| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/fs.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/rwsem.h> |
| #include <linux/kprobes.h> |
| #include <linux/sched.h> |
| #include <linux/hardirq.h> |
| #include <linux/uaccess.h> |
| #include <linux/smp.h> |
| #include <linux/cdev.h> |
| #include <linux/compat.h> |
| #include <asm/hardwall.h> |
| #include <asm/traps.h> |
| #include <asm/siginfo.h> |
| #include <asm/irq_regs.h> |
| |
| #include <arch/interrupts.h> |
| #include <arch/spr_def.h> |
| |
| |
| /* |
| * Implement a per-cpu "hardwall" resource class such as UDN or IPI. |
| * We use "hardwall" nomenclature throughout for historical reasons. |
| * The lock here controls access to the list data structure as well as |
| * to the items on the list. |
| */ |
| struct hardwall_type { |
| int index; |
| int is_xdn; |
| int is_idn; |
| int disabled; |
| const char *name; |
| struct list_head list; |
| spinlock_t lock; |
| struct proc_dir_entry *proc_dir; |
| }; |
| |
| enum hardwall_index { |
| HARDWALL_UDN = 0, |
| #ifndef __tilepro__ |
| HARDWALL_IDN = 1, |
| HARDWALL_IPI = 2, |
| #endif |
| _HARDWALL_TYPES |
| }; |
| |
| static struct hardwall_type hardwall_types[] = { |
| { /* user-space access to UDN */ |
| 0, |
| 1, |
| 0, |
| 0, |
| "udn", |
| LIST_HEAD_INIT(hardwall_types[HARDWALL_UDN].list), |
| __SPIN_LOCK_UNLOCKED(hardwall_types[HARDWALL_UDN].lock), |
| NULL |
| }, |
| #ifndef __tilepro__ |
| { /* user-space access to IDN */ |
| 1, |
| 1, |
| 1, |
| 1, /* disabled pending hypervisor support */ |
| "idn", |
| LIST_HEAD_INIT(hardwall_types[HARDWALL_IDN].list), |
| __SPIN_LOCK_UNLOCKED(hardwall_types[HARDWALL_IDN].lock), |
| NULL |
| }, |
| { /* access to user-space IPI */ |
| 2, |
| 0, |
| 0, |
| 0, |
| "ipi", |
| LIST_HEAD_INIT(hardwall_types[HARDWALL_IPI].list), |
| __SPIN_LOCK_UNLOCKED(hardwall_types[HARDWALL_IPI].lock), |
| NULL |
| }, |
| #endif |
| }; |
| |
| /* |
| * This data structure tracks the cpu data, etc., associated |
| * one-to-one with a "struct file *" from opening a hardwall device file. |
| * Note that the file's private data points back to this structure. |
| */ |
| struct hardwall_info { |
| struct list_head list; /* for hardwall_types.list */ |
| struct list_head task_head; /* head of tasks in this hardwall */ |
| struct hardwall_type *type; /* type of this resource */ |
| struct cpumask cpumask; /* cpus reserved */ |
| int id; /* integer id for this hardwall */ |
| int teardown_in_progress; /* are we tearing this one down? */ |
| |
| /* Remaining fields only valid for user-network resources. */ |
| int ulhc_x; /* upper left hand corner x coord */ |
| int ulhc_y; /* upper left hand corner y coord */ |
| int width; /* rectangle width */ |
| int height; /* rectangle height */ |
| #if CHIP_HAS_REV1_XDN() |
| atomic_t xdn_pending_count; /* cores in phase 1 of drain */ |
| #endif |
| }; |
| |
| |
| /* /proc/tile/hardwall */ |
| static struct proc_dir_entry *hardwall_proc_dir; |
| |
| /* Functions to manage files in /proc/tile/hardwall. */ |
| static void hardwall_add_proc(struct hardwall_info *); |
| static void hardwall_remove_proc(struct hardwall_info *); |
| |
| /* Allow disabling UDN access. */ |
| static int __init noudn(char *str) |
| { |
| pr_info("User-space UDN access is disabled\n"); |
| hardwall_types[HARDWALL_UDN].disabled = 1; |
| return 0; |
| } |
| early_param("noudn", noudn); |
| |
| #ifndef __tilepro__ |
| /* Allow disabling IDN access. */ |
| static int __init noidn(char *str) |
| { |
| pr_info("User-space IDN access is disabled\n"); |
| hardwall_types[HARDWALL_IDN].disabled = 1; |
| return 0; |
| } |
| early_param("noidn", noidn); |
| |
| /* Allow disabling IPI access. */ |
| static int __init noipi(char *str) |
| { |
| pr_info("User-space IPI access is disabled\n"); |
| hardwall_types[HARDWALL_IPI].disabled = 1; |
| return 0; |
| } |
| early_param("noipi", noipi); |
| #endif |
| |
| |
| /* |
| * Low-level primitives for UDN/IDN |
| */ |
| |
| #ifdef __tilepro__ |
| #define mtspr_XDN(hwt, name, val) \ |
| do { (void)(hwt); __insn_mtspr(SPR_UDN_##name, (val)); } while (0) |
| #define mtspr_MPL_XDN(hwt, name, val) \ |
| do { (void)(hwt); __insn_mtspr(SPR_MPL_UDN_##name, (val)); } while (0) |
| #define mfspr_XDN(hwt, name) \ |
| ((void)(hwt), __insn_mfspr(SPR_UDN_##name)) |
| #else |
| #define mtspr_XDN(hwt, name, val) \ |
| do { \ |
| if ((hwt)->is_idn) \ |
| __insn_mtspr(SPR_IDN_##name, (val)); \ |
| else \ |
| __insn_mtspr(SPR_UDN_##name, (val)); \ |
| } while (0) |
| #define mtspr_MPL_XDN(hwt, name, val) \ |
| do { \ |
| if ((hwt)->is_idn) \ |
| __insn_mtspr(SPR_MPL_IDN_##name, (val)); \ |
| else \ |
| __insn_mtspr(SPR_MPL_UDN_##name, (val)); \ |
| } while (0) |
| #define mfspr_XDN(hwt, name) \ |
| ((hwt)->is_idn ? __insn_mfspr(SPR_IDN_##name) : __insn_mfspr(SPR_UDN_##name)) |
| #endif |
| |
| /* Set a CPU bit if the CPU is online. */ |
| #define cpu_online_set(cpu, dst) do { \ |
| if (cpu_online(cpu)) \ |
| cpumask_set_cpu(cpu, dst); \ |
| } while (0) |
| |
| |
| /* Does the given rectangle contain the given x,y coordinate? */ |
| static int contains(struct hardwall_info *r, int x, int y) |
| { |
| return (x >= r->ulhc_x && x < r->ulhc_x + r->width) && |
| (y >= r->ulhc_y && y < r->ulhc_y + r->height); |
| } |
| |
| /* Compute the rectangle parameters and validate the cpumask. */ |
| static int check_rectangle(struct hardwall_info *r, struct cpumask *mask) |
| { |
| int x, y, cpu, ulhc, lrhc; |
| |
| /* The first cpu is the ULHC, the last the LRHC. */ |
| ulhc = find_first_bit(cpumask_bits(mask), nr_cpumask_bits); |
| lrhc = find_last_bit(cpumask_bits(mask), nr_cpumask_bits); |
| |
| /* Compute the rectangle attributes from the cpus. */ |
| r->ulhc_x = cpu_x(ulhc); |
| r->ulhc_y = cpu_y(ulhc); |
| r->width = cpu_x(lrhc) - r->ulhc_x + 1; |
| r->height = cpu_y(lrhc) - r->ulhc_y + 1; |
| |
| /* Width and height must be positive */ |
| if (r->width <= 0 || r->height <= 0) |
| return -EINVAL; |
| |
| /* Confirm that the cpumask is exactly the rectangle. */ |
| for (y = 0, cpu = 0; y < smp_height; ++y) |
| for (x = 0; x < smp_width; ++x, ++cpu) |
| if (cpumask_test_cpu(cpu, mask) != contains(r, x, y)) |
| return -EINVAL; |
| |
| /* |
| * Note that offline cpus can't be drained when this user network |
| * rectangle eventually closes. We used to detect this |
| * situation and print a warning, but it annoyed users and |
| * they ignored it anyway, so now we just return without a |
| * warning. |
| */ |
| return 0; |
| } |
| |
| /* |
| * Hardware management of hardwall setup, teardown, trapping, |
| * and enabling/disabling PL0 access to the networks. |
| */ |
| |
| /* Bit field values to mask together for writes to SPR_XDN_DIRECTION_PROTECT */ |
| enum direction_protect { |
| N_PROTECT = (1 << 0), |
| E_PROTECT = (1 << 1), |
| S_PROTECT = (1 << 2), |
| W_PROTECT = (1 << 3), |
| C_PROTECT = (1 << 4), |
| }; |
| |
| static inline int xdn_which_interrupt(struct hardwall_type *hwt) |
| { |
| #ifndef __tilepro__ |
| if (hwt->is_idn) |
| return INT_IDN_FIREWALL; |
| #endif |
| return INT_UDN_FIREWALL; |
| } |
| |
| static void enable_firewall_interrupts(struct hardwall_type *hwt) |
| { |
| arch_local_irq_unmask_now(xdn_which_interrupt(hwt)); |
| } |
| |
| static void disable_firewall_interrupts(struct hardwall_type *hwt) |
| { |
| arch_local_irq_mask_now(xdn_which_interrupt(hwt)); |
| } |
| |
| /* Set up hardwall on this cpu based on the passed hardwall_info. */ |
| static void hardwall_setup_func(void *info) |
| { |
| struct hardwall_info *r = info; |
| struct hardwall_type *hwt = r->type; |
| |
| int cpu = smp_processor_id(); /* on_each_cpu disables preemption */ |
| int x = cpu_x(cpu); |
| int y = cpu_y(cpu); |
| int bits = 0; |
| if (x == r->ulhc_x) |
| bits |= W_PROTECT; |
| if (x == r->ulhc_x + r->width - 1) |
| bits |= E_PROTECT; |
| if (y == r->ulhc_y) |
| bits |= N_PROTECT; |
| if (y == r->ulhc_y + r->height - 1) |
| bits |= S_PROTECT; |
| BUG_ON(bits == 0); |
| mtspr_XDN(hwt, DIRECTION_PROTECT, bits); |
| enable_firewall_interrupts(hwt); |
| } |
| |
| /* Set up all cpus on edge of rectangle to enable/disable hardwall SPRs. */ |
| static void hardwall_protect_rectangle(struct hardwall_info *r) |
| { |
| int x, y, cpu, delta; |
| struct cpumask rect_cpus; |
| |
| cpumask_clear(&rect_cpus); |
| |
| /* First include the top and bottom edges */ |
| cpu = r->ulhc_y * smp_width + r->ulhc_x; |
| delta = (r->height - 1) * smp_width; |
| for (x = 0; x < r->width; ++x, ++cpu) { |
| cpu_online_set(cpu, &rect_cpus); |
| cpu_online_set(cpu + delta, &rect_cpus); |
| } |
| |
| /* Then the left and right edges */ |
| cpu -= r->width; |
| delta = r->width - 1; |
| for (y = 0; y < r->height; ++y, cpu += smp_width) { |
| cpu_online_set(cpu, &rect_cpus); |
| cpu_online_set(cpu + delta, &rect_cpus); |
| } |
| |
| /* Then tell all the cpus to set up their protection SPR */ |
| on_each_cpu_mask(&rect_cpus, hardwall_setup_func, r, 1); |
| } |
| |
| /* Entered from INT_xDN_FIREWALL interrupt vector with irqs disabled. */ |
| void __kprobes do_hardwall_trap(struct pt_regs* regs, int fault_num) |
| { |
| struct hardwall_info *rect; |
| struct hardwall_type *hwt; |
| struct task_struct *p; |
| struct siginfo info; |
| int cpu = smp_processor_id(); |
| int found_processes; |
| struct pt_regs *old_regs = set_irq_regs(regs); |
| |
| irq_enter(); |
| |
| /* Figure out which network trapped. */ |
| switch (fault_num) { |
| #ifndef __tilepro__ |
| case INT_IDN_FIREWALL: |
| hwt = &hardwall_types[HARDWALL_IDN]; |
| break; |
| #endif |
| case INT_UDN_FIREWALL: |
| hwt = &hardwall_types[HARDWALL_UDN]; |
| break; |
| default: |
| BUG(); |
| } |
| BUG_ON(hwt->disabled); |
| |
| /* This tile trapped a network access; find the rectangle. */ |
| spin_lock(&hwt->lock); |
| list_for_each_entry(rect, &hwt->list, list) { |
| if (cpumask_test_cpu(cpu, &rect->cpumask)) |
| break; |
| } |
| |
| /* |
| * It shouldn't be possible not to find this cpu on the |
| * rectangle list, since only cpus in rectangles get hardwalled. |
| * The hardwall is only removed after the user network is drained. |
| */ |
| BUG_ON(&rect->list == &hwt->list); |
| |
| /* |
| * If we already started teardown on this hardwall, don't worry; |
| * the abort signal has been sent and we are just waiting for things |
| * to quiesce. |
| */ |
| if (rect->teardown_in_progress) { |
| pr_notice("cpu %d: detected %s hardwall violation %#lx while teardown already in progress\n", |
| cpu, hwt->name, |
| (long)mfspr_XDN(hwt, DIRECTION_PROTECT)); |
| goto done; |
| } |
| |
| /* |
| * Kill off any process that is activated in this rectangle. |
| * We bypass security to deliver the signal, since it must be |
| * one of the activated processes that generated the user network |
| * message that caused this trap, and all the activated |
| * processes shared a single open file so are pretty tightly |
| * bound together from a security point of view to begin with. |
| */ |
| rect->teardown_in_progress = 1; |
| wmb(); /* Ensure visibility of rectangle before notifying processes. */ |
| pr_notice("cpu %d: detected %s hardwall violation %#lx...\n", |
| cpu, hwt->name, (long)mfspr_XDN(hwt, DIRECTION_PROTECT)); |
| info.si_signo = SIGILL; |
| info.si_errno = 0; |
| info.si_code = ILL_HARDWALL; |
| found_processes = 0; |
| list_for_each_entry(p, &rect->task_head, |
| thread.hardwall[hwt->index].list) { |
| BUG_ON(p->thread.hardwall[hwt->index].info != rect); |
| if (!(p->flags & PF_EXITING)) { |
| found_processes = 1; |
| pr_notice("hardwall: killing %d\n", p->pid); |
| do_send_sig_info(info.si_signo, &info, p, false); |
| } |
| } |
| if (!found_processes) |
| pr_notice("hardwall: no associated processes!\n"); |
| |
| done: |
| spin_unlock(&hwt->lock); |
| |
| /* |
| * We have to disable firewall interrupts now, or else when we |
| * return from this handler, we will simply re-interrupt back to |
| * it. However, we can't clear the protection bits, since we |
| * haven't yet drained the network, and that would allow packets |
| * to cross out of the hardwall region. |
| */ |
| disable_firewall_interrupts(hwt); |
| |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| /* Allow access from user space to the user network. */ |
| void grant_hardwall_mpls(struct hardwall_type *hwt) |
| { |
| #ifndef __tilepro__ |
| if (!hwt->is_xdn) { |
| __insn_mtspr(SPR_MPL_IPI_0_SET_0, 1); |
| return; |
| } |
| #endif |
| mtspr_MPL_XDN(hwt, ACCESS_SET_0, 1); |
| mtspr_MPL_XDN(hwt, AVAIL_SET_0, 1); |
| mtspr_MPL_XDN(hwt, COMPLETE_SET_0, 1); |
| mtspr_MPL_XDN(hwt, TIMER_SET_0, 1); |
| #if !CHIP_HAS_REV1_XDN() |
| mtspr_MPL_XDN(hwt, REFILL_SET_0, 1); |
| mtspr_MPL_XDN(hwt, CA_SET_0, 1); |
| #endif |
| } |
| |
| /* Deny access from user space to the user network. */ |
| void restrict_hardwall_mpls(struct hardwall_type *hwt) |
| { |
| #ifndef __tilepro__ |
| if (!hwt->is_xdn) { |
| __insn_mtspr(SPR_MPL_IPI_0_SET_1, 1); |
| return; |
| } |
| #endif |
| mtspr_MPL_XDN(hwt, ACCESS_SET_1, 1); |
| mtspr_MPL_XDN(hwt, AVAIL_SET_1, 1); |
| mtspr_MPL_XDN(hwt, COMPLETE_SET_1, 1); |
| mtspr_MPL_XDN(hwt, TIMER_SET_1, 1); |
| #if !CHIP_HAS_REV1_XDN() |
| mtspr_MPL_XDN(hwt, REFILL_SET_1, 1); |
| mtspr_MPL_XDN(hwt, CA_SET_1, 1); |
| #endif |
| } |
| |
| /* Restrict or deny as necessary for the task we're switching to. */ |
| void hardwall_switch_tasks(struct task_struct *prev, |
| struct task_struct *next) |
| { |
| int i; |
| for (i = 0; i < HARDWALL_TYPES; ++i) { |
| if (prev->thread.hardwall[i].info != NULL) { |
| if (next->thread.hardwall[i].info == NULL) |
| restrict_hardwall_mpls(&hardwall_types[i]); |
| } else if (next->thread.hardwall[i].info != NULL) { |
| grant_hardwall_mpls(&hardwall_types[i]); |
| } |
| } |
| } |
| |
| /* Does this task have the right to IPI the given cpu? */ |
| int hardwall_ipi_valid(int cpu) |
| { |
| #ifdef __tilegx__ |
| struct hardwall_info *info = |
| current->thread.hardwall[HARDWALL_IPI].info; |
| return info && cpumask_test_cpu(cpu, &info->cpumask); |
| #else |
| return 0; |
| #endif |
| } |
| |
| /* |
| * Code to create, activate, deactivate, and destroy hardwall resources. |
| */ |
| |
| /* Create a hardwall for the given resource */ |
| static struct hardwall_info *hardwall_create(struct hardwall_type *hwt, |
| size_t size, |
| const unsigned char __user *bits) |
| { |
| struct hardwall_info *iter, *info; |
| struct cpumask mask; |
| unsigned long flags; |
| int rc; |
| |
| /* Reject crazy sizes out of hand, a la sys_mbind(). */ |
| if (size > PAGE_SIZE) |
| return ERR_PTR(-EINVAL); |
| |
| /* Copy whatever fits into a cpumask. */ |
| if (copy_from_user(&mask, bits, min(sizeof(struct cpumask), size))) |
| return ERR_PTR(-EFAULT); |
| |
| /* |
| * If the size was short, clear the rest of the mask; |
| * otherwise validate that the rest of the user mask was zero |
| * (we don't try hard to be efficient when validating huge masks). |
| */ |
| if (size < sizeof(struct cpumask)) { |
| memset((char *)&mask + size, 0, sizeof(struct cpumask) - size); |
| } else if (size > sizeof(struct cpumask)) { |
| size_t i; |
| for (i = sizeof(struct cpumask); i < size; ++i) { |
| char c; |
| if (get_user(c, &bits[i])) |
| return ERR_PTR(-EFAULT); |
| if (c) |
| return ERR_PTR(-EINVAL); |
| } |
| } |
| |
| /* Allocate a new hardwall_info optimistically. */ |
| info = kmalloc(sizeof(struct hardwall_info), |
| GFP_KERNEL | __GFP_ZERO); |
| if (info == NULL) |
| return ERR_PTR(-ENOMEM); |
| INIT_LIST_HEAD(&info->task_head); |
| info->type = hwt; |
| |
| /* Compute the rectangle size and validate that it's plausible. */ |
| cpumask_copy(&info->cpumask, &mask); |
| info->id = find_first_bit(cpumask_bits(&mask), nr_cpumask_bits); |
| if (hwt->is_xdn) { |
| rc = check_rectangle(info, &mask); |
| if (rc != 0) { |
| kfree(info); |
| return ERR_PTR(rc); |
| } |
| } |
| |
| /* |
| * Eliminate cpus that are not part of this Linux client. |
| * Note that this allows for configurations that we might not want to |
| * support, such as one client on every even cpu, another client on |
| * every odd cpu. |
| */ |
| cpumask_and(&info->cpumask, &info->cpumask, cpu_online_mask); |
| |
| /* Confirm it doesn't overlap and add it to the list. */ |
| spin_lock_irqsave(&hwt->lock, flags); |
| list_for_each_entry(iter, &hwt->list, list) { |
| if (cpumask_intersects(&iter->cpumask, &info->cpumask)) { |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| kfree(info); |
| return ERR_PTR(-EBUSY); |
| } |
| } |
| list_add_tail(&info->list, &hwt->list); |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| |
| /* Set up appropriate hardwalling on all affected cpus. */ |
| if (hwt->is_xdn) |
| hardwall_protect_rectangle(info); |
| |
| /* Create a /proc/tile/hardwall entry. */ |
| hardwall_add_proc(info); |
| |
| return info; |
| } |
| |
| /* Activate a given hardwall on this cpu for this process. */ |
| static int hardwall_activate(struct hardwall_info *info) |
| { |
| int cpu; |
| unsigned long flags; |
| struct task_struct *p = current; |
| struct thread_struct *ts = &p->thread; |
| struct hardwall_type *hwt; |
| |
| /* Require a hardwall. */ |
| if (info == NULL) |
| return -ENODATA; |
| |
| /* Not allowed to activate a hardwall that is being torn down. */ |
| if (info->teardown_in_progress) |
| return -EINVAL; |
| |
| /* |
| * Get our affinity; if we're not bound to this tile uniquely, |
| * we can't access the network registers. |
| */ |
| if (cpumask_weight(&p->cpus_allowed) != 1) |
| return -EPERM; |
| |
| /* Make sure we are bound to a cpu assigned to this resource. */ |
| cpu = smp_processor_id(); |
| BUG_ON(cpumask_first(&p->cpus_allowed) != cpu); |
| if (!cpumask_test_cpu(cpu, &info->cpumask)) |
| return -EINVAL; |
| |
| /* If we are already bound to this hardwall, it's a no-op. */ |
| hwt = info->type; |
| if (ts->hardwall[hwt->index].info) { |
| BUG_ON(ts->hardwall[hwt->index].info != info); |
| return 0; |
| } |
| |
| /* Success! This process gets to use the resource on this cpu. */ |
| ts->hardwall[hwt->index].info = info; |
| spin_lock_irqsave(&hwt->lock, flags); |
| list_add(&ts->hardwall[hwt->index].list, &info->task_head); |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| grant_hardwall_mpls(hwt); |
| printk(KERN_DEBUG "Pid %d (%s) activated for %s hardwall: cpu %d\n", |
| p->pid, p->comm, hwt->name, cpu); |
| return 0; |
| } |
| |
| /* |
| * Deactivate a task's hardwall. Must hold lock for hardwall_type. |
| * This method may be called from exit_thread(), so we don't want to |
| * rely on too many fields of struct task_struct still being valid. |
| * We assume the cpus_allowed, pid, and comm fields are still valid. |
| */ |
| static void _hardwall_deactivate(struct hardwall_type *hwt, |
| struct task_struct *task) |
| { |
| struct thread_struct *ts = &task->thread; |
| |
| if (cpumask_weight(&task->cpus_allowed) != 1) { |
| pr_err("pid %d (%s) releasing %s hardwall with an affinity mask containing %d cpus!\n", |
| task->pid, task->comm, hwt->name, |
| cpumask_weight(&task->cpus_allowed)); |
| BUG(); |
| } |
| |
| BUG_ON(ts->hardwall[hwt->index].info == NULL); |
| ts->hardwall[hwt->index].info = NULL; |
| list_del(&ts->hardwall[hwt->index].list); |
| if (task == current) |
| restrict_hardwall_mpls(hwt); |
| } |
| |
| /* Deactivate a task's hardwall. */ |
| static int hardwall_deactivate(struct hardwall_type *hwt, |
| struct task_struct *task) |
| { |
| unsigned long flags; |
| int activated; |
| |
| spin_lock_irqsave(&hwt->lock, flags); |
| activated = (task->thread.hardwall[hwt->index].info != NULL); |
| if (activated) |
| _hardwall_deactivate(hwt, task); |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| |
| if (!activated) |
| return -EINVAL; |
| |
| printk(KERN_DEBUG "Pid %d (%s) deactivated for %s hardwall: cpu %d\n", |
| task->pid, task->comm, hwt->name, raw_smp_processor_id()); |
| return 0; |
| } |
| |
| void hardwall_deactivate_all(struct task_struct *task) |
| { |
| int i; |
| for (i = 0; i < HARDWALL_TYPES; ++i) |
| if (task->thread.hardwall[i].info) |
| hardwall_deactivate(&hardwall_types[i], task); |
| } |
| |
| /* Stop the switch before draining the network. */ |
| static void stop_xdn_switch(void *arg) |
| { |
| #if !CHIP_HAS_REV1_XDN() |
| /* Freeze the switch and the demux. */ |
| __insn_mtspr(SPR_UDN_SP_FREEZE, |
| SPR_UDN_SP_FREEZE__SP_FRZ_MASK | |
| SPR_UDN_SP_FREEZE__DEMUX_FRZ_MASK | |
| SPR_UDN_SP_FREEZE__NON_DEST_EXT_MASK); |
| #else |
| /* |
| * Drop all packets bound for the core or off the edge. |
| * We rely on the normal hardwall protection setup code |
| * to have set the low four bits to trigger firewall interrupts, |
| * and shift those bits up to trigger "drop on send" semantics, |
| * plus adding "drop on send to core" for all switches. |
| * In practice it seems the switches latch the DIRECTION_PROTECT |
| * SPR so they won't start dropping if they're already |
| * delivering the last message to the core, but it doesn't |
| * hurt to enable it here. |
| */ |
| struct hardwall_type *hwt = arg; |
| unsigned long protect = mfspr_XDN(hwt, DIRECTION_PROTECT); |
| mtspr_XDN(hwt, DIRECTION_PROTECT, (protect | C_PROTECT) << 5); |
| #endif |
| } |
| |
| static void empty_xdn_demuxes(struct hardwall_type *hwt) |
| { |
| #ifndef __tilepro__ |
| if (hwt->is_idn) { |
| while (__insn_mfspr(SPR_IDN_DATA_AVAIL) & (1 << 0)) |
| (void) __tile_idn0_receive(); |
| while (__insn_mfspr(SPR_IDN_DATA_AVAIL) & (1 << 1)) |
| (void) __tile_idn1_receive(); |
| return; |
| } |
| #endif |
| while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 0)) |
| (void) __tile_udn0_receive(); |
| while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 1)) |
| (void) __tile_udn1_receive(); |
| while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 2)) |
| (void) __tile_udn2_receive(); |
| while (__insn_mfspr(SPR_UDN_DATA_AVAIL) & (1 << 3)) |
| (void) __tile_udn3_receive(); |
| } |
| |
| /* Drain all the state from a stopped switch. */ |
| static void drain_xdn_switch(void *arg) |
| { |
| struct hardwall_info *info = arg; |
| struct hardwall_type *hwt = info->type; |
| |
| #if CHIP_HAS_REV1_XDN() |
| /* |
| * The switches have been configured to drop any messages |
| * destined for cores (or off the edge of the rectangle). |
| * But the current message may continue to be delivered, |
| * so we wait until all the cores have finished any pending |
| * messages before we stop draining. |
| */ |
| int pending = mfspr_XDN(hwt, PENDING); |
| while (pending--) { |
| empty_xdn_demuxes(hwt); |
| if (hwt->is_idn) |
| __tile_idn_send(0); |
| else |
| __tile_udn_send(0); |
| } |
| atomic_dec(&info->xdn_pending_count); |
| while (atomic_read(&info->xdn_pending_count)) |
| empty_xdn_demuxes(hwt); |
| #else |
| int i; |
| int from_tile_words, ca_count; |
| |
| /* Empty out the 5 switch point fifos. */ |
| for (i = 0; i < 5; i++) { |
| int words, j; |
| __insn_mtspr(SPR_UDN_SP_FIFO_SEL, i); |
| words = __insn_mfspr(SPR_UDN_SP_STATE) & 0xF; |
| for (j = 0; j < words; j++) |
| (void) __insn_mfspr(SPR_UDN_SP_FIFO_DATA); |
| BUG_ON((__insn_mfspr(SPR_UDN_SP_STATE) & 0xF) != 0); |
| } |
| |
| /* Dump out the 3 word fifo at top. */ |
| from_tile_words = (__insn_mfspr(SPR_UDN_DEMUX_STATUS) >> 10) & 0x3; |
| for (i = 0; i < from_tile_words; i++) |
| (void) __insn_mfspr(SPR_UDN_DEMUX_WRITE_FIFO); |
| |
| /* Empty out demuxes. */ |
| empty_xdn_demuxes(hwt); |
| |
| /* Empty out catch all. */ |
| ca_count = __insn_mfspr(SPR_UDN_DEMUX_CA_COUNT); |
| for (i = 0; i < ca_count; i++) |
| (void) __insn_mfspr(SPR_UDN_CA_DATA); |
| BUG_ON(__insn_mfspr(SPR_UDN_DEMUX_CA_COUNT) != 0); |
| |
| /* Clear demux logic. */ |
| __insn_mtspr(SPR_UDN_DEMUX_CTL, 1); |
| |
| /* |
| * Write switch state; experimentation indicates that 0xc3000 |
| * is an idle switch point. |
| */ |
| for (i = 0; i < 5; i++) { |
| __insn_mtspr(SPR_UDN_SP_FIFO_SEL, i); |
| __insn_mtspr(SPR_UDN_SP_STATE, 0xc3000); |
| } |
| #endif |
| } |
| |
| /* Reset random XDN state registers at boot up and during hardwall teardown. */ |
| static void reset_xdn_network_state(struct hardwall_type *hwt) |
| { |
| if (hwt->disabled) |
| return; |
| |
| /* Clear out other random registers so we have a clean slate. */ |
| mtspr_XDN(hwt, DIRECTION_PROTECT, 0); |
| mtspr_XDN(hwt, AVAIL_EN, 0); |
| mtspr_XDN(hwt, DEADLOCK_TIMEOUT, 0); |
| |
| #if !CHIP_HAS_REV1_XDN() |
| /* Reset UDN coordinates to their standard value */ |
| { |
| unsigned int cpu = smp_processor_id(); |
| unsigned int x = cpu_x(cpu); |
| unsigned int y = cpu_y(cpu); |
| __insn_mtspr(SPR_UDN_TILE_COORD, (x << 18) | (y << 7)); |
| } |
| |
| /* Set demux tags to predefined values and enable them. */ |
| __insn_mtspr(SPR_UDN_TAG_VALID, 0xf); |
| __insn_mtspr(SPR_UDN_TAG_0, (1 << 0)); |
| __insn_mtspr(SPR_UDN_TAG_1, (1 << 1)); |
| __insn_mtspr(SPR_UDN_TAG_2, (1 << 2)); |
| __insn_mtspr(SPR_UDN_TAG_3, (1 << 3)); |
| |
| /* Set other rev0 random registers to a clean state. */ |
| __insn_mtspr(SPR_UDN_REFILL_EN, 0); |
| __insn_mtspr(SPR_UDN_DEMUX_QUEUE_SEL, 0); |
| __insn_mtspr(SPR_UDN_SP_FIFO_SEL, 0); |
| |
| /* Start the switch and demux. */ |
| __insn_mtspr(SPR_UDN_SP_FREEZE, 0); |
| #endif |
| } |
| |
| void reset_network_state(void) |
| { |
| reset_xdn_network_state(&hardwall_types[HARDWALL_UDN]); |
| #ifndef __tilepro__ |
| reset_xdn_network_state(&hardwall_types[HARDWALL_IDN]); |
| #endif |
| } |
| |
| /* Restart an XDN switch after draining. */ |
| static void restart_xdn_switch(void *arg) |
| { |
| struct hardwall_type *hwt = arg; |
| |
| #if CHIP_HAS_REV1_XDN() |
| /* One last drain step to avoid races with injection and draining. */ |
| empty_xdn_demuxes(hwt); |
| #endif |
| |
| reset_xdn_network_state(hwt); |
| |
| /* Disable firewall interrupts. */ |
| disable_firewall_interrupts(hwt); |
| } |
| |
| /* Last reference to a hardwall is gone, so clear the network. */ |
| static void hardwall_destroy(struct hardwall_info *info) |
| { |
| struct task_struct *task; |
| struct hardwall_type *hwt; |
| unsigned long flags; |
| |
| /* Make sure this file actually represents a hardwall. */ |
| if (info == NULL) |
| return; |
| |
| /* |
| * Deactivate any remaining tasks. It's possible to race with |
| * some other thread that is exiting and hasn't yet called |
| * deactivate (when freeing its thread_info), so we carefully |
| * deactivate any remaining tasks before freeing the |
| * hardwall_info object itself. |
| */ |
| hwt = info->type; |
| info->teardown_in_progress = 1; |
| spin_lock_irqsave(&hwt->lock, flags); |
| list_for_each_entry(task, &info->task_head, |
| thread.hardwall[hwt->index].list) |
| _hardwall_deactivate(hwt, task); |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| |
| if (hwt->is_xdn) { |
| /* Configure the switches for draining the user network. */ |
| printk(KERN_DEBUG |
| "Clearing %s hardwall rectangle %dx%d %d,%d\n", |
| hwt->name, info->width, info->height, |
| info->ulhc_x, info->ulhc_y); |
| on_each_cpu_mask(&info->cpumask, stop_xdn_switch, hwt, 1); |
| |
| /* Drain the network. */ |
| #if CHIP_HAS_REV1_XDN() |
| atomic_set(&info->xdn_pending_count, |
| cpumask_weight(&info->cpumask)); |
| on_each_cpu_mask(&info->cpumask, drain_xdn_switch, info, 0); |
| #else |
| on_each_cpu_mask(&info->cpumask, drain_xdn_switch, info, 1); |
| #endif |
| |
| /* Restart switch and disable firewall. */ |
| on_each_cpu_mask(&info->cpumask, restart_xdn_switch, hwt, 1); |
| } |
| |
| /* Remove the /proc/tile/hardwall entry. */ |
| hardwall_remove_proc(info); |
| |
| /* Now free the hardwall from the list. */ |
| spin_lock_irqsave(&hwt->lock, flags); |
| BUG_ON(!list_empty(&info->task_head)); |
| list_del(&info->list); |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| kfree(info); |
| } |
| |
| |
| static int hardwall_proc_show(struct seq_file *sf, void *v) |
| { |
| struct hardwall_info *info = sf->private; |
| |
| seq_printf(sf, "%*pbl\n", cpumask_pr_args(&info->cpumask)); |
| return 0; |
| } |
| |
| static int hardwall_proc_open(struct inode *inode, |
| struct file *file) |
| { |
| return single_open(file, hardwall_proc_show, PDE_DATA(inode)); |
| } |
| |
| static const struct file_operations hardwall_proc_fops = { |
| .open = hardwall_proc_open, |
| .read = seq_read, |
| .llseek = seq_lseek, |
| .release = single_release, |
| }; |
| |
| static void hardwall_add_proc(struct hardwall_info *info) |
| { |
| char buf[64]; |
| snprintf(buf, sizeof(buf), "%d", info->id); |
| proc_create_data(buf, 0444, info->type->proc_dir, |
| &hardwall_proc_fops, info); |
| } |
| |
| static void hardwall_remove_proc(struct hardwall_info *info) |
| { |
| char buf[64]; |
| snprintf(buf, sizeof(buf), "%d", info->id); |
| remove_proc_entry(buf, info->type->proc_dir); |
| } |
| |
| int proc_pid_hardwall(struct seq_file *m, struct pid_namespace *ns, |
| struct pid *pid, struct task_struct *task) |
| { |
| int i; |
| int n = 0; |
| for (i = 0; i < HARDWALL_TYPES; ++i) { |
| struct hardwall_info *info = task->thread.hardwall[i].info; |
| if (info) |
| seq_printf(m, "%s: %d\n", info->type->name, info->id); |
| } |
| return n; |
| } |
| |
| void proc_tile_hardwall_init(struct proc_dir_entry *root) |
| { |
| int i; |
| for (i = 0; i < HARDWALL_TYPES; ++i) { |
| struct hardwall_type *hwt = &hardwall_types[i]; |
| if (hwt->disabled) |
| continue; |
| if (hardwall_proc_dir == NULL) |
| hardwall_proc_dir = proc_mkdir("hardwall", root); |
| hwt->proc_dir = proc_mkdir(hwt->name, hardwall_proc_dir); |
| } |
| } |
| |
| |
| /* |
| * Character device support via ioctl/close. |
| */ |
| |
| static long hardwall_ioctl(struct file *file, unsigned int a, unsigned long b) |
| { |
| struct hardwall_info *info = file->private_data; |
| int minor = iminor(file->f_mapping->host); |
| struct hardwall_type* hwt; |
| |
| if (_IOC_TYPE(a) != HARDWALL_IOCTL_BASE) |
| return -EINVAL; |
| |
| BUILD_BUG_ON(HARDWALL_TYPES != _HARDWALL_TYPES); |
| BUILD_BUG_ON(HARDWALL_TYPES != |
| sizeof(hardwall_types)/sizeof(hardwall_types[0])); |
| |
| if (minor < 0 || minor >= HARDWALL_TYPES) |
| return -EINVAL; |
| hwt = &hardwall_types[minor]; |
| WARN_ON(info && hwt != info->type); |
| |
| switch (_IOC_NR(a)) { |
| case _HARDWALL_CREATE: |
| if (hwt->disabled) |
| return -ENOSYS; |
| if (info != NULL) |
| return -EALREADY; |
| info = hardwall_create(hwt, _IOC_SIZE(a), |
| (const unsigned char __user *)b); |
| if (IS_ERR(info)) |
| return PTR_ERR(info); |
| file->private_data = info; |
| return 0; |
| |
| case _HARDWALL_ACTIVATE: |
| return hardwall_activate(info); |
| |
| case _HARDWALL_DEACTIVATE: |
| if (current->thread.hardwall[hwt->index].info != info) |
| return -EINVAL; |
| return hardwall_deactivate(hwt, current); |
| |
| case _HARDWALL_GET_ID: |
| return info ? info->id : -EINVAL; |
| |
| default: |
| return -EINVAL; |
| } |
| } |
| |
| #ifdef CONFIG_COMPAT |
| static long hardwall_compat_ioctl(struct file *file, |
| unsigned int a, unsigned long b) |
| { |
| /* Sign-extend the argument so it can be used as a pointer. */ |
| return hardwall_ioctl(file, a, (unsigned long)compat_ptr(b)); |
| } |
| #endif |
| |
| /* The user process closed the file; revoke access to user networks. */ |
| static int hardwall_flush(struct file *file, fl_owner_t owner) |
| { |
| struct hardwall_info *info = file->private_data; |
| struct task_struct *task, *tmp; |
| unsigned long flags; |
| |
| if (info) { |
| /* |
| * NOTE: if multiple threads are activated on this hardwall |
| * file, the other threads will continue having access to the |
| * user network until they are context-switched out and back |
| * in again. |
| * |
| * NOTE: A NULL files pointer means the task is being torn |
| * down, so in that case we also deactivate it. |
| */ |
| struct hardwall_type *hwt = info->type; |
| spin_lock_irqsave(&hwt->lock, flags); |
| list_for_each_entry_safe(task, tmp, &info->task_head, |
| thread.hardwall[hwt->index].list) { |
| if (task->files == owner || task->files == NULL) |
| _hardwall_deactivate(hwt, task); |
| } |
| spin_unlock_irqrestore(&hwt->lock, flags); |
| } |
| |
| return 0; |
| } |
| |
| /* This hardwall is gone, so destroy it. */ |
| static int hardwall_release(struct inode *inode, struct file *file) |
| { |
| hardwall_destroy(file->private_data); |
| return 0; |
| } |
| |
| static const struct file_operations dev_hardwall_fops = { |
| .open = nonseekable_open, |
| .unlocked_ioctl = hardwall_ioctl, |
| #ifdef CONFIG_COMPAT |
| .compat_ioctl = hardwall_compat_ioctl, |
| #endif |
| .flush = hardwall_flush, |
| .release = hardwall_release, |
| }; |
| |
| static struct cdev hardwall_dev; |
| |
| static int __init dev_hardwall_init(void) |
| { |
| int rc; |
| dev_t dev; |
| |
| rc = alloc_chrdev_region(&dev, 0, HARDWALL_TYPES, "hardwall"); |
| if (rc < 0) |
| return rc; |
| cdev_init(&hardwall_dev, &dev_hardwall_fops); |
| rc = cdev_add(&hardwall_dev, dev, HARDWALL_TYPES); |
| if (rc < 0) |
| return rc; |
| |
| return 0; |
| } |
| late_initcall(dev_hardwall_init); |