| /* |
| * Freescale i.MX23/i.MX28 Data Co-Processor driver |
| * |
| * Copyright (C) 2013 Marek Vasut <marex@denx.de> |
| * |
| * The code contained herein is licensed under the GNU General Public |
| * License. You may obtain a copy of the GNU General Public License |
| * Version 2 or later at the following locations: |
| * |
| * http://www.opensource.org/licenses/gpl-license.html |
| * http://www.gnu.org/copyleft/gpl.html |
| */ |
| |
| #include <linux/dma-mapping.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kernel.h> |
| #include <linux/kthread.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/platform_device.h> |
| #include <linux/stmp_device.h> |
| |
| #include <crypto/aes.h> |
| #include <crypto/sha.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| |
| #define DCP_MAX_CHANS 4 |
| #define DCP_BUF_SZ PAGE_SIZE |
| #define DCP_SHA_PAY_SZ 64 |
| |
| #define DCP_ALIGNMENT 64 |
| |
| /* |
| * Null hashes to align with hw behavior on imx6sl and ull |
| * these are flipped for consistency with hw output |
| */ |
| static const uint8_t sha1_null_hash[] = |
| "\x09\x07\xd8\xaf\x90\x18\x60\x95\xef\xbf" |
| "\x55\x32\x0d\x4b\x6b\x5e\xee\xa3\x39\xda"; |
| |
| static const uint8_t sha256_null_hash[] = |
| "\x55\xb8\x52\x78\x1b\x99\x95\xa4" |
| "\x4c\x93\x9b\x64\xe4\x41\xae\x27" |
| "\x24\xb9\x6f\x99\xc8\xf4\xfb\x9a" |
| "\x14\x1c\xfc\x98\x42\xc4\xb0\xe3"; |
| |
| /* DCP DMA descriptor. */ |
| struct dcp_dma_desc { |
| uint32_t next_cmd_addr; |
| uint32_t control0; |
| uint32_t control1; |
| uint32_t source; |
| uint32_t destination; |
| uint32_t size; |
| uint32_t payload; |
| uint32_t status; |
| }; |
| |
| /* Coherent aligned block for bounce buffering. */ |
| struct dcp_coherent_block { |
| uint8_t aes_in_buf[DCP_BUF_SZ]; |
| uint8_t aes_out_buf[DCP_BUF_SZ]; |
| uint8_t sha_in_buf[DCP_BUF_SZ]; |
| uint8_t sha_out_buf[DCP_SHA_PAY_SZ]; |
| |
| uint8_t aes_key[2 * AES_KEYSIZE_128]; |
| |
| struct dcp_dma_desc desc[DCP_MAX_CHANS]; |
| }; |
| |
| struct dcp { |
| struct device *dev; |
| void __iomem *base; |
| |
| uint32_t caps; |
| |
| struct dcp_coherent_block *coh; |
| |
| struct completion completion[DCP_MAX_CHANS]; |
| spinlock_t lock[DCP_MAX_CHANS]; |
| struct task_struct *thread[DCP_MAX_CHANS]; |
| struct crypto_queue queue[DCP_MAX_CHANS]; |
| }; |
| |
| enum dcp_chan { |
| DCP_CHAN_HASH_SHA = 0, |
| DCP_CHAN_CRYPTO = 2, |
| }; |
| |
| struct dcp_async_ctx { |
| /* Common context */ |
| enum dcp_chan chan; |
| uint32_t fill; |
| |
| /* SHA Hash-specific context */ |
| struct mutex mutex; |
| uint32_t alg; |
| unsigned int hot:1; |
| |
| /* Crypto-specific context */ |
| struct crypto_skcipher *fallback; |
| unsigned int key_len; |
| uint8_t key[AES_KEYSIZE_128]; |
| }; |
| |
| struct dcp_aes_req_ctx { |
| unsigned int enc:1; |
| unsigned int ecb:1; |
| }; |
| |
| struct dcp_sha_req_ctx { |
| unsigned int init:1; |
| unsigned int fini:1; |
| }; |
| |
| /* |
| * There can even be only one instance of the MXS DCP due to the |
| * design of Linux Crypto API. |
| */ |
| static struct dcp *global_sdcp; |
| |
| /* DCP register layout. */ |
| #define MXS_DCP_CTRL 0x00 |
| #define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23) |
| #define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22) |
| |
| #define MXS_DCP_STAT 0x10 |
| #define MXS_DCP_STAT_CLR 0x18 |
| #define MXS_DCP_STAT_IRQ_MASK 0xf |
| |
| #define MXS_DCP_CHANNELCTRL 0x20 |
| #define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff |
| |
| #define MXS_DCP_CAPABILITY1 0x40 |
| #define MXS_DCP_CAPABILITY1_SHA256 (4 << 16) |
| #define MXS_DCP_CAPABILITY1_SHA1 (1 << 16) |
| #define MXS_DCP_CAPABILITY1_AES128 (1 << 0) |
| |
| #define MXS_DCP_CONTEXT 0x50 |
| |
| #define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40)) |
| |
| #define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40)) |
| |
| #define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40)) |
| #define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40)) |
| |
| /* DMA descriptor bits. */ |
| #define MXS_DCP_CONTROL0_HASH_TERM (1 << 13) |
| #define MXS_DCP_CONTROL0_HASH_INIT (1 << 12) |
| #define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11) |
| #define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8) |
| #define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9) |
| #define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6) |
| #define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5) |
| #define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1) |
| #define MXS_DCP_CONTROL0_INTERRUPT (1 << 0) |
| |
| #define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16) |
| #define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16) |
| #define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4) |
| #define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4) |
| #define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0) |
| |
| static int mxs_dcp_start_dma(struct dcp_async_ctx *actx) |
| { |
| struct dcp *sdcp = global_sdcp; |
| const int chan = actx->chan; |
| uint32_t stat; |
| unsigned long ret; |
| struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; |
| |
| dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc), |
| DMA_TO_DEVICE); |
| |
| reinit_completion(&sdcp->completion[chan]); |
| |
| /* Clear status register. */ |
| writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan)); |
| |
| /* Load the DMA descriptor. */ |
| writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan)); |
| |
| /* Increment the semaphore to start the DMA transfer. */ |
| writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan)); |
| |
| ret = wait_for_completion_timeout(&sdcp->completion[chan], |
| msecs_to_jiffies(1000)); |
| if (!ret) { |
| dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n", |
| chan, readl(sdcp->base + MXS_DCP_STAT)); |
| return -ETIMEDOUT; |
| } |
| |
| stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan)); |
| if (stat & 0xff) { |
| dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n", |
| chan, stat); |
| return -EINVAL; |
| } |
| |
| dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE); |
| |
| return 0; |
| } |
| |
| /* |
| * Encryption (AES128) |
| */ |
| static int mxs_dcp_run_aes(struct dcp_async_ctx *actx, |
| struct ablkcipher_request *req, int init) |
| { |
| struct dcp *sdcp = global_sdcp; |
| struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; |
| struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); |
| int ret; |
| |
| dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key, |
| 2 * AES_KEYSIZE_128, |
| DMA_TO_DEVICE); |
| dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf, |
| DCP_BUF_SZ, DMA_TO_DEVICE); |
| dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf, |
| DCP_BUF_SZ, DMA_FROM_DEVICE); |
| |
| if (actx->fill % AES_BLOCK_SIZE) { |
| dev_err(sdcp->dev, "Invalid block size!\n"); |
| ret = -EINVAL; |
| goto aes_done_run; |
| } |
| |
| /* Fill in the DMA descriptor. */ |
| desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | |
| MXS_DCP_CONTROL0_INTERRUPT | |
| MXS_DCP_CONTROL0_ENABLE_CIPHER; |
| |
| /* Payload contains the key. */ |
| desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY; |
| |
| if (rctx->enc) |
| desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT; |
| if (init) |
| desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT; |
| |
| desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128; |
| |
| if (rctx->ecb) |
| desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB; |
| else |
| desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC; |
| |
| desc->next_cmd_addr = 0; |
| desc->source = src_phys; |
| desc->destination = dst_phys; |
| desc->size = actx->fill; |
| desc->payload = key_phys; |
| desc->status = 0; |
| |
| ret = mxs_dcp_start_dma(actx); |
| |
| aes_done_run: |
| dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128, |
| DMA_TO_DEVICE); |
| dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE); |
| dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE); |
| |
| return ret; |
| } |
| |
| static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq) |
| { |
| struct dcp *sdcp = global_sdcp; |
| |
| struct ablkcipher_request *req = ablkcipher_request_cast(arq); |
| struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); |
| struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); |
| |
| struct scatterlist *dst = req->dst; |
| struct scatterlist *src = req->src; |
| const int nents = sg_nents(req->src); |
| |
| const int out_off = DCP_BUF_SZ; |
| uint8_t *in_buf = sdcp->coh->aes_in_buf; |
| uint8_t *out_buf = sdcp->coh->aes_out_buf; |
| |
| uint8_t *out_tmp, *src_buf, *dst_buf = NULL; |
| uint32_t dst_off = 0; |
| uint32_t last_out_len = 0; |
| |
| uint8_t *key = sdcp->coh->aes_key; |
| |
| int ret = 0; |
| int split = 0; |
| unsigned int i, len, clen, rem = 0, tlen = 0; |
| int init = 0; |
| bool limit_hit = false; |
| |
| actx->fill = 0; |
| |
| /* Copy the key from the temporary location. */ |
| memcpy(key, actx->key, actx->key_len); |
| |
| if (!rctx->ecb) { |
| /* Copy the CBC IV just past the key. */ |
| memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128); |
| /* CBC needs the INIT set. */ |
| init = 1; |
| } else { |
| memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128); |
| } |
| |
| for_each_sg(req->src, src, nents, i) { |
| src_buf = sg_virt(src); |
| len = sg_dma_len(src); |
| tlen += len; |
| limit_hit = tlen > req->nbytes; |
| |
| if (limit_hit) |
| len = req->nbytes - (tlen - len); |
| |
| do { |
| if (actx->fill + len > out_off) |
| clen = out_off - actx->fill; |
| else |
| clen = len; |
| |
| memcpy(in_buf + actx->fill, src_buf, clen); |
| len -= clen; |
| src_buf += clen; |
| actx->fill += clen; |
| |
| /* |
| * If we filled the buffer or this is the last SG, |
| * submit the buffer. |
| */ |
| if (actx->fill == out_off || sg_is_last(src) || |
| limit_hit) { |
| ret = mxs_dcp_run_aes(actx, req, init); |
| if (ret) |
| return ret; |
| init = 0; |
| |
| out_tmp = out_buf; |
| last_out_len = actx->fill; |
| while (dst && actx->fill) { |
| if (!split) { |
| dst_buf = sg_virt(dst); |
| dst_off = 0; |
| } |
| rem = min(sg_dma_len(dst) - dst_off, |
| actx->fill); |
| |
| memcpy(dst_buf + dst_off, out_tmp, rem); |
| out_tmp += rem; |
| dst_off += rem; |
| actx->fill -= rem; |
| |
| if (dst_off == sg_dma_len(dst)) { |
| dst = sg_next(dst); |
| split = 0; |
| } else { |
| split = 1; |
| } |
| } |
| } |
| } while (len); |
| |
| if (limit_hit) |
| break; |
| } |
| |
| /* Copy the IV for CBC for chaining */ |
| if (!rctx->ecb) { |
| if (rctx->enc) |
| memcpy(req->info, out_buf+(last_out_len-AES_BLOCK_SIZE), |
| AES_BLOCK_SIZE); |
| else |
| memcpy(req->info, in_buf+(last_out_len-AES_BLOCK_SIZE), |
| AES_BLOCK_SIZE); |
| } |
| |
| return ret; |
| } |
| |
| static int dcp_chan_thread_aes(void *data) |
| { |
| struct dcp *sdcp = global_sdcp; |
| const int chan = DCP_CHAN_CRYPTO; |
| |
| struct crypto_async_request *backlog; |
| struct crypto_async_request *arq; |
| |
| int ret; |
| |
| while (!kthread_should_stop()) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| spin_lock(&sdcp->lock[chan]); |
| backlog = crypto_get_backlog(&sdcp->queue[chan]); |
| arq = crypto_dequeue_request(&sdcp->queue[chan]); |
| spin_unlock(&sdcp->lock[chan]); |
| |
| if (!backlog && !arq) { |
| schedule(); |
| continue; |
| } |
| |
| set_current_state(TASK_RUNNING); |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| if (arq) { |
| ret = mxs_dcp_aes_block_crypt(arq); |
| arq->complete(arq, ret); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc) |
| { |
| struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); |
| struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(tfm); |
| SKCIPHER_REQUEST_ON_STACK(subreq, ctx->fallback); |
| int ret; |
| |
| skcipher_request_set_tfm(subreq, ctx->fallback); |
| skcipher_request_set_callback(subreq, req->base.flags, NULL, NULL); |
| skcipher_request_set_crypt(subreq, req->src, req->dst, |
| req->nbytes, req->info); |
| |
| if (enc) |
| ret = crypto_skcipher_encrypt(subreq); |
| else |
| ret = crypto_skcipher_decrypt(subreq); |
| |
| skcipher_request_zero(subreq); |
| |
| return ret; |
| } |
| |
| static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb) |
| { |
| struct dcp *sdcp = global_sdcp; |
| struct crypto_async_request *arq = &req->base; |
| struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm); |
| struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req); |
| int ret; |
| |
| if (unlikely(actx->key_len != AES_KEYSIZE_128)) |
| return mxs_dcp_block_fallback(req, enc); |
| |
| rctx->enc = enc; |
| rctx->ecb = ecb; |
| actx->chan = DCP_CHAN_CRYPTO; |
| |
| spin_lock(&sdcp->lock[actx->chan]); |
| ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); |
| spin_unlock(&sdcp->lock[actx->chan]); |
| |
| wake_up_process(sdcp->thread[actx->chan]); |
| |
| return -EINPROGRESS; |
| } |
| |
| static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req) |
| { |
| return mxs_dcp_aes_enqueue(req, 0, 1); |
| } |
| |
| static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req) |
| { |
| return mxs_dcp_aes_enqueue(req, 1, 1); |
| } |
| |
| static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req) |
| { |
| return mxs_dcp_aes_enqueue(req, 0, 0); |
| } |
| |
| static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req) |
| { |
| return mxs_dcp_aes_enqueue(req, 1, 0); |
| } |
| |
| static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key, |
| unsigned int len) |
| { |
| struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm); |
| unsigned int ret; |
| |
| /* |
| * AES 128 is supposed by the hardware, store key into temporary |
| * buffer and exit. We must use the temporary buffer here, since |
| * there can still be an operation in progress. |
| */ |
| actx->key_len = len; |
| if (len == AES_KEYSIZE_128) { |
| memcpy(actx->key, key, len); |
| return 0; |
| } |
| |
| /* |
| * If the requested AES key size is not supported by the hardware, |
| * but is supported by in-kernel software implementation, we use |
| * software fallback. |
| */ |
| crypto_skcipher_clear_flags(actx->fallback, CRYPTO_TFM_REQ_MASK); |
| crypto_skcipher_set_flags(actx->fallback, |
| tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK); |
| |
| ret = crypto_skcipher_setkey(actx->fallback, key, len); |
| if (!ret) |
| return 0; |
| |
| tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK; |
| tfm->base.crt_flags |= crypto_skcipher_get_flags(actx->fallback) & |
| CRYPTO_TFM_RES_MASK; |
| |
| return ret; |
| } |
| |
| static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm) |
| { |
| const char *name = crypto_tfm_alg_name(tfm); |
| const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK; |
| struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); |
| struct crypto_skcipher *blk; |
| |
| blk = crypto_alloc_skcipher(name, 0, flags); |
| if (IS_ERR(blk)) |
| return PTR_ERR(blk); |
| |
| actx->fallback = blk; |
| tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx); |
| return 0; |
| } |
| |
| static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm) |
| { |
| struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm); |
| |
| crypto_free_skcipher(actx->fallback); |
| } |
| |
| /* |
| * Hashing (SHA1/SHA256) |
| */ |
| static int mxs_dcp_run_sha(struct ahash_request *req) |
| { |
| struct dcp *sdcp = global_sdcp; |
| int ret; |
| |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); |
| struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan]; |
| |
| dma_addr_t digest_phys = 0; |
| dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf, |
| DCP_BUF_SZ, DMA_TO_DEVICE); |
| |
| /* Fill in the DMA descriptor. */ |
| desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE | |
| MXS_DCP_CONTROL0_INTERRUPT | |
| MXS_DCP_CONTROL0_ENABLE_HASH; |
| if (rctx->init) |
| desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT; |
| |
| desc->control1 = actx->alg; |
| desc->next_cmd_addr = 0; |
| desc->source = buf_phys; |
| desc->destination = 0; |
| desc->size = actx->fill; |
| desc->payload = 0; |
| desc->status = 0; |
| |
| /* |
| * Align driver with hw behavior when generating null hashes |
| */ |
| if (rctx->init && rctx->fini && desc->size == 0) { |
| struct hash_alg_common *halg = crypto_hash_alg_common(tfm); |
| const uint8_t *sha_buf = |
| (actx->alg == MXS_DCP_CONTROL1_HASH_SELECT_SHA1) ? |
| sha1_null_hash : sha256_null_hash; |
| memcpy(sdcp->coh->sha_out_buf, sha_buf, halg->digestsize); |
| ret = 0; |
| goto done_run; |
| } |
| |
| /* Set HASH_TERM bit for last transfer block. */ |
| if (rctx->fini) { |
| digest_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_out_buf, |
| DCP_SHA_PAY_SZ, DMA_FROM_DEVICE); |
| desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM; |
| desc->payload = digest_phys; |
| } |
| |
| ret = mxs_dcp_start_dma(actx); |
| |
| if (rctx->fini) |
| dma_unmap_single(sdcp->dev, digest_phys, DCP_SHA_PAY_SZ, |
| DMA_FROM_DEVICE); |
| |
| done_run: |
| dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE); |
| |
| return ret; |
| } |
| |
| static int dcp_sha_req_to_buf(struct crypto_async_request *arq) |
| { |
| struct dcp *sdcp = global_sdcp; |
| |
| struct ahash_request *req = ahash_request_cast(arq); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); |
| struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct hash_alg_common *halg = crypto_hash_alg_common(tfm); |
| |
| uint8_t *in_buf = sdcp->coh->sha_in_buf; |
| uint8_t *out_buf = sdcp->coh->sha_out_buf; |
| |
| struct scatterlist *src; |
| |
| unsigned int i, len, clen, oft = 0; |
| int ret; |
| |
| int fin = rctx->fini; |
| if (fin) |
| rctx->fini = 0; |
| |
| src = req->src; |
| len = req->nbytes; |
| |
| while (len) { |
| if (actx->fill + len > DCP_BUF_SZ) |
| clen = DCP_BUF_SZ - actx->fill; |
| else |
| clen = len; |
| |
| scatterwalk_map_and_copy(in_buf + actx->fill, src, oft, clen, |
| 0); |
| |
| len -= clen; |
| oft += clen; |
| actx->fill += clen; |
| |
| /* |
| * If we filled the buffer and still have some |
| * more data, submit the buffer. |
| */ |
| if (len && actx->fill == DCP_BUF_SZ) { |
| ret = mxs_dcp_run_sha(req); |
| if (ret) |
| return ret; |
| actx->fill = 0; |
| rctx->init = 0; |
| } |
| } |
| |
| if (fin) { |
| rctx->fini = 1; |
| |
| /* Submit whatever is left. */ |
| if (!req->result) |
| return -EINVAL; |
| |
| ret = mxs_dcp_run_sha(req); |
| if (ret) |
| return ret; |
| |
| actx->fill = 0; |
| |
| /* For some reason the result is flipped */ |
| for (i = 0; i < halg->digestsize; i++) |
| req->result[i] = out_buf[halg->digestsize - i - 1]; |
| } |
| |
| return 0; |
| } |
| |
| static int dcp_chan_thread_sha(void *data) |
| { |
| struct dcp *sdcp = global_sdcp; |
| const int chan = DCP_CHAN_HASH_SHA; |
| |
| struct crypto_async_request *backlog; |
| struct crypto_async_request *arq; |
| |
| struct dcp_sha_req_ctx *rctx; |
| |
| struct ahash_request *req; |
| int ret, fini; |
| |
| while (!kthread_should_stop()) { |
| set_current_state(TASK_INTERRUPTIBLE); |
| |
| spin_lock(&sdcp->lock[chan]); |
| backlog = crypto_get_backlog(&sdcp->queue[chan]); |
| arq = crypto_dequeue_request(&sdcp->queue[chan]); |
| spin_unlock(&sdcp->lock[chan]); |
| |
| if (!backlog && !arq) { |
| schedule(); |
| continue; |
| } |
| |
| set_current_state(TASK_RUNNING); |
| |
| if (backlog) |
| backlog->complete(backlog, -EINPROGRESS); |
| |
| if (arq) { |
| req = ahash_request_cast(arq); |
| rctx = ahash_request_ctx(req); |
| |
| ret = dcp_sha_req_to_buf(arq); |
| fini = rctx->fini; |
| arq->complete(arq, ret); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int dcp_sha_init(struct ahash_request *req) |
| { |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); |
| |
| struct hash_alg_common *halg = crypto_hash_alg_common(tfm); |
| |
| /* |
| * Start hashing session. The code below only inits the |
| * hashing session context, nothing more. |
| */ |
| memset(actx, 0, sizeof(*actx)); |
| |
| if (strcmp(halg->base.cra_name, "sha1") == 0) |
| actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1; |
| else |
| actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256; |
| |
| actx->fill = 0; |
| actx->hot = 0; |
| actx->chan = DCP_CHAN_HASH_SHA; |
| |
| mutex_init(&actx->mutex); |
| |
| return 0; |
| } |
| |
| static int dcp_sha_update_fx(struct ahash_request *req, int fini) |
| { |
| struct dcp *sdcp = global_sdcp; |
| |
| struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req); |
| struct crypto_ahash *tfm = crypto_ahash_reqtfm(req); |
| struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm); |
| |
| int ret; |
| |
| /* |
| * Ignore requests that have no data in them and are not |
| * the trailing requests in the stream of requests. |
| */ |
| if (!req->nbytes && !fini) |
| return 0; |
| |
| mutex_lock(&actx->mutex); |
| |
| rctx->fini = fini; |
| |
| if (!actx->hot) { |
| actx->hot = 1; |
| rctx->init = 1; |
| } |
| |
| spin_lock(&sdcp->lock[actx->chan]); |
| ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base); |
| spin_unlock(&sdcp->lock[actx->chan]); |
| |
| wake_up_process(sdcp->thread[actx->chan]); |
| mutex_unlock(&actx->mutex); |
| |
| return -EINPROGRESS; |
| } |
| |
| static int dcp_sha_update(struct ahash_request *req) |
| { |
| return dcp_sha_update_fx(req, 0); |
| } |
| |
| static int dcp_sha_final(struct ahash_request *req) |
| { |
| ahash_request_set_crypt(req, NULL, req->result, 0); |
| req->nbytes = 0; |
| return dcp_sha_update_fx(req, 1); |
| } |
| |
| static int dcp_sha_finup(struct ahash_request *req) |
| { |
| return dcp_sha_update_fx(req, 1); |
| } |
| |
| static int dcp_sha_digest(struct ahash_request *req) |
| { |
| int ret; |
| |
| ret = dcp_sha_init(req); |
| if (ret) |
| return ret; |
| |
| return dcp_sha_finup(req); |
| } |
| |
| static int dcp_sha_cra_init(struct crypto_tfm *tfm) |
| { |
| crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm), |
| sizeof(struct dcp_sha_req_ctx)); |
| return 0; |
| } |
| |
| static void dcp_sha_cra_exit(struct crypto_tfm *tfm) |
| { |
| } |
| |
| /* AES 128 ECB and AES 128 CBC */ |
| static struct crypto_alg dcp_aes_algs[] = { |
| { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-dcp", |
| .cra_priority = 400, |
| .cra_alignmask = 15, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_init = mxs_dcp_aes_fallback_init, |
| .cra_exit = mxs_dcp_aes_fallback_exit, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct dcp_async_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u = { |
| .ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = mxs_dcp_aes_setkey, |
| .encrypt = mxs_dcp_aes_ecb_encrypt, |
| .decrypt = mxs_dcp_aes_ecb_decrypt |
| }, |
| }, |
| }, { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-dcp", |
| .cra_priority = 400, |
| .cra_alignmask = 15, |
| .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | |
| CRYPTO_ALG_ASYNC | |
| CRYPTO_ALG_NEED_FALLBACK, |
| .cra_init = mxs_dcp_aes_fallback_init, |
| .cra_exit = mxs_dcp_aes_fallback_exit, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct dcp_async_ctx), |
| .cra_type = &crypto_ablkcipher_type, |
| .cra_module = THIS_MODULE, |
| .cra_u = { |
| .ablkcipher = { |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = mxs_dcp_aes_setkey, |
| .encrypt = mxs_dcp_aes_cbc_encrypt, |
| .decrypt = mxs_dcp_aes_cbc_decrypt, |
| .ivsize = AES_BLOCK_SIZE, |
| }, |
| }, |
| }, |
| }; |
| |
| /* SHA1 */ |
| static struct ahash_alg dcp_sha1_alg = { |
| .init = dcp_sha_init, |
| .update = dcp_sha_update, |
| .final = dcp_sha_final, |
| .finup = dcp_sha_finup, |
| .digest = dcp_sha_digest, |
| .halg = { |
| .digestsize = SHA1_DIGEST_SIZE, |
| .base = { |
| .cra_name = "sha1", |
| .cra_driver_name = "sha1-dcp", |
| .cra_priority = 400, |
| .cra_alignmask = 63, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct dcp_async_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = dcp_sha_cra_init, |
| .cra_exit = dcp_sha_cra_exit, |
| }, |
| }, |
| }; |
| |
| /* SHA256 */ |
| static struct ahash_alg dcp_sha256_alg = { |
| .init = dcp_sha_init, |
| .update = dcp_sha_update, |
| .final = dcp_sha_final, |
| .finup = dcp_sha_finup, |
| .digest = dcp_sha_digest, |
| .halg = { |
| .digestsize = SHA256_DIGEST_SIZE, |
| .base = { |
| .cra_name = "sha256", |
| .cra_driver_name = "sha256-dcp", |
| .cra_priority = 400, |
| .cra_alignmask = 63, |
| .cra_flags = CRYPTO_ALG_ASYNC, |
| .cra_blocksize = SHA256_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct dcp_async_ctx), |
| .cra_module = THIS_MODULE, |
| .cra_init = dcp_sha_cra_init, |
| .cra_exit = dcp_sha_cra_exit, |
| }, |
| }, |
| }; |
| |
| static irqreturn_t mxs_dcp_irq(int irq, void *context) |
| { |
| struct dcp *sdcp = context; |
| uint32_t stat; |
| int i; |
| |
| stat = readl(sdcp->base + MXS_DCP_STAT); |
| stat &= MXS_DCP_STAT_IRQ_MASK; |
| if (!stat) |
| return IRQ_NONE; |
| |
| /* Clear the interrupts. */ |
| writel(stat, sdcp->base + MXS_DCP_STAT_CLR); |
| |
| /* Complete the DMA requests that finished. */ |
| for (i = 0; i < DCP_MAX_CHANS; i++) |
| if (stat & (1 << i)) |
| complete(&sdcp->completion[i]); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int mxs_dcp_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| struct dcp *sdcp = NULL; |
| int i, ret; |
| |
| struct resource *iores; |
| int dcp_vmi_irq, dcp_irq; |
| |
| if (global_sdcp) { |
| dev_err(dev, "Only one DCP instance allowed!\n"); |
| return -ENODEV; |
| } |
| |
| iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| dcp_vmi_irq = platform_get_irq(pdev, 0); |
| if (dcp_vmi_irq < 0) { |
| dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_vmi_irq); |
| return dcp_vmi_irq; |
| } |
| |
| dcp_irq = platform_get_irq(pdev, 1); |
| if (dcp_irq < 0) { |
| dev_err(dev, "Failed to get IRQ: (%d)!\n", dcp_irq); |
| return dcp_irq; |
| } |
| |
| sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL); |
| if (!sdcp) |
| return -ENOMEM; |
| |
| sdcp->dev = dev; |
| sdcp->base = devm_ioremap_resource(dev, iores); |
| if (IS_ERR(sdcp->base)) |
| return PTR_ERR(sdcp->base); |
| |
| |
| ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0, |
| "dcp-vmi-irq", sdcp); |
| if (ret) { |
| dev_err(dev, "Failed to claim DCP VMI IRQ!\n"); |
| return ret; |
| } |
| |
| ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0, |
| "dcp-irq", sdcp); |
| if (ret) { |
| dev_err(dev, "Failed to claim DCP IRQ!\n"); |
| return ret; |
| } |
| |
| /* Allocate coherent helper block. */ |
| sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT, |
| GFP_KERNEL); |
| if (!sdcp->coh) |
| return -ENOMEM; |
| |
| /* Re-align the structure so it fits the DCP constraints. */ |
| sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT); |
| |
| /* Restart the DCP block. */ |
| ret = stmp_reset_block(sdcp->base); |
| if (ret) |
| return ret; |
| |
| /* Initialize control register. */ |
| writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES | |
| MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf, |
| sdcp->base + MXS_DCP_CTRL); |
| |
| /* Enable all DCP DMA channels. */ |
| writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK, |
| sdcp->base + MXS_DCP_CHANNELCTRL); |
| |
| /* |
| * We do not enable context switching. Give the context buffer a |
| * pointer to an illegal address so if context switching is |
| * inadvertantly enabled, the DCP will return an error instead of |
| * trashing good memory. The DCP DMA cannot access ROM, so any ROM |
| * address will do. |
| */ |
| writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT); |
| for (i = 0; i < DCP_MAX_CHANS; i++) |
| writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i)); |
| writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR); |
| |
| global_sdcp = sdcp; |
| |
| platform_set_drvdata(pdev, sdcp); |
| |
| for (i = 0; i < DCP_MAX_CHANS; i++) { |
| spin_lock_init(&sdcp->lock[i]); |
| init_completion(&sdcp->completion[i]); |
| crypto_init_queue(&sdcp->queue[i], 50); |
| } |
| |
| /* Create the SHA and AES handler threads. */ |
| sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha, |
| NULL, "mxs_dcp_chan/sha"); |
| if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) { |
| dev_err(dev, "Error starting SHA thread!\n"); |
| return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]); |
| } |
| |
| sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes, |
| NULL, "mxs_dcp_chan/aes"); |
| if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) { |
| dev_err(dev, "Error starting SHA thread!\n"); |
| ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]); |
| goto err_destroy_sha_thread; |
| } |
| |
| /* Register the various crypto algorithms. */ |
| sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1); |
| |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) { |
| ret = crypto_register_algs(dcp_aes_algs, |
| ARRAY_SIZE(dcp_aes_algs)); |
| if (ret) { |
| /* Failed to register algorithm. */ |
| dev_err(dev, "Failed to register AES crypto!\n"); |
| goto err_destroy_aes_thread; |
| } |
| } |
| |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) { |
| ret = crypto_register_ahash(&dcp_sha1_alg); |
| if (ret) { |
| dev_err(dev, "Failed to register %s hash!\n", |
| dcp_sha1_alg.halg.base.cra_name); |
| goto err_unregister_aes; |
| } |
| } |
| |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) { |
| ret = crypto_register_ahash(&dcp_sha256_alg); |
| if (ret) { |
| dev_err(dev, "Failed to register %s hash!\n", |
| dcp_sha256_alg.halg.base.cra_name); |
| goto err_unregister_sha1; |
| } |
| } |
| |
| return 0; |
| |
| err_unregister_sha1: |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) |
| crypto_unregister_ahash(&dcp_sha1_alg); |
| |
| err_unregister_aes: |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) |
| crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); |
| |
| err_destroy_aes_thread: |
| kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); |
| |
| err_destroy_sha_thread: |
| kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); |
| return ret; |
| } |
| |
| static int mxs_dcp_remove(struct platform_device *pdev) |
| { |
| struct dcp *sdcp = platform_get_drvdata(pdev); |
| |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) |
| crypto_unregister_ahash(&dcp_sha256_alg); |
| |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) |
| crypto_unregister_ahash(&dcp_sha1_alg); |
| |
| if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) |
| crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs)); |
| |
| kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]); |
| kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]); |
| |
| platform_set_drvdata(pdev, NULL); |
| |
| global_sdcp = NULL; |
| |
| return 0; |
| } |
| |
| static const struct of_device_id mxs_dcp_dt_ids[] = { |
| { .compatible = "fsl,imx23-dcp", .data = NULL, }, |
| { .compatible = "fsl,imx28-dcp", .data = NULL, }, |
| { /* sentinel */ } |
| }; |
| |
| MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids); |
| |
| static struct platform_driver mxs_dcp_driver = { |
| .probe = mxs_dcp_probe, |
| .remove = mxs_dcp_remove, |
| .driver = { |
| .name = "mxs-dcp", |
| .of_match_table = mxs_dcp_dt_ids, |
| }, |
| }; |
| |
| module_platform_driver(mxs_dcp_driver); |
| |
| MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); |
| MODULE_DESCRIPTION("Freescale MXS DCP Driver"); |
| MODULE_LICENSE("GPL"); |
| MODULE_ALIAS("platform:mxs-dcp"); |