -ENODATA;
}
ath6kl_dbg(ATH6KL_DBG_WMI,
"sending delete_pstream_cmd: traffic class: %d tsid=%d\n",
traffic_class, tsid);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_DELETE_PSTREAM_CMDID,
SYNC_BEFORE_WMIFLAG);
spin_lock_bh(&wmi->lock);
wmi->stream_exist_for_ac[traffic_class] &= ~(1 << tsid);
active_tsids = wmi->stream_exist_for_ac[traffic_class];
spin_unlock_bh(&wmi->lock);
/*
* Indicate stream inactivity to driver layer only if all tsids
* within this AC are deleted.
*/
if (!active_tsids) {
ath6kl_indicate_tx_activity(wmi->parent_dev,
traffic_class, false);
wmi->fat_pipe_exist &= ~(1 << traffic_class);
}
return ret;
}
int ath6kl_wmi_set_ip_cmd(struct wmi *wmi, u8 if_idx,
__be32 ips0, __be32 ips1)
{
struct sk_buff *skb;
struct wmi_set_ip_cmd *cmd;
int ret;
/* Multicast address are not valid */
if (ipv4_is_multicast(ips0) ||
ipv4_is_multicast(ips1))
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_ip_cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_ip_cmd *) skb->data;
cmd->ips[0] = ips0;
cmd->ips[1] = ips1;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_IP_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
static void ath6kl_wmi_relinquish_implicit_pstream_credits(struct wmi *wmi)
{
u16 active_tsids;
u8 stream_exist;
int i;
/*
* Relinquish credits from all implicitly created pstreams
* since when we go to sleep. If user created explicit
* thinstreams exists with in a fatpipe leave them intact
* for the user to delete.
*/
spin_lock_bh(&wmi->lock);
stream_exist = wmi->fat_pipe_exist;
spin_unlock_bh(&wmi->lock);
for (i = 0; i < WMM_NUM_AC; i++) {
if (stream_exist & (1 << i)) {
/*
* FIXME: Is this lock & unlock inside
* for loop correct? may need rework.
*/
spin_lock_bh(&wmi->lock);
active_tsids = wmi->stream_exist_for_ac[i];
spin_unlock_bh(&wmi->lock);
/*
* If there are no user created thin streams
* delete the fatpipe
*/
if (!active_tsids) {
stream_exist &= ~(1 << i);
/*
* Indicate inactivity to driver layer for
* this fatpipe (pstream)
*/
ath6kl_indicate_tx_activity(wmi->parent_dev,
i, false);
}
}
}
/* FIXME: Can we do this assignment without locking ? */
spin_lock_bh(&wmi->lock);
wmi->fat_pipe_exist = stream_exist;
spin_unlock_bh(&wmi->lock);
}
static int ath6kl_set_bitrate_mask64(struct wmi *wmi, u8 if_idx,
const struct cfg80211_bitrate_mask *mask)
{
struct sk_buff *skb;
int ret, mode, band;
u64 mcsrate, ratemask[ATH6KL_NUM_BANDS];
struct wmi_set_tx_select_rates64_cmd *cmd;
memset(&ratemask, 0, sizeof(ratemask));
/* only check 2.4 and 5 GHz bands, skip the rest */
for (band = 0; band <= NL80211_BAND_5GHZ; band++) {
/* copy legacy rate mask */
ratemask[band] = mask->control[band].legacy;
if (band == NL80211_BAND_5GHZ)
ratemask[band] =
mask->control[band].legacy << 4;
/* copy mcs rate mask */
mcsrate = mask->control[band].ht_mcs[1];
mcsrate <<= 8;
mcsrate |= mask->control[band].ht_mcs[0];
ratemask[band] |= mcsrate << 12;
ratemask[band] |= mcsrate << 28;
}
ath6kl_dbg(ATH6KL_DBG_WMI,
"Ratemask 64 bit: 2.4:%llx 5:%llx\n",
ratemask[0], ratemask[1]);
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd) * WMI_RATES_MODE_MAX);
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_tx_select_rates64_cmd *) skb->data;
for (mode = 0; mode < WMI_RATES_MODE_MAX; mode++) {
/* A mode operate in 5GHZ band */
if (mode == WMI_RATES_MODE_11A ||
mode == WMI_RATES_MODE_11A_HT20 ||
mode == WMI_RATES_MODE_11A_HT40)
band = NL80211_BAND_5GHZ;
else
band = NL80211_BAND_2GHZ;
cmd->ratemask[mode] = cpu_to_le64(ratemask[band]);
}
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_SET_TX_SELECT_RATES_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
static int ath6kl_set_bitrate_mask32(struct wmi *wmi, u8 if_idx,
const struct cfg80211_bitrate_mask *mask)
{
struct sk_buff *skb;
int ret, mode, band;
u32 mcsrate, ratemask[ATH6KL_NUM_BANDS];
struct wmi_set_tx_select_rates32_cmd *cmd;
memset(&ratemask, 0, sizeof(ratemask));
/* only check 2.4 and 5 GHz bands, skip the rest */
for (band = 0; band <= NL80211_BAND_5GHZ; band++) {
/* copy legacy rate mask */
ratemask[band] = mask->control[band].legacy;
if (band == NL80211_BAND_5GHZ)
ratemask[band] =
mask->control[band].legacy << 4;
/* copy mcs rate mask */
mcsrate = mask->control[band].ht_mcs[0];
ratemask[band] |= mcsrate << 12;
ratemask[band] |= mcsrate << 20;
}
ath6kl_dbg(ATH6KL_DBG_WMI,
"Ratemask 32 bit: 2.4:%x 5:%x\n",
ratemask[0], ratemask[1]);
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd) * WMI_RATES_MODE_MAX);
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_tx_select_rates32_cmd *) skb->data;
for (mode = 0; mode < WMI_RATES_MODE_MAX; mode++) {
/* A mode operate in 5GHZ band */
if (mode == WMI_RATES_MODE_11A ||
mode == WMI_RATES_MODE_11A_HT20 ||
mode == WMI_RATES_MODE_11A_HT40)
band = NL80211_BAND_5GHZ;
else
band = NL80211_BAND_2GHZ;
cmd->ratemask[mode] = cpu_to_le32(ratemask[band]);
}
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_SET_TX_SELECT_RATES_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_bitrate_mask(struct wmi *wmi, u8 if_idx,
const struct cfg80211_bitrate_mask *mask)
{
struct ath6kl *ar = wmi->parent_dev;
if (test_bit(ATH6KL_FW_CAPABILITY_64BIT_RATES,
ar->fw_capabilities))
return ath6kl_set_bitrate_mask64(wmi, if_idx, mask);
else
return ath6kl_set_bitrate_mask32(wmi, if_idx, mask);
}
int ath6kl_wmi_set_host_sleep_mode_cmd(struct wmi *wmi, u8 if_idx,
enum ath6kl_host_mode host_mode)
{
struct sk_buff *skb;
struct wmi_set_host_sleep_mode_cmd *cmd;
int ret;
if ((host_mode != ATH6KL_HOST_MODE_ASLEEP) &&
(host_mode != ATH6KL_HOST_MODE_AWAKE)) {
ath6kl_err("invalid host sleep mode: %d\n", host_mode);
return -EINVAL;
}
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_host_sleep_mode_cmd *) skb->data;
if (host_mode == ATH6KL_HOST_MODE_ASLEEP) {
ath6kl_wmi_relinquish_implicit_pstream_credits(wmi);
cmd->asleep = cpu_to_le32(1);
} else {
cmd->awake = cpu_to_le32(1);
}
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_SET_HOST_SLEEP_MODE_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
/* This command has zero length payload */
static int ath6kl_wmi_host_sleep_mode_cmd_prcd_evt_rx(struct wmi *wmi,
struct ath6kl_vif *vif)
{
struct ath6kl *ar = wmi->parent_dev;
set_bit(HOST_SLEEP_MODE_CMD_PROCESSED, &vif->flags);
wake_up(&ar->event_wq);
return 0;
}
int ath6kl_wmi_set_wow_mode_cmd(struct wmi *wmi, u8 if_idx,
enum ath6kl_wow_mode wow_mode,
u32 filter, u16 host_req_delay)
{
struct sk_buff *skb;
struct wmi_set_wow_mode_cmd *cmd;
int ret;
if ((wow_mode != ATH6KL_WOW_MODE_ENABLE) &&
wow_mode != ATH6KL_WOW_MODE_DISABLE) {
ath6kl_err("invalid wow mode: %d\n", wow_mode);
return -EINVAL;
}
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_wow_mode_cmd *) skb->data;
cmd->enable_wow = cpu_to_le32(wow_mode);
cmd->filter = cpu_to_le32(filter);
cmd->host_req_delay = cpu_to_le16(host_req_delay);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_WOW_MODE_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_add_wow_pattern_cmd(struct wmi *wmi, u8 if_idx,
u8 list_id, u8 filter_size,
u8 filter_offset, const u8 *filter,
const u8 *mask)
{
struct sk_buff *skb;
struct wmi_add_wow_pattern_cmd *cmd;
u16 size;
u8 *filter_mask;
int ret;
/*
* Allocate additional memory in the buffer to hold
* filter and mask value, which is twice of filter_size.
*/
size = sizeof(*cmd) + (2 * filter_size);
skb = ath6kl_wmi_get_new_buf(size);
if (!skb)
return -ENOMEM;
cmd = (struct wmi_add_wow_pattern_cmd *) skb->data;
cmd->filter_list_id = list_id;
cmd->filter_size = filter_size;
cmd->filter_offset = filter_offset;
memcpy(cmd->filter, filter, filter_size);
filter_mask = (u8 *) (cmd->filter + filter_size);
memcpy(filter_mask, mask, filter_size);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_ADD_WOW_PATTERN_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_del_wow_pattern_cmd(struct wmi *wmi, u8 if_idx,
u16 list_id, u16 filter_id)
{
struct sk_buff *skb;
struct wmi_del_wow_pattern_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_del_wow_pattern_cmd *) skb->data;
cmd->filter_list_id = cpu_to_le16(list_id);
cmd->filter_id = cpu_to_le16(filter_id);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_DEL_WOW_PATTERN_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
static int ath6kl_wmi_cmd_send_xtnd(struct wmi *wmi, struct sk_buff *skb,
enum wmix_command_id cmd_id,
enum wmi_sync_flag sync_flag)
{
struct wmix_cmd_hdr *cmd_hdr;
int ret;
skb_push(skb, sizeof(struct wmix_cmd_hdr));
cmd_hdr = (struct wmix_cmd_hdr *) skb->data;
cmd_hdr->cmd_id = cpu_to_le32(cmd_id);
ret = ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_EXTENSION_CMDID, sync_flag);
return ret;
}
int ath6kl_wmi_get_challenge_resp_cmd(struct wmi *wmi, u32 cookie, u32 source)
{
struct sk_buff *skb;
struct wmix_hb_challenge_resp_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmix_hb_challenge_resp_cmd *) skb->data;
cmd->cookie = cpu_to_le32(cookie);
cmd->source = cpu_to_le32(source);
ret = ath6kl_wmi_cmd_send_xtnd(wmi, skb, WMIX_HB_CHALLENGE_RESP_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_config_debug_module_cmd(struct wmi *wmi, u32 valid, u32 config)
{
struct ath6kl_wmix_dbglog_cfg_module_cmd *cmd;
struct sk_buff *skb;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct ath6kl_wmix_dbglog_cfg_module_cmd *) skb->data;
cmd->valid = cpu_to_le32(valid);
cmd->config = cpu_to_le32(config);
ret = ath6kl_wmi_cmd_send_xtnd(wmi, skb, WMIX_DBGLOG_CFG_MODULE_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_get_stats_cmd(struct wmi *wmi, u8 if_idx)
{
return ath6kl_wmi_simple_cmd(wmi, if_idx, WMI_GET_STATISTICS_CMDID);
}
int ath6kl_wmi_set_tx_pwr_cmd(struct wmi *wmi, u8 if_idx, u8 dbM)
{
struct sk_buff *skb;
struct wmi_set_tx_pwr_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_tx_pwr_cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_tx_pwr_cmd *) skb->data;
cmd->dbM = dbM;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_TX_PWR_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_get_tx_pwr_cmd(struct wmi *wmi, u8 if_idx)
{
return ath6kl_wmi_simple_cmd(wmi, if_idx, WMI_GET_TX_PWR_CMDID);
}
int ath6kl_wmi_get_roam_tbl_cmd(struct wmi *wmi)
{
return ath6kl_wmi_simple_cmd(wmi, 0, WMI_GET_ROAM_TBL_CMDID);
}
int ath6kl_wmi_set_lpreamble_cmd(struct wmi *wmi, u8 if_idx, u8 status,
u8 preamble_policy)
{
struct sk_buff *skb;
struct wmi_set_lpreamble_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_lpreamble_cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_lpreamble_cmd *) skb->data;
cmd->status = status;
cmd->preamble_policy = preamble_policy;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_LPREAMBLE_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_rts_cmd(struct wmi *wmi, u16 threshold)
{
struct sk_buff *skb;
struct wmi_set_rts_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_rts_cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_rts_cmd *) skb->data;
cmd->threshold = cpu_to_le16(threshold);
ret = ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_SET_RTS_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_wmm_txop(struct wmi *wmi, u8 if_idx, enum wmi_txop_cfg cfg)
{
struct sk_buff *skb;
struct wmi_set_wmm_txop_cmd *cmd;
int ret;
if (!((cfg == WMI_TXOP_DISABLED) || (cfg == WMI_TXOP_ENABLED)))
return -EINVAL;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_wmm_txop_cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_wmm_txop_cmd *) skb->data;
cmd->txop_enable = cfg;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_WMM_TXOP_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_keepalive_cmd(struct wmi *wmi, u8 if_idx,
u8 keep_alive_intvl)
{
struct sk_buff *skb;
struct wmi_set_keepalive_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_keepalive_cmd *) skb->data;
cmd->keep_alive_intvl = keep_alive_intvl;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_KEEPALIVE_CMDID,
NO_SYNC_WMIFLAG);
if (ret == 0)
ath6kl_debug_set_keepalive(wmi->parent_dev, keep_alive_intvl);
return ret;
}
int ath6kl_wmi_set_htcap_cmd(struct wmi *wmi, u8 if_idx,
enum nl80211_band band,
struct ath6kl_htcap *htcap)
{
struct sk_buff *skb;
struct wmi_set_htcap_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_htcap_cmd *) skb->data;
/*
* NOTE: Band in firmware matches enum nl80211_band, it is unlikely
* this will be changed in firmware. If at all there is any change in
* band value, the host needs to be fixed.
*/
cmd->band = band;
cmd->ht_enable = !!htcap->ht_enable;
cmd->ht20_sgi = !!(htcap->cap_info & IEEE80211_HT_CAP_SGI_20);
cmd->ht40_supported =
!!(htcap->cap_info & IEEE80211_HT_CAP_SUP_WIDTH_20_40);
cmd->ht40_sgi = !!(htcap->cap_info & IEEE80211_HT_CAP_SGI_40);
cmd->intolerant_40mhz =
!!(htcap->cap_info & IEEE80211_HT_CAP_40MHZ_INTOLERANT);
cmd->max_ampdu_len_exp = htcap->ampdu_factor;
ath6kl_dbg(ATH6KL_DBG_WMI,
"Set htcap: band:%d ht_enable:%d 40mhz:%d sgi_20mhz:%d sgi_40mhz:%d 40mhz_intolerant:%d ampdu_len_exp:%d\n",
cmd->band, cmd->ht_enable, cmd->ht40_supported,
cmd->ht20_sgi, cmd->ht40_sgi, cmd->intolerant_40mhz,
cmd->max_ampdu_len_exp);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_HT_CAP_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_test_cmd(struct wmi *wmi, void *buf, size_t len)
{
struct sk_buff *skb;
int ret;
skb = ath6kl_wmi_get_new_buf(len);
if (!skb)
return -ENOMEM;
memcpy(skb->data, buf, len);
ret = ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_TEST_CMDID, NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_mcast_filter_cmd(struct wmi *wmi, u8 if_idx, bool mc_all_on)
{
struct sk_buff *skb;
struct wmi_mcast_filter_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_mcast_filter_cmd *) skb->data;
cmd->mcast_all_enable = mc_all_on;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_MCAST_FILTER_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_add_del_mcast_filter_cmd(struct wmi *wmi, u8 if_idx,
u8 *filter, bool add_filter)
{
struct sk_buff *skb;
struct wmi_mcast_filter_add_del_cmd *cmd;
int ret;
if ((filter[0] != 0x33 || filter[1] != 0x33) &&
(filter[0] != 0x01 || filter[1] != 0x00 ||
filter[2] != 0x5e || filter[3] > 0x7f)) {
ath6kl_warn("invalid multicast filter address\n");
return -EINVAL;
}
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_mcast_filter_add_del_cmd *) skb->data;
memcpy(cmd->mcast_mac, filter, ATH6KL_MCAST_FILTER_MAC_ADDR_SIZE);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb,
add_filter ? WMI_SET_MCAST_FILTER_CMDID :
WMI_DEL_MCAST_FILTER_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_sta_bmiss_enhance_cmd(struct wmi *wmi, u8 if_idx, bool enhance)
{
struct sk_buff *skb;
struct wmi_sta_bmiss_enhance_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_sta_bmiss_enhance_cmd *) skb->data;
cmd->enable = enhance ? 1 : 0;
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_STA_BMISS_ENHANCE_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_regdomain_cmd(struct wmi *wmi, const char *alpha2)
{
struct sk_buff *skb;
struct wmi_set_regdomain_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_regdomain_cmd *) skb->data;
memcpy(cmd->iso_name, alpha2, 2);
return ath6kl_wmi_cmd_send(wmi, 0, skb,
WMI_SET_REGDOMAIN_CMDID,
NO_SYNC_WMIFLAG);
}
s32 ath6kl_wmi_get_rate(struct wmi *wmi, s8 rate_index)
{
struct ath6kl *ar = wmi->parent_dev;
u8 sgi = 0;
s32 ret;
if (rate_index == RATE_AUTO)
return 0;
/* SGI is stored as the MSB of the rate_index */
if (rate_index & RATE_INDEX_MSB) {
rate_index &= RATE_INDEX_WITHOUT_SGI_MASK;
sgi = 1;
}
if (test_bit(ATH6KL_FW_CAPABILITY_RATETABLE_MCS15,
ar->fw_capabilities)) {
if (WARN_ON(rate_index >= ARRAY_SIZE(wmi_rate_tbl_mcs15)))
return 0;
ret = wmi_rate_tbl_mcs15[(u32) rate_index][sgi];
} else {
if (WARN_ON(rate_index >= ARRAY_SIZE(wmi_rate_tbl)))
return 0;
ret = wmi_rate_tbl[(u32) rate_index][sgi];
}
return ret;
}
static int ath6kl_wmi_get_pmkid_list_event_rx(struct wmi *wmi, u8 *datap,
u32 len)
{
struct wmi_pmkid_list_reply *reply;
u32 expected_len;
if (len < sizeof(struct wmi_pmkid_list_reply))
return -EINVAL;
reply = (struct wmi_pmkid_list_reply *)datap;
expected_len = sizeof(reply->num_pmkid) +
le32_to_cpu(reply->num_pmkid) * WMI_PMKID_LEN;
if (len < expected_len)
return -EINVAL;
return 0;
}
static int ath6kl_wmi_addba_req_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_addba_req_event *cmd = (struct wmi_addba_req_event *) datap;
aggr_recv_addba_req_evt(vif, cmd->tid,
le16_to_cpu(cmd->st_seq_no), cmd->win_sz);
return 0;
}
static int ath6kl_wmi_delba_req_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_delba_event *cmd = (struct wmi_delba_event *) datap;
aggr_recv_delba_req_evt(vif, cmd->tid);
return 0;
}
/* AP mode functions */
int ath6kl_wmi_ap_profile_commit(struct wmi *wmip, u8 if_idx,
struct wmi_connect_cmd *p)
{
struct sk_buff *skb;
struct wmi_connect_cmd *cm;
int res;
skb = ath6kl_wmi_get_new_buf(sizeof(*cm));
if (!skb)
return -ENOMEM;
cm = (struct wmi_connect_cmd *) skb->data;
memcpy(cm, p, sizeof(*cm));
res = ath6kl_wmi_cmd_send(wmip, if_idx, skb, WMI_AP_CONFIG_COMMIT_CMDID,
NO_SYNC_WMIFLAG);
ath6kl_dbg(ATH6KL_DBG_WMI,
"%s: nw_type=%u auth_mode=%u ch=%u ctrl_flags=0x%x-> res=%d\n",
__func__, p->nw_type, p->auth_mode, le16_to_cpu(p->ch),
le32_to_cpu(p->ctrl_flags), res);
return res;
}
int ath6kl_wmi_ap_set_mlme(struct wmi *wmip, u8 if_idx, u8 cmd, const u8 *mac,
u16 reason)
{
struct sk_buff *skb;
struct wmi_ap_set_mlme_cmd *cm;
skb = ath6kl_wmi_get_new_buf(sizeof(*cm));
if (!skb)
return -ENOMEM;
cm = (struct wmi_ap_set_mlme_cmd *) skb->data;
memcpy(cm->mac, mac, ETH_ALEN);
cm->reason = cpu_to_le16(reason);
cm->cmd = cmd;
ath6kl_dbg(ATH6KL_DBG_WMI, "ap_set_mlme: cmd=%d reason=%d\n", cm->cmd,
cm->reason);
return ath6kl_wmi_cmd_send(wmip, if_idx, skb, WMI_AP_SET_MLME_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_ap_hidden_ssid(struct wmi *wmi, u8 if_idx, bool enable)
{
struct sk_buff *skb;
struct wmi_ap_hidden_ssid_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_ap_hidden_ssid_cmd *) skb->data;
cmd->hidden_ssid = enable ? 1 : 0;
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_AP_HIDDEN_SSID_CMDID,
NO_SYNC_WMIFLAG);
}
/* This command will be used to enable/disable AP uAPSD feature */
int ath6kl_wmi_ap_set_apsd(struct wmi *wmi, u8 if_idx, u8 enable)
{
struct wmi_ap_set_apsd_cmd *cmd;
struct sk_buff *skb;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_ap_set_apsd_cmd *)skb->data;
cmd->enable = enable;
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_AP_SET_APSD_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_set_apsd_bfrd_traf(struct wmi *wmi, u8 if_idx,
u16 aid, u16 bitmap, u32 flags)
{
struct wmi_ap_apsd_buffered_traffic_cmd *cmd;
struct sk_buff *skb;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_ap_apsd_buffered_traffic_cmd *)skb->data;
cmd->aid = cpu_to_le16(aid);
cmd->bitmap = cpu_to_le16(bitmap);
cmd->flags = cpu_to_le32(flags);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_AP_APSD_BUFFERED_TRAFFIC_CMDID,
NO_SYNC_WMIFLAG);
}
static int ath6kl_wmi_pspoll_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
struct wmi_pspoll_event *ev;
if (len < sizeof(struct wmi_pspoll_event))
return -EINVAL;
ev = (struct wmi_pspoll_event *) datap;
ath6kl_pspoll_event(vif, le16_to_cpu(ev->aid));
return 0;
}
static int ath6kl_wmi_dtimexpiry_event_rx(struct wmi *wmi, u8 *datap, int len,
struct ath6kl_vif *vif)
{
ath6kl_dtimexpiry_event(vif);
return 0;
}
int ath6kl_wmi_set_pvb_cmd(struct wmi *wmi, u8 if_idx, u16 aid,
bool flag)
{
struct sk_buff *skb;
struct wmi_ap_set_pvb_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_ap_set_pvb_cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_ap_set_pvb_cmd *) skb->data;
cmd->aid = cpu_to_le16(aid);
cmd->rsvd = cpu_to_le16(0);
cmd->flag = cpu_to_le32(flag);
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_AP_SET_PVB_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_rx_frame_format_cmd(struct wmi *wmi, u8 if_idx,
u8 rx_meta_ver,
bool rx_dot11_hdr, bool defrag_on_host)
{
struct sk_buff *skb;
struct wmi_rx_frame_format_cmd *cmd;
int ret;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_rx_frame_format_cmd *) skb->data;
cmd->dot11_hdr = rx_dot11_hdr ? 1 : 0;
cmd->defrag_on_host = defrag_on_host ? 1 : 0;
cmd->meta_ver = rx_meta_ver;
/* Delete the local aggr state, on host */
ret = ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_RX_FRAME_FORMAT_CMDID,
NO_SYNC_WMIFLAG);
return ret;
}
int ath6kl_wmi_set_appie_cmd(struct wmi *wmi, u8 if_idx, u8 mgmt_frm_type,
const u8 *ie, u8 ie_len)
{
struct sk_buff *skb;
struct wmi_set_appie_cmd *p;
skb = ath6kl_wmi_get_new_buf(sizeof(*p) + ie_len);
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI,
"set_appie_cmd: mgmt_frm_type=%u ie_len=%u\n",
mgmt_frm_type, ie_len);
p = (struct wmi_set_appie_cmd *) skb->data;
p->mgmt_frm_type = mgmt_frm_type;
p->ie_len = ie_len;
if (ie != NULL && ie_len > 0)
memcpy(p->ie_info, ie, ie_len);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_APPIE_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_set_ie_cmd(struct wmi *wmi, u8 if_idx, u8 ie_id, u8 ie_field,
const u8 *ie_info, u8 ie_len)
{
struct sk_buff *skb;
struct wmi_set_ie_cmd *p;
skb = ath6kl_wmi_get_new_buf(sizeof(*p) + ie_len);
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI, "set_ie_cmd: ie_id=%u ie_ie_field=%u ie_len=%u\n",
ie_id, ie_field, ie_len);
p = (struct wmi_set_ie_cmd *) skb->data;
p->ie_id = ie_id;
p->ie_field = ie_field;
p->ie_len = ie_len;
if (ie_info && ie_len > 0)
memcpy(p->ie_info, ie_info, ie_len);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SET_IE_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_disable_11b_rates_cmd(struct wmi *wmi, bool disable)
{
struct sk_buff *skb;
struct wmi_disable_11b_rates_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI, "disable_11b_rates_cmd: disable=%u\n",
disable);
cmd = (struct wmi_disable_11b_rates_cmd *) skb->data;
cmd->disable = disable ? 1 : 0;
return ath6kl_wmi_cmd_send(wmi, 0, skb, WMI_DISABLE_11B_RATES_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_remain_on_chnl_cmd(struct wmi *wmi, u8 if_idx, u32 freq, u32 dur)
{
struct sk_buff *skb;
struct wmi_remain_on_chnl_cmd *p;
skb = ath6kl_wmi_get_new_buf(sizeof(*p));
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI, "remain_on_chnl_cmd: freq=%u dur=%u\n",
freq, dur);
p = (struct wmi_remain_on_chnl_cmd *) skb->data;
p->freq = cpu_to_le32(freq);
p->duration = cpu_to_le32(dur);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_REMAIN_ON_CHNL_CMDID,
NO_SYNC_WMIFLAG);
}
/* ath6kl_wmi_send_action_cmd is to be deprecated. Use
* ath6kl_wmi_send_mgmt_cmd instead. The new function supports P2P
* mgmt operations using station interface.
*/
static int ath6kl_wmi_send_action_cmd(struct wmi *wmi, u8 if_idx, u32 id,
u32 freq, u32 wait, const u8 *data,
u16 data_len)
{
struct sk_buff *skb;
struct wmi_send_action_cmd *p;
u8 *buf;
if (wait)
return -EINVAL; /* Offload for wait not supported */
buf = kmalloc(data_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
skb = ath6kl_wmi_get_new_buf(sizeof(*p) + data_len);
if (!skb) {
kfree(buf);
return -ENOMEM;
}
kfree(wmi->last_mgmt_tx_frame);
memcpy(buf, data, data_len);
wmi->last_mgmt_tx_frame = buf;
wmi->last_mgmt_tx_frame_len = data_len;
ath6kl_dbg(ATH6KL_DBG_WMI,
"send_action_cmd: id=%u freq=%u wait=%u len=%u\n",
id, freq, wait, data_len);
p = (struct wmi_send_action_cmd *) skb->data;
p->id = cpu_to_le32(id);
p->freq = cpu_to_le32(freq);
p->wait = cpu_to_le32(wait);
p->len = cpu_to_le16(data_len);
memcpy(p->data, data, data_len);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SEND_ACTION_CMDID,
NO_SYNC_WMIFLAG);
}
static int __ath6kl_wmi_send_mgmt_cmd(struct wmi *wmi, u8 if_idx, u32 id,
u32 freq, u32 wait, const u8 *data,
u16 data_len, u32 no_cck)
{
struct sk_buff *skb;
struct wmi_send_mgmt_cmd *p;
u8 *buf;
if (wait)
return -EINVAL; /* Offload for wait not supported */
buf = kmalloc(data_len, GFP_KERNEL);
if (!buf)
return -ENOMEM;
skb = ath6kl_wmi_get_new_buf(sizeof(*p) + data_len);
if (!skb) {
kfree(buf);
return -ENOMEM;
}
kfree(wmi->last_mgmt_tx_frame);
memcpy(buf, data, data_len);
wmi->last_mgmt_tx_frame = buf;
wmi->last_mgmt_tx_frame_len = data_len;
ath6kl_dbg(ATH6KL_DBG_WMI,
"send_action_cmd: id=%u freq=%u wait=%u len=%u\n",
id, freq, wait, data_len);
p = (struct wmi_send_mgmt_cmd *) skb->data;
p->id = cpu_to_le32(id);
p->freq = cpu_to_le32(freq);
p->wait = cpu_to_le32(wait);
p->no_cck = cpu_to_le32(no_cck);
p->len = cpu_to_le16(data_len);
memcpy(p->data, data, data_len);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_SEND_MGMT_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_send_mgmt_cmd(struct wmi *wmi, u8 if_idx, u32 id, u32 freq,
u32 wait, const u8 *data, u16 data_len,
u32 no_cck)
{
int status;
struct ath6kl *ar = wmi->parent_dev;
if (test_bit(ATH6KL_FW_CAPABILITY_STA_P2PDEV_DUPLEX,
ar->fw_capabilities)) {
/*
* If capable of doing P2P mgmt operations using
* station interface, send additional information like
* supported rates to advertise and xmit rates for
* probe requests
*/
status = __ath6kl_wmi_send_mgmt_cmd(ar->wmi, if_idx, id, freq,
wait, data, data_len,
no_cck);
} else {
status = ath6kl_wmi_send_action_cmd(ar->wmi, if_idx, id, freq,
wait, data, data_len);
}
return status;
}
int ath6kl_wmi_send_probe_response_cmd(struct wmi *wmi, u8 if_idx, u32 freq,
const u8 *dst, const u8 *data,
u16 data_len)
{
struct sk_buff *skb;
struct wmi_p2p_probe_response_cmd *p;
size_t cmd_len = sizeof(*p) + data_len;
if (data_len == 0)
cmd_len++; /* work around target minimum length requirement */
skb = ath6kl_wmi_get_new_buf(cmd_len);
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI,
"send_probe_response_cmd: freq=%u dst=%pM len=%u\n",
freq, dst, data_len);
p = (struct wmi_p2p_probe_response_cmd *) skb->data;
p->freq = cpu_to_le32(freq);
memcpy(p->destination_addr, dst, ETH_ALEN);
p->len = cpu_to_le16(data_len);
memcpy(p->data, data, data_len);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb,
WMI_SEND_PROBE_RESPONSE_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_probe_report_req_cmd(struct wmi *wmi, u8 if_idx, bool enable)
{
struct sk_buff *skb;
struct wmi_probe_req_report_cmd *p;
skb = ath6kl_wmi_get_new_buf(sizeof(*p));
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI, "probe_report_req_cmd: enable=%u\n",
enable);
p = (struct wmi_probe_req_report_cmd *) skb->data;
p->enable = enable ? 1 : 0;
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_PROBE_REQ_REPORT_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_info_req_cmd(struct wmi *wmi, u8 if_idx, u32 info_req_flags)
{
struct sk_buff *skb;
struct wmi_get_p2p_info *p;
skb = ath6kl_wmi_get_new_buf(sizeof(*p));
if (!skb)
return -ENOMEM;
ath6kl_dbg(ATH6KL_DBG_WMI, "info_req_cmd: flags=%x\n",
info_req_flags);
p = (struct wmi_get_p2p_info *) skb->data;
p->info_req_flags = cpu_to_le32(info_req_flags);
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_GET_P2P_INFO_CMDID,
NO_SYNC_WMIFLAG);
}
int ath6kl_wmi_cancel_remain_on_chnl_cmd(struct wmi *wmi, u8 if_idx)
{
ath6kl_dbg(ATH6KL_DBG_WMI, "cancel_remain_on_chnl_cmd\n");
return ath6kl_wmi_simple_cmd(wmi, if_idx,
WMI_CANCEL_REMAIN_ON_CHNL_CMDID);
}
int ath6kl_wmi_set_inact_period(struct wmi *wmi, u8 if_idx, int inact_timeout)
{
struct sk_buff *skb;
struct wmi_set_inact_period_cmd *cmd;
skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
if (!skb)
return -ENOMEM;
cmd = (struct wmi_set_inact_period_cmd *) skb->data;
cmd->inact_period = cpu_to_le32(inact_timeout);
cmd->num_null_func = 0;
return ath6kl_wmi_cmd_send(wmi, if_idx, skb, WMI_AP_CONN_INACT_CMDID,
NO_SYNC_WMIFLAG);
}
static void ath6kl_wmi_hb_challenge_resp_event(struct wmi *wmi, u8 *datap,
int len)
{
struct wmix_hb_challenge_resp_cmd *cmd;
if (len < sizeof(struct wmix_hb_challenge_resp_cmd))
return;
cmd = (struct wmix_hb_challenge_resp_cmd *) datap;
ath6kl_recovery_hb_event(wmi->parent_dev,
le32_to_cpu(cmd->cookie));
}
static int ath6kl_wmi_control_rx_xtnd(struct wmi *wmi, struct sk_buff *skb)
{
struct wmix_cmd_hdr *cmd;
u32 len;
u16 id;
u8 *datap;
int ret = 0;
if (skb->len < sizeof(struct wmix_cmd_hdr)) {
ath6kl_err("bad packet 1\n");
return -EINVAL;
}
cmd = (struct wmix_cmd_hdr *) skb->data;
id = le32_to_cpu(cmd->cmd_id);
skb_pull(skb, sizeof(struct wmix_cmd_hdr));
datap = skb->data;
len = skb->len;
switch (id) {
case WMIX_HB_CHALLENGE_RESP_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "wmi event hb challenge resp\n");
ath6kl_wmi_hb_challenge_resp_event(wmi, datap, len);
break;
case WMIX_DBGLOG_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "wmi event dbglog len %d\n", len);
ath6kl_debug_fwlog_event(wmi->parent_dev, datap, len);
break;
default:
ath6kl_warn("unknown cmd id 0x%x\n", id);
ret = -EINVAL;
break;
}
return ret;
}
static int ath6kl_wmi_roam_tbl_event_rx(struct wmi *wmi, u8 *datap, int len)
{
return ath6kl_debug_roam_tbl_event(wmi->parent_dev, datap, len);
}
/* Process interface specific wmi events, caller would free the datap */
static int ath6kl_wmi_proc_events_vif(struct wmi *wmi, u16 if_idx, u16 cmd_id,
u8 *datap, u32 len)
{
struct ath6kl_vif *vif;
vif = ath6kl_get_vif_by_index(wmi->parent_dev, if_idx);
if (!vif) {
ath6kl_dbg(ATH6KL_DBG_WMI,
"Wmi event for unavailable vif, vif_index:%d\n",
if_idx);
return -EINVAL;
}
switch (cmd_id) {
case WMI_CONNECT_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CONNECT_EVENTID\n");
return ath6kl_wmi_connect_event_rx(wmi, datap, len, vif);
case WMI_DISCONNECT_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DISCONNECT_EVENTID\n");
return ath6kl_wmi_disconnect_event_rx(wmi, datap, len, vif);
case WMI_TKIP_MICERR_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TKIP_MICERR_EVENTID\n");
return ath6kl_wmi_tkip_micerr_event_rx(wmi, datap, len, vif);
case WMI_BSSINFO_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_BSSINFO_EVENTID\n");
return ath6kl_wmi_bssinfo_event_rx(wmi, datap, len, vif);
case WMI_NEIGHBOR_REPORT_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_NEIGHBOR_REPORT_EVENTID\n");
return ath6kl_wmi_neighbor_report_event_rx(wmi, datap, len,
vif);
case WMI_SCAN_COMPLETE_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SCAN_COMPLETE_EVENTID\n");
return ath6kl_wmi_scan_complete_rx(wmi, datap, len, vif);
case WMI_REPORT_STATISTICS_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_STATISTICS_EVENTID\n");
return ath6kl_wmi_stats_event_rx(wmi, datap, len, vif);
case WMI_CAC_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CAC_EVENTID\n");
return ath6kl_wmi_cac_event_rx(wmi, datap, len, vif);
case WMI_PSPOLL_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSPOLL_EVENTID\n");
return ath6kl_wmi_pspoll_event_rx(wmi, datap, len, vif);
case WMI_DTIMEXPIRY_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DTIMEXPIRY_EVENTID\n");
return ath6kl_wmi_dtimexpiry_event_rx(wmi, datap, len, vif);
case WMI_ADDBA_REQ_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_REQ_EVENTID\n");
return ath6kl_wmi_addba_req_event_rx(wmi, datap, len, vif);
case WMI_DELBA_REQ_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DELBA_REQ_EVENTID\n");
return ath6kl_wmi_delba_req_event_rx(wmi, datap, len, vif);
case WMI_SET_HOST_SLEEP_MODE_CMD_PROCESSED_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI,
"WMI_SET_HOST_SLEEP_MODE_CMD_PROCESSED_EVENTID");
return ath6kl_wmi_host_sleep_mode_cmd_prcd_evt_rx(wmi, vif);
case WMI_REMAIN_ON_CHNL_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REMAIN_ON_CHNL_EVENTID\n");
return ath6kl_wmi_remain_on_chnl_event_rx(wmi, datap, len, vif);
case WMI_CANCEL_REMAIN_ON_CHNL_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI,
"WMI_CANCEL_REMAIN_ON_CHNL_EVENTID\n");
return ath6kl_wmi_cancel_remain_on_chnl_event_rx(wmi, datap,
len, vif);
case WMI_TX_STATUS_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_STATUS_EVENTID\n");
return ath6kl_wmi_tx_status_event_rx(wmi, datap, len, vif);
case WMI_RX_PROBE_REQ_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RX_PROBE_REQ_EVENTID\n");
return ath6kl_wmi_rx_probe_req_event_rx(wmi, datap, len, vif);
case WMI_RX_ACTION_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RX_ACTION_EVENTID\n");
return ath6kl_wmi_rx_action_event_rx(wmi, datap, len, vif);
case WMI_TXE_NOTIFY_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TXE_NOTIFY_EVENTID\n");
return ath6kl_wmi_txe_notify_event_rx(wmi, datap, len, vif);
default:
ath6kl_dbg(ATH6KL_DBG_WMI, "unknown cmd id 0x%x\n", cmd_id);
return -EINVAL;
}
return 0;
}
static int ath6kl_wmi_proc_events(struct wmi *wmi, struct sk_buff *skb)
{
struct wmi_cmd_hdr *cmd;
int ret = 0;
u32 len;
u16 id;
u8 if_idx;
u8 *datap;
cmd = (struct wmi_cmd_hdr *) skb->data;
id = le16_to_cpu(cmd->cmd_id);
if_idx = le16_to_cpu(cmd->info1) & WMI_CMD_HDR_IF_ID_MASK;
skb_pull(skb, sizeof(struct wmi_cmd_hdr));
datap = skb->data;
len = skb->len;
ath6kl_dbg(ATH6KL_DBG_WMI, "wmi rx id %d len %d\n", id, len);
ath6kl_dbg_dump(ATH6KL_DBG_WMI_DUMP, NULL, "wmi rx ",
datap, len);
switch (id) {
case WMI_GET_BITRATE_CMDID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_BITRATE_CMDID\n");
ret = ath6kl_wmi_bitrate_reply_rx(wmi, datap, len);
break;
case WMI_GET_CHANNEL_LIST_CMDID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_CHANNEL_LIST_CMDID\n");
ret = ath6kl_wmi_ch_list_reply_rx(wmi, datap, len);
break;
case WMI_GET_TX_PWR_CMDID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_TX_PWR_CMDID\n");
ret = ath6kl_wmi_tx_pwr_reply_rx(wmi, datap, len);
break;
case WMI_READY_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_READY_EVENTID\n");
ret = ath6kl_wmi_ready_event_rx(wmi, datap, len);
break;
case WMI_PEER_NODE_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PEER_NODE_EVENTID\n");
ret = ath6kl_wmi_peer_node_event_rx(wmi, datap, len);
break;
case WMI_REGDOMAIN_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REGDOMAIN_EVENTID\n");
ath6kl_wmi_regdomain_event(wmi, datap, len);
break;
case WMI_PSTREAM_TIMEOUT_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSTREAM_TIMEOUT_EVENTID\n");
ret = ath6kl_wmi_pstream_timeout_event_rx(wmi, datap, len);
break;
case WMI_CMDERROR_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CMDERROR_EVENTID\n");
ret = ath6kl_wmi_error_event_rx(wmi, datap, len);
break;
case WMI_RSSI_THRESHOLD_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RSSI_THRESHOLD_EVENTID\n");
ret = ath6kl_wmi_rssi_threshold_event_rx(wmi, datap, len);
break;
case WMI_ERROR_REPORT_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ERROR_REPORT_EVENTID\n");
break;
case WMI_OPT_RX_FRAME_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_OPT_RX_FRAME_EVENTID\n");
/* this event has been deprecated */
break;
case WMI_REPORT_ROAM_TBL_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_TBL_EVENTID\n");
ret = ath6kl_wmi_roam_tbl_event_rx(wmi, datap, len);
break;
case WMI_EXTENSION_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_EXTENSION_EVENTID\n");
ret = ath6kl_wmi_control_rx_xtnd(wmi, skb);
break;
case WMI_CHANNEL_CHANGE_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CHANNEL_CHANGE_EVENTID\n");
break;
case WMI_REPORT_ROAM_DATA_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_DATA_EVENTID\n");
break;
case WMI_TEST_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TEST_EVENTID\n");
ret = ath6kl_wmi_test_rx(wmi, datap, len);
break;
case WMI_GET_FIXRATES_CMDID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_FIXRATES_CMDID\n");
ret = ath6kl_wmi_ratemask_reply_rx(wmi, datap, len);
break;
case WMI_TX_RETRY_ERR_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_RETRY_ERR_EVENTID\n");
break;
case WMI_SNR_THRESHOLD_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SNR_THRESHOLD_EVENTID\n");
ret = ath6kl_wmi_snr_threshold_event_rx(wmi, datap, len);
break;
case WMI_LQ_THRESHOLD_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_LQ_THRESHOLD_EVENTID\n");
break;
case WMI_APLIST_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_APLIST_EVENTID\n");
ret = ath6kl_wmi_aplist_event_rx(wmi, datap, len);
break;
case WMI_GET_KEEPALIVE_CMDID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_KEEPALIVE_CMDID\n");
ret = ath6kl_wmi_keepalive_reply_rx(wmi, datap, len);
break;
case WMI_GET_WOW_LIST_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_WOW_LIST_EVENTID\n");
break;
case WMI_GET_PMKID_LIST_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_PMKID_LIST_EVENTID\n");
ret = ath6kl_wmi_get_pmkid_list_event_rx(wmi, datap, len);
break;
case WMI_SET_PARAMS_REPLY_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SET_PARAMS_REPLY_EVENTID\n");
break;
case WMI_ADDBA_RESP_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_RESP_EVENTID\n");
break;
case WMI_REPORT_BTCOEX_CONFIG_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI,
"WMI_REPORT_BTCOEX_CONFIG_EVENTID\n");
break;
case WMI_REPORT_BTCOEX_STATS_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI,
"WMI_REPORT_BTCOEX_STATS_EVENTID\n");
break;
case WMI_TX_COMPLETE_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_COMPLETE_EVENTID\n");
ret = ath6kl_wmi_tx_complete_event_rx(datap, len);
break;
case WMI_P2P_CAPABILITIES_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_P2P_CAPABILITIES_EVENTID\n");
ret = ath6kl_wmi_p2p_capabilities_event_rx(datap, len);
break;
case WMI_P2P_INFO_EVENTID:
ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_P2P_INFO_EVENTID\n");
ret = ath6kl_wmi_p2p_info_event_rx(datap, len);
break;
default:
/* may be the event is interface specific */
ret = ath6kl_wmi_proc_events_vif(wmi, if_idx, id, datap, len);
break;
}
dev_kfree_skb(skb);
return ret;
}
/* Control Path */
int ath6kl_wmi_control_rx(struct wmi *wmi, struct sk_buff *skb)
{
if (WARN_ON(skb == NULL))
return -EINVAL;
if (skb->len < sizeof(struct wmi_cmd_hdr)) {
ath6kl_err("bad packet 1\n");
dev_kfree_skb(skb);
return -EINVAL;
}
trace_ath6kl_wmi_event(skb->data, skb->len);
return ath6kl_wmi_proc_events(wmi, skb);
}
void ath6kl_wmi_reset(struct wmi *wmi)
{
spin_lock_bh(&wmi->lock);
wmi->fat_pipe_exist = 0;
memset(wmi->stream_exist_for_ac, 0, sizeof(wmi->stream_exist_for_ac));
spin_unlock_bh(&wmi->lock);
}
void *ath6kl_wmi_init(struct ath6kl *dev)
{
struct wmi *wmi;
wmi = kzalloc(sizeof(struct wmi), GFP_KERNEL);
if (!wmi)
return NULL;
spin_lock_init(&wmi->lock);
wmi->parent_dev = dev;
wmi->pwr_mode = REC_POWER;
ath6kl_wmi_reset(wmi);
return wmi;
}
void ath6kl_wmi_shutdown(struct wmi *wmi)
{
if (!wmi)
return;
kfree(wmi->last_mgmt_tx_frame);
kfree(wmi);
}