blob: f8006f62c54677d058ee61ed679ffd51f9fd1c0e [file] [log] [blame]
/*
* fs/f2fs/node.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/mpage.h>
#include <linux/backing-dev.h>
#include <linux/blkdev.h>
#include <linux/pagevec.h>
#include <linux/swap.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include "trace.h"
#include <trace/events/f2fs.h>
#define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
static struct kmem_cache *nat_entry_slab;
static struct kmem_cache *free_nid_slab;
static struct kmem_cache *nat_entry_set_slab;
/*
* Check whether the given nid is within node id range.
*/
int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
{
if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_msg(sbi->sb, KERN_WARNING,
"%s: out-of-range nid=%x, run fsck to fix.",
__func__, nid);
return -EFSCORRUPTED;
}
return 0;
}
bool available_free_memory(struct f2fs_sb_info *sbi, int type)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct sysinfo val;
unsigned long avail_ram;
unsigned long mem_size = 0;
bool res = false;
si_meminfo(&val);
/* only uses low memory */
avail_ram = val.totalram - val.totalhigh;
/*
* give 25%, 25%, 50%, 50%, 50% memory for each components respectively
*/
if (type == FREE_NIDS) {
mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
sizeof(struct free_nid)) >> PAGE_SHIFT;
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
} else if (type == NAT_ENTRIES) {
mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
PAGE_SHIFT;
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
if (excess_cached_nats(sbi))
res = false;
} else if (type == DIRTY_DENTS) {
if (sbi->sb->s_bdi->wb.dirty_exceeded)
return false;
mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
} else if (type == INO_ENTRIES) {
int i;
for (i = 0; i <= UPDATE_INO; i++)
mem_size += sbi->im[i].ino_num *
sizeof(struct ino_entry);
mem_size >>= PAGE_SHIFT;
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
} else if (type == EXTENT_CACHE) {
mem_size = (atomic_read(&sbi->total_ext_tree) *
sizeof(struct extent_tree) +
atomic_read(&sbi->total_ext_node) *
sizeof(struct extent_node)) >> PAGE_SHIFT;
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
} else {
if (!sbi->sb->s_bdi->wb.dirty_exceeded)
return true;
}
return res;
}
static void clear_node_page_dirty(struct page *page)
{
struct address_space *mapping = page->mapping;
unsigned int long flags;
if (PageDirty(page)) {
spin_lock_irqsave(&mapping->tree_lock, flags);
radix_tree_tag_clear(&mapping->page_tree,
page_index(page),
PAGECACHE_TAG_DIRTY);
spin_unlock_irqrestore(&mapping->tree_lock, flags);
clear_page_dirty_for_io(page);
dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
}
ClearPageUptodate(page);
}
static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
{
pgoff_t index = current_nat_addr(sbi, nid);
return get_meta_page(sbi, index);
}
static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
{
struct page *src_page;
struct page *dst_page;
pgoff_t src_off;
pgoff_t dst_off;
void *src_addr;
void *dst_addr;
struct f2fs_nm_info *nm_i = NM_I(sbi);
src_off = current_nat_addr(sbi, nid);
dst_off = next_nat_addr(sbi, src_off);
/* get current nat block page with lock */
src_page = get_meta_page(sbi, src_off);
dst_page = grab_meta_page(sbi, dst_off);
f2fs_bug_on(sbi, PageDirty(src_page));
src_addr = page_address(src_page);
dst_addr = page_address(dst_page);
memcpy(dst_addr, src_addr, PAGE_SIZE);
set_page_dirty(dst_page);
f2fs_put_page(src_page, 1);
set_to_next_nat(nm_i, nid);
return dst_page;
}
static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
{
return radix_tree_lookup(&nm_i->nat_root, n);
}
static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
nid_t start, unsigned int nr, struct nat_entry **ep)
{
return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
}
static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
{
list_del(&e->list);
radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
nm_i->nat_cnt--;
kmem_cache_free(nat_entry_slab, e);
}
static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
struct nat_entry *ne)
{
nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
struct nat_entry_set *head;
head = radix_tree_lookup(&nm_i->nat_set_root, set);
if (!head) {
head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
INIT_LIST_HEAD(&head->entry_list);
INIT_LIST_HEAD(&head->set_list);
head->set = set;
head->entry_cnt = 0;
f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
}
if (get_nat_flag(ne, IS_DIRTY))
goto refresh_list;
nm_i->dirty_nat_cnt++;
head->entry_cnt++;
set_nat_flag(ne, IS_DIRTY, true);
refresh_list:
if (nat_get_blkaddr(ne) == NEW_ADDR)
list_del_init(&ne->list);
else
list_move_tail(&ne->list, &head->entry_list);
}
static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
struct nat_entry_set *set, struct nat_entry *ne)
{
list_move_tail(&ne->list, &nm_i->nat_entries);
set_nat_flag(ne, IS_DIRTY, false);
set->entry_cnt--;
nm_i->dirty_nat_cnt--;
}
static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
nid_t start, unsigned int nr, struct nat_entry_set **ep)
{
return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
start, nr);
}
int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
bool need = false;
down_read(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, nid);
if (e) {
if (!get_nat_flag(e, IS_CHECKPOINTED) &&
!get_nat_flag(e, HAS_FSYNCED_INODE))
need = true;
}
up_read(&nm_i->nat_tree_lock);
return need;
}
bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
bool is_cp = true;
down_read(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, nid);
if (e && !get_nat_flag(e, IS_CHECKPOINTED))
is_cp = false;
up_read(&nm_i->nat_tree_lock);
return is_cp;
}
bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
bool need_update = true;
down_read(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, ino);
if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
(get_nat_flag(e, IS_CHECKPOINTED) ||
get_nat_flag(e, HAS_FSYNCED_INODE)))
need_update = false;
up_read(&nm_i->nat_tree_lock);
return need_update;
}
static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
bool no_fail)
{
struct nat_entry *new;
if (no_fail) {
new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
} else {
new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
if (!new)
return NULL;
if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
kmem_cache_free(nat_entry_slab, new);
return NULL;
}
}
memset(new, 0, sizeof(struct nat_entry));
nat_set_nid(new, nid);
nat_reset_flag(new);
list_add_tail(&new->list, &nm_i->nat_entries);
nm_i->nat_cnt++;
return new;
}
static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
struct f2fs_nat_entry *ne)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
e = __lookup_nat_cache(nm_i, nid);
if (!e) {
e = grab_nat_entry(nm_i, nid, false);
if (e)
node_info_from_raw_nat(&e->ni, ne);
} else {
f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
nat_get_blkaddr(e) !=
le32_to_cpu(ne->block_addr) ||
nat_get_version(e) != ne->version);
}
}
static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
block_t new_blkaddr, bool fsync_done)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct nat_entry *e;
down_write(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, ni->nid);
if (!e) {
e = grab_nat_entry(nm_i, ni->nid, true);
copy_node_info(&e->ni, ni);
f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
} else if (new_blkaddr == NEW_ADDR) {
/*
* when nid is reallocated,
* previous nat entry can be remained in nat cache.
* So, reinitialize it with new information.
*/
copy_node_info(&e->ni, ni);
f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
}
/* sanity check */
f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
new_blkaddr == NULL_ADDR);
f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
new_blkaddr == NEW_ADDR);
f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
new_blkaddr == NEW_ADDR);
/* increment version no as node is removed */
if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
unsigned char version = nat_get_version(e);
nat_set_version(e, inc_node_version(version));
/* in order to reuse the nid */
if (nm_i->next_scan_nid > ni->nid)
nm_i->next_scan_nid = ni->nid;
}
/* change address */
nat_set_blkaddr(e, new_blkaddr);
if (!is_valid_data_blkaddr(sbi, new_blkaddr))
set_nat_flag(e, IS_CHECKPOINTED, false);
__set_nat_cache_dirty(nm_i, e);
/* update fsync_mark if its inode nat entry is still alive */
if (ni->nid != ni->ino)
e = __lookup_nat_cache(nm_i, ni->ino);
if (e) {
if (fsync_done && ni->nid == ni->ino)
set_nat_flag(e, HAS_FSYNCED_INODE, true);
set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
}
up_write(&nm_i->nat_tree_lock);
}
int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
int nr = nr_shrink;
if (!down_write_trylock(&nm_i->nat_tree_lock))
return 0;
while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
struct nat_entry *ne;
ne = list_first_entry(&nm_i->nat_entries,
struct nat_entry, list);
__del_from_nat_cache(nm_i, ne);
nr_shrink--;
}
up_write(&nm_i->nat_tree_lock);
return nr - nr_shrink;
}
/*
* This function always returns success
*/
void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = curseg->journal;
nid_t start_nid = START_NID(nid);
struct f2fs_nat_block *nat_blk;
struct page *page = NULL;
struct f2fs_nat_entry ne;
struct nat_entry *e;
pgoff_t index;
int i;
ni->nid = nid;
/* Check nat cache */
down_read(&nm_i->nat_tree_lock);
e = __lookup_nat_cache(nm_i, nid);
if (e) {
ni->ino = nat_get_ino(e);
ni->blk_addr = nat_get_blkaddr(e);
ni->version = nat_get_version(e);
up_read(&nm_i->nat_tree_lock);
return;
}
memset(&ne, 0, sizeof(struct f2fs_nat_entry));
/* Check current segment summary */
down_read(&curseg->journal_rwsem);
i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
if (i >= 0) {
ne = nat_in_journal(journal, i);
node_info_from_raw_nat(ni, &ne);
}
up_read(&curseg->journal_rwsem);
if (i >= 0) {
up_read(&nm_i->nat_tree_lock);
goto cache;
}
/* Fill node_info from nat page */
index = current_nat_addr(sbi, nid);
up_read(&nm_i->nat_tree_lock);
page = get_meta_page(sbi, index);
nat_blk = (struct f2fs_nat_block *)page_address(page);
ne = nat_blk->entries[nid - start_nid];
node_info_from_raw_nat(ni, &ne);
f2fs_put_page(page, 1);
cache:
/* cache nat entry */
down_write(&nm_i->nat_tree_lock);
cache_nat_entry(sbi, nid, &ne);
up_write(&nm_i->nat_tree_lock);
}
/*
* readahead MAX_RA_NODE number of node pages.
*/
static void ra_node_pages(struct page *parent, int start, int n)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
struct blk_plug plug;
int i, end;
nid_t nid;
blk_start_plug(&plug);
/* Then, try readahead for siblings of the desired node */
end = start + n;
end = min(end, NIDS_PER_BLOCK);
for (i = start; i < end; i++) {
nid = get_nid(parent, i, false);
ra_node_page(sbi, nid);
}
blk_finish_plug(&plug);
}
pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
{
const long direct_index = ADDRS_PER_INODE(dn->inode);
const long direct_blks = ADDRS_PER_BLOCK;
const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
unsigned int skipped_unit = ADDRS_PER_BLOCK;
int cur_level = dn->cur_level;
int max_level = dn->max_level;
pgoff_t base = 0;
if (!dn->max_level)
return pgofs + 1;
while (max_level-- > cur_level)
skipped_unit *= NIDS_PER_BLOCK;
switch (dn->max_level) {
case 3:
base += 2 * indirect_blks;
case 2:
base += 2 * direct_blks;
case 1:
base += direct_index;
break;
default:
f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
}
return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
}
/*
* The maximum depth is four.
* Offset[0] will have raw inode offset.
*/
static int get_node_path(struct inode *inode, long block,
int offset[4], unsigned int noffset[4])
{
const long direct_index = ADDRS_PER_INODE(inode);
const long direct_blks = ADDRS_PER_BLOCK;
const long dptrs_per_blk = NIDS_PER_BLOCK;
const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
int n = 0;
int level = 0;
noffset[0] = 0;
if (block < direct_index) {
offset[n] = block;
goto got;
}
block -= direct_index;
if (block < direct_blks) {
offset[n++] = NODE_DIR1_BLOCK;
noffset[n] = 1;
offset[n] = block;
level = 1;
goto got;
}
block -= direct_blks;
if (block < direct_blks) {
offset[n++] = NODE_DIR2_BLOCK;
noffset[n] = 2;
offset[n] = block;
level = 1;
goto got;
}
block -= direct_blks;
if (block < indirect_blks) {
offset[n++] = NODE_IND1_BLOCK;
noffset[n] = 3;
offset[n++] = block / direct_blks;
noffset[n] = 4 + offset[n - 1];
offset[n] = block % direct_blks;
level = 2;
goto got;
}
block -= indirect_blks;
if (block < indirect_blks) {
offset[n++] = NODE_IND2_BLOCK;
noffset[n] = 4 + dptrs_per_blk;
offset[n++] = block / direct_blks;
noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
offset[n] = block % direct_blks;
level = 2;
goto got;
}
block -= indirect_blks;
if (block < dindirect_blks) {
offset[n++] = NODE_DIND_BLOCK;
noffset[n] = 5 + (dptrs_per_blk * 2);
offset[n++] = block / indirect_blks;
noffset[n] = 6 + (dptrs_per_blk * 2) +
offset[n - 1] * (dptrs_per_blk + 1);
offset[n++] = (block / direct_blks) % dptrs_per_blk;
noffset[n] = 7 + (dptrs_per_blk * 2) +
offset[n - 2] * (dptrs_per_blk + 1) +
offset[n - 1];
offset[n] = block % direct_blks;
level = 3;
goto got;
} else {
return -E2BIG;
}
got:
return level;
}
/*
* Caller should call f2fs_put_dnode(dn).
* Also, it should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op() only if ro is not set RDONLY_NODE.
* In the case of RDONLY_NODE, we don't need to care about mutex.
*/
int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct page *npage[4];
struct page *parent = NULL;
int offset[4];
unsigned int noffset[4];
nid_t nids[4];
int level, i = 0;
int err = 0;
level = get_node_path(dn->inode, index, offset, noffset);
if (level < 0)
return level;
nids[0] = dn->inode->i_ino;
npage[0] = dn->inode_page;
if (!npage[0]) {
npage[0] = get_node_page(sbi, nids[0]);
if (IS_ERR(npage[0]))
return PTR_ERR(npage[0]);
}
/* if inline_data is set, should not report any block indices */
if (f2fs_has_inline_data(dn->inode) && index) {
err = -ENOENT;
f2fs_put_page(npage[0], 1);
goto release_out;
}
parent = npage[0];
if (level != 0)
nids[1] = get_nid(parent, offset[0], true);
dn->inode_page = npage[0];
dn->inode_page_locked = true;
/* get indirect or direct nodes */
for (i = 1; i <= level; i++) {
bool done = false;
if (!nids[i] && mode == ALLOC_NODE) {
/* alloc new node */
if (!alloc_nid(sbi, &(nids[i]))) {
err = -ENOSPC;
goto release_pages;
}
dn->nid = nids[i];
npage[i] = new_node_page(dn, noffset[i]);
if (IS_ERR(npage[i])) {
alloc_nid_failed(sbi, nids[i]);
err = PTR_ERR(npage[i]);
goto release_pages;
}
set_nid(parent, offset[i - 1], nids[i], i == 1);
alloc_nid_done(sbi, nids[i]);
done = true;
} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
npage[i] = get_node_page_ra(parent, offset[i - 1]);
if (IS_ERR(npage[i])) {
err = PTR_ERR(npage[i]);
goto release_pages;
}
done = true;
}
if (i == 1) {
dn->inode_page_locked = false;
unlock_page(parent);
} else {
f2fs_put_page(parent, 1);
}
if (!done) {
npage[i] = get_node_page(sbi, nids[i]);
if (IS_ERR(npage[i])) {
err = PTR_ERR(npage[i]);
f2fs_put_page(npage[0], 0);
goto release_out;
}
}
if (i < level) {
parent = npage[i];
nids[i + 1] = get_nid(parent, offset[i], false);
}
}
dn->nid = nids[level];
dn->ofs_in_node = offset[level];
dn->node_page = npage[level];
dn->data_blkaddr = datablock_addr(dn->inode,
dn->node_page, dn->ofs_in_node);
return 0;
release_pages:
f2fs_put_page(parent, 1);
if (i > 1)
f2fs_put_page(npage[0], 0);
release_out:
dn->inode_page = NULL;
dn->node_page = NULL;
if (err == -ENOENT) {
dn->cur_level = i;
dn->max_level = level;
dn->ofs_in_node = offset[level];
}
return err;
}
static void truncate_node(struct dnode_of_data *dn)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct node_info ni;
pgoff_t index;
get_node_info(sbi, dn->nid, &ni);
f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
/* Deallocate node address */
invalidate_blocks(sbi, ni.blk_addr);
dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
set_node_addr(sbi, &ni, NULL_ADDR, false);
if (dn->nid == dn->inode->i_ino) {
remove_orphan_inode(sbi, dn->nid);
dec_valid_inode_count(sbi);
f2fs_inode_synced(dn->inode);
}
clear_node_page_dirty(dn->node_page);
set_sbi_flag(sbi, SBI_IS_DIRTY);
index = dn->node_page->index;
f2fs_put_page(dn->node_page, 1);
invalidate_mapping_pages(NODE_MAPPING(sbi),
index, index);
dn->node_page = NULL;
trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
}
static int truncate_dnode(struct dnode_of_data *dn)
{
struct page *page;
if (dn->nid == 0)
return 1;
/* get direct node */
page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
return 1;
else if (IS_ERR(page))
return PTR_ERR(page);
/* Make dnode_of_data for parameter */
dn->node_page = page;
dn->ofs_in_node = 0;
truncate_data_blocks(dn);
truncate_node(dn);
return 1;
}
static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
int ofs, int depth)
{
struct dnode_of_data rdn = *dn;
struct page *page;
struct f2fs_node *rn;
nid_t child_nid;
unsigned int child_nofs;
int freed = 0;
int i, ret;
if (dn->nid == 0)
return NIDS_PER_BLOCK + 1;
trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
if (IS_ERR(page)) {
trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
return PTR_ERR(page);
}
ra_node_pages(page, ofs, NIDS_PER_BLOCK);
rn = F2FS_NODE(page);
if (depth < 3) {
for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
child_nid = le32_to_cpu(rn->in.nid[i]);
if (child_nid == 0)
continue;
rdn.nid = child_nid;
ret = truncate_dnode(&rdn);
if (ret < 0)
goto out_err;
if (set_nid(page, i, 0, false))
dn->node_changed = true;
}
} else {
child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
for (i = ofs; i < NIDS_PER_BLOCK; i++) {
child_nid = le32_to_cpu(rn->in.nid[i]);
if (child_nid == 0) {
child_nofs += NIDS_PER_BLOCK + 1;
continue;
}
rdn.nid = child_nid;
ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
if (ret == (NIDS_PER_BLOCK + 1)) {
if (set_nid(page, i, 0, false))
dn->node_changed = true;
child_nofs += ret;
} else if (ret < 0 && ret != -ENOENT) {
goto out_err;
}
}
freed = child_nofs;
}
if (!ofs) {
/* remove current indirect node */
dn->node_page = page;
truncate_node(dn);
freed++;
} else {
f2fs_put_page(page, 1);
}
trace_f2fs_truncate_nodes_exit(dn->inode, freed);
return freed;
out_err:
f2fs_put_page(page, 1);
trace_f2fs_truncate_nodes_exit(dn->inode, ret);
return ret;
}
static int truncate_partial_nodes(struct dnode_of_data *dn,
struct f2fs_inode *ri, int *offset, int depth)
{
struct page *pages[2];
nid_t nid[3];
nid_t child_nid;
int err = 0;
int i;
int idx = depth - 2;
nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
if (!nid[0])
return 0;
/* get indirect nodes in the path */
for (i = 0; i < idx + 1; i++) {
/* reference count'll be increased */
pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
if (IS_ERR(pages[i])) {
err = PTR_ERR(pages[i]);
idx = i - 1;
goto fail;
}
nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
}
ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
/* free direct nodes linked to a partial indirect node */
for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
child_nid = get_nid(pages[idx], i, false);
if (!child_nid)
continue;
dn->nid = child_nid;
err = truncate_dnode(dn);
if (err < 0)
goto fail;
if (set_nid(pages[idx], i, 0, false))
dn->node_changed = true;
}
if (offset[idx + 1] == 0) {
dn->node_page = pages[idx];
dn->nid = nid[idx];
truncate_node(dn);
} else {
f2fs_put_page(pages[idx], 1);
}
offset[idx]++;
offset[idx + 1] = 0;
idx--;
fail:
for (i = idx; i >= 0; i--)
f2fs_put_page(pages[i], 1);
trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
return err;
}
/*
* All the block addresses of data and nodes should be nullified.
*/
int truncate_inode_blocks(struct inode *inode, pgoff_t from)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
int err = 0, cont = 1;
int level, offset[4], noffset[4];
unsigned int nofs = 0;
struct f2fs_inode *ri;
struct dnode_of_data dn;
struct page *page;
trace_f2fs_truncate_inode_blocks_enter(inode, from);
level = get_node_path(inode, from, offset, noffset);
if (level < 0)
return level;
page = get_node_page(sbi, inode->i_ino);
if (IS_ERR(page)) {
trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
return PTR_ERR(page);
}
set_new_dnode(&dn, inode, page, NULL, 0);
unlock_page(page);
ri = F2FS_INODE(page);
switch (level) {
case 0:
case 1:
nofs = noffset[1];
break;
case 2:
nofs = noffset[1];
if (!offset[level - 1])
goto skip_partial;
err = truncate_partial_nodes(&dn, ri, offset, level);
if (err < 0 && err != -ENOENT)
goto fail;
nofs += 1 + NIDS_PER_BLOCK;
break;
case 3:
nofs = 5 + 2 * NIDS_PER_BLOCK;
if (!offset[level - 1])
goto skip_partial;
err = truncate_partial_nodes(&dn, ri, offset, level);
if (err < 0 && err != -ENOENT)
goto fail;
break;
default:
BUG();
}
skip_partial:
while (cont) {
dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
switch (offset[0]) {
case NODE_DIR1_BLOCK:
case NODE_DIR2_BLOCK:
err = truncate_dnode(&dn);
break;
case NODE_IND1_BLOCK:
case NODE_IND2_BLOCK:
err = truncate_nodes(&dn, nofs, offset[1], 2);
break;
case NODE_DIND_BLOCK:
err = truncate_nodes(&dn, nofs, offset[1], 3);
cont = 0;
break;
default:
BUG();
}
if (err < 0 && err != -ENOENT)
goto fail;
if (offset[1] == 0 &&
ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
lock_page(page);
BUG_ON(page->mapping != NODE_MAPPING(sbi));
f2fs_wait_on_page_writeback(page, NODE, true);
ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
set_page_dirty(page);
unlock_page(page);
}
offset[1] = 0;
offset[0]++;
nofs += err;
}
fail:
f2fs_put_page(page, 0);
trace_f2fs_truncate_inode_blocks_exit(inode, err);
return err > 0 ? 0 : err;
}
int truncate_xattr_node(struct inode *inode, struct page *page)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t nid = F2FS_I(inode)->i_xattr_nid;
struct dnode_of_data dn;
struct page *npage;
if (!nid)
return 0;
npage = get_node_page(sbi, nid);
if (IS_ERR(npage))
return PTR_ERR(npage);
f2fs_i_xnid_write(inode, 0);
set_new_dnode(&dn, inode, page, npage, nid);
if (page)
dn.inode_page_locked = true;
truncate_node(&dn);
return 0;
}
/*
* Caller should grab and release a rwsem by calling f2fs_lock_op() and
* f2fs_unlock_op().
*/
int remove_inode_page(struct inode *inode)
{
struct dnode_of_data dn;
int err;
set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
if (err)
return err;
err = truncate_xattr_node(inode, dn.inode_page);
if (err) {
f2fs_put_dnode(&dn);
return err;
}
/* remove potential inline_data blocks */
if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
S_ISLNK(inode->i_mode))
truncate_data_blocks_range(&dn, 1);
/* 0 is possible, after f2fs_new_inode() has failed */
f2fs_bug_on(F2FS_I_SB(inode),
inode->i_blocks != 0 && inode->i_blocks != 8);
/* will put inode & node pages */
truncate_node(&dn);
return 0;
}
struct page *new_inode_page(struct inode *inode)
{
struct dnode_of_data dn;
/* allocate inode page for new inode */
set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
/* caller should f2fs_put_page(page, 1); */
return new_node_page(&dn, 0);
}
struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
struct node_info new_ni;
struct page *page;
int err;
if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
return ERR_PTR(-EPERM);
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
if (!page)
return ERR_PTR(-ENOMEM);
if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
goto fail;
#ifdef CONFIG_F2FS_CHECK_FS
get_node_info(sbi, dn->nid, &new_ni);
f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
#endif
new_ni.nid = dn->nid;
new_ni.ino = dn->inode->i_ino;
new_ni.blk_addr = NULL_ADDR;
new_ni.flag = 0;
new_ni.version = 0;
set_node_addr(sbi, &new_ni, NEW_ADDR, false);
f2fs_wait_on_page_writeback(page, NODE, true);
fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
set_cold_node(dn->inode, page);
if (!PageUptodate(page))
SetPageUptodate(page);
if (set_page_dirty(page))
dn->node_changed = true;
if (f2fs_has_xattr_block(ofs))
f2fs_i_xnid_write(dn->inode, dn->nid);
if (ofs == 0)
inc_valid_inode_count(sbi);
return page;
fail:
clear_node_page_dirty(page);
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
/*
* Caller should do after getting the following values.
* 0: f2fs_put_page(page, 0)
* LOCKED_PAGE or error: f2fs_put_page(page, 1)
*/
static int read_node_page(struct page *page, int op_flags)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
struct node_info ni;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = NODE,
.op = REQ_OP_READ,
.op_flags = op_flags,
.page = page,
.encrypted_page = NULL,
};
if (PageUptodate(page))
return LOCKED_PAGE;
get_node_info(sbi, page->index, &ni);
if (unlikely(ni.blk_addr == NULL_ADDR)) {
ClearPageUptodate(page);
return -ENOENT;
}
fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
return f2fs_submit_page_bio(&fio);
}
/*
* Readahead a node page
*/
void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
{
struct page *apage;
int err;
if (!nid)
return;
if (check_nid_range(sbi, nid))
return;
rcu_read_lock();
apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
rcu_read_unlock();
if (apage)
return;
apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
if (!apage)
return;
err = read_node_page(apage, REQ_RAHEAD);
f2fs_put_page(apage, err ? 1 : 0);
}
static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
struct page *parent, int start)
{
struct page *page;
int err;
if (!nid)
return ERR_PTR(-ENOENT);
if (check_nid_range(sbi, nid))
return ERR_PTR(-EINVAL);
repeat:
page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
if (!page)
return ERR_PTR(-ENOMEM);
err = read_node_page(page, 0);
if (err < 0) {
f2fs_put_page(page, 1);
return ERR_PTR(err);
} else if (err == LOCKED_PAGE) {
err = 0;
goto page_hit;
}
if (parent)
ra_node_pages(parent, start + 1, MAX_RA_NODE);
lock_page(page);
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
f2fs_put_page(page, 1);
goto repeat;
}
if (unlikely(!PageUptodate(page))) {
err = -EIO;
goto out_err;
}
if (!f2fs_inode_chksum_verify(sbi, page)) {
err = -EFSBADCRC;
goto out_err;
}
page_hit:
if(unlikely(nid != nid_of_node(page))) {
f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
"nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
nid, nid_of_node(page), ino_of_node(page),
ofs_of_node(page), cpver_of_node(page),
next_blkaddr_of_node(page));
err = -EINVAL;
out_err:
ClearPageUptodate(page);
f2fs_put_page(page, 1);
return ERR_PTR(err);
}
return page;
}
struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
{
return __get_node_page(sbi, nid, NULL, 0);
}
struct page *get_node_page_ra(struct page *parent, int start)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
nid_t nid = get_nid(parent, start, false);
return __get_node_page(sbi, nid, parent, start);
}
static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
{
struct inode *inode;
struct page *page;
int ret;
/* should flush inline_data before evict_inode */
inode = ilookup(sbi->sb, ino);
if (!inode)
return;
page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
if (!page)
goto iput_out;
if (!PageUptodate(page))
goto page_out;
if (!PageDirty(page))
goto page_out;
if (!clear_page_dirty_for_io(page))
goto page_out;
ret = f2fs_write_inline_data(inode, page);
inode_dec_dirty_pages(inode);
remove_dirty_inode(inode);
if (ret)
set_page_dirty(page);
page_out:
f2fs_put_page(page, 1);
iput_out:
iput(inode);
}
void move_node_page(struct page *node_page, int gc_type)
{
if (gc_type == FG_GC) {
struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
struct writeback_control wbc = {
.sync_mode = WB_SYNC_ALL,
.nr_to_write = 1,
.for_reclaim = 0,
};
set_page_dirty(node_page);
f2fs_wait_on_page_writeback(node_page, NODE, true);
f2fs_bug_on(sbi, PageWriteback(node_page));
if (!clear_page_dirty_for_io(node_page))
goto out_page;
if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
unlock_page(node_page);
goto release_page;
} else {
/* set page dirty and write it */
if (!PageWriteback(node_page))
set_page_dirty(node_page);
}
out_page:
unlock_page(node_page);
release_page:
f2fs_put_page(node_page, 0);
}
static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
{
pgoff_t index, end;
struct pagevec pvec;
struct page *last_page = NULL;
pagevec_init(&pvec, 0);
index = 0;
end = ULONG_MAX;
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_put_page(last_page, 0);
pagevec_release(&pvec);
return ERR_PTR(-EIO);
}
if (!IS_DNODE(page) || !is_cold_node(page))
continue;
if (ino_of_node(page) != ino)
continue;
lock_page(page);
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
continue_unlock:
unlock_page(page);
continue;
}
if (ino_of_node(page) != ino)
goto continue_unlock;
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
if (last_page)
f2fs_put_page(last_page, 0);
get_page(page);
last_page = page;
unlock_page(page);
}
pagevec_release(&pvec);
cond_resched();
}
return last_page;
}
static int __write_node_page(struct page *page, bool atomic, bool *submitted,
struct writeback_control *wbc, bool do_balance,
enum iostat_type io_type)
{
struct f2fs_sb_info *sbi = F2FS_P_SB(page);
nid_t nid;
struct node_info ni;
struct f2fs_io_info fio = {
.sbi = sbi,
.type = NODE,
.op = REQ_OP_WRITE,
.op_flags = wbc_to_write_flags(wbc),
.page = page,
.encrypted_page = NULL,
.submitted = false,
.io_type = io_type,
};
trace_f2fs_writepage(page, NODE);
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto redirty_out;
if (unlikely(f2fs_cp_error(sbi)))
goto redirty_out;
/* get old block addr of this node page */
nid = nid_of_node(page);
f2fs_bug_on(sbi, page->index != nid);
if (wbc->for_reclaim) {
if (!down_read_trylock(&sbi->node_write))
goto redirty_out;
} else {
down_read(&sbi->node_write);
}
get_node_info(sbi, nid, &ni);
/* This page is already truncated */
if (unlikely(ni.blk_addr == NULL_ADDR)) {
ClearPageUptodate(page);
dec_page_count(sbi, F2FS_DIRTY_NODES);
up_read(&sbi->node_write);
unlock_page(page);
return 0;
}
if (__is_valid_data_blkaddr(ni.blk_addr) &&
!f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
up_read(&sbi->node_write);
goto redirty_out;
}
if (atomic && !test_opt(sbi, NOBARRIER))
fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
set_page_writeback(page);
fio.old_blkaddr = ni.blk_addr;
write_node_page(nid, &fio);
set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
dec_page_count(sbi, F2FS_DIRTY_NODES);
up_read(&sbi->node_write);
if (wbc->for_reclaim) {
f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
page->index, NODE);
submitted = NULL;
}
unlock_page(page);
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_submit_merged_write(sbi, NODE);
submitted = NULL;
}
if (submitted)
*submitted = fio.submitted;
if (do_balance)
f2fs_balance_fs(sbi, false);
return 0;
redirty_out:
redirty_page_for_writepage(wbc, page);
return AOP_WRITEPAGE_ACTIVATE;
}
static int f2fs_write_node_page(struct page *page,
struct writeback_control *wbc)
{
return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
}
int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
struct writeback_control *wbc, bool atomic)
{
pgoff_t index, end;
pgoff_t last_idx = ULONG_MAX;
struct pagevec pvec;
int ret = 0;
struct page *last_page = NULL;
bool marked = false;
nid_t ino = inode->i_ino;
if (atomic) {
last_page = last_fsync_dnode(sbi, ino);
if (IS_ERR_OR_NULL(last_page))
return PTR_ERR_OR_ZERO(last_page);
}
retry:
pagevec_init(&pvec, 0);
index = 0;
end = ULONG_MAX;
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
bool submitted = false;
if (unlikely(f2fs_cp_error(sbi))) {
f2fs_put_page(last_page, 0);
pagevec_release(&pvec);
ret = -EIO;
goto out;
}
if (!IS_DNODE(page) || !is_cold_node(page))
continue;
if (ino_of_node(page) != ino)
continue;
lock_page(page);
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
continue_unlock:
unlock_page(page);
continue;
}
if (ino_of_node(page) != ino)
goto continue_unlock;
if (!PageDirty(page) && page != last_page) {
/* someone wrote it for us */
goto continue_unlock;
}
f2fs_wait_on_page_writeback(page, NODE, true);
BUG_ON(PageWriteback(page));
set_fsync_mark(page, 0);
set_dentry_mark(page, 0);
if (!atomic || page == last_page) {
set_fsync_mark(page, 1);
if (IS_INODE(page)) {
if (is_inode_flag_set(inode,
FI_DIRTY_INODE))
update_inode(inode, page);
set_dentry_mark(page,
need_dentry_mark(sbi, ino));
}
/* may be written by other thread */
if (!PageDirty(page))
set_page_dirty(page);
}
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
ret = __write_node_page(page, atomic &&
page == last_page,
&submitted, wbc, true,
FS_NODE_IO);
if (ret) {
unlock_page(page);
f2fs_put_page(last_page, 0);
break;
} else if (submitted) {
last_idx = page->index;
}
if (page == last_page) {
f2fs_put_page(page, 0);
marked = true;
break;
}
}
pagevec_release(&pvec);
cond_resched();
if (ret || marked)
break;
}
if (!ret && atomic && !marked) {
f2fs_msg(sbi->sb, KERN_DEBUG,
"Retry to write fsync mark: ino=%u, idx=%lx",
ino, last_page->index);
lock_page(last_page);
f2fs_wait_on_page_writeback(last_page, NODE, true);
set_page_dirty(last_page);
unlock_page(last_page);
goto retry;
}
out:
if (last_idx != ULONG_MAX)
f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
return ret ? -EIO: 0;
}
int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
bool do_balance, enum iostat_type io_type)
{
pgoff_t index, end;
struct pagevec pvec;
int step = 0;
int nwritten = 0;
int ret = 0;
pagevec_init(&pvec, 0);
next_step:
index = 0;
end = ULONG_MAX;
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
PAGECACHE_TAG_DIRTY,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
bool submitted = false;
if (unlikely(f2fs_cp_error(sbi))) {
pagevec_release(&pvec);
ret = -EIO;
goto out;
}
/*
* flushing sequence with step:
* 0. indirect nodes
* 1. dentry dnodes
* 2. file dnodes
*/
if (step == 0 && IS_DNODE(page))
continue;
if (step == 1 && (!IS_DNODE(page) ||
is_cold_node(page)))
continue;
if (step == 2 && (!IS_DNODE(page) ||
!is_cold_node(page)))
continue;
lock_node:
if (wbc->sync_mode == WB_SYNC_ALL)
lock_page(page);
else if (!trylock_page(page))
continue;
if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
continue_unlock:
unlock_page(page);
continue;
}
if (!PageDirty(page)) {
/* someone wrote it for us */
goto continue_unlock;
}
/* flush inline_data */
if (is_inline_node(page)) {
clear_inline_node(page);
unlock_page(page);
flush_inline_data(sbi, ino_of_node(page));
goto lock_node;
}
f2fs_wait_on_page_writeback(page, NODE, true);
BUG_ON(PageWriteback(page));
if (!clear_page_dirty_for_io(page))
goto continue_unlock;
set_fsync_mark(page, 0);
set_dentry_mark(page, 0);
ret = __write_node_page(page, false, &submitted,
wbc, do_balance, io_type);
if (ret)
unlock_page(page);
else if (submitted)
nwritten++;
if (--wbc->nr_to_write == 0)
break;
}
pagevec_release(&pvec);
cond_resched();
if (wbc->nr_to_write == 0) {
step = 2;
break;
}
}
if (step < 2) {
step++;
goto next_step;
}
out:
if (nwritten)
f2fs_submit_merged_write(sbi, NODE);
return ret;
}
int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
{
pgoff_t index = 0, end = ULONG_MAX;
struct pagevec pvec;
int ret2, ret = 0;
pagevec_init(&pvec, 0);
while (index <= end) {
int i, nr_pages;
nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
PAGECACHE_TAG_WRITEBACK,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/* until radix tree lookup accepts end_index */
if (unlikely(page->index > end))
continue;
if (ino && ino_of_node(page) == ino) {
f2fs_wait_on_page_writeback(page, NODE, true);
if (TestClearPageError(page))
ret = -EIO;
}
}
pagevec_release(&pvec);
cond_resched();
}
ret2 = filemap_check_errors(NODE_MAPPING(sbi));
if (!ret)
ret = ret2;
return ret;
}
static int f2fs_write_node_pages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
struct blk_plug plug;
long diff;
if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
goto skip_write;
/* balancing f2fs's metadata in background */
f2fs_balance_fs_bg(sbi);
/* collect a number of dirty node pages and write together */
if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
goto skip_write;
trace_f2fs_writepages(mapping->host, wbc, NODE);
diff = nr_pages_to_write(sbi, NODE, wbc);
wbc->sync_mode = WB_SYNC_NONE;
blk_start_plug(&plug);
sync_node_pages(sbi, wbc, true, FS_NODE_IO);
blk_finish_plug(&plug);
wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
return 0;
skip_write:
wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
trace_f2fs_writepages(mapping->host, wbc, NODE);
return 0;
}
static int f2fs_set_node_page_dirty(struct page *page)
{
trace_f2fs_set_page_dirty(page, NODE);
if (!PageUptodate(page))
SetPageUptodate(page);
if (!PageDirty(page)) {
f2fs_set_page_dirty_nobuffers(page);
inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
SetPagePrivate(page);
f2fs_trace_pid(page);
return 1;
}
return 0;
}
/*
* Structure of the f2fs node operations
*/
const struct address_space_operations f2fs_node_aops = {
.writepage = f2fs_write_node_page,
.writepages = f2fs_write_node_pages,
.set_page_dirty = f2fs_set_node_page_dirty,
.invalidatepage = f2fs_invalidate_page,
.releasepage = f2fs_release_page,
#ifdef CONFIG_MIGRATION
.migratepage = f2fs_migrate_page,
#endif
};
static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
nid_t n)
{
return radix_tree_lookup(&nm_i->free_nid_root, n);
}
static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
struct free_nid *i, enum nid_list list, bool new)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
if (new) {
int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
if (err)
return err;
}
f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
i->state != NID_ALLOC);
nm_i->nid_cnt[list]++;
list_add_tail(&i->list, &nm_i->nid_list[list]);
return 0;
}
static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
struct free_nid *i, enum nid_list list, bool reuse)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
i->state != NID_ALLOC);
nm_i->nid_cnt[list]--;
list_del(&i->list);
if (!reuse)
radix_tree_delete(&nm_i->free_nid_root, i->nid);
}
/* return if the nid is recognized as free */
static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i, *e;
struct nat_entry *ne;
int err = -EINVAL;
bool ret = false;
/* 0 nid should not be used */
if (unlikely(nid == 0))
return false;
i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
i->nid = nid;
i->state = NID_NEW;
if (radix_tree_preload(GFP_NOFS))
goto err;
spin_lock(&nm_i->nid_list_lock);
if (build) {
/*
* Thread A Thread B
* - f2fs_create
* - f2fs_new_inode
* - alloc_nid
* - __insert_nid_to_list(ALLOC_NID_LIST)
* - f2fs_balance_fs_bg
* - build_free_nids
* - __build_free_nids
* - scan_nat_page
* - add_free_nid
* - __lookup_nat_cache
* - f2fs_add_link
* - init_inode_metadata
* - new_inode_page
* - new_node_page
* - set_node_addr
* - alloc_nid_done
* - __remove_nid_from_list(ALLOC_NID_LIST)
* - __insert_nid_to_list(FREE_NID_LIST)
*/
ne = __lookup_nat_cache(nm_i, nid);
if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
nat_get_blkaddr(ne) != NULL_ADDR))
goto err_out;
e = __lookup_free_nid_list(nm_i, nid);
if (e) {
if (e->state == NID_NEW)
ret = true;
goto err_out;
}
}
ret = true;
err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
err_out:
spin_unlock(&nm_i->nid_list_lock);
radix_tree_preload_end();
err:
if (err)
kmem_cache_free(free_nid_slab, i);
return ret;
}
static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
bool need_free = false;
spin_lock(&nm_i->nid_list_lock);
i = __lookup_free_nid_list(nm_i, nid);
if (i && i->state == NID_NEW) {
__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
need_free = true;
}
spin_unlock(&nm_i->nid_list_lock);
if (need_free)
kmem_cache_free(free_nid_slab, i);
}
static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
bool set, bool build)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
unsigned int nid_ofs = nid - START_NID(nid);
if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
return;
if (set)
__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
else
__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
if (set)
nm_i->free_nid_count[nat_ofs]++;
else if (!build)
nm_i->free_nid_count[nat_ofs]--;
}
static void scan_nat_page(struct f2fs_sb_info *sbi,
struct page *nat_page, nid_t start_nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct f2fs_nat_block *nat_blk = page_address(nat_page);
block_t blk_addr;
unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
int i;
if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
return;
__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
i = start_nid % NAT_ENTRY_PER_BLOCK;
for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
bool freed = false;
if (unlikely(start_nid >= nm_i->max_nid))
break;
blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
if (blk_addr == NULL_ADDR)
freed = add_free_nid(sbi, start_nid, true);
spin_lock(&NM_I(sbi)->nid_list_lock);
update_free_nid_bitmap(sbi, start_nid, freed, true);
spin_unlock(&NM_I(sbi)->nid_list_lock);
}
}
static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = curseg->journal;
unsigned int i, idx;
down_read(&nm_i->nat_tree_lock);
for (i = 0; i < nm_i->nat_blocks; i++) {
if (!test_bit_le(i, nm_i->nat_block_bitmap))
continue;
if (!nm_i->free_nid_count[i])
continue;
for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
nid_t nid;
if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
continue;
nid = i * NAT_ENTRY_PER_BLOCK + idx;
add_free_nid(sbi, nid, true);
if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
goto out;
}
}
out:
down_read(&curseg->journal_rwsem);
for (i = 0; i < nats_in_cursum(journal); i++) {
block_t addr;
nid_t nid;
addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
nid = le32_to_cpu(nid_in_journal(journal, i));
if (addr == NULL_ADDR)
add_free_nid(sbi, nid, true);
else
remove_free_nid(sbi, nid);
}
up_read(&curseg->journal_rwsem);
up_read(&nm_i->nat_tree_lock);
}
static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = curseg->journal;
int i = 0;
nid_t nid = nm_i->next_scan_nid;
if (unlikely(nid >= nm_i->max_nid))
nid = 0;
if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
/* Enough entries */
if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
return;
if (!sync && !available_free_memory(sbi, FREE_NIDS))
return;
if (!mount) {
/* try to find free nids in free_nid_bitmap */
scan_free_nid_bits(sbi);
if (nm_i->nid_cnt[FREE_NID_LIST])
return;
}
/* readahead nat pages to be scanned */
ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
META_NAT, true);
down_read(&nm_i->nat_tree_lock);
while (1) {
struct page *page = get_current_nat_page(sbi, nid);
scan_nat_page(sbi, page, nid);
f2fs_put_page(page, 1);
nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
if (unlikely(nid >= nm_i->max_nid))
nid = 0;
if (++i >= FREE_NID_PAGES)
break;
}
/* go to the next free nat pages to find free nids abundantly */
nm_i->next_scan_nid = nid;
/* find free nids from current sum_pages */
down_read(&curseg->journal_rwsem);
for (i = 0; i < nats_in_cursum(journal); i++) {
block_t addr;
addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
nid = le32_to_cpu(nid_in_journal(journal, i));
if (addr == NULL_ADDR)
add_free_nid(sbi, nid, true);
else
remove_free_nid(sbi, nid);
}
up_read(&curseg->journal_rwsem);
up_read(&nm_i->nat_tree_lock);
ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
nm_i->ra_nid_pages, META_NAT, false);
}
void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
{
mutex_lock(&NM_I(sbi)->build_lock);
__build_free_nids(sbi, sync, mount);
mutex_unlock(&NM_I(sbi)->build_lock);
}
/*
* If this function returns success, caller can obtain a new nid
* from second parameter of this function.
* The returned nid could be used ino as well as nid when inode is created.
*/
bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i = NULL;
retry:
#ifdef CONFIG_F2FS_FAULT_INJECTION
if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
f2fs_show_injection_info(FAULT_ALLOC_NID);
return false;
}
#endif
spin_lock(&nm_i->nid_list_lock);
if (unlikely(nm_i->available_nids == 0)) {
spin_unlock(&nm_i->nid_list_lock);
return false;
}
/* We should not use stale free nids created by build_free_nids */
if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
struct free_nid, list);
*nid = i->nid;
__remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
i->state = NID_ALLOC;
__insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
nm_i->available_nids--;
update_free_nid_bitmap(sbi, *nid, false, false);
spin_unlock(&nm_i->nid_list_lock);
return true;
}
spin_unlock(&nm_i->nid_list_lock);
/* Let's scan nat pages and its caches to get free nids */
build_free_nids(sbi, true, false);
goto retry;
}
/*
* alloc_nid() should be called prior to this function.
*/
void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
spin_lock(&nm_i->nid_list_lock);
i = __lookup_free_nid_list(nm_i, nid);
f2fs_bug_on(sbi, !i);
__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
spin_unlock(&nm_i->nid_list_lock);
kmem_cache_free(free_nid_slab, i);
}
/*
* alloc_nid() should be called prior to this function.
*/
void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i;
bool need_free = false;
if (!nid)
return;
spin_lock(&nm_i->nid_list_lock);
i = __lookup_free_nid_list(nm_i, nid);
f2fs_bug_on(sbi, !i);
if (!available_free_memory(sbi, FREE_NIDS)) {
__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
need_free = true;
} else {
__remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
i->state = NID_NEW;
__insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
}
nm_i->available_nids++;
update_free_nid_bitmap(sbi, nid, true, false);
spin_unlock(&nm_i->nid_list_lock);
if (need_free)
kmem_cache_free(free_nid_slab, i);
}
int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i, *next;
int nr = nr_shrink;
if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
return 0;
if (!mutex_trylock(&nm_i->build_lock))
return 0;
spin_lock(&nm_i->nid_list_lock);
list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
list) {
if (nr_shrink <= 0 ||
nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
break;
__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
kmem_cache_free(free_nid_slab, i);
nr_shrink--;
}
spin_unlock(&nm_i->nid_list_lock);
mutex_unlock(&nm_i->build_lock);
return nr - nr_shrink;
}
void recover_inline_xattr(struct inode *inode, struct page *page)
{
void *src_addr, *dst_addr;
size_t inline_size;
struct page *ipage;
struct f2fs_inode *ri;
ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
ri = F2FS_INODE(page);
if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
clear_inode_flag(inode, FI_INLINE_XATTR);
goto update_inode;
}
dst_addr = inline_xattr_addr(ipage);
src_addr = inline_xattr_addr(page);
inline_size = inline_xattr_size(inode);
f2fs_wait_on_page_writeback(ipage, NODE, true);
memcpy(dst_addr, src_addr, inline_size);
update_inode:
update_inode(inode, ipage);
f2fs_put_page(ipage, 1);
}
int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
nid_t new_xnid;
struct dnode_of_data dn;
struct node_info ni;
struct page *xpage;
if (!prev_xnid)
goto recover_xnid;
/* 1: invalidate the previous xattr nid */
get_node_info(sbi, prev_xnid, &ni);
f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
invalidate_blocks(sbi, ni.blk_addr);
dec_valid_node_count(sbi, inode, false);
set_node_addr(sbi, &ni, NULL_ADDR, false);
recover_xnid:
/* 2: update xattr nid in inode */
if (!alloc_nid(sbi, &new_xnid))
return -ENOSPC;
set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
if (IS_ERR(xpage)) {
alloc_nid_failed(sbi, new_xnid);
return PTR_ERR(xpage);
}
alloc_nid_done(sbi, new_xnid);
update_inode_page(inode);
/* 3: update and set xattr node page dirty */
memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
set_page_dirty(xpage);
f2fs_put_page(xpage, 1);
return 0;
}
int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *src, *dst;
nid_t ino = ino_of_node(page);
struct node_info old_ni, new_ni;
struct page *ipage;
get_node_info(sbi, ino, &old_ni);
if (unlikely(old_ni.blk_addr != NULL_ADDR))
return -EINVAL;
retry:
ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
if (!ipage) {
congestion_wait(BLK_RW_ASYNC, HZ/50);
goto retry;
}
/* Should not use this inode from free nid list */
remove_free_nid(sbi, ino);
if (!PageUptodate(ipage))
SetPageUptodate(ipage);
fill_node_footer(ipage, ino, ino, 0, true);
src = F2FS_INODE(page);
dst = F2FS_INODE(ipage);
memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
dst->i_size = 0;
dst->i_blocks = cpu_to_le64(1);
dst->i_links = cpu_to_le32(1);
dst->i_xattr_nid = 0;
dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
if (dst->i_inline & F2FS_EXTRA_ATTR) {
dst->i_extra_isize = src->i_extra_isize;
if (f2fs_sb_has_project_quota(sbi->sb) &&
F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
i_projid))
dst->i_projid = src->i_projid;
}
new_ni = old_ni;
new_ni.ino = ino;
if (unlikely(inc_valid_node_count(sbi, NULL, true)))
WARN_ON(1);
set_node_addr(sbi, &new_ni, NEW_ADDR, false);
inc_valid_inode_count(sbi);
set_page_dirty(ipage);
f2fs_put_page(ipage, 1);
return 0;
}
int restore_node_summary(struct f2fs_sb_info *sbi,
unsigned int segno, struct f2fs_summary_block *sum)
{
struct f2fs_node *rn;
struct f2fs_summary *sum_entry;
block_t addr;
int i, idx, last_offset, nrpages;
/* scan the node segment */
last_offset = sbi->blocks_per_seg;
addr = START_BLOCK(sbi, segno);
sum_entry = &sum->entries[0];
for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
nrpages = min(last_offset - i, BIO_MAX_PAGES);
/* readahead node pages */
ra_meta_pages(sbi, addr, nrpages, META_POR, true);
for (idx = addr; idx < addr + nrpages; idx++) {
struct page *page = get_tmp_page(sbi, idx);
rn = F2FS_NODE(page);
sum_entry->nid = rn->footer.nid;
sum_entry->version = 0;
sum_entry->ofs_in_node = 0;
sum_entry++;
f2fs_put_page(page, 1);
}
invalidate_mapping_pages(META_MAPPING(sbi), addr,
addr + nrpages);
}
return 0;
}
static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = curseg->journal;
int i;
down_write(&curseg->journal_rwsem);
for (i = 0; i < nats_in_cursum(journal); i++) {
struct nat_entry *ne;
struct f2fs_nat_entry raw_ne;
nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
raw_ne = nat_in_journal(journal, i);
ne = __lookup_nat_cache(nm_i, nid);
if (!ne) {
ne = grab_nat_entry(nm_i, nid, true);
node_info_from_raw_nat(&ne->ni, &raw_ne);
}
/*
* if a free nat in journal has not been used after last
* checkpoint, we should remove it from available nids,
* since later we will add it again.
*/
if (!get_nat_flag(ne, IS_DIRTY) &&
le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
spin_lock(&nm_i->nid_list_lock);
nm_i->available_nids--;
spin_unlock(&nm_i->nid_list_lock);
}
__set_nat_cache_dirty(nm_i, ne);
}
update_nats_in_cursum(journal, -i);
up_write(&curseg->journal_rwsem);
}
static void __adjust_nat_entry_set(struct nat_entry_set *nes,
struct list_head *head, int max)
{
struct nat_entry_set *cur;
if (nes->entry_cnt >= max)
goto add_out;
list_for_each_entry(cur, head, set_list) {
if (cur->entry_cnt >= nes->entry_cnt) {
list_add(&nes->set_list, cur->set_list.prev);
return;
}
}
add_out:
list_add_tail(&nes->set_list, head);
}
static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
struct page *page)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
struct f2fs_nat_block *nat_blk = page_address(page);
int valid = 0;
int i;
if (!enabled_nat_bits(sbi, NULL))
return;
for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
if (start_nid == 0 && i == 0)
valid++;
if (nat_blk->entries[i].block_addr)
valid++;
}
if (valid == 0) {
__set_bit_le(nat_index, nm_i->empty_nat_bits);
__clear_bit_le(nat_index, nm_i->full_nat_bits);
return;
}
__clear_bit_le(nat_index, nm_i->empty_nat_bits);
if (valid == NAT_ENTRY_PER_BLOCK)
__set_bit_le(nat_index, nm_i->full_nat_bits);
else
__clear_bit_le(nat_index, nm_i->full_nat_bits);
}
static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
struct nat_entry_set *set, struct cp_control *cpc)
{
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = curseg->journal;
nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
bool to_journal = true;
struct f2fs_nat_block *nat_blk;
struct nat_entry *ne, *cur;
struct page *page = NULL;
/*
* there are two steps to flush nat entries:
* #1, flush nat entries to journal in current hot data summary block.
* #2, flush nat entries to nat page.
*/
if (enabled_nat_bits(sbi, cpc) ||
!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
to_journal = false;
if (to_journal) {
down_write(&curseg->journal_rwsem);
} else {
page = get_next_nat_page(sbi, start_nid);
nat_blk = page_address(page);
f2fs_bug_on(sbi, !nat_blk);
}
/* flush dirty nats in nat entry set */
list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
struct f2fs_nat_entry *raw_ne;
nid_t nid = nat_get_nid(ne);
int offset;
f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
if (to_journal) {
offset = lookup_journal_in_cursum(journal,
NAT_JOURNAL, nid, 1);
f2fs_bug_on(sbi, offset < 0);
raw_ne = &nat_in_journal(journal, offset);
nid_in_journal(journal, offset) = cpu_to_le32(nid);
} else {
raw_ne = &nat_blk->entries[nid - start_nid];
}
raw_nat_from_node_info(raw_ne, &ne->ni);
nat_reset_flag(ne);
__clear_nat_cache_dirty(NM_I(sbi), set, ne);
if (nat_get_blkaddr(ne) == NULL_ADDR) {
add_free_nid(sbi, nid, false);
spin_lock(&NM_I(sbi)->nid_list_lock);
NM_I(sbi)->available_nids++;
update_free_nid_bitmap(sbi, nid, true, false);
spin_unlock(&NM_I(sbi)->nid_list_lock);
} else {
spin_lock(&NM_I(sbi)->nid_list_lock);
update_free_nid_bitmap(sbi, nid, false, false);
spin_unlock(&NM_I(sbi)->nid_list_lock);
}
}
if (to_journal) {
up_write(&curseg->journal_rwsem);
} else {
__update_nat_bits(sbi, start_nid, page);
f2fs_put_page(page, 1);
}
/* Allow dirty nats by node block allocation in write_begin */
if (!set->entry_cnt) {
radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
kmem_cache_free(nat_entry_set_slab, set);
}
}
/*
* This function is called during the checkpointing process.
*/
void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
struct f2fs_journal *journal = curseg->journal;
struct nat_entry_set *setvec[SETVEC_SIZE];
struct nat_entry_set *set, *tmp;
unsigned int found;
nid_t set_idx = 0;
LIST_HEAD(sets);
if (!nm_i->dirty_nat_cnt)
return;
down_write(&nm_i->nat_tree_lock);
/*
* if there are no enough space in journal to store dirty nat
* entries, remove all entries from journal and merge them
* into nat entry set.
*/
if (enabled_nat_bits(sbi, cpc) ||
!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
remove_nats_in_journal(sbi);
while ((found = __gang_lookup_nat_set(nm_i,
set_idx, SETVEC_SIZE, setvec))) {
unsigned idx;
set_idx = setvec[found - 1]->set + 1;
for (idx = 0; idx < found; idx++)
__adjust_nat_entry_set(setvec[idx], &sets,
MAX_NAT_JENTRIES(journal));
}
/* flush dirty nats in nat entry set */
list_for_each_entry_safe(set, tmp, &sets, set_list)
__flush_nat_entry_set(sbi, set, cpc);
up_write(&nm_i->nat_tree_lock);
/* Allow dirty nats by node block allocation in write_begin */
}
static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
{
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
unsigned int i;
__u64 cp_ver = cur_cp_version(ckpt);
block_t nat_bits_addr;
if (!enabled_nat_bits(sbi, NULL))
return 0;
nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
F2FS_BLKSIZE - 1);
nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
GFP_KERNEL);
if (!nm_i->nat_bits)
return -ENOMEM;
nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
nm_i->nat_bits_blocks;
for (i = 0; i < nm_i->nat_bits_blocks; i++) {
struct page *page = get_meta_page(sbi, nat_bits_addr++);
memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
page_address(page), F2FS_BLKSIZE);
f2fs_put_page(page, 1);
}
cp_ver |= (cur_cp_crc(ckpt) << 32);
if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
disable_nat_bits(sbi, true);
return 0;
}
nm_i->full_nat_bits = nm_i->nat_bits + 8;
nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
return 0;
}
static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned int i = 0;
nid_t nid, last_nid;
if (!enabled_nat_bits(sbi, NULL))
return;
for (i = 0; i < nm_i->nat_blocks; i++) {
i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
if (i >= nm_i->nat_blocks)
break;
__set_bit_le(i, nm_i->nat_block_bitmap);
nid = i * NAT_ENTRY_PER_BLOCK;
last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
spin_lock(&NM_I(sbi)->nid_list_lock);
for (; nid < last_nid; nid++)
update_free_nid_bitmap(sbi, nid, true, true);
spin_unlock(&NM_I(sbi)->nid_list_lock);
}
for (i = 0; i < nm_i->nat_blocks; i++) {
i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
if (i >= nm_i->nat_blocks)
break;
__set_bit_le(i, nm_i->nat_block_bitmap);
}
}
static int init_node_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
struct f2fs_nm_info *nm_i = NM_I(sbi);
unsigned char *version_bitmap;
unsigned int nat_segs;
int err;
nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
/* segment_count_nat includes pair segment so divide to 2. */
nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
/* not used nids: 0, node, meta, (and root counted as valid node) */
nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
F2FS_RESERVED_NODE_NUM;
nm_i->nid_cnt[FREE_NID_LIST] = 0;
nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
nm_i->nat_cnt = 0;
nm_i->ram_thresh = DEF_RAM_THRESHOLD;
nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
INIT_LIST_HEAD(&nm_i->nat_entries);
mutex_init(&nm_i->build_lock);
spin_lock_init(&nm_i->nid_list_lock);
init_rwsem(&nm_i->nat_tree_lock);
nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
if (!version_bitmap)
return -EFAULT;
nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
GFP_KERNEL);
if (!nm_i->nat_bitmap)
return -ENOMEM;
err = __get_nat_bitmaps(sbi);
if (err)
return err;
#ifdef CONFIG_F2FS_CHECK_FS
nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
GFP_KERNEL);
if (!nm_i->nat_bitmap_mir)
return -ENOMEM;
#endif
return 0;
}
static int init_free_nid_cache(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
if (!nm_i->free_nid_bitmap)
return -ENOMEM;
nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
GFP_KERNEL);
if (!nm_i->nat_block_bitmap)
return -ENOMEM;
nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
sizeof(unsigned short), GFP_KERNEL);
if (!nm_i->free_nid_count)
return -ENOMEM;
return 0;
}
int build_node_manager(struct f2fs_sb_info *sbi)
{
int err;
sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
if (!sbi->nm_info)
return -ENOMEM;
err = init_node_manager(sbi);
if (err)
return err;
err = init_free_nid_cache(sbi);
if (err)
return err;
/* load free nid status from nat_bits table */
load_free_nid_bitmap(sbi);
build_free_nids(sbi, true, true);
return 0;
}
void destroy_node_manager(struct f2fs_sb_info *sbi)
{
struct f2fs_nm_info *nm_i = NM_I(sbi);
struct free_nid *i, *next_i;
struct nat_entry *natvec[NATVEC_SIZE];
struct nat_entry_set *setvec[SETVEC_SIZE];
nid_t nid = 0;
unsigned int found;
if (!nm_i)
return;
/* destroy free nid list */
spin_lock(&nm_i->nid_list_lock);
list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
list) {
__remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
spin_unlock(&nm_i->nid_list_lock);
kmem_cache_free(free_nid_slab, i);
spin_lock(&nm_i->nid_list_lock);
}
f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
spin_unlock(&nm_i->nid_list_lock);
/* destroy nat cache */
down_write(&nm_i->nat_tree_lock);
while ((found = __gang_lookup_nat_cache(nm_i,
nid, NATVEC_SIZE, natvec))) {
unsigned idx;
nid = nat_get_nid(natvec[found - 1]) + 1;
for (idx = 0; idx < found; idx++)
__del_from_nat_cache(nm_i, natvec[idx]);
}
f2fs_bug_on(sbi, nm_i->nat_cnt);
/* destroy nat set cache */
nid = 0;
while ((found = __gang_lookup_nat_set(nm_i,
nid, SETVEC_SIZE, setvec))) {
unsigned idx;
nid = setvec[found - 1]->set + 1;
for (idx = 0; idx < found; idx++) {
/* entry_cnt is not zero, when cp_error was occurred */
f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
kmem_cache_free(nat_entry_set_slab, setvec[idx]);
}
}
up_write(&nm_i->nat_tree_lock);
kvfree(nm_i->nat_block_bitmap);
kvfree(nm_i->free_nid_bitmap);
kvfree(nm_i->free_nid_count);
kfree(nm_i->nat_bitmap);
kfree(nm_i->nat_bits);
#ifdef CONFIG_F2FS_CHECK_FS
kfree(nm_i->nat_bitmap_mir);
#endif
sbi->nm_info = NULL;
kfree(nm_i);
}
int __init create_node_manager_caches(void)
{
nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
sizeof(struct nat_entry));
if (!nat_entry_slab)
goto fail;
free_nid_slab = f2fs_kmem_cache_create("free_nid",
sizeof(struct free_nid));
if (!free_nid_slab)
goto destroy_nat_entry;
nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
sizeof(struct nat_entry_set));
if (!nat_entry_set_slab)
goto destroy_free_nid;
return 0;
destroy_free_nid:
kmem_cache_destroy(free_nid_slab);
destroy_nat_entry:
kmem_cache_destroy(nat_entry_slab);
fail:
return -ENOMEM;
}
void destroy_node_manager_caches(void)
{
kmem_cache_destroy(nat_entry_set_slab);
kmem_cache_destroy(free_nid_slab);
kmem_cache_destroy(nat_entry_slab);
}