| #define pr_fmt(fmt) "prime numbers: " fmt "\n" |
| |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/prime_numbers.h> |
| #include <linux/slab.h> |
| |
| #define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) |
| |
| struct primes { |
| struct rcu_head rcu; |
| unsigned long last, sz; |
| unsigned long primes[]; |
| }; |
| |
| #if BITS_PER_LONG == 64 |
| static const struct primes small_primes = { |
| .last = 61, |
| .sz = 64, |
| .primes = { |
| BIT(2) | |
| BIT(3) | |
| BIT(5) | |
| BIT(7) | |
| BIT(11) | |
| BIT(13) | |
| BIT(17) | |
| BIT(19) | |
| BIT(23) | |
| BIT(29) | |
| BIT(31) | |
| BIT(37) | |
| BIT(41) | |
| BIT(43) | |
| BIT(47) | |
| BIT(53) | |
| BIT(59) | |
| BIT(61) |
| } |
| }; |
| #elif BITS_PER_LONG == 32 |
| static const struct primes small_primes = { |
| .last = 31, |
| .sz = 32, |
| .primes = { |
| BIT(2) | |
| BIT(3) | |
| BIT(5) | |
| BIT(7) | |
| BIT(11) | |
| BIT(13) | |
| BIT(17) | |
| BIT(19) | |
| BIT(23) | |
| BIT(29) | |
| BIT(31) |
| } |
| }; |
| #else |
| #error "unhandled BITS_PER_LONG" |
| #endif |
| |
| static DEFINE_MUTEX(lock); |
| static const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); |
| |
| static unsigned long selftest_max; |
| |
| static bool slow_is_prime_number(unsigned long x) |
| { |
| unsigned long y = int_sqrt(x); |
| |
| while (y > 1) { |
| if ((x % y) == 0) |
| break; |
| y--; |
| } |
| |
| return y == 1; |
| } |
| |
| static unsigned long slow_next_prime_number(unsigned long x) |
| { |
| while (x < ULONG_MAX && !slow_is_prime_number(++x)) |
| ; |
| |
| return x; |
| } |
| |
| static unsigned long clear_multiples(unsigned long x, |
| unsigned long *p, |
| unsigned long start, |
| unsigned long end) |
| { |
| unsigned long m; |
| |
| m = 2 * x; |
| if (m < start) |
| m = roundup(start, x); |
| |
| while (m < end) { |
| __clear_bit(m, p); |
| m += x; |
| } |
| |
| return x; |
| } |
| |
| static bool expand_to_next_prime(unsigned long x) |
| { |
| const struct primes *p; |
| struct primes *new; |
| unsigned long sz, y; |
| |
| /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, |
| * there is always at least one prime p between n and 2n - 2. |
| * Equivalently, if n > 1, then there is always at least one prime p |
| * such that n < p < 2n. |
| * |
| * http://mathworld.wolfram.com/BertrandsPostulate.html |
| * https://en.wikipedia.org/wiki/Bertrand's_postulate |
| */ |
| sz = 2 * x; |
| if (sz < x) |
| return false; |
| |
| sz = round_up(sz, BITS_PER_LONG); |
| new = kmalloc(sizeof(*new) + bitmap_size(sz), |
| GFP_KERNEL | __GFP_NOWARN); |
| if (!new) |
| return false; |
| |
| mutex_lock(&lock); |
| p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); |
| if (x < p->last) { |
| kfree(new); |
| goto unlock; |
| } |
| |
| /* Where memory permits, track the primes using the |
| * Sieve of Eratosthenes. The sieve is to remove all multiples of known |
| * primes from the set, what remains in the set is therefore prime. |
| */ |
| bitmap_fill(new->primes, sz); |
| bitmap_copy(new->primes, p->primes, p->sz); |
| for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) |
| new->last = clear_multiples(y, new->primes, p->sz, sz); |
| new->sz = sz; |
| |
| BUG_ON(new->last <= x); |
| |
| rcu_assign_pointer(primes, new); |
| if (p != &small_primes) |
| kfree_rcu((struct primes *)p, rcu); |
| |
| unlock: |
| mutex_unlock(&lock); |
| return true; |
| } |
| |
| static void free_primes(void) |
| { |
| const struct primes *p; |
| |
| mutex_lock(&lock); |
| p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); |
| if (p != &small_primes) { |
| rcu_assign_pointer(primes, &small_primes); |
| kfree_rcu((struct primes *)p, rcu); |
| } |
| mutex_unlock(&lock); |
| } |
| |
| /** |
| * next_prime_number - return the next prime number |
| * @x: the starting point for searching to test |
| * |
| * A prime number is an integer greater than 1 that is only divisible by |
| * itself and 1. The set of prime numbers is computed using the Sieve of |
| * Eratoshenes (on finding a prime, all multiples of that prime are removed |
| * from the set) enabling a fast lookup of the next prime number larger than |
| * @x. If the sieve fails (memory limitation), the search falls back to using |
| * slow trial-divison, up to the value of ULONG_MAX (which is reported as the |
| * final prime as a sentinel). |
| * |
| * Returns: the next prime number larger than @x |
| */ |
| unsigned long next_prime_number(unsigned long x) |
| { |
| const struct primes *p; |
| |
| rcu_read_lock(); |
| p = rcu_dereference(primes); |
| while (x >= p->last) { |
| rcu_read_unlock(); |
| |
| if (!expand_to_next_prime(x)) |
| return slow_next_prime_number(x); |
| |
| rcu_read_lock(); |
| p = rcu_dereference(primes); |
| } |
| x = find_next_bit(p->primes, p->last, x + 1); |
| rcu_read_unlock(); |
| |
| return x; |
| } |
| EXPORT_SYMBOL(next_prime_number); |
| |
| /** |
| * is_prime_number - test whether the given number is prime |
| * @x: the number to test |
| * |
| * A prime number is an integer greater than 1 that is only divisible by |
| * itself and 1. Internally a cache of prime numbers is kept (to speed up |
| * searching for sequential primes, see next_prime_number()), but if the number |
| * falls outside of that cache, its primality is tested using trial-divison. |
| * |
| * Returns: true if @x is prime, false for composite numbers. |
| */ |
| bool is_prime_number(unsigned long x) |
| { |
| const struct primes *p; |
| bool result; |
| |
| rcu_read_lock(); |
| p = rcu_dereference(primes); |
| while (x >= p->sz) { |
| rcu_read_unlock(); |
| |
| if (!expand_to_next_prime(x)) |
| return slow_is_prime_number(x); |
| |
| rcu_read_lock(); |
| p = rcu_dereference(primes); |
| } |
| result = test_bit(x, p->primes); |
| rcu_read_unlock(); |
| |
| return result; |
| } |
| EXPORT_SYMBOL(is_prime_number); |
| |
| static void dump_primes(void) |
| { |
| const struct primes *p; |
| char *buf; |
| |
| buf = kmalloc(PAGE_SIZE, GFP_KERNEL); |
| |
| rcu_read_lock(); |
| p = rcu_dereference(primes); |
| |
| if (buf) |
| bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); |
| pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s", |
| p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); |
| |
| rcu_read_unlock(); |
| |
| kfree(buf); |
| } |
| |
| static int selftest(unsigned long max) |
| { |
| unsigned long x, last; |
| |
| if (!max) |
| return 0; |
| |
| for (last = 0, x = 2; x < max; x++) { |
| bool slow = slow_is_prime_number(x); |
| bool fast = is_prime_number(x); |
| |
| if (slow != fast) { |
| pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!", |
| x, slow ? "yes" : "no", fast ? "yes" : "no"); |
| goto err; |
| } |
| |
| if (!slow) |
| continue; |
| |
| if (next_prime_number(last) != x) { |
| pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu", |
| last, x, next_prime_number(last)); |
| goto err; |
| } |
| last = x; |
| } |
| |
| pr_info("selftest(%lu) passed, last prime was %lu", x, last); |
| return 0; |
| |
| err: |
| dump_primes(); |
| return -EINVAL; |
| } |
| |
| static int __init primes_init(void) |
| { |
| return selftest(selftest_max); |
| } |
| |
| static void __exit primes_exit(void) |
| { |
| free_primes(); |
| } |
| |
| module_init(primes_init); |
| module_exit(primes_exit); |
| |
| module_param_named(selftest, selftest_max, ulong, 0400); |
| |
| MODULE_AUTHOR("Intel Corporation"); |
| MODULE_LICENSE("GPL"); |