| /* |
| * Definitions for measuring cputime on powerpc machines. |
| * |
| * Copyright (C) 2006 Paul Mackerras, IBM Corp. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation; either version |
| * 2 of the License, or (at your option) any later version. |
| * |
| * If we have CONFIG_VIRT_CPU_ACCOUNTING_NATIVE, we measure cpu time in |
| * the same units as the timebase. Otherwise we measure cpu time |
| * in jiffies using the generic definitions. |
| */ |
| |
| #ifndef __POWERPC_CPUTIME_H |
| #define __POWERPC_CPUTIME_H |
| |
| #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE |
| #include <asm-generic/cputime.h> |
| #ifdef __KERNEL__ |
| static inline void setup_cputime_one_jiffy(void) { } |
| #endif |
| #else |
| |
| #include <linux/types.h> |
| #include <linux/time.h> |
| #include <asm/div64.h> |
| #include <asm/time.h> |
| #include <asm/param.h> |
| #include <asm/cpu_has_feature.h> |
| |
| typedef u64 __nocast cputime_t; |
| typedef u64 __nocast cputime64_t; |
| |
| #define cmpxchg_cputime(ptr, old, new) cmpxchg(ptr, old, new) |
| |
| #ifdef __KERNEL__ |
| |
| /* |
| * One jiffy in timebase units computed during initialization |
| */ |
| extern cputime_t cputime_one_jiffy; |
| |
| /* |
| * Convert cputime <-> jiffies |
| */ |
| extern u64 __cputime_jiffies_factor; |
| |
| static inline unsigned long cputime_to_jiffies(const cputime_t ct) |
| { |
| return mulhdu((__force u64) ct, __cputime_jiffies_factor); |
| } |
| |
| static inline cputime_t jiffies_to_cputime(const unsigned long jif) |
| { |
| u64 ct; |
| unsigned long sec; |
| |
| /* have to be a little careful about overflow */ |
| ct = jif % HZ; |
| sec = jif / HZ; |
| if (ct) { |
| ct *= tb_ticks_per_sec; |
| do_div(ct, HZ); |
| } |
| if (sec) |
| ct += (cputime_t) sec * tb_ticks_per_sec; |
| return (__force cputime_t) ct; |
| } |
| |
| static inline void setup_cputime_one_jiffy(void) |
| { |
| cputime_one_jiffy = jiffies_to_cputime(1); |
| } |
| |
| static inline cputime64_t jiffies64_to_cputime64(const u64 jif) |
| { |
| u64 ct; |
| u64 sec = jif; |
| |
| /* have to be a little careful about overflow */ |
| ct = do_div(sec, HZ); |
| if (ct) { |
| ct *= tb_ticks_per_sec; |
| do_div(ct, HZ); |
| } |
| if (sec) |
| ct += (u64) sec * tb_ticks_per_sec; |
| return (__force cputime64_t) ct; |
| } |
| |
| static inline u64 cputime64_to_jiffies64(const cputime_t ct) |
| { |
| return mulhdu((__force u64) ct, __cputime_jiffies_factor); |
| } |
| |
| /* |
| * Convert cputime <-> microseconds |
| */ |
| extern u64 __cputime_usec_factor; |
| |
| static inline unsigned long cputime_to_usecs(const cputime_t ct) |
| { |
| return mulhdu((__force u64) ct, __cputime_usec_factor); |
| } |
| |
| static inline cputime_t usecs_to_cputime(const unsigned long us) |
| { |
| u64 ct; |
| unsigned long sec; |
| |
| /* have to be a little careful about overflow */ |
| ct = us % 1000000; |
| sec = us / 1000000; |
| if (ct) { |
| ct *= tb_ticks_per_sec; |
| do_div(ct, 1000000); |
| } |
| if (sec) |
| ct += (cputime_t) sec * tb_ticks_per_sec; |
| return (__force cputime_t) ct; |
| } |
| |
| #define usecs_to_cputime64(us) usecs_to_cputime(us) |
| |
| /* |
| * Convert cputime <-> seconds |
| */ |
| extern u64 __cputime_sec_factor; |
| |
| static inline unsigned long cputime_to_secs(const cputime_t ct) |
| { |
| return mulhdu((__force u64) ct, __cputime_sec_factor); |
| } |
| |
| static inline cputime_t secs_to_cputime(const unsigned long sec) |
| { |
| return (__force cputime_t)((u64) sec * tb_ticks_per_sec); |
| } |
| |
| /* |
| * Convert cputime <-> timespec |
| */ |
| static inline void cputime_to_timespec(const cputime_t ct, struct timespec *p) |
| { |
| u64 x = (__force u64) ct; |
| unsigned int frac; |
| |
| frac = do_div(x, tb_ticks_per_sec); |
| p->tv_sec = x; |
| x = (u64) frac * 1000000000; |
| do_div(x, tb_ticks_per_sec); |
| p->tv_nsec = x; |
| } |
| |
| static inline cputime_t timespec_to_cputime(const struct timespec *p) |
| { |
| u64 ct; |
| |
| ct = (u64) p->tv_nsec * tb_ticks_per_sec; |
| do_div(ct, 1000000000); |
| return (__force cputime_t)(ct + (u64) p->tv_sec * tb_ticks_per_sec); |
| } |
| |
| /* |
| * Convert cputime <-> timeval |
| */ |
| static inline void cputime_to_timeval(const cputime_t ct, struct timeval *p) |
| { |
| u64 x = (__force u64) ct; |
| unsigned int frac; |
| |
| frac = do_div(x, tb_ticks_per_sec); |
| p->tv_sec = x; |
| x = (u64) frac * 1000000; |
| do_div(x, tb_ticks_per_sec); |
| p->tv_usec = x; |
| } |
| |
| static inline cputime_t timeval_to_cputime(const struct timeval *p) |
| { |
| u64 ct; |
| |
| ct = (u64) p->tv_usec * tb_ticks_per_sec; |
| do_div(ct, 1000000); |
| return (__force cputime_t)(ct + (u64) p->tv_sec * tb_ticks_per_sec); |
| } |
| |
| /* |
| * Convert cputime <-> clock_t (units of 1/USER_HZ seconds) |
| */ |
| extern u64 __cputime_clockt_factor; |
| |
| static inline unsigned long cputime_to_clock_t(const cputime_t ct) |
| { |
| return mulhdu((__force u64) ct, __cputime_clockt_factor); |
| } |
| |
| static inline cputime_t clock_t_to_cputime(const unsigned long clk) |
| { |
| u64 ct; |
| unsigned long sec; |
| |
| /* have to be a little careful about overflow */ |
| ct = clk % USER_HZ; |
| sec = clk / USER_HZ; |
| if (ct) { |
| ct *= tb_ticks_per_sec; |
| do_div(ct, USER_HZ); |
| } |
| if (sec) |
| ct += (u64) sec * tb_ticks_per_sec; |
| return (__force cputime_t) ct; |
| } |
| |
| #define cputime64_to_clock_t(ct) cputime_to_clock_t((cputime_t)(ct)) |
| |
| /* |
| * PPC64 uses PACA which is task independent for storing accounting data while |
| * PPC32 uses struct thread_info, therefore at task switch the accounting data |
| * has to be populated in the new task |
| */ |
| #ifdef CONFIG_PPC64 |
| static inline void arch_vtime_task_switch(struct task_struct *tsk) { } |
| #else |
| void arch_vtime_task_switch(struct task_struct *tsk); |
| #endif |
| |
| #endif /* __KERNEL__ */ |
| #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */ |
| #endif /* __POWERPC_CPUTIME_H */ |