| /* |
| * Copyright (C) 2016 CNEX Labs |
| * Initial release: Javier Gonzalez <javier@cnexlabs.com> |
| * |
| * Based upon the circular ringbuffer. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License version |
| * 2 as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * pblk-rb.c - pblk's write buffer |
| */ |
| |
| #include <linux/circ_buf.h> |
| |
| #include "pblk.h" |
| |
| static DECLARE_RWSEM(pblk_rb_lock); |
| |
| void pblk_rb_data_free(struct pblk_rb *rb) |
| { |
| struct pblk_rb_pages *p, *t; |
| |
| down_write(&pblk_rb_lock); |
| list_for_each_entry_safe(p, t, &rb->pages, list) { |
| free_pages((unsigned long)page_address(p->pages), p->order); |
| list_del(&p->list); |
| kfree(p); |
| } |
| up_write(&pblk_rb_lock); |
| } |
| |
| /* |
| * Initialize ring buffer. The data and metadata buffers must be previously |
| * allocated and their size must be a power of two |
| * (Documentation/circular-buffers.txt) |
| */ |
| int pblk_rb_init(struct pblk_rb *rb, struct pblk_rb_entry *rb_entry_base, |
| unsigned int power_size, unsigned int power_seg_sz) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| unsigned int init_entry = 0; |
| unsigned int alloc_order = power_size; |
| unsigned int max_order = MAX_ORDER - 1; |
| unsigned int order, iter; |
| |
| down_write(&pblk_rb_lock); |
| rb->entries = rb_entry_base; |
| rb->seg_size = (1 << power_seg_sz); |
| rb->nr_entries = (1 << power_size); |
| rb->mem = rb->subm = rb->sync = rb->l2p_update = 0; |
| rb->sync_point = EMPTY_ENTRY; |
| |
| spin_lock_init(&rb->w_lock); |
| spin_lock_init(&rb->s_lock); |
| |
| INIT_LIST_HEAD(&rb->pages); |
| |
| if (alloc_order >= max_order) { |
| order = max_order; |
| iter = (1 << (alloc_order - max_order)); |
| } else { |
| order = alloc_order; |
| iter = 1; |
| } |
| |
| do { |
| struct pblk_rb_entry *entry; |
| struct pblk_rb_pages *page_set; |
| void *kaddr; |
| unsigned long set_size; |
| int i; |
| |
| page_set = kmalloc(sizeof(struct pblk_rb_pages), GFP_KERNEL); |
| if (!page_set) { |
| up_write(&pblk_rb_lock); |
| return -ENOMEM; |
| } |
| |
| page_set->order = order; |
| page_set->pages = alloc_pages(GFP_KERNEL, order); |
| if (!page_set->pages) { |
| kfree(page_set); |
| pblk_rb_data_free(rb); |
| up_write(&pblk_rb_lock); |
| return -ENOMEM; |
| } |
| kaddr = page_address(page_set->pages); |
| |
| entry = &rb->entries[init_entry]; |
| entry->data = kaddr; |
| entry->cacheline = pblk_cacheline_to_addr(init_entry++); |
| entry->w_ctx.flags = PBLK_WRITABLE_ENTRY; |
| |
| set_size = (1 << order); |
| for (i = 1; i < set_size; i++) { |
| entry = &rb->entries[init_entry]; |
| entry->cacheline = pblk_cacheline_to_addr(init_entry++); |
| entry->data = kaddr + (i * rb->seg_size); |
| entry->w_ctx.flags = PBLK_WRITABLE_ENTRY; |
| bio_list_init(&entry->w_ctx.bios); |
| } |
| |
| list_add_tail(&page_set->list, &rb->pages); |
| iter--; |
| } while (iter > 0); |
| up_write(&pblk_rb_lock); |
| |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_set(&rb->inflight_sync_point, 0); |
| #endif |
| |
| /* |
| * Initialize rate-limiter, which controls access to the write buffer |
| * but user and GC I/O |
| */ |
| pblk_rl_init(&pblk->rl, rb->nr_entries); |
| |
| return 0; |
| } |
| |
| /* |
| * pblk_rb_calculate_size -- calculate the size of the write buffer |
| */ |
| unsigned int pblk_rb_calculate_size(unsigned int nr_entries) |
| { |
| /* Alloc a write buffer that can at least fit 128 entries */ |
| return (1 << max(get_count_order(nr_entries), 7)); |
| } |
| |
| void *pblk_rb_entries_ref(struct pblk_rb *rb) |
| { |
| return rb->entries; |
| } |
| |
| static void clean_wctx(struct pblk_w_ctx *w_ctx) |
| { |
| int flags; |
| |
| flags = READ_ONCE(w_ctx->flags); |
| WARN_ONCE(!(flags & PBLK_SUBMITTED_ENTRY), |
| "pblk: overwriting unsubmitted data\n"); |
| |
| /* Release flags on context. Protect from writes and reads */ |
| smp_store_release(&w_ctx->flags, PBLK_WRITABLE_ENTRY); |
| pblk_ppa_set_empty(&w_ctx->ppa); |
| w_ctx->lba = ADDR_EMPTY; |
| } |
| |
| #define pblk_rb_ring_count(head, tail, size) CIRC_CNT(head, tail, size) |
| #define pblk_rb_ring_space(rb, head, tail, size) \ |
| (CIRC_SPACE(head, tail, size)) |
| |
| /* |
| * Buffer space is calculated with respect to the back pointer signaling |
| * synchronized entries to the media. |
| */ |
| static unsigned int pblk_rb_space(struct pblk_rb *rb) |
| { |
| unsigned int mem = READ_ONCE(rb->mem); |
| unsigned int sync = READ_ONCE(rb->sync); |
| |
| return pblk_rb_ring_space(rb, mem, sync, rb->nr_entries); |
| } |
| |
| /* |
| * Buffer count is calculated with respect to the submission entry signaling the |
| * entries that are available to send to the media |
| */ |
| unsigned int pblk_rb_read_count(struct pblk_rb *rb) |
| { |
| unsigned int mem = READ_ONCE(rb->mem); |
| unsigned int subm = READ_ONCE(rb->subm); |
| |
| return pblk_rb_ring_count(mem, subm, rb->nr_entries); |
| } |
| |
| unsigned int pblk_rb_sync_count(struct pblk_rb *rb) |
| { |
| unsigned int mem = READ_ONCE(rb->mem); |
| unsigned int sync = READ_ONCE(rb->sync); |
| |
| return pblk_rb_ring_count(mem, sync, rb->nr_entries); |
| } |
| |
| unsigned int pblk_rb_read_commit(struct pblk_rb *rb, unsigned int nr_entries) |
| { |
| unsigned int subm; |
| |
| subm = READ_ONCE(rb->subm); |
| /* Commit read means updating submission pointer */ |
| smp_store_release(&rb->subm, |
| (subm + nr_entries) & (rb->nr_entries - 1)); |
| |
| return subm; |
| } |
| |
| static int __pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int *l2p_upd, |
| unsigned int to_update) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| struct pblk_line *line; |
| struct pblk_rb_entry *entry; |
| struct pblk_w_ctx *w_ctx; |
| unsigned int user_io = 0, gc_io = 0; |
| unsigned int i; |
| int flags; |
| |
| for (i = 0; i < to_update; i++) { |
| entry = &rb->entries[*l2p_upd]; |
| w_ctx = &entry->w_ctx; |
| |
| flags = READ_ONCE(entry->w_ctx.flags); |
| if (flags & PBLK_IOTYPE_USER) |
| user_io++; |
| else if (flags & PBLK_IOTYPE_GC) |
| gc_io++; |
| else |
| WARN(1, "pblk: unknown IO type\n"); |
| |
| pblk_update_map_dev(pblk, w_ctx->lba, w_ctx->ppa, |
| entry->cacheline); |
| |
| line = &pblk->lines[pblk_tgt_ppa_to_line(w_ctx->ppa)]; |
| kref_put(&line->ref, pblk_line_put); |
| clean_wctx(w_ctx); |
| *l2p_upd = (*l2p_upd + 1) & (rb->nr_entries - 1); |
| } |
| |
| pblk_rl_out(&pblk->rl, user_io, gc_io); |
| |
| return 0; |
| } |
| |
| /* |
| * When we move the l2p_update pointer, we update the l2p table - lookups will |
| * point to the physical address instead of to the cacheline in the write buffer |
| * from this moment on. |
| */ |
| static int pblk_rb_update_l2p(struct pblk_rb *rb, unsigned int nr_entries, |
| unsigned int mem, unsigned int sync) |
| { |
| unsigned int space, count; |
| int ret = 0; |
| |
| lockdep_assert_held(&rb->w_lock); |
| |
| /* Update l2p only as buffer entries are being overwritten */ |
| space = pblk_rb_ring_space(rb, mem, rb->l2p_update, rb->nr_entries); |
| if (space > nr_entries) |
| goto out; |
| |
| count = nr_entries - space; |
| /* l2p_update used exclusively under rb->w_lock */ |
| ret = __pblk_rb_update_l2p(rb, &rb->l2p_update, count); |
| |
| out: |
| return ret; |
| } |
| |
| /* |
| * Update the l2p entry for all sectors stored on the write buffer. This means |
| * that all future lookups to the l2p table will point to a device address, not |
| * to the cacheline in the write buffer. |
| */ |
| void pblk_rb_sync_l2p(struct pblk_rb *rb) |
| { |
| unsigned int sync; |
| unsigned int to_update; |
| |
| spin_lock(&rb->w_lock); |
| |
| /* Protect from reads and writes */ |
| sync = smp_load_acquire(&rb->sync); |
| |
| to_update = pblk_rb_ring_count(sync, rb->l2p_update, rb->nr_entries); |
| __pblk_rb_update_l2p(rb, &rb->l2p_update, to_update); |
| |
| spin_unlock(&rb->w_lock); |
| } |
| |
| /* |
| * Write @nr_entries to ring buffer from @data buffer if there is enough space. |
| * Typically, 4KB data chunks coming from a bio will be copied to the ring |
| * buffer, thus the write will fail if not all incoming data can be copied. |
| * |
| */ |
| static void __pblk_rb_write_entry(struct pblk_rb *rb, void *data, |
| struct pblk_w_ctx w_ctx, |
| struct pblk_rb_entry *entry) |
| { |
| memcpy(entry->data, data, rb->seg_size); |
| |
| entry->w_ctx.lba = w_ctx.lba; |
| entry->w_ctx.ppa = w_ctx.ppa; |
| } |
| |
| void pblk_rb_write_entry_user(struct pblk_rb *rb, void *data, |
| struct pblk_w_ctx w_ctx, unsigned int ring_pos) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| struct pblk_rb_entry *entry; |
| int flags; |
| |
| entry = &rb->entries[ring_pos]; |
| flags = READ_ONCE(entry->w_ctx.flags); |
| #ifdef CONFIG_NVM_DEBUG |
| /* Caller must guarantee that the entry is free */ |
| BUG_ON(!(flags & PBLK_WRITABLE_ENTRY)); |
| #endif |
| |
| __pblk_rb_write_entry(rb, data, w_ctx, entry); |
| |
| pblk_update_map_cache(pblk, w_ctx.lba, entry->cacheline); |
| flags = w_ctx.flags | PBLK_WRITTEN_DATA; |
| |
| /* Release flags on write context. Protect from writes */ |
| smp_store_release(&entry->w_ctx.flags, flags); |
| } |
| |
| void pblk_rb_write_entry_gc(struct pblk_rb *rb, void *data, |
| struct pblk_w_ctx w_ctx, struct pblk_line *gc_line, |
| unsigned int ring_pos) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| struct pblk_rb_entry *entry; |
| int flags; |
| |
| entry = &rb->entries[ring_pos]; |
| flags = READ_ONCE(entry->w_ctx.flags); |
| #ifdef CONFIG_NVM_DEBUG |
| /* Caller must guarantee that the entry is free */ |
| BUG_ON(!(flags & PBLK_WRITABLE_ENTRY)); |
| #endif |
| |
| __pblk_rb_write_entry(rb, data, w_ctx, entry); |
| |
| if (!pblk_update_map_gc(pblk, w_ctx.lba, entry->cacheline, gc_line)) |
| entry->w_ctx.lba = ADDR_EMPTY; |
| |
| flags = w_ctx.flags | PBLK_WRITTEN_DATA; |
| |
| /* Release flags on write context. Protect from writes */ |
| smp_store_release(&entry->w_ctx.flags, flags); |
| } |
| |
| static int pblk_rb_sync_point_set(struct pblk_rb *rb, struct bio *bio, |
| unsigned int pos) |
| { |
| struct pblk_rb_entry *entry; |
| unsigned int subm, sync_point; |
| int flags; |
| |
| subm = READ_ONCE(rb->subm); |
| |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_inc(&rb->inflight_sync_point); |
| #endif |
| |
| if (pos == subm) |
| return 0; |
| |
| sync_point = (pos == 0) ? (rb->nr_entries - 1) : (pos - 1); |
| entry = &rb->entries[sync_point]; |
| |
| flags = READ_ONCE(entry->w_ctx.flags); |
| flags |= PBLK_FLUSH_ENTRY; |
| |
| /* Release flags on context. Protect from writes */ |
| smp_store_release(&entry->w_ctx.flags, flags); |
| |
| /* Protect syncs */ |
| smp_store_release(&rb->sync_point, sync_point); |
| |
| if (!bio) |
| return 0; |
| |
| spin_lock_irq(&rb->s_lock); |
| bio_list_add(&entry->w_ctx.bios, bio); |
| spin_unlock_irq(&rb->s_lock); |
| |
| return 1; |
| } |
| |
| static int __pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries, |
| unsigned int *pos) |
| { |
| unsigned int mem; |
| unsigned int sync; |
| |
| sync = READ_ONCE(rb->sync); |
| mem = READ_ONCE(rb->mem); |
| |
| if (pblk_rb_ring_space(rb, mem, sync, rb->nr_entries) < nr_entries) |
| return 0; |
| |
| if (pblk_rb_update_l2p(rb, nr_entries, mem, sync)) |
| return 0; |
| |
| *pos = mem; |
| |
| return 1; |
| } |
| |
| static int pblk_rb_may_write(struct pblk_rb *rb, unsigned int nr_entries, |
| unsigned int *pos) |
| { |
| if (!__pblk_rb_may_write(rb, nr_entries, pos)) |
| return 0; |
| |
| /* Protect from read count */ |
| smp_store_release(&rb->mem, (*pos + nr_entries) & (rb->nr_entries - 1)); |
| return 1; |
| } |
| |
| void pblk_rb_flush(struct pblk_rb *rb) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| unsigned int mem = READ_ONCE(rb->mem); |
| |
| if (pblk_rb_sync_point_set(rb, NULL, mem)) |
| return; |
| |
| pblk_write_should_kick(pblk); |
| } |
| |
| static int pblk_rb_may_write_flush(struct pblk_rb *rb, unsigned int nr_entries, |
| unsigned int *pos, struct bio *bio, |
| int *io_ret) |
| { |
| unsigned int mem; |
| |
| if (!__pblk_rb_may_write(rb, nr_entries, pos)) |
| return 0; |
| |
| mem = (*pos + nr_entries) & (rb->nr_entries - 1); |
| *io_ret = NVM_IO_DONE; |
| |
| if (bio->bi_opf & REQ_PREFLUSH) { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_long_inc(&pblk->nr_flush); |
| #endif |
| if (pblk_rb_sync_point_set(&pblk->rwb, bio, mem)) |
| *io_ret = NVM_IO_OK; |
| } |
| |
| /* Protect from read count */ |
| smp_store_release(&rb->mem, mem); |
| return 1; |
| } |
| |
| /* |
| * Atomically check that (i) there is space on the write buffer for the |
| * incoming I/O, and (ii) the current I/O type has enough budget in the write |
| * buffer (rate-limiter). |
| */ |
| int pblk_rb_may_write_user(struct pblk_rb *rb, struct bio *bio, |
| unsigned int nr_entries, unsigned int *pos) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| int io_ret; |
| |
| spin_lock(&rb->w_lock); |
| io_ret = pblk_rl_user_may_insert(&pblk->rl, nr_entries); |
| if (io_ret) { |
| spin_unlock(&rb->w_lock); |
| return io_ret; |
| } |
| |
| if (!pblk_rb_may_write_flush(rb, nr_entries, pos, bio, &io_ret)) { |
| spin_unlock(&rb->w_lock); |
| return NVM_IO_REQUEUE; |
| } |
| |
| pblk_rl_user_in(&pblk->rl, nr_entries); |
| spin_unlock(&rb->w_lock); |
| |
| return io_ret; |
| } |
| |
| /* |
| * Look at pblk_rb_may_write_user comment |
| */ |
| int pblk_rb_may_write_gc(struct pblk_rb *rb, unsigned int nr_entries, |
| unsigned int *pos) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| |
| spin_lock(&rb->w_lock); |
| if (!pblk_rl_gc_may_insert(&pblk->rl, nr_entries)) { |
| spin_unlock(&rb->w_lock); |
| return 0; |
| } |
| |
| if (!pblk_rb_may_write(rb, nr_entries, pos)) { |
| spin_unlock(&rb->w_lock); |
| return 0; |
| } |
| |
| pblk_rl_gc_in(&pblk->rl, nr_entries); |
| spin_unlock(&rb->w_lock); |
| |
| return 1; |
| } |
| |
| /* |
| * The caller of this function must ensure that the backpointer will not |
| * overwrite the entries passed on the list. |
| */ |
| unsigned int pblk_rb_read_to_bio_list(struct pblk_rb *rb, struct bio *bio, |
| struct list_head *list, |
| unsigned int max) |
| { |
| struct pblk_rb_entry *entry, *tentry; |
| struct page *page; |
| unsigned int read = 0; |
| int ret; |
| |
| list_for_each_entry_safe(entry, tentry, list, index) { |
| if (read > max) { |
| pr_err("pblk: too many entries on list\n"); |
| goto out; |
| } |
| |
| page = virt_to_page(entry->data); |
| if (!page) { |
| pr_err("pblk: could not allocate write bio page\n"); |
| goto out; |
| } |
| |
| ret = bio_add_page(bio, page, rb->seg_size, 0); |
| if (ret != rb->seg_size) { |
| pr_err("pblk: could not add page to write bio\n"); |
| goto out; |
| } |
| |
| list_del(&entry->index); |
| read++; |
| } |
| |
| out: |
| return read; |
| } |
| |
| /* |
| * Read available entries on rb and add them to the given bio. To avoid a memory |
| * copy, a page reference to the write buffer is used to be added to the bio. |
| * |
| * This function is used by the write thread to form the write bio that will |
| * persist data on the write buffer to the media. |
| */ |
| unsigned int pblk_rb_read_to_bio(struct pblk_rb *rb, struct nvm_rq *rqd, |
| struct bio *bio, unsigned int pos, |
| unsigned int nr_entries, unsigned int count) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| struct request_queue *q = pblk->dev->q; |
| struct pblk_c_ctx *c_ctx = nvm_rq_to_pdu(rqd); |
| struct pblk_rb_entry *entry; |
| struct page *page; |
| unsigned int pad = 0, to_read = nr_entries; |
| unsigned int i; |
| int flags; |
| |
| if (count < nr_entries) { |
| pad = nr_entries - count; |
| to_read = count; |
| } |
| |
| c_ctx->sentry = pos; |
| c_ctx->nr_valid = to_read; |
| c_ctx->nr_padded = pad; |
| |
| for (i = 0; i < to_read; i++) { |
| entry = &rb->entries[pos]; |
| |
| /* A write has been allowed into the buffer, but data is still |
| * being copied to it. It is ok to busy wait. |
| */ |
| try: |
| flags = READ_ONCE(entry->w_ctx.flags); |
| if (!(flags & PBLK_WRITTEN_DATA)) { |
| io_schedule(); |
| goto try; |
| } |
| |
| page = virt_to_page(entry->data); |
| if (!page) { |
| pr_err("pblk: could not allocate write bio page\n"); |
| flags &= ~PBLK_WRITTEN_DATA; |
| flags |= PBLK_SUBMITTED_ENTRY; |
| /* Release flags on context. Protect from writes */ |
| smp_store_release(&entry->w_ctx.flags, flags); |
| return NVM_IO_ERR; |
| } |
| |
| if (bio_add_pc_page(q, bio, page, rb->seg_size, 0) != |
| rb->seg_size) { |
| pr_err("pblk: could not add page to write bio\n"); |
| flags &= ~PBLK_WRITTEN_DATA; |
| flags |= PBLK_SUBMITTED_ENTRY; |
| /* Release flags on context. Protect from writes */ |
| smp_store_release(&entry->w_ctx.flags, flags); |
| return NVM_IO_ERR; |
| } |
| |
| if (flags & PBLK_FLUSH_ENTRY) { |
| unsigned int sync_point; |
| |
| sync_point = READ_ONCE(rb->sync_point); |
| if (sync_point == pos) { |
| /* Protect syncs */ |
| smp_store_release(&rb->sync_point, EMPTY_ENTRY); |
| } |
| |
| flags &= ~PBLK_FLUSH_ENTRY; |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_dec(&rb->inflight_sync_point); |
| #endif |
| } |
| |
| flags &= ~PBLK_WRITTEN_DATA; |
| flags |= PBLK_SUBMITTED_ENTRY; |
| |
| /* Release flags on context. Protect from writes */ |
| smp_store_release(&entry->w_ctx.flags, flags); |
| |
| pos = (pos + 1) & (rb->nr_entries - 1); |
| } |
| |
| if (pad) { |
| if (pblk_bio_add_pages(pblk, bio, GFP_KERNEL, pad)) { |
| pr_err("pblk: could not pad page in write bio\n"); |
| return NVM_IO_ERR; |
| } |
| } |
| |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_long_add(pad, &((struct pblk *) |
| (container_of(rb, struct pblk, rwb)))->padded_writes); |
| #endif |
| |
| return NVM_IO_OK; |
| } |
| |
| /* |
| * Copy to bio only if the lba matches the one on the given cache entry. |
| * Otherwise, it means that the entry has been overwritten, and the bio should |
| * be directed to disk. |
| */ |
| int pblk_rb_copy_to_bio(struct pblk_rb *rb, struct bio *bio, sector_t lba, |
| struct ppa_addr ppa, int bio_iter, bool advanced_bio) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| struct pblk_rb_entry *entry; |
| struct pblk_w_ctx *w_ctx; |
| struct ppa_addr l2p_ppa; |
| u64 pos = pblk_addr_to_cacheline(ppa); |
| void *data; |
| int flags; |
| int ret = 1; |
| |
| |
| #ifdef CONFIG_NVM_DEBUG |
| /* Caller must ensure that the access will not cause an overflow */ |
| BUG_ON(pos >= rb->nr_entries); |
| #endif |
| entry = &rb->entries[pos]; |
| w_ctx = &entry->w_ctx; |
| flags = READ_ONCE(w_ctx->flags); |
| |
| spin_lock(&rb->w_lock); |
| spin_lock(&pblk->trans_lock); |
| l2p_ppa = pblk_trans_map_get(pblk, lba); |
| spin_unlock(&pblk->trans_lock); |
| |
| /* Check if the entry has been overwritten or is scheduled to be */ |
| if (!pblk_ppa_comp(l2p_ppa, ppa) || w_ctx->lba != lba || |
| flags & PBLK_WRITABLE_ENTRY) { |
| ret = 0; |
| goto out; |
| } |
| |
| /* Only advance the bio if it hasn't been advanced already. If advanced, |
| * this bio is at least a partial bio (i.e., it has partially been |
| * filled with data from the cache). If part of the data resides on the |
| * media, we will read later on |
| */ |
| if (unlikely(!advanced_bio)) |
| bio_advance(bio, bio_iter * PBLK_EXPOSED_PAGE_SIZE); |
| |
| data = bio_data(bio); |
| memcpy(data, entry->data, rb->seg_size); |
| |
| out: |
| spin_unlock(&rb->w_lock); |
| return ret; |
| } |
| |
| struct pblk_w_ctx *pblk_rb_w_ctx(struct pblk_rb *rb, unsigned int pos) |
| { |
| unsigned int entry = pos & (rb->nr_entries - 1); |
| |
| return &rb->entries[entry].w_ctx; |
| } |
| |
| unsigned int pblk_rb_sync_init(struct pblk_rb *rb, unsigned long *flags) |
| __acquires(&rb->s_lock) |
| { |
| if (flags) |
| spin_lock_irqsave(&rb->s_lock, *flags); |
| else |
| spin_lock_irq(&rb->s_lock); |
| |
| return rb->sync; |
| } |
| |
| void pblk_rb_sync_end(struct pblk_rb *rb, unsigned long *flags) |
| __releases(&rb->s_lock) |
| { |
| lockdep_assert_held(&rb->s_lock); |
| |
| if (flags) |
| spin_unlock_irqrestore(&rb->s_lock, *flags); |
| else |
| spin_unlock_irq(&rb->s_lock); |
| } |
| |
| unsigned int pblk_rb_sync_advance(struct pblk_rb *rb, unsigned int nr_entries) |
| { |
| unsigned int sync; |
| unsigned int i; |
| |
| lockdep_assert_held(&rb->s_lock); |
| |
| sync = READ_ONCE(rb->sync); |
| |
| for (i = 0; i < nr_entries; i++) |
| sync = (sync + 1) & (rb->nr_entries - 1); |
| |
| /* Protect from counts */ |
| smp_store_release(&rb->sync, sync); |
| |
| return sync; |
| } |
| |
| unsigned int pblk_rb_sync_point_count(struct pblk_rb *rb) |
| { |
| unsigned int subm, sync_point; |
| unsigned int count; |
| |
| /* Protect syncs */ |
| sync_point = smp_load_acquire(&rb->sync_point); |
| if (sync_point == EMPTY_ENTRY) |
| return 0; |
| |
| subm = READ_ONCE(rb->subm); |
| |
| /* The sync point itself counts as a sector to sync */ |
| count = pblk_rb_ring_count(sync_point, subm, rb->nr_entries) + 1; |
| |
| return count; |
| } |
| |
| /* |
| * Scan from the current position of the sync pointer to find the entry that |
| * corresponds to the given ppa. This is necessary since write requests can be |
| * completed out of order. The assumption is that the ppa is close to the sync |
| * pointer thus the search will not take long. |
| * |
| * The caller of this function must guarantee that the sync pointer will no |
| * reach the entry while it is using the metadata associated with it. With this |
| * assumption in mind, there is no need to take the sync lock. |
| */ |
| struct pblk_rb_entry *pblk_rb_sync_scan_entry(struct pblk_rb *rb, |
| struct ppa_addr *ppa) |
| { |
| unsigned int sync, subm, count; |
| unsigned int i; |
| |
| sync = READ_ONCE(rb->sync); |
| subm = READ_ONCE(rb->subm); |
| count = pblk_rb_ring_count(subm, sync, rb->nr_entries); |
| |
| for (i = 0; i < count; i++) |
| sync = (sync + 1) & (rb->nr_entries - 1); |
| |
| return NULL; |
| } |
| |
| int pblk_rb_tear_down_check(struct pblk_rb *rb) |
| { |
| struct pblk_rb_entry *entry; |
| int i; |
| int ret = 0; |
| |
| spin_lock(&rb->w_lock); |
| spin_lock_irq(&rb->s_lock); |
| |
| if ((rb->mem == rb->subm) && (rb->subm == rb->sync) && |
| (rb->sync == rb->l2p_update) && |
| (rb->sync_point == EMPTY_ENTRY)) { |
| goto out; |
| } |
| |
| if (!rb->entries) { |
| ret = 1; |
| goto out; |
| } |
| |
| for (i = 0; i < rb->nr_entries; i++) { |
| entry = &rb->entries[i]; |
| |
| if (!entry->data) { |
| ret = 1; |
| goto out; |
| } |
| } |
| |
| out: |
| spin_unlock_irq(&rb->s_lock); |
| spin_unlock(&rb->w_lock); |
| |
| return ret; |
| } |
| |
| unsigned int pblk_rb_wrap_pos(struct pblk_rb *rb, unsigned int pos) |
| { |
| return (pos & (rb->nr_entries - 1)); |
| } |
| |
| int pblk_rb_pos_oob(struct pblk_rb *rb, u64 pos) |
| { |
| return (pos >= rb->nr_entries); |
| } |
| |
| ssize_t pblk_rb_sysfs(struct pblk_rb *rb, char *buf) |
| { |
| struct pblk *pblk = container_of(rb, struct pblk, rwb); |
| struct pblk_c_ctx *c; |
| ssize_t offset; |
| int queued_entries = 0; |
| |
| spin_lock_irq(&rb->s_lock); |
| list_for_each_entry(c, &pblk->compl_list, list) |
| queued_entries++; |
| spin_unlock_irq(&rb->s_lock); |
| |
| if (rb->sync_point != EMPTY_ENTRY) |
| offset = scnprintf(buf, PAGE_SIZE, |
| "%u\t%u\t%u\t%u\t%u\t%u\t%u - %u/%u/%u - %d\n", |
| rb->nr_entries, |
| rb->mem, |
| rb->subm, |
| rb->sync, |
| rb->l2p_update, |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_read(&rb->inflight_sync_point), |
| #else |
| 0, |
| #endif |
| rb->sync_point, |
| pblk_rb_read_count(rb), |
| pblk_rb_space(rb), |
| pblk_rb_sync_point_count(rb), |
| queued_entries); |
| else |
| offset = scnprintf(buf, PAGE_SIZE, |
| "%u\t%u\t%u\t%u\t%u\t%u\tNULL - %u/%u/%u - %d\n", |
| rb->nr_entries, |
| rb->mem, |
| rb->subm, |
| rb->sync, |
| rb->l2p_update, |
| #ifdef CONFIG_NVM_DEBUG |
| atomic_read(&rb->inflight_sync_point), |
| #else |
| 0, |
| #endif |
| pblk_rb_read_count(rb), |
| pblk_rb_space(rb), |
| pblk_rb_sync_point_count(rb), |
| queued_entries); |
| |
| return offset; |
| } |