| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * rational fractions |
| * |
| * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com> |
| * |
| * helper functions when coping with rational numbers |
| */ |
| |
| #include <linux/rational.h> |
| #include <linux/compiler.h> |
| #include <linux/export.h> |
| |
| /* |
| * calculate best rational approximation for a given fraction |
| * taking into account restricted register size, e.g. to find |
| * appropriate values for a pll with 5 bit denominator and |
| * 8 bit numerator register fields, trying to set up with a |
| * frequency ratio of 3.1415, one would say: |
| * |
| * rational_best_approximation(31415, 10000, |
| * (1 << 8) - 1, (1 << 5) - 1, &n, &d); |
| * |
| * you may look at given_numerator as a fixed point number, |
| * with the fractional part size described in given_denominator. |
| * |
| * for theoretical background, see: |
| * http://en.wikipedia.org/wiki/Continued_fraction |
| */ |
| |
| void rational_best_approximation( |
| unsigned long given_numerator, unsigned long given_denominator, |
| unsigned long max_numerator, unsigned long max_denominator, |
| unsigned long *best_numerator, unsigned long *best_denominator) |
| { |
| unsigned long n, d, n0, d0, n1, d1; |
| n = given_numerator; |
| d = given_denominator; |
| n0 = d1 = 0; |
| n1 = d0 = 1; |
| for (;;) { |
| unsigned long t, a; |
| if ((n1 > max_numerator) || (d1 > max_denominator)) { |
| n1 = n0; |
| d1 = d0; |
| break; |
| } |
| if (d == 0) |
| break; |
| t = d; |
| a = n / d; |
| d = n % d; |
| n = t; |
| t = n0 + a * n1; |
| n0 = n1; |
| n1 = t; |
| t = d0 + a * d1; |
| d0 = d1; |
| d1 = t; |
| } |
| *best_numerator = n1; |
| *best_denominator = d1; |
| } |
| |
| EXPORT_SYMBOL(rational_best_approximation); |