| /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $ |
| * pci_sabre.c: Sabre specific PCI controller support. |
| * |
| * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu) |
| * Copyright (C) 1998, 1999 Eddie C. Dost (ecd@skynet.be) |
| * Copyright (C) 1999 Jakub Jelinek (jakub@redhat.com) |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/init.h> |
| #include <linux/slab.h> |
| #include <linux/interrupt.h> |
| |
| #include <asm/apb.h> |
| #include <asm/pbm.h> |
| #include <asm/iommu.h> |
| #include <asm/irq.h> |
| #include <asm/smp.h> |
| #include <asm/oplib.h> |
| #include <asm/prom.h> |
| |
| #include "pci_impl.h" |
| #include "iommu_common.h" |
| |
| /* All SABRE registers are 64-bits. The following accessor |
| * routines are how they are accessed. The REG parameter |
| * is a physical address. |
| */ |
| #define sabre_read(__reg) \ |
| ({ u64 __ret; \ |
| __asm__ __volatile__("ldxa [%1] %2, %0" \ |
| : "=r" (__ret) \ |
| : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ |
| : "memory"); \ |
| __ret; \ |
| }) |
| #define sabre_write(__reg, __val) \ |
| __asm__ __volatile__("stxa %0, [%1] %2" \ |
| : /* no outputs */ \ |
| : "r" (__val), "r" (__reg), \ |
| "i" (ASI_PHYS_BYPASS_EC_E) \ |
| : "memory") |
| |
| /* SABRE PCI controller register offsets and definitions. */ |
| #define SABRE_UE_AFSR 0x0030UL |
| #define SABRE_UEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ |
| #define SABRE_UEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ |
| #define SABRE_UEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ |
| #define SABRE_UEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ |
| #define SABRE_UEAFSR_SDTE 0x0200000000000000UL /* Secondary DMA Translation Error */ |
| #define SABRE_UEAFSR_PDTE 0x0100000000000000UL /* Primary DMA Translation Error */ |
| #define SABRE_UEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ |
| #define SABRE_UEAFSR_OFF 0x00000000e0000000UL /* Offset (AFAR bits [5:3] */ |
| #define SABRE_UEAFSR_BLK 0x0000000000800000UL /* Was block operation */ |
| #define SABRE_UECE_AFAR 0x0038UL |
| #define SABRE_CE_AFSR 0x0040UL |
| #define SABRE_CEAFSR_PDRD 0x4000000000000000UL /* Primary PCI DMA Read */ |
| #define SABRE_CEAFSR_PDWR 0x2000000000000000UL /* Primary PCI DMA Write */ |
| #define SABRE_CEAFSR_SDRD 0x0800000000000000UL /* Secondary PCI DMA Read */ |
| #define SABRE_CEAFSR_SDWR 0x0400000000000000UL /* Secondary PCI DMA Write */ |
| #define SABRE_CEAFSR_ESYND 0x00ff000000000000UL /* ECC Syndrome */ |
| #define SABRE_CEAFSR_BMSK 0x0000ffff00000000UL /* Bytemask */ |
| #define SABRE_CEAFSR_OFF 0x00000000e0000000UL /* Offset */ |
| #define SABRE_CEAFSR_BLK 0x0000000000800000UL /* Was block operation */ |
| #define SABRE_UECE_AFAR_ALIAS 0x0048UL /* Aliases to 0x0038 */ |
| #define SABRE_IOMMU_CONTROL 0x0200UL |
| #define SABRE_IOMMUCTRL_ERRSTS 0x0000000006000000UL /* Error status bits */ |
| #define SABRE_IOMMUCTRL_ERR 0x0000000001000000UL /* Error present in IOTLB */ |
| #define SABRE_IOMMUCTRL_LCKEN 0x0000000000800000UL /* IOTLB lock enable */ |
| #define SABRE_IOMMUCTRL_LCKPTR 0x0000000000780000UL /* IOTLB lock pointer */ |
| #define SABRE_IOMMUCTRL_TSBSZ 0x0000000000070000UL /* TSB Size */ |
| #define SABRE_IOMMU_TSBSZ_1K 0x0000000000000000 |
| #define SABRE_IOMMU_TSBSZ_2K 0x0000000000010000 |
| #define SABRE_IOMMU_TSBSZ_4K 0x0000000000020000 |
| #define SABRE_IOMMU_TSBSZ_8K 0x0000000000030000 |
| #define SABRE_IOMMU_TSBSZ_16K 0x0000000000040000 |
| #define SABRE_IOMMU_TSBSZ_32K 0x0000000000050000 |
| #define SABRE_IOMMU_TSBSZ_64K 0x0000000000060000 |
| #define SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 |
| #define SABRE_IOMMUCTRL_TBWSZ 0x0000000000000004UL /* TSB assumed page size */ |
| #define SABRE_IOMMUCTRL_DENAB 0x0000000000000002UL /* Diagnostic Mode Enable */ |
| #define SABRE_IOMMUCTRL_ENAB 0x0000000000000001UL /* IOMMU Enable */ |
| #define SABRE_IOMMU_TSBBASE 0x0208UL |
| #define SABRE_IOMMU_FLUSH 0x0210UL |
| #define SABRE_IMAP_A_SLOT0 0x0c00UL |
| #define SABRE_IMAP_B_SLOT0 0x0c20UL |
| #define SABRE_IMAP_SCSI 0x1000UL |
| #define SABRE_IMAP_ETH 0x1008UL |
| #define SABRE_IMAP_BPP 0x1010UL |
| #define SABRE_IMAP_AU_REC 0x1018UL |
| #define SABRE_IMAP_AU_PLAY 0x1020UL |
| #define SABRE_IMAP_PFAIL 0x1028UL |
| #define SABRE_IMAP_KMS 0x1030UL |
| #define SABRE_IMAP_FLPY 0x1038UL |
| #define SABRE_IMAP_SHW 0x1040UL |
| #define SABRE_IMAP_KBD 0x1048UL |
| #define SABRE_IMAP_MS 0x1050UL |
| #define SABRE_IMAP_SER 0x1058UL |
| #define SABRE_IMAP_UE 0x1070UL |
| #define SABRE_IMAP_CE 0x1078UL |
| #define SABRE_IMAP_PCIERR 0x1080UL |
| #define SABRE_IMAP_GFX 0x1098UL |
| #define SABRE_IMAP_EUPA 0x10a0UL |
| #define SABRE_ICLR_A_SLOT0 0x1400UL |
| #define SABRE_ICLR_B_SLOT0 0x1480UL |
| #define SABRE_ICLR_SCSI 0x1800UL |
| #define SABRE_ICLR_ETH 0x1808UL |
| #define SABRE_ICLR_BPP 0x1810UL |
| #define SABRE_ICLR_AU_REC 0x1818UL |
| #define SABRE_ICLR_AU_PLAY 0x1820UL |
| #define SABRE_ICLR_PFAIL 0x1828UL |
| #define SABRE_ICLR_KMS 0x1830UL |
| #define SABRE_ICLR_FLPY 0x1838UL |
| #define SABRE_ICLR_SHW 0x1840UL |
| #define SABRE_ICLR_KBD 0x1848UL |
| #define SABRE_ICLR_MS 0x1850UL |
| #define SABRE_ICLR_SER 0x1858UL |
| #define SABRE_ICLR_UE 0x1870UL |
| #define SABRE_ICLR_CE 0x1878UL |
| #define SABRE_ICLR_PCIERR 0x1880UL |
| #define SABRE_WRSYNC 0x1c20UL |
| #define SABRE_PCICTRL 0x2000UL |
| #define SABRE_PCICTRL_MRLEN 0x0000001000000000UL /* Use MemoryReadLine for block loads/stores */ |
| #define SABRE_PCICTRL_SERR 0x0000000400000000UL /* Set when SERR asserted on PCI bus */ |
| #define SABRE_PCICTRL_ARBPARK 0x0000000000200000UL /* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ |
| #define SABRE_PCICTRL_CPUPRIO 0x0000000000100000UL /* Ultra-IIi granted every other bus cycle */ |
| #define SABRE_PCICTRL_ARBPRIO 0x00000000000f0000UL /* Slot which is granted every other bus cycle */ |
| #define SABRE_PCICTRL_ERREN 0x0000000000000100UL /* PCI Error Interrupt Enable */ |
| #define SABRE_PCICTRL_RTRYWE 0x0000000000000080UL /* DMA Flow Control 0=wait-if-possible 1=retry */ |
| #define SABRE_PCICTRL_AEN 0x000000000000000fUL /* Slot PCI arbitration enables */ |
| #define SABRE_PIOAFSR 0x2010UL |
| #define SABRE_PIOAFSR_PMA 0x8000000000000000UL /* Primary Master Abort */ |
| #define SABRE_PIOAFSR_PTA 0x4000000000000000UL /* Primary Target Abort */ |
| #define SABRE_PIOAFSR_PRTRY 0x2000000000000000UL /* Primary Excessive Retries */ |
| #define SABRE_PIOAFSR_PPERR 0x1000000000000000UL /* Primary Parity Error */ |
| #define SABRE_PIOAFSR_SMA 0x0800000000000000UL /* Secondary Master Abort */ |
| #define SABRE_PIOAFSR_STA 0x0400000000000000UL /* Secondary Target Abort */ |
| #define SABRE_PIOAFSR_SRTRY 0x0200000000000000UL /* Secondary Excessive Retries */ |
| #define SABRE_PIOAFSR_SPERR 0x0100000000000000UL /* Secondary Parity Error */ |
| #define SABRE_PIOAFSR_BMSK 0x0000ffff00000000UL /* Byte Mask */ |
| #define SABRE_PIOAFSR_BLK 0x0000000080000000UL /* Was Block Operation */ |
| #define SABRE_PIOAFAR 0x2018UL |
| #define SABRE_PCIDIAG 0x2020UL |
| #define SABRE_PCIDIAG_DRTRY 0x0000000000000040UL /* Disable PIO Retry Limit */ |
| #define SABRE_PCIDIAG_IPAPAR 0x0000000000000008UL /* Invert PIO Address Parity */ |
| #define SABRE_PCIDIAG_IPDPAR 0x0000000000000004UL /* Invert PIO Data Parity */ |
| #define SABRE_PCIDIAG_IDDPAR 0x0000000000000002UL /* Invert DMA Data Parity */ |
| #define SABRE_PCIDIAG_ELPBK 0x0000000000000001UL /* Loopback Enable - not supported */ |
| #define SABRE_PCITASR 0x2028UL |
| #define SABRE_PCITASR_EF 0x0000000000000080UL /* Respond to 0xe0000000-0xffffffff */ |
| #define SABRE_PCITASR_CD 0x0000000000000040UL /* Respond to 0xc0000000-0xdfffffff */ |
| #define SABRE_PCITASR_AB 0x0000000000000020UL /* Respond to 0xa0000000-0xbfffffff */ |
| #define SABRE_PCITASR_89 0x0000000000000010UL /* Respond to 0x80000000-0x9fffffff */ |
| #define SABRE_PCITASR_67 0x0000000000000008UL /* Respond to 0x60000000-0x7fffffff */ |
| #define SABRE_PCITASR_45 0x0000000000000004UL /* Respond to 0x40000000-0x5fffffff */ |
| #define SABRE_PCITASR_23 0x0000000000000002UL /* Respond to 0x20000000-0x3fffffff */ |
| #define SABRE_PCITASR_01 0x0000000000000001UL /* Respond to 0x00000000-0x1fffffff */ |
| #define SABRE_PIOBUF_DIAG 0x5000UL |
| #define SABRE_DMABUF_DIAGLO 0x5100UL |
| #define SABRE_DMABUF_DIAGHI 0x51c0UL |
| #define SABRE_IMAP_GFX_ALIAS 0x6000UL /* Aliases to 0x1098 */ |
| #define SABRE_IMAP_EUPA_ALIAS 0x8000UL /* Aliases to 0x10a0 */ |
| #define SABRE_IOMMU_VADIAG 0xa400UL |
| #define SABRE_IOMMU_TCDIAG 0xa408UL |
| #define SABRE_IOMMU_TAG 0xa580UL |
| #define SABRE_IOMMUTAG_ERRSTS 0x0000000001800000UL /* Error status bits */ |
| #define SABRE_IOMMUTAG_ERR 0x0000000000400000UL /* Error present */ |
| #define SABRE_IOMMUTAG_WRITE 0x0000000000200000UL /* Page is writable */ |
| #define SABRE_IOMMUTAG_STREAM 0x0000000000100000UL /* Streamable bit - unused */ |
| #define SABRE_IOMMUTAG_SIZE 0x0000000000080000UL /* 0=8k 1=16k */ |
| #define SABRE_IOMMUTAG_VPN 0x000000000007ffffUL /* Virtual Page Number [31:13] */ |
| #define SABRE_IOMMU_DATA 0xa600UL |
| #define SABRE_IOMMUDATA_VALID 0x0000000040000000UL /* Valid */ |
| #define SABRE_IOMMUDATA_USED 0x0000000020000000UL /* Used (for LRU algorithm) */ |
| #define SABRE_IOMMUDATA_CACHE 0x0000000010000000UL /* Cacheable */ |
| #define SABRE_IOMMUDATA_PPN 0x00000000001fffffUL /* Physical Page Number [33:13] */ |
| #define SABRE_PCI_IRQSTATE 0xa800UL |
| #define SABRE_OBIO_IRQSTATE 0xa808UL |
| #define SABRE_FFBCFG 0xf000UL |
| #define SABRE_FFBCFG_SPRQS 0x000000000f000000 /* Slave P_RQST queue size */ |
| #define SABRE_FFBCFG_ONEREAD 0x0000000000004000 /* Slave supports one outstanding read */ |
| #define SABRE_MCCTRL0 0xf010UL |
| #define SABRE_MCCTRL0_RENAB 0x0000000080000000 /* Refresh Enable */ |
| #define SABRE_MCCTRL0_EENAB 0x0000000010000000 /* Enable all ECC functions */ |
| #define SABRE_MCCTRL0_11BIT 0x0000000000001000 /* Enable 11-bit column addressing */ |
| #define SABRE_MCCTRL0_DPP 0x0000000000000f00 /* DIMM Pair Present Bits */ |
| #define SABRE_MCCTRL0_RINTVL 0x00000000000000ff /* Refresh Interval */ |
| #define SABRE_MCCTRL1 0xf018UL |
| #define SABRE_MCCTRL1_AMDC 0x0000000038000000 /* Advance Memdata Clock */ |
| #define SABRE_MCCTRL1_ARDC 0x0000000007000000 /* Advance DRAM Read Data Clock */ |
| #define SABRE_MCCTRL1_CSR 0x0000000000e00000 /* CAS to RAS delay for CBR refresh */ |
| #define SABRE_MCCTRL1_CASRW 0x00000000001c0000 /* CAS length for read/write */ |
| #define SABRE_MCCTRL1_RCD 0x0000000000038000 /* RAS to CAS delay */ |
| #define SABRE_MCCTRL1_CP 0x0000000000007000 /* CAS Precharge */ |
| #define SABRE_MCCTRL1_RP 0x0000000000000e00 /* RAS Precharge */ |
| #define SABRE_MCCTRL1_RAS 0x00000000000001c0 /* Length of RAS for refresh */ |
| #define SABRE_MCCTRL1_CASRW2 0x0000000000000038 /* Must be same as CASRW */ |
| #define SABRE_MCCTRL1_RSC 0x0000000000000007 /* RAS after CAS hold time */ |
| #define SABRE_RESETCTRL 0xf020UL |
| |
| #define SABRE_CONFIGSPACE 0x001000000UL |
| #define SABRE_IOSPACE 0x002000000UL |
| #define SABRE_IOSPACE_SIZE 0x000ffffffUL |
| #define SABRE_MEMSPACE 0x100000000UL |
| #define SABRE_MEMSPACE_SIZE 0x07fffffffUL |
| |
| /* UltraSparc-IIi Programmer's Manual, page 325, PCI |
| * configuration space address format: |
| * |
| * 32 24 23 16 15 11 10 8 7 2 1 0 |
| * --------------------------------------------------------- |
| * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 | |
| * --------------------------------------------------------- |
| */ |
| #define SABRE_CONFIG_BASE(PBM) \ |
| ((PBM)->config_space | (1UL << 24)) |
| #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG) \ |
| (((unsigned long)(BUS) << 16) | \ |
| ((unsigned long)(DEVFN) << 8) | \ |
| ((unsigned long)(REG))) |
| |
| static int hummingbird_p; |
| static struct pci_bus *sabre_root_bus; |
| |
| static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm, |
| unsigned char bus, |
| unsigned int devfn, |
| int where) |
| { |
| if (!pbm) |
| return NULL; |
| return (void *) |
| (SABRE_CONFIG_BASE(pbm) | |
| SABRE_CONFIG_ENCODE(bus, devfn, where)); |
| } |
| |
| static int sabre_out_of_range(unsigned char devfn) |
| { |
| if (hummingbird_p) |
| return 0; |
| |
| return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) || |
| ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) || |
| (PCI_SLOT(devfn) > 1)); |
| } |
| |
| static int __sabre_out_of_range(struct pci_pbm_info *pbm, |
| unsigned char bus, |
| unsigned char devfn) |
| { |
| if (hummingbird_p) |
| return 0; |
| |
| return ((pbm->parent == 0) || |
| ((pbm == &pbm->parent->pbm_B) && |
| (bus == pbm->pci_first_busno) && |
| PCI_SLOT(devfn) > 8) || |
| ((pbm == &pbm->parent->pbm_A) && |
| (bus == pbm->pci_first_busno) && |
| PCI_SLOT(devfn) > 8)); |
| } |
| |
| static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, |
| int where, int size, u32 *value) |
| { |
| struct pci_pbm_info *pbm = bus_dev->sysdata; |
| unsigned char bus = bus_dev->number; |
| u32 *addr; |
| u16 tmp16; |
| u8 tmp8; |
| |
| switch (size) { |
| case 1: |
| *value = 0xff; |
| break; |
| case 2: |
| *value = 0xffff; |
| break; |
| case 4: |
| *value = 0xffffffff; |
| break; |
| } |
| |
| addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); |
| if (!addr) |
| return PCIBIOS_SUCCESSFUL; |
| |
| if (__sabre_out_of_range(pbm, bus, devfn)) |
| return PCIBIOS_SUCCESSFUL; |
| |
| switch (size) { |
| case 1: |
| pci_config_read8((u8 *) addr, &tmp8); |
| *value = tmp8; |
| break; |
| |
| case 2: |
| if (where & 0x01) { |
| printk("pci_read_config_word: misaligned reg [%x]\n", |
| where); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| pci_config_read16((u16 *) addr, &tmp16); |
| *value = tmp16; |
| break; |
| |
| case 4: |
| if (where & 0x03) { |
| printk("pci_read_config_dword: misaligned reg [%x]\n", |
| where); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| pci_config_read32(addr, value); |
| break; |
| } |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 *value) |
| { |
| if (!bus->number && sabre_out_of_range(devfn)) { |
| switch (size) { |
| case 1: |
| *value = 0xff; |
| break; |
| case 2: |
| *value = 0xffff; |
| break; |
| case 4: |
| *value = 0xffffffff; |
| break; |
| } |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| if (bus->number || PCI_SLOT(devfn)) |
| return __sabre_read_pci_cfg(bus, devfn, where, size, value); |
| |
| /* When accessing PCI config space of the PCI controller itself (bus |
| * 0, device slot 0, function 0) there are restrictions. Each |
| * register must be accessed as it's natural size. Thus, for example |
| * the Vendor ID must be accessed as a 16-bit quantity. |
| */ |
| |
| switch (size) { |
| case 1: |
| if (where < 8) { |
| u32 tmp32; |
| u16 tmp16; |
| |
| __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); |
| tmp16 = (u16) tmp32; |
| if (where & 1) |
| *value = tmp16 >> 8; |
| else |
| *value = tmp16 & 0xff; |
| } else |
| return __sabre_read_pci_cfg(bus, devfn, where, 1, value); |
| break; |
| |
| case 2: |
| if (where < 8) |
| return __sabre_read_pci_cfg(bus, devfn, where, 2, value); |
| else { |
| u32 tmp32; |
| u8 tmp8; |
| |
| __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32); |
| tmp8 = (u8) tmp32; |
| *value = tmp8; |
| __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32); |
| tmp8 = (u8) tmp32; |
| *value |= tmp8 << 8; |
| } |
| break; |
| |
| case 4: { |
| u32 tmp32; |
| u16 tmp16; |
| |
| sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32); |
| tmp16 = (u16) tmp32; |
| *value = tmp16; |
| sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32); |
| tmp16 = (u16) tmp32; |
| *value |= tmp16 << 16; |
| break; |
| } |
| } |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, |
| int where, int size, u32 value) |
| { |
| struct pci_pbm_info *pbm = bus_dev->sysdata; |
| unsigned char bus = bus_dev->number; |
| u32 *addr; |
| |
| addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); |
| if (!addr) |
| return PCIBIOS_SUCCESSFUL; |
| |
| if (__sabre_out_of_range(pbm, bus, devfn)) |
| return PCIBIOS_SUCCESSFUL; |
| |
| switch (size) { |
| case 1: |
| pci_config_write8((u8 *) addr, value); |
| break; |
| |
| case 2: |
| if (where & 0x01) { |
| printk("pci_write_config_word: misaligned reg [%x]\n", |
| where); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| pci_config_write16((u16 *) addr, value); |
| break; |
| |
| case 4: |
| if (where & 0x03) { |
| printk("pci_write_config_dword: misaligned reg [%x]\n", |
| where); |
| return PCIBIOS_SUCCESSFUL; |
| } |
| pci_config_write32(addr, value); |
| break; |
| } |
| |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn, |
| int where, int size, u32 value) |
| { |
| if (bus->number) |
| return __sabre_write_pci_cfg(bus, devfn, where, size, value); |
| |
| if (sabre_out_of_range(devfn)) |
| return PCIBIOS_SUCCESSFUL; |
| |
| switch (size) { |
| case 1: |
| if (where < 8) { |
| u32 tmp32; |
| u16 tmp16; |
| |
| __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); |
| tmp16 = (u16) tmp32; |
| if (where & 1) { |
| value &= 0x00ff; |
| value |= tmp16 << 8; |
| } else { |
| value &= 0xff00; |
| value |= tmp16; |
| } |
| tmp32 = (u32) tmp16; |
| return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32); |
| } else |
| return __sabre_write_pci_cfg(bus, devfn, where, 1, value); |
| break; |
| case 2: |
| if (where < 8) |
| return __sabre_write_pci_cfg(bus, devfn, where, 2, value); |
| else { |
| __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff); |
| __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8); |
| } |
| break; |
| case 4: |
| sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff); |
| sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16); |
| break; |
| } |
| return PCIBIOS_SUCCESSFUL; |
| } |
| |
| static struct pci_ops sabre_ops = { |
| .read = sabre_read_pci_cfg, |
| .write = sabre_write_pci_cfg, |
| }; |
| |
| /* SABRE error handling support. */ |
| static void sabre_check_iommu_error(struct pci_controller_info *p, |
| unsigned long afsr, |
| unsigned long afar) |
| { |
| struct pci_iommu *iommu = p->pbm_A.iommu; |
| unsigned long iommu_tag[16]; |
| unsigned long iommu_data[16]; |
| unsigned long flags; |
| u64 control; |
| int i; |
| |
| spin_lock_irqsave(&iommu->lock, flags); |
| control = sabre_read(iommu->iommu_control); |
| if (control & SABRE_IOMMUCTRL_ERR) { |
| char *type_string; |
| |
| /* Clear the error encountered bit. |
| * NOTE: On Sabre this is write 1 to clear, |
| * which is different from Psycho. |
| */ |
| sabre_write(iommu->iommu_control, control); |
| switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { |
| case 1: |
| type_string = "Invalid Error"; |
| break; |
| case 3: |
| type_string = "ECC Error"; |
| break; |
| default: |
| type_string = "Unknown"; |
| break; |
| }; |
| printk("SABRE%d: IOMMU Error, type[%s]\n", |
| p->index, type_string); |
| |
| /* Enter diagnostic mode and probe for error'd |
| * entries in the IOTLB. |
| */ |
| control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); |
| sabre_write(iommu->iommu_control, |
| (control | SABRE_IOMMUCTRL_DENAB)); |
| for (i = 0; i < 16; i++) { |
| unsigned long base = p->pbm_A.controller_regs; |
| |
| iommu_tag[i] = |
| sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); |
| iommu_data[i] = |
| sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); |
| sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); |
| sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); |
| } |
| sabre_write(iommu->iommu_control, control); |
| |
| for (i = 0; i < 16; i++) { |
| unsigned long tag, data; |
| |
| tag = iommu_tag[i]; |
| if (!(tag & SABRE_IOMMUTAG_ERR)) |
| continue; |
| |
| data = iommu_data[i]; |
| switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { |
| case 1: |
| type_string = "Invalid Error"; |
| break; |
| case 3: |
| type_string = "ECC Error"; |
| break; |
| default: |
| type_string = "Unknown"; |
| break; |
| }; |
| printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", |
| p->index, i, tag, type_string, |
| ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), |
| ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), |
| ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT)); |
| printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", |
| p->index, i, data, |
| ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), |
| ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), |
| ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), |
| ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT)); |
| } |
| } |
| spin_unlock_irqrestore(&iommu->lock, flags); |
| } |
| |
| static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct pci_controller_info *p = dev_id; |
| unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR; |
| unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; |
| unsigned long afsr, afar, error_bits; |
| int reported; |
| |
| /* Latch uncorrectable error status. */ |
| afar = sabre_read(afar_reg); |
| afsr = sabre_read(afsr_reg); |
| |
| /* Clear the primary/secondary error status bits. */ |
| error_bits = afsr & |
| (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | |
| SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | |
| SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); |
| if (!error_bits) |
| return IRQ_NONE; |
| sabre_write(afsr_reg, error_bits); |
| |
| /* Log the error. */ |
| printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n", |
| p->index, |
| ((error_bits & SABRE_UEAFSR_PDRD) ? |
| "DMA Read" : |
| ((error_bits & SABRE_UEAFSR_PDWR) ? |
| "DMA Write" : "???")), |
| ((error_bits & SABRE_UEAFSR_PDTE) ? |
| ":Translation Error" : "")); |
| printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", |
| p->index, |
| (afsr & SABRE_UEAFSR_BMSK) >> 32UL, |
| (afsr & SABRE_UEAFSR_OFF) >> 29UL, |
| ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); |
| printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar); |
| printk("SABRE%d: UE Secondary errors [", p->index); |
| reported = 0; |
| if (afsr & SABRE_UEAFSR_SDRD) { |
| reported++; |
| printk("(DMA Read)"); |
| } |
| if (afsr & SABRE_UEAFSR_SDWR) { |
| reported++; |
| printk("(DMA Write)"); |
| } |
| if (afsr & SABRE_UEAFSR_SDTE) { |
| reported++; |
| printk("(Translation Error)"); |
| } |
| if (!reported) |
| printk("(none)"); |
| printk("]\n"); |
| |
| /* Interrogate IOMMU for error status. */ |
| sabre_check_iommu_error(p, afsr, afar); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct pci_controller_info *p = dev_id; |
| unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR; |
| unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; |
| unsigned long afsr, afar, error_bits; |
| int reported; |
| |
| /* Latch error status. */ |
| afar = sabre_read(afar_reg); |
| afsr = sabre_read(afsr_reg); |
| |
| /* Clear primary/secondary error status bits. */ |
| error_bits = afsr & |
| (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | |
| SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); |
| if (!error_bits) |
| return IRQ_NONE; |
| sabre_write(afsr_reg, error_bits); |
| |
| /* Log the error. */ |
| printk("SABRE%d: Correctable Error, primary error type[%s]\n", |
| p->index, |
| ((error_bits & SABRE_CEAFSR_PDRD) ? |
| "DMA Read" : |
| ((error_bits & SABRE_CEAFSR_PDWR) ? |
| "DMA Write" : "???"))); |
| |
| /* XXX Use syndrome and afar to print out module string just like |
| * XXX UDB CE trap handler does... -DaveM |
| */ |
| printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " |
| "was_block(%d)\n", |
| p->index, |
| (afsr & SABRE_CEAFSR_ESYND) >> 48UL, |
| (afsr & SABRE_CEAFSR_BMSK) >> 32UL, |
| (afsr & SABRE_CEAFSR_OFF) >> 29UL, |
| ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); |
| printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar); |
| printk("SABRE%d: CE Secondary errors [", p->index); |
| reported = 0; |
| if (afsr & SABRE_CEAFSR_SDRD) { |
| reported++; |
| printk("(DMA Read)"); |
| } |
| if (afsr & SABRE_CEAFSR_SDWR) { |
| reported++; |
| printk("(DMA Write)"); |
| } |
| if (!reported) |
| printk("(none)"); |
| printk("]\n"); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p) |
| { |
| unsigned long csr_reg, csr, csr_error_bits; |
| irqreturn_t ret = IRQ_NONE; |
| u16 stat; |
| |
| csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL; |
| csr = sabre_read(csr_reg); |
| csr_error_bits = |
| csr & SABRE_PCICTRL_SERR; |
| if (csr_error_bits) { |
| /* Clear the errors. */ |
| sabre_write(csr_reg, csr); |
| |
| /* Log 'em. */ |
| if (csr_error_bits & SABRE_PCICTRL_SERR) |
| printk("SABRE%d: PCI SERR signal asserted.\n", |
| p->index); |
| ret = IRQ_HANDLED; |
| } |
| pci_read_config_word(sabre_root_bus->self, |
| PCI_STATUS, &stat); |
| if (stat & (PCI_STATUS_PARITY | |
| PCI_STATUS_SIG_TARGET_ABORT | |
| PCI_STATUS_REC_TARGET_ABORT | |
| PCI_STATUS_REC_MASTER_ABORT | |
| PCI_STATUS_SIG_SYSTEM_ERROR)) { |
| printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n", |
| p->index, stat); |
| pci_write_config_word(sabre_root_bus->self, |
| PCI_STATUS, 0xffff); |
| ret = IRQ_HANDLED; |
| } |
| return ret; |
| } |
| |
| static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct pci_controller_info *p = dev_id; |
| unsigned long afsr_reg, afar_reg; |
| unsigned long afsr, afar, error_bits; |
| int reported; |
| |
| afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR; |
| afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR; |
| |
| /* Latch error status. */ |
| afar = sabre_read(afar_reg); |
| afsr = sabre_read(afsr_reg); |
| |
| /* Clear primary/secondary error status bits. */ |
| error_bits = afsr & |
| (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | |
| SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | |
| SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | |
| SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); |
| if (!error_bits) |
| return sabre_pcierr_intr_other(p); |
| sabre_write(afsr_reg, error_bits); |
| |
| /* Log the error. */ |
| printk("SABRE%d: PCI Error, primary error type[%s]\n", |
| p->index, |
| (((error_bits & SABRE_PIOAFSR_PMA) ? |
| "Master Abort" : |
| ((error_bits & SABRE_PIOAFSR_PTA) ? |
| "Target Abort" : |
| ((error_bits & SABRE_PIOAFSR_PRTRY) ? |
| "Excessive Retries" : |
| ((error_bits & SABRE_PIOAFSR_PPERR) ? |
| "Parity Error" : "???")))))); |
| printk("SABRE%d: bytemask[%04lx] was_block(%d)\n", |
| p->index, |
| (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, |
| (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); |
| printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar); |
| printk("SABRE%d: PCI Secondary errors [", p->index); |
| reported = 0; |
| if (afsr & SABRE_PIOAFSR_SMA) { |
| reported++; |
| printk("(Master Abort)"); |
| } |
| if (afsr & SABRE_PIOAFSR_STA) { |
| reported++; |
| printk("(Target Abort)"); |
| } |
| if (afsr & SABRE_PIOAFSR_SRTRY) { |
| reported++; |
| printk("(Excessive Retries)"); |
| } |
| if (afsr & SABRE_PIOAFSR_SPERR) { |
| reported++; |
| printk("(Parity Error)"); |
| } |
| if (!reported) |
| printk("(none)"); |
| printk("]\n"); |
| |
| /* For the error types shown, scan both PCI buses for devices |
| * which have logged that error type. |
| */ |
| |
| /* If we see a Target Abort, this could be the result of an |
| * IOMMU translation error of some sort. It is extremely |
| * useful to log this information as usually it indicates |
| * a bug in the IOMMU support code or a PCI device driver. |
| */ |
| if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { |
| sabre_check_iommu_error(p, afsr, afar); |
| pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus); |
| pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus); |
| } |
| if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) { |
| pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus); |
| pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus); |
| } |
| /* For excessive retries, SABRE/PBM will abort the device |
| * and there is no way to specifically check for excessive |
| * retries in the config space status registers. So what |
| * we hope is that we'll catch it via the master/target |
| * abort events. |
| */ |
| |
| if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) { |
| pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus); |
| pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus); |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void sabre_register_error_handlers(struct pci_controller_info *p) |
| { |
| struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */ |
| struct device_node *dp = pbm->prom_node; |
| struct of_device *op; |
| unsigned long base = pbm->controller_regs; |
| u64 tmp; |
| |
| if (pbm->chip_type == PBM_CHIP_TYPE_SABRE) |
| dp = dp->parent; |
| |
| op = of_find_device_by_node(dp); |
| if (!op) |
| return; |
| |
| /* Sabre/Hummingbird IRQ property layout is: |
| * 0: PCI ERR |
| * 1: UE ERR |
| * 2: CE ERR |
| * 3: POWER FAIL |
| */ |
| if (op->num_irqs < 4) |
| return; |
| |
| /* We clear the error bits in the appropriate AFSR before |
| * registering the handler so that we don't get spurious |
| * interrupts. |
| */ |
| sabre_write(base + SABRE_UE_AFSR, |
| (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | |
| SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | |
| SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); |
| |
| request_irq(op->irqs[1], sabre_ue_intr, SA_SHIRQ, "SABRE UE", p); |
| |
| sabre_write(base + SABRE_CE_AFSR, |
| (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | |
| SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); |
| |
| request_irq(op->irqs[2], sabre_ce_intr, SA_SHIRQ, "SABRE CE", p); |
| request_irq(op->irqs[0], sabre_pcierr_intr, SA_SHIRQ, |
| "SABRE PCIERR", p); |
| |
| tmp = sabre_read(base + SABRE_PCICTRL); |
| tmp |= SABRE_PCICTRL_ERREN; |
| sabre_write(base + SABRE_PCICTRL, tmp); |
| } |
| |
| static void sabre_resource_adjust(struct pci_dev *pdev, |
| struct resource *res, |
| struct resource *root) |
| { |
| struct pci_pbm_info *pbm = pdev->bus->sysdata; |
| unsigned long base; |
| |
| if (res->flags & IORESOURCE_IO) |
| base = pbm->controller_regs + SABRE_IOSPACE; |
| else |
| base = pbm->controller_regs + SABRE_MEMSPACE; |
| |
| res->start += base; |
| res->end += base; |
| } |
| |
| static void sabre_base_address_update(struct pci_dev *pdev, int resource) |
| { |
| struct pcidev_cookie *pcp = pdev->sysdata; |
| struct pci_pbm_info *pbm = pcp->pbm; |
| struct resource *res; |
| unsigned long base; |
| u32 reg; |
| int where, size, is_64bit; |
| |
| res = &pdev->resource[resource]; |
| if (resource < 6) { |
| where = PCI_BASE_ADDRESS_0 + (resource * 4); |
| } else if (resource == PCI_ROM_RESOURCE) { |
| where = pdev->rom_base_reg; |
| } else { |
| /* Somebody might have asked allocation of a non-standard resource */ |
| return; |
| } |
| |
| is_64bit = 0; |
| if (res->flags & IORESOURCE_IO) |
| base = pbm->controller_regs + SABRE_IOSPACE; |
| else { |
| base = pbm->controller_regs + SABRE_MEMSPACE; |
| if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) |
| == PCI_BASE_ADDRESS_MEM_TYPE_64) |
| is_64bit = 1; |
| } |
| |
| size = res->end - res->start; |
| pci_read_config_dword(pdev, where, ®); |
| reg = ((reg & size) | |
| (((u32)(res->start - base)) & ~size)); |
| if (resource == PCI_ROM_RESOURCE) { |
| reg |= PCI_ROM_ADDRESS_ENABLE; |
| res->flags |= IORESOURCE_ROM_ENABLE; |
| } |
| pci_write_config_dword(pdev, where, reg); |
| |
| /* This knows that the upper 32-bits of the address |
| * must be zero. Our PCI common layer enforces this. |
| */ |
| if (is_64bit) |
| pci_write_config_dword(pdev, where + 4, 0); |
| } |
| |
| static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus) |
| { |
| struct pci_dev *pdev; |
| |
| list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { |
| |
| if (pdev->vendor == PCI_VENDOR_ID_SUN && |
| pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { |
| u32 word32; |
| u16 word16; |
| |
| sabre_read_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_COMMAND, 2, &word32); |
| word16 = (u16) word32; |
| word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | |
| PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | |
| PCI_COMMAND_IO; |
| word32 = (u32) word16; |
| sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_COMMAND, 2, word32); |
| |
| /* Status register bits are "write 1 to clear". */ |
| sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_STATUS, 2, 0xffff); |
| sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_SEC_STATUS, 2, 0xffff); |
| |
| /* Use a primary/seconday latency timer value |
| * of 64. |
| */ |
| sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_LATENCY_TIMER, 1, 64); |
| sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_SEC_LATENCY_TIMER, 1, 64); |
| |
| /* Enable reporting/forwarding of master aborts, |
| * parity, and SERR. |
| */ |
| sabre_write_pci_cfg(pdev->bus, pdev->devfn, |
| PCI_BRIDGE_CONTROL, 1, |
| (PCI_BRIDGE_CTL_PARITY | |
| PCI_BRIDGE_CTL_SERR | |
| PCI_BRIDGE_CTL_MASTER_ABORT)); |
| } |
| } |
| } |
| |
| static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm) |
| { |
| struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); |
| |
| if (!cookie) { |
| prom_printf("SABRE: Critical allocation failure.\n"); |
| prom_halt(); |
| } |
| |
| /* All we care about is the PBM. */ |
| cookie->pbm = pbm; |
| |
| return cookie; |
| } |
| |
| static void sabre_scan_bus(struct pci_controller_info *p) |
| { |
| static int once; |
| struct pci_bus *sabre_bus, *pbus; |
| struct pci_pbm_info *pbm; |
| struct pcidev_cookie *cookie; |
| int sabres_scanned; |
| |
| /* The APB bridge speaks to the Sabre host PCI bridge |
| * at 66Mhz, but the front side of APB runs at 33Mhz |
| * for both segments. |
| */ |
| p->pbm_A.is_66mhz_capable = 0; |
| p->pbm_B.is_66mhz_capable = 0; |
| |
| /* This driver has not been verified to handle |
| * multiple SABREs yet, so trap this. |
| * |
| * Also note that the SABRE host bridge is hardwired |
| * to live at bus 0. |
| */ |
| if (once != 0) { |
| prom_printf("SABRE: Multiple controllers unsupported.\n"); |
| prom_halt(); |
| } |
| once++; |
| |
| cookie = alloc_bridge_cookie(&p->pbm_A); |
| |
| sabre_bus = pci_scan_bus(p->pci_first_busno, |
| p->pci_ops, |
| &p->pbm_A); |
| pci_fixup_host_bridge_self(sabre_bus); |
| sabre_bus->self->sysdata = cookie; |
| |
| sabre_root_bus = sabre_bus; |
| |
| apb_init(p, sabre_bus); |
| |
| sabres_scanned = 0; |
| |
| list_for_each_entry(pbus, &sabre_bus->children, node) { |
| |
| if (pbus->number == p->pbm_A.pci_first_busno) { |
| pbm = &p->pbm_A; |
| } else if (pbus->number == p->pbm_B.pci_first_busno) { |
| pbm = &p->pbm_B; |
| } else |
| continue; |
| |
| cookie = alloc_bridge_cookie(pbm); |
| pbus->self->sysdata = cookie; |
| |
| sabres_scanned++; |
| |
| pbus->sysdata = pbm; |
| pbm->pci_bus = pbus; |
| pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node); |
| pci_record_assignments(pbm, pbus); |
| pci_assign_unassigned(pbm, pbus); |
| pci_fixup_irq(pbm, pbus); |
| pci_determine_66mhz_disposition(pbm, pbus); |
| pci_setup_busmastering(pbm, pbus); |
| } |
| |
| if (!sabres_scanned) { |
| /* Hummingbird, no APBs. */ |
| pbm = &p->pbm_A; |
| sabre_bus->sysdata = pbm; |
| pbm->pci_bus = sabre_bus; |
| pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node); |
| pci_record_assignments(pbm, sabre_bus); |
| pci_assign_unassigned(pbm, sabre_bus); |
| pci_fixup_irq(pbm, sabre_bus); |
| pci_determine_66mhz_disposition(pbm, sabre_bus); |
| pci_setup_busmastering(pbm, sabre_bus); |
| } |
| |
| sabre_register_error_handlers(p); |
| } |
| |
| static void sabre_iommu_init(struct pci_controller_info *p, |
| int tsbsize, unsigned long dvma_offset, |
| u32 dma_mask) |
| { |
| struct pci_iommu *iommu = p->pbm_A.iommu; |
| unsigned long i; |
| u64 control; |
| |
| /* Register addresses. */ |
| iommu->iommu_control = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL; |
| iommu->iommu_tsbbase = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE; |
| iommu->iommu_flush = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH; |
| iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC; |
| /* Sabre's IOMMU lacks ctx flushing. */ |
| iommu->iommu_ctxflush = 0; |
| |
| /* Invalidate TLB Entries. */ |
| control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); |
| control |= SABRE_IOMMUCTRL_DENAB; |
| sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); |
| |
| for(i = 0; i < 16; i++) { |
| sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); |
| sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); |
| } |
| |
| /* Leave diag mode enabled for full-flushing done |
| * in pci_iommu.c |
| */ |
| pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask); |
| |
| sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE, |
| __pa(iommu->page_table)); |
| |
| control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); |
| control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); |
| control |= SABRE_IOMMUCTRL_ENAB; |
| switch(tsbsize) { |
| case 64: |
| control |= SABRE_IOMMU_TSBSZ_64K; |
| break; |
| case 128: |
| control |= SABRE_IOMMU_TSBSZ_128K; |
| break; |
| default: |
| prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); |
| prom_halt(); |
| break; |
| } |
| sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); |
| } |
| |
| static void pbm_register_toplevel_resources(struct pci_controller_info *p, |
| struct pci_pbm_info *pbm) |
| { |
| char *name = pbm->name; |
| unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE; |
| unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE; |
| unsigned int devfn; |
| unsigned long first, last, i; |
| u8 *addr, map; |
| |
| sprintf(name, "SABRE%d PBM%c", |
| p->index, |
| (pbm == &p->pbm_A ? 'A' : 'B')); |
| pbm->io_space.name = pbm->mem_space.name = name; |
| |
| devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1); |
| addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP); |
| map = 0; |
| pci_config_read8(addr, &map); |
| |
| first = 8; |
| last = 0; |
| for (i = 0; i < 8; i++) { |
| if ((map & (1 << i)) != 0) { |
| if (first > i) |
| first = i; |
| if (last < i) |
| last = i; |
| } |
| } |
| pbm->io_space.start = ibase + (first << 21UL); |
| pbm->io_space.end = ibase + (last << 21UL) + ((1 << 21UL) - 1); |
| pbm->io_space.flags = IORESOURCE_IO; |
| |
| addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP); |
| map = 0; |
| pci_config_read8(addr, &map); |
| |
| first = 8; |
| last = 0; |
| for (i = 0; i < 8; i++) { |
| if ((map & (1 << i)) != 0) { |
| if (first > i) |
| first = i; |
| if (last < i) |
| last = i; |
| } |
| } |
| pbm->mem_space.start = mbase + (first << 29UL); |
| pbm->mem_space.end = mbase + (last << 29UL) + ((1 << 29UL) - 1); |
| pbm->mem_space.flags = IORESOURCE_MEM; |
| |
| if (request_resource(&ioport_resource, &pbm->io_space) < 0) { |
| prom_printf("Cannot register PBM-%c's IO space.\n", |
| (pbm == &p->pbm_A ? 'A' : 'B')); |
| prom_halt(); |
| } |
| if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { |
| prom_printf("Cannot register PBM-%c's MEM space.\n", |
| (pbm == &p->pbm_A ? 'A' : 'B')); |
| prom_halt(); |
| } |
| |
| /* Register legacy regions if this PBM covers that area. */ |
| if (pbm->io_space.start == ibase && |
| pbm->mem_space.start == mbase) |
| pci_register_legacy_regions(&pbm->io_space, |
| &pbm->mem_space); |
| } |
| |
| static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_begin) |
| { |
| struct pci_pbm_info *pbm; |
| struct device_node *node; |
| struct property *prop; |
| u32 *busrange; |
| int len, simbas_found; |
| |
| simbas_found = 0; |
| node = dp->child; |
| while (node != NULL) { |
| if (strcmp(node->name, "pci")) |
| goto next_pci; |
| |
| prop = of_find_property(node, "model", NULL); |
| if (!prop || strncmp(prop->value, "SUNW,simba", prop->length)) |
| goto next_pci; |
| |
| simbas_found++; |
| |
| prop = of_find_property(node, "bus-range", NULL); |
| busrange = prop->value; |
| if (busrange[0] == 1) |
| pbm = &p->pbm_B; |
| else |
| pbm = &p->pbm_A; |
| |
| pbm->name = node->full_name; |
| printk("%s: SABRE PCI Bus Module\n", pbm->name); |
| |
| pbm->chip_type = PBM_CHIP_TYPE_SABRE; |
| pbm->parent = p; |
| pbm->prom_node = node; |
| pbm->pci_first_slot = 1; |
| pbm->pci_first_busno = busrange[0]; |
| pbm->pci_last_busno = busrange[1]; |
| |
| prop = of_find_property(node, "ranges", &len); |
| if (prop) { |
| pbm->pbm_ranges = prop->value; |
| pbm->num_pbm_ranges = |
| (len / sizeof(struct linux_prom_pci_ranges)); |
| } else { |
| pbm->num_pbm_ranges = 0; |
| } |
| |
| prop = of_find_property(node, "interrupt-map", &len); |
| if (prop) { |
| pbm->pbm_intmap = prop->value; |
| pbm->num_pbm_intmap = |
| (len / sizeof(struct linux_prom_pci_intmap)); |
| |
| prop = of_find_property(node, "interrupt-map-mask", |
| NULL); |
| pbm->pbm_intmask = prop->value; |
| } else { |
| pbm->num_pbm_intmap = 0; |
| } |
| |
| pbm_register_toplevel_resources(p, pbm); |
| |
| next_pci: |
| node = node->sibling; |
| } |
| if (simbas_found == 0) { |
| /* No APBs underneath, probably this is a hummingbird |
| * system. |
| */ |
| pbm = &p->pbm_A; |
| pbm->parent = p; |
| pbm->prom_node = dp; |
| pbm->pci_first_busno = p->pci_first_busno; |
| pbm->pci_last_busno = p->pci_last_busno; |
| |
| prop = of_find_property(dp, "ranges", &len); |
| if (prop) { |
| pbm->pbm_ranges = prop->value; |
| pbm->num_pbm_ranges = |
| (len / sizeof(struct linux_prom_pci_ranges)); |
| } else { |
| pbm->num_pbm_ranges = 0; |
| } |
| |
| prop = of_find_property(dp, "interrupt-map", &len); |
| if (prop) { |
| pbm->pbm_intmap = prop->value; |
| pbm->num_pbm_intmap = |
| (len / sizeof(struct linux_prom_pci_intmap)); |
| |
| prop = of_find_property(dp, "interrupt-map-mask", |
| NULL); |
| pbm->pbm_intmask = prop->value; |
| } else { |
| pbm->num_pbm_intmap = 0; |
| } |
| |
| pbm->name = dp->full_name; |
| printk("%s: SABRE PCI Bus Module\n", pbm->name); |
| |
| pbm->io_space.name = pbm->mem_space.name = pbm->name; |
| |
| /* Hack up top-level resources. */ |
| pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE; |
| pbm->io_space.end = pbm->io_space.start + (1UL << 24) - 1UL; |
| pbm->io_space.flags = IORESOURCE_IO; |
| |
| pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE; |
| pbm->mem_space.end = pbm->mem_space.start + (unsigned long)dma_begin - 1UL; |
| pbm->mem_space.flags = IORESOURCE_MEM; |
| |
| if (request_resource(&ioport_resource, &pbm->io_space) < 0) { |
| prom_printf("Cannot register Hummingbird's IO space.\n"); |
| prom_halt(); |
| } |
| if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { |
| prom_printf("Cannot register Hummingbird's MEM space.\n"); |
| prom_halt(); |
| } |
| |
| pci_register_legacy_regions(&pbm->io_space, |
| &pbm->mem_space); |
| } |
| } |
| |
| void sabre_init(struct device_node *dp, char *model_name) |
| { |
| struct linux_prom64_registers *pr_regs; |
| struct pci_controller_info *p; |
| struct pci_iommu *iommu; |
| struct property *prop; |
| int tsbsize; |
| u32 *busrange; |
| u32 *vdma; |
| u32 upa_portid, dma_mask; |
| u64 clear_irq; |
| |
| hummingbird_p = 0; |
| if (!strcmp(model_name, "pci108e,a001")) |
| hummingbird_p = 1; |
| else if (!strcmp(model_name, "SUNW,sabre")) { |
| prop = of_find_property(dp, "compatible", NULL); |
| if (prop) { |
| const char *compat = prop->value; |
| |
| if (!strcmp(compat, "pci108e,a001")) |
| hummingbird_p = 1; |
| } |
| if (!hummingbird_p) { |
| struct device_node *dp; |
| |
| /* Of course, Sun has to encode things a thousand |
| * different ways, inconsistently. |
| */ |
| cpu_find_by_instance(0, &dp, NULL); |
| if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe")) |
| hummingbird_p = 1; |
| } |
| } |
| |
| p = kzalloc(sizeof(*p), GFP_ATOMIC); |
| if (!p) { |
| prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n"); |
| prom_halt(); |
| } |
| |
| iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC); |
| if (!iommu) { |
| prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n"); |
| prom_halt(); |
| } |
| p->pbm_A.iommu = p->pbm_B.iommu = iommu; |
| |
| upa_portid = 0xff; |
| prop = of_find_property(dp, "upa-portid", NULL); |
| if (prop) |
| upa_portid = *(u32 *) prop->value; |
| |
| p->next = pci_controller_root; |
| pci_controller_root = p; |
| |
| p->pbm_A.portid = upa_portid; |
| p->pbm_B.portid = upa_portid; |
| p->index = pci_num_controllers++; |
| p->pbms_same_domain = 1; |
| p->scan_bus = sabre_scan_bus; |
| p->base_address_update = sabre_base_address_update; |
| p->resource_adjust = sabre_resource_adjust; |
| p->pci_ops = &sabre_ops; |
| |
| /* |
| * Map in SABRE register set and report the presence of this SABRE. |
| */ |
| |
| prop = of_find_property(dp, "reg", NULL); |
| pr_regs = prop->value; |
| |
| /* |
| * First REG in property is base of entire SABRE register space. |
| */ |
| p->pbm_A.controller_regs = pr_regs[0].phys_addr; |
| p->pbm_B.controller_regs = pr_regs[0].phys_addr; |
| |
| /* Clear interrupts */ |
| |
| /* PCI first */ |
| for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) |
| sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); |
| |
| /* Then OBIO */ |
| for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) |
| sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); |
| |
| /* Error interrupts are enabled later after the bus scan. */ |
| sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL, |
| (SABRE_PCICTRL_MRLEN | SABRE_PCICTRL_SERR | |
| SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); |
| |
| /* Now map in PCI config space for entire SABRE. */ |
| p->pbm_A.config_space = p->pbm_B.config_space = |
| (p->pbm_A.controller_regs + SABRE_CONFIGSPACE); |
| |
| prop = of_find_property(dp, "virtual-dma", NULL); |
| vdma = prop->value; |
| |
| dma_mask = vdma[0]; |
| switch(vdma[1]) { |
| case 0x20000000: |
| dma_mask |= 0x1fffffff; |
| tsbsize = 64; |
| break; |
| case 0x40000000: |
| dma_mask |= 0x3fffffff; |
| tsbsize = 128; |
| break; |
| |
| case 0x80000000: |
| dma_mask |= 0x7fffffff; |
| tsbsize = 128; |
| break; |
| default: |
| prom_printf("SABRE: strange virtual-dma size.\n"); |
| prom_halt(); |
| } |
| |
| sabre_iommu_init(p, tsbsize, vdma[0], dma_mask); |
| |
| prop = of_find_property(dp, "bus-range", NULL); |
| busrange = prop->value; |
| p->pci_first_busno = busrange[0]; |
| p->pci_last_busno = busrange[1]; |
| |
| /* |
| * Look for APB underneath. |
| */ |
| sabre_pbm_init(p, dp, vdma[0]); |
| } |