| /* |
| * kvm guest debug support |
| * |
| * Copyright IBM Corp. 2014 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License (version 2 only) |
| * as published by the Free Software Foundation. |
| * |
| * Author(s): David Hildenbrand <dahi@linux.vnet.ibm.com> |
| */ |
| #include <linux/kvm_host.h> |
| #include <linux/errno.h> |
| #include "kvm-s390.h" |
| #include "gaccess.h" |
| |
| /* |
| * Extends the address range given by *start and *stop to include the address |
| * range starting with estart and the length len. Takes care of overflowing |
| * intervals and tries to minimize the overall interval size. |
| */ |
| static void extend_address_range(u64 *start, u64 *stop, u64 estart, int len) |
| { |
| u64 estop; |
| |
| if (len > 0) |
| len--; |
| else |
| len = 0; |
| |
| estop = estart + len; |
| |
| /* 0-0 range represents "not set" */ |
| if ((*start == 0) && (*stop == 0)) { |
| *start = estart; |
| *stop = estop; |
| } else if (*start <= *stop) { |
| /* increase the existing range */ |
| if (estart < *start) |
| *start = estart; |
| if (estop > *stop) |
| *stop = estop; |
| } else { |
| /* "overflowing" interval, whereby *stop > *start */ |
| if (estart <= *stop) { |
| if (estop > *stop) |
| *stop = estop; |
| } else if (estop > *start) { |
| if (estart < *start) |
| *start = estart; |
| } |
| /* minimize the range */ |
| else if ((estop - *stop) < (*start - estart)) |
| *stop = estop; |
| else |
| *start = estart; |
| } |
| } |
| |
| #define MAX_INST_SIZE 6 |
| |
| static void enable_all_hw_bp(struct kvm_vcpu *vcpu) |
| { |
| unsigned long start, len; |
| u64 *cr9 = &vcpu->arch.sie_block->gcr[9]; |
| u64 *cr10 = &vcpu->arch.sie_block->gcr[10]; |
| u64 *cr11 = &vcpu->arch.sie_block->gcr[11]; |
| int i; |
| |
| if (vcpu->arch.guestdbg.nr_hw_bp <= 0 || |
| vcpu->arch.guestdbg.hw_bp_info == NULL) |
| return; |
| |
| /* |
| * If the guest is not interested in branching events, we can safely |
| * limit them to the PER address range. |
| */ |
| if (!(*cr9 & PER_EVENT_BRANCH)) |
| *cr9 |= PER_CONTROL_BRANCH_ADDRESS; |
| *cr9 |= PER_EVENT_IFETCH | PER_EVENT_BRANCH; |
| |
| for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) { |
| start = vcpu->arch.guestdbg.hw_bp_info[i].addr; |
| len = vcpu->arch.guestdbg.hw_bp_info[i].len; |
| |
| /* |
| * The instruction in front of the desired bp has to |
| * report instruction-fetching events |
| */ |
| if (start < MAX_INST_SIZE) { |
| len += start; |
| start = 0; |
| } else { |
| start -= MAX_INST_SIZE; |
| len += MAX_INST_SIZE; |
| } |
| |
| extend_address_range(cr10, cr11, start, len); |
| } |
| } |
| |
| static void enable_all_hw_wp(struct kvm_vcpu *vcpu) |
| { |
| unsigned long start, len; |
| u64 *cr9 = &vcpu->arch.sie_block->gcr[9]; |
| u64 *cr10 = &vcpu->arch.sie_block->gcr[10]; |
| u64 *cr11 = &vcpu->arch.sie_block->gcr[11]; |
| int i; |
| |
| if (vcpu->arch.guestdbg.nr_hw_wp <= 0 || |
| vcpu->arch.guestdbg.hw_wp_info == NULL) |
| return; |
| |
| /* if host uses storage alternation for special address |
| * spaces, enable all events and give all to the guest */ |
| if (*cr9 & PER_EVENT_STORE && *cr9 & PER_CONTROL_ALTERATION) { |
| *cr9 &= ~PER_CONTROL_ALTERATION; |
| *cr10 = 0; |
| *cr11 = -1UL; |
| } else { |
| *cr9 &= ~PER_CONTROL_ALTERATION; |
| *cr9 |= PER_EVENT_STORE; |
| |
| for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { |
| start = vcpu->arch.guestdbg.hw_wp_info[i].addr; |
| len = vcpu->arch.guestdbg.hw_wp_info[i].len; |
| |
| extend_address_range(cr10, cr11, start, len); |
| } |
| } |
| } |
| |
| void kvm_s390_backup_guest_per_regs(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.guestdbg.cr0 = vcpu->arch.sie_block->gcr[0]; |
| vcpu->arch.guestdbg.cr9 = vcpu->arch.sie_block->gcr[9]; |
| vcpu->arch.guestdbg.cr10 = vcpu->arch.sie_block->gcr[10]; |
| vcpu->arch.guestdbg.cr11 = vcpu->arch.sie_block->gcr[11]; |
| } |
| |
| void kvm_s390_restore_guest_per_regs(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.sie_block->gcr[0] = vcpu->arch.guestdbg.cr0; |
| vcpu->arch.sie_block->gcr[9] = vcpu->arch.guestdbg.cr9; |
| vcpu->arch.sie_block->gcr[10] = vcpu->arch.guestdbg.cr10; |
| vcpu->arch.sie_block->gcr[11] = vcpu->arch.guestdbg.cr11; |
| } |
| |
| void kvm_s390_patch_guest_per_regs(struct kvm_vcpu *vcpu) |
| { |
| /* |
| * TODO: if guest psw has per enabled, otherwise 0s! |
| * This reduces the amount of reported events. |
| * Need to intercept all psw changes! |
| */ |
| |
| if (guestdbg_sstep_enabled(vcpu)) { |
| /* disable timer (clock-comparator) interrupts */ |
| vcpu->arch.sie_block->gcr[0] &= ~0x800ul; |
| vcpu->arch.sie_block->gcr[9] |= PER_EVENT_IFETCH; |
| vcpu->arch.sie_block->gcr[10] = 0; |
| vcpu->arch.sie_block->gcr[11] = -1UL; |
| } |
| |
| if (guestdbg_hw_bp_enabled(vcpu)) { |
| enable_all_hw_bp(vcpu); |
| enable_all_hw_wp(vcpu); |
| } |
| |
| /* TODO: Instruction-fetching-nullification not allowed for now */ |
| if (vcpu->arch.sie_block->gcr[9] & PER_EVENT_NULLIFICATION) |
| vcpu->arch.sie_block->gcr[9] &= ~PER_EVENT_NULLIFICATION; |
| } |
| |
| #define MAX_WP_SIZE 100 |
| |
| static int __import_wp_info(struct kvm_vcpu *vcpu, |
| struct kvm_hw_breakpoint *bp_data, |
| struct kvm_hw_wp_info_arch *wp_info) |
| { |
| int ret = 0; |
| wp_info->len = bp_data->len; |
| wp_info->addr = bp_data->addr; |
| wp_info->phys_addr = bp_data->phys_addr; |
| wp_info->old_data = NULL; |
| |
| if (wp_info->len < 0 || wp_info->len > MAX_WP_SIZE) |
| return -EINVAL; |
| |
| wp_info->old_data = kmalloc(bp_data->len, GFP_KERNEL); |
| if (!wp_info->old_data) |
| return -ENOMEM; |
| /* try to backup the original value */ |
| ret = read_guest_abs(vcpu, wp_info->phys_addr, wp_info->old_data, |
| wp_info->len); |
| if (ret) { |
| kfree(wp_info->old_data); |
| wp_info->old_data = NULL; |
| } |
| |
| return ret; |
| } |
| |
| #define MAX_BP_COUNT 50 |
| |
| int kvm_s390_import_bp_data(struct kvm_vcpu *vcpu, |
| struct kvm_guest_debug *dbg) |
| { |
| int ret = 0, nr_wp = 0, nr_bp = 0, i; |
| struct kvm_hw_breakpoint *bp_data = NULL; |
| struct kvm_hw_wp_info_arch *wp_info = NULL; |
| struct kvm_hw_bp_info_arch *bp_info = NULL; |
| |
| if (dbg->arch.nr_hw_bp <= 0 || !dbg->arch.hw_bp) |
| return 0; |
| else if (dbg->arch.nr_hw_bp > MAX_BP_COUNT) |
| return -EINVAL; |
| |
| bp_data = memdup_user(dbg->arch.hw_bp, |
| sizeof(*bp_data) * dbg->arch.nr_hw_bp); |
| if (IS_ERR(bp_data)) |
| return PTR_ERR(bp_data); |
| |
| for (i = 0; i < dbg->arch.nr_hw_bp; i++) { |
| switch (bp_data[i].type) { |
| case KVM_HW_WP_WRITE: |
| nr_wp++; |
| break; |
| case KVM_HW_BP: |
| nr_bp++; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (nr_wp > 0) { |
| wp_info = kmalloc_array(nr_wp, |
| sizeof(*wp_info), |
| GFP_KERNEL); |
| if (!wp_info) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| } |
| if (nr_bp > 0) { |
| bp_info = kmalloc_array(nr_bp, |
| sizeof(*bp_info), |
| GFP_KERNEL); |
| if (!bp_info) { |
| ret = -ENOMEM; |
| goto error; |
| } |
| } |
| |
| for (nr_wp = 0, nr_bp = 0, i = 0; i < dbg->arch.nr_hw_bp; i++) { |
| switch (bp_data[i].type) { |
| case KVM_HW_WP_WRITE: |
| ret = __import_wp_info(vcpu, &bp_data[i], |
| &wp_info[nr_wp]); |
| if (ret) |
| goto error; |
| nr_wp++; |
| break; |
| case KVM_HW_BP: |
| bp_info[nr_bp].len = bp_data[i].len; |
| bp_info[nr_bp].addr = bp_data[i].addr; |
| nr_bp++; |
| break; |
| } |
| } |
| |
| vcpu->arch.guestdbg.nr_hw_bp = nr_bp; |
| vcpu->arch.guestdbg.hw_bp_info = bp_info; |
| vcpu->arch.guestdbg.nr_hw_wp = nr_wp; |
| vcpu->arch.guestdbg.hw_wp_info = wp_info; |
| return 0; |
| error: |
| kfree(bp_data); |
| kfree(wp_info); |
| kfree(bp_info); |
| return ret; |
| } |
| |
| void kvm_s390_clear_bp_data(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_hw_wp_info_arch *hw_wp_info = NULL; |
| |
| for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { |
| hw_wp_info = &vcpu->arch.guestdbg.hw_wp_info[i]; |
| kfree(hw_wp_info->old_data); |
| hw_wp_info->old_data = NULL; |
| } |
| kfree(vcpu->arch.guestdbg.hw_wp_info); |
| vcpu->arch.guestdbg.hw_wp_info = NULL; |
| |
| kfree(vcpu->arch.guestdbg.hw_bp_info); |
| vcpu->arch.guestdbg.hw_bp_info = NULL; |
| |
| vcpu->arch.guestdbg.nr_hw_wp = 0; |
| vcpu->arch.guestdbg.nr_hw_bp = 0; |
| } |
| |
| static inline int in_addr_range(u64 addr, u64 a, u64 b) |
| { |
| if (a <= b) |
| return (addr >= a) && (addr <= b); |
| else |
| /* "overflowing" interval */ |
| return (addr <= a) && (addr >= b); |
| } |
| |
| #define end_of_range(bp_info) (bp_info->addr + bp_info->len - 1) |
| |
| static struct kvm_hw_bp_info_arch *find_hw_bp(struct kvm_vcpu *vcpu, |
| unsigned long addr) |
| { |
| struct kvm_hw_bp_info_arch *bp_info = vcpu->arch.guestdbg.hw_bp_info; |
| int i; |
| |
| if (vcpu->arch.guestdbg.nr_hw_bp == 0) |
| return NULL; |
| |
| for (i = 0; i < vcpu->arch.guestdbg.nr_hw_bp; i++) { |
| /* addr is directly the start or in the range of a bp */ |
| if (addr == bp_info->addr) |
| goto found; |
| if (bp_info->len > 0 && |
| in_addr_range(addr, bp_info->addr, end_of_range(bp_info))) |
| goto found; |
| |
| bp_info++; |
| } |
| |
| return NULL; |
| found: |
| return bp_info; |
| } |
| |
| static struct kvm_hw_wp_info_arch *any_wp_changed(struct kvm_vcpu *vcpu) |
| { |
| int i; |
| struct kvm_hw_wp_info_arch *wp_info = NULL; |
| void *temp = NULL; |
| |
| if (vcpu->arch.guestdbg.nr_hw_wp == 0) |
| return NULL; |
| |
| for (i = 0; i < vcpu->arch.guestdbg.nr_hw_wp; i++) { |
| wp_info = &vcpu->arch.guestdbg.hw_wp_info[i]; |
| if (!wp_info || !wp_info->old_data || wp_info->len <= 0) |
| continue; |
| |
| temp = kmalloc(wp_info->len, GFP_KERNEL); |
| if (!temp) |
| continue; |
| |
| /* refetch the wp data and compare it to the old value */ |
| if (!read_guest_abs(vcpu, wp_info->phys_addr, temp, |
| wp_info->len)) { |
| if (memcmp(temp, wp_info->old_data, wp_info->len)) { |
| kfree(temp); |
| return wp_info; |
| } |
| } |
| kfree(temp); |
| temp = NULL; |
| } |
| |
| return NULL; |
| } |
| |
| void kvm_s390_prepare_debug_exit(struct kvm_vcpu *vcpu) |
| { |
| vcpu->run->exit_reason = KVM_EXIT_DEBUG; |
| vcpu->guest_debug &= ~KVM_GUESTDBG_EXIT_PENDING; |
| } |
| |
| #define PER_CODE_MASK (PER_EVENT_MASK >> 24) |
| #define PER_CODE_BRANCH (PER_EVENT_BRANCH >> 24) |
| #define PER_CODE_IFETCH (PER_EVENT_IFETCH >> 24) |
| #define PER_CODE_STORE (PER_EVENT_STORE >> 24) |
| #define PER_CODE_STORE_REAL (PER_EVENT_STORE_REAL >> 24) |
| |
| #define per_bp_event(code) \ |
| (code & (PER_CODE_IFETCH | PER_CODE_BRANCH)) |
| #define per_write_wp_event(code) \ |
| (code & (PER_CODE_STORE | PER_CODE_STORE_REAL)) |
| |
| static int debug_exit_required(struct kvm_vcpu *vcpu, u8 perc, |
| unsigned long peraddr) |
| { |
| struct kvm_debug_exit_arch *debug_exit = &vcpu->run->debug.arch; |
| struct kvm_hw_wp_info_arch *wp_info = NULL; |
| struct kvm_hw_bp_info_arch *bp_info = NULL; |
| unsigned long addr = vcpu->arch.sie_block->gpsw.addr; |
| |
| if (guestdbg_hw_bp_enabled(vcpu)) { |
| if (per_write_wp_event(perc) && |
| vcpu->arch.guestdbg.nr_hw_wp > 0) { |
| wp_info = any_wp_changed(vcpu); |
| if (wp_info) { |
| debug_exit->addr = wp_info->addr; |
| debug_exit->type = KVM_HW_WP_WRITE; |
| goto exit_required; |
| } |
| } |
| if (per_bp_event(perc) && |
| vcpu->arch.guestdbg.nr_hw_bp > 0) { |
| bp_info = find_hw_bp(vcpu, addr); |
| /* remove duplicate events if PC==PER address */ |
| if (bp_info && (addr != peraddr)) { |
| debug_exit->addr = addr; |
| debug_exit->type = KVM_HW_BP; |
| vcpu->arch.guestdbg.last_bp = addr; |
| goto exit_required; |
| } |
| /* breakpoint missed */ |
| bp_info = find_hw_bp(vcpu, peraddr); |
| if (bp_info && vcpu->arch.guestdbg.last_bp != peraddr) { |
| debug_exit->addr = peraddr; |
| debug_exit->type = KVM_HW_BP; |
| goto exit_required; |
| } |
| } |
| } |
| if (guestdbg_sstep_enabled(vcpu) && per_bp_event(perc)) { |
| debug_exit->addr = addr; |
| debug_exit->type = KVM_SINGLESTEP; |
| goto exit_required; |
| } |
| |
| return 0; |
| exit_required: |
| return 1; |
| } |
| |
| static int per_fetched_addr(struct kvm_vcpu *vcpu, unsigned long *addr) |
| { |
| u8 exec_ilen = 0; |
| u16 opcode[3]; |
| int rc; |
| |
| if (vcpu->arch.sie_block->icptcode == ICPT_PROGI) { |
| /* PER address references the fetched or the execute instr */ |
| *addr = vcpu->arch.sie_block->peraddr; |
| /* |
| * Manually detect if we have an EXECUTE instruction. As |
| * instructions are always 2 byte aligned we can read the |
| * first two bytes unconditionally |
| */ |
| rc = read_guest_instr(vcpu, *addr, &opcode, 2); |
| if (rc) |
| return rc; |
| if (opcode[0] >> 8 == 0x44) |
| exec_ilen = 4; |
| if ((opcode[0] & 0xff0f) == 0xc600) |
| exec_ilen = 6; |
| } else { |
| /* instr was suppressed, calculate the responsible instr */ |
| *addr = __rewind_psw(vcpu->arch.sie_block->gpsw, |
| kvm_s390_get_ilen(vcpu)); |
| if (vcpu->arch.sie_block->icptstatus & 0x01) { |
| exec_ilen = (vcpu->arch.sie_block->icptstatus & 0x60) >> 4; |
| if (!exec_ilen) |
| exec_ilen = 4; |
| } |
| } |
| |
| if (exec_ilen) { |
| /* read the complete EXECUTE instr to detect the fetched addr */ |
| rc = read_guest_instr(vcpu, *addr, &opcode, exec_ilen); |
| if (rc) |
| return rc; |
| if (exec_ilen == 6) { |
| /* EXECUTE RELATIVE LONG - RIL-b format */ |
| s32 rl = *((s32 *) (opcode + 1)); |
| |
| /* rl is a _signed_ 32 bit value specifying halfwords */ |
| *addr += (u64)(s64) rl * 2; |
| } else { |
| /* EXECUTE - RX-a format */ |
| u32 base = (opcode[1] & 0xf000) >> 12; |
| u32 disp = opcode[1] & 0x0fff; |
| u32 index = opcode[0] & 0x000f; |
| |
| *addr = base ? vcpu->run->s.regs.gprs[base] : 0; |
| *addr += index ? vcpu->run->s.regs.gprs[index] : 0; |
| *addr += disp; |
| } |
| *addr = kvm_s390_logical_to_effective(vcpu, *addr); |
| } |
| return 0; |
| } |
| |
| #define guest_per_enabled(vcpu) \ |
| (vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PER) |
| |
| int kvm_s390_handle_per_ifetch_icpt(struct kvm_vcpu *vcpu) |
| { |
| const u64 cr10 = vcpu->arch.sie_block->gcr[10]; |
| const u64 cr11 = vcpu->arch.sie_block->gcr[11]; |
| const u8 ilen = kvm_s390_get_ilen(vcpu); |
| struct kvm_s390_pgm_info pgm_info = { |
| .code = PGM_PER, |
| .per_code = PER_CODE_IFETCH, |
| .per_address = __rewind_psw(vcpu->arch.sie_block->gpsw, ilen), |
| }; |
| unsigned long fetched_addr; |
| int rc; |
| |
| /* |
| * The PSW points to the next instruction, therefore the intercepted |
| * instruction generated a PER i-fetch event. PER address therefore |
| * points at the previous PSW address (could be an EXECUTE function). |
| */ |
| if (!guestdbg_enabled(vcpu)) |
| return kvm_s390_inject_prog_irq(vcpu, &pgm_info); |
| |
| if (debug_exit_required(vcpu, pgm_info.per_code, pgm_info.per_address)) |
| vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; |
| |
| if (!guest_per_enabled(vcpu) || |
| !(vcpu->arch.sie_block->gcr[9] & PER_EVENT_IFETCH)) |
| return 0; |
| |
| rc = per_fetched_addr(vcpu, &fetched_addr); |
| if (rc < 0) |
| return rc; |
| if (rc) |
| /* instruction-fetching exceptions */ |
| return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING); |
| |
| if (in_addr_range(fetched_addr, cr10, cr11)) |
| return kvm_s390_inject_prog_irq(vcpu, &pgm_info); |
| return 0; |
| } |
| |
| static int filter_guest_per_event(struct kvm_vcpu *vcpu) |
| { |
| const u8 perc = vcpu->arch.sie_block->perc; |
| u64 addr = vcpu->arch.sie_block->gpsw.addr; |
| u64 cr9 = vcpu->arch.sie_block->gcr[9]; |
| u64 cr10 = vcpu->arch.sie_block->gcr[10]; |
| u64 cr11 = vcpu->arch.sie_block->gcr[11]; |
| /* filter all events, demanded by the guest */ |
| u8 guest_perc = perc & (cr9 >> 24) & PER_CODE_MASK; |
| unsigned long fetched_addr; |
| int rc; |
| |
| if (!guest_per_enabled(vcpu)) |
| guest_perc = 0; |
| |
| /* filter "successful-branching" events */ |
| if (guest_perc & PER_CODE_BRANCH && |
| cr9 & PER_CONTROL_BRANCH_ADDRESS && |
| !in_addr_range(addr, cr10, cr11)) |
| guest_perc &= ~PER_CODE_BRANCH; |
| |
| /* filter "instruction-fetching" events */ |
| if (guest_perc & PER_CODE_IFETCH) { |
| rc = per_fetched_addr(vcpu, &fetched_addr); |
| if (rc < 0) |
| return rc; |
| /* |
| * Don't inject an irq on exceptions. This would make handling |
| * on icpt code 8 very complex (as PSW was already rewound). |
| */ |
| if (rc || !in_addr_range(fetched_addr, cr10, cr11)) |
| guest_perc &= ~PER_CODE_IFETCH; |
| } |
| |
| /* All other PER events will be given to the guest */ |
| /* TODO: Check altered address/address space */ |
| |
| vcpu->arch.sie_block->perc = guest_perc; |
| |
| if (!guest_perc) |
| vcpu->arch.sie_block->iprcc &= ~PGM_PER; |
| return 0; |
| } |
| |
| #define pssec(vcpu) (vcpu->arch.sie_block->gcr[1] & _ASCE_SPACE_SWITCH) |
| #define hssec(vcpu) (vcpu->arch.sie_block->gcr[13] & _ASCE_SPACE_SWITCH) |
| #define old_ssec(vcpu) ((vcpu->arch.sie_block->tecmc >> 31) & 0x1) |
| #define old_as_is_home(vcpu) !(vcpu->arch.sie_block->tecmc & 0xffff) |
| |
| int kvm_s390_handle_per_event(struct kvm_vcpu *vcpu) |
| { |
| int rc, new_as; |
| |
| if (debug_exit_required(vcpu, vcpu->arch.sie_block->perc, |
| vcpu->arch.sie_block->peraddr)) |
| vcpu->guest_debug |= KVM_GUESTDBG_EXIT_PENDING; |
| |
| rc = filter_guest_per_event(vcpu); |
| if (rc) |
| return rc; |
| |
| /* |
| * Only RP, SAC, SACF, PT, PTI, PR, PC instructions can trigger |
| * a space-switch event. PER events enforce space-switch events |
| * for these instructions. So if no PER event for the guest is left, |
| * we might have to filter the space-switch element out, too. |
| */ |
| if (vcpu->arch.sie_block->iprcc == PGM_SPACE_SWITCH) { |
| vcpu->arch.sie_block->iprcc = 0; |
| new_as = psw_bits(vcpu->arch.sie_block->gpsw).as; |
| |
| /* |
| * If the AS changed from / to home, we had RP, SAC or SACF |
| * instruction. Check primary and home space-switch-event |
| * controls. (theoretically home -> home produced no event) |
| */ |
| if (((new_as == PSW_BITS_AS_HOME) ^ old_as_is_home(vcpu)) && |
| (pssec(vcpu) || hssec(vcpu))) |
| vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH; |
| |
| /* |
| * PT, PTI, PR, PC instruction operate on primary AS only. Check |
| * if the primary-space-switch-event control was or got set. |
| */ |
| if (new_as == PSW_BITS_AS_PRIMARY && !old_as_is_home(vcpu) && |
| (pssec(vcpu) || old_ssec(vcpu))) |
| vcpu->arch.sie_block->iprcc = PGM_SPACE_SWITCH; |
| } |
| return 0; |
| } |