| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * KVM/MIPS MMU handling in the KVM module. |
| * |
| * Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved. |
| * Authors: Sanjay Lal <sanjayl@kymasys.com> |
| */ |
| |
| #include <linux/highmem.h> |
| #include <linux/kvm_host.h> |
| #include <linux/uaccess.h> |
| #include <asm/mmu_context.h> |
| #include <asm/pgalloc.h> |
| |
| /* |
| * KVM_MMU_CACHE_MIN_PAGES is the number of GPA page table translation levels |
| * for which pages need to be cached. |
| */ |
| #if defined(__PAGETABLE_PMD_FOLDED) |
| #define KVM_MMU_CACHE_MIN_PAGES 1 |
| #else |
| #define KVM_MMU_CACHE_MIN_PAGES 2 |
| #endif |
| |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, |
| int min, int max) |
| { |
| void *page; |
| |
| BUG_ON(max > KVM_NR_MEM_OBJS); |
| if (cache->nobjs >= min) |
| return 0; |
| while (cache->nobjs < max) { |
| page = (void *)__get_free_page(GFP_KERNEL); |
| if (!page) |
| return -ENOMEM; |
| cache->objects[cache->nobjs++] = page; |
| } |
| return 0; |
| } |
| |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) |
| { |
| while (mc->nobjs) |
| free_page((unsigned long)mc->objects[--mc->nobjs]); |
| } |
| |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc) |
| { |
| void *p; |
| |
| BUG_ON(!mc || !mc->nobjs); |
| p = mc->objects[--mc->nobjs]; |
| return p; |
| } |
| |
| void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu) |
| { |
| mmu_free_memory_cache(&vcpu->arch.mmu_page_cache); |
| } |
| |
| /** |
| * kvm_pgd_init() - Initialise KVM GPA page directory. |
| * @page: Pointer to page directory (PGD) for KVM GPA. |
| * |
| * Initialise a KVM GPA page directory with pointers to the invalid table, i.e. |
| * representing no mappings. This is similar to pgd_init(), however it |
| * initialises all the page directory pointers, not just the ones corresponding |
| * to the userland address space (since it is for the guest physical address |
| * space rather than a virtual address space). |
| */ |
| static void kvm_pgd_init(void *page) |
| { |
| unsigned long *p, *end; |
| unsigned long entry; |
| |
| #ifdef __PAGETABLE_PMD_FOLDED |
| entry = (unsigned long)invalid_pte_table; |
| #else |
| entry = (unsigned long)invalid_pmd_table; |
| #endif |
| |
| p = (unsigned long *)page; |
| end = p + PTRS_PER_PGD; |
| |
| do { |
| p[0] = entry; |
| p[1] = entry; |
| p[2] = entry; |
| p[3] = entry; |
| p[4] = entry; |
| p += 8; |
| p[-3] = entry; |
| p[-2] = entry; |
| p[-1] = entry; |
| } while (p != end); |
| } |
| |
| /** |
| * kvm_pgd_alloc() - Allocate and initialise a KVM GPA page directory. |
| * |
| * Allocate a blank KVM GPA page directory (PGD) for representing guest physical |
| * to host physical page mappings. |
| * |
| * Returns: Pointer to new KVM GPA page directory. |
| * NULL on allocation failure. |
| */ |
| pgd_t *kvm_pgd_alloc(void) |
| { |
| pgd_t *ret; |
| |
| ret = (pgd_t *)__get_free_pages(GFP_KERNEL, PGD_ORDER); |
| if (ret) |
| kvm_pgd_init(ret); |
| |
| return ret; |
| } |
| |
| /** |
| * kvm_mips_walk_pgd() - Walk page table with optional allocation. |
| * @pgd: Page directory pointer. |
| * @addr: Address to index page table using. |
| * @cache: MMU page cache to allocate new page tables from, or NULL. |
| * |
| * Walk the page tables pointed to by @pgd to find the PTE corresponding to the |
| * address @addr. If page tables don't exist for @addr, they will be created |
| * from the MMU cache if @cache is not NULL. |
| * |
| * Returns: Pointer to pte_t corresponding to @addr. |
| * NULL if a page table doesn't exist for @addr and !@cache. |
| * NULL if a page table allocation failed. |
| */ |
| static pte_t *kvm_mips_walk_pgd(pgd_t *pgd, struct kvm_mmu_memory_cache *cache, |
| unsigned long addr) |
| { |
| pud_t *pud; |
| pmd_t *pmd; |
| |
| pgd += pgd_index(addr); |
| if (pgd_none(*pgd)) { |
| /* Not used on MIPS yet */ |
| BUG(); |
| return NULL; |
| } |
| pud = pud_offset(pgd, addr); |
| if (pud_none(*pud)) { |
| pmd_t *new_pmd; |
| |
| if (!cache) |
| return NULL; |
| new_pmd = mmu_memory_cache_alloc(cache); |
| pmd_init((unsigned long)new_pmd, |
| (unsigned long)invalid_pte_table); |
| pud_populate(NULL, pud, new_pmd); |
| } |
| pmd = pmd_offset(pud, addr); |
| if (pmd_none(*pmd)) { |
| pte_t *new_pte; |
| |
| if (!cache) |
| return NULL; |
| new_pte = mmu_memory_cache_alloc(cache); |
| clear_page(new_pte); |
| pmd_populate_kernel(NULL, pmd, new_pte); |
| } |
| return pte_offset(pmd, addr); |
| } |
| |
| /* Caller must hold kvm->mm_lock */ |
| static pte_t *kvm_mips_pte_for_gpa(struct kvm *kvm, |
| struct kvm_mmu_memory_cache *cache, |
| unsigned long addr) |
| { |
| return kvm_mips_walk_pgd(kvm->arch.gpa_mm.pgd, cache, addr); |
| } |
| |
| /* |
| * kvm_mips_flush_gpa_{pte,pmd,pud,pgd,pt}. |
| * Flush a range of guest physical address space from the VM's GPA page tables. |
| */ |
| |
| static bool kvm_mips_flush_gpa_pte(pte_t *pte, unsigned long start_gpa, |
| unsigned long end_gpa) |
| { |
| int i_min = __pte_offset(start_gpa); |
| int i_max = __pte_offset(end_gpa); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i) { |
| if (!pte_present(pte[i])) |
| continue; |
| |
| set_pte(pte + i, __pte(0)); |
| } |
| return safe_to_remove; |
| } |
| |
| static bool kvm_mips_flush_gpa_pmd(pmd_t *pmd, unsigned long start_gpa, |
| unsigned long end_gpa) |
| { |
| pte_t *pte; |
| unsigned long end = ~0ul; |
| int i_min = __pmd_offset(start_gpa); |
| int i_max = __pmd_offset(end_gpa); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i, start_gpa = 0) { |
| if (!pmd_present(pmd[i])) |
| continue; |
| |
| pte = pte_offset(pmd + i, 0); |
| if (i == i_max) |
| end = end_gpa; |
| |
| if (kvm_mips_flush_gpa_pte(pte, start_gpa, end)) { |
| pmd_clear(pmd + i); |
| pte_free_kernel(NULL, pte); |
| } else { |
| safe_to_remove = false; |
| } |
| } |
| return safe_to_remove; |
| } |
| |
| static bool kvm_mips_flush_gpa_pud(pud_t *pud, unsigned long start_gpa, |
| unsigned long end_gpa) |
| { |
| pmd_t *pmd; |
| unsigned long end = ~0ul; |
| int i_min = __pud_offset(start_gpa); |
| int i_max = __pud_offset(end_gpa); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i, start_gpa = 0) { |
| if (!pud_present(pud[i])) |
| continue; |
| |
| pmd = pmd_offset(pud + i, 0); |
| if (i == i_max) |
| end = end_gpa; |
| |
| if (kvm_mips_flush_gpa_pmd(pmd, start_gpa, end)) { |
| pud_clear(pud + i); |
| pmd_free(NULL, pmd); |
| } else { |
| safe_to_remove = false; |
| } |
| } |
| return safe_to_remove; |
| } |
| |
| static bool kvm_mips_flush_gpa_pgd(pgd_t *pgd, unsigned long start_gpa, |
| unsigned long end_gpa) |
| { |
| pud_t *pud; |
| unsigned long end = ~0ul; |
| int i_min = pgd_index(start_gpa); |
| int i_max = pgd_index(end_gpa); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i, start_gpa = 0) { |
| if (!pgd_present(pgd[i])) |
| continue; |
| |
| pud = pud_offset(pgd + i, 0); |
| if (i == i_max) |
| end = end_gpa; |
| |
| if (kvm_mips_flush_gpa_pud(pud, start_gpa, end)) { |
| pgd_clear(pgd + i); |
| pud_free(NULL, pud); |
| } else { |
| safe_to_remove = false; |
| } |
| } |
| return safe_to_remove; |
| } |
| |
| /** |
| * kvm_mips_flush_gpa_pt() - Flush a range of guest physical addresses. |
| * @kvm: KVM pointer. |
| * @start_gfn: Guest frame number of first page in GPA range to flush. |
| * @end_gfn: Guest frame number of last page in GPA range to flush. |
| * |
| * Flushes a range of GPA mappings from the GPA page tables. |
| * |
| * The caller must hold the @kvm->mmu_lock spinlock. |
| * |
| * Returns: Whether its safe to remove the top level page directory because |
| * all lower levels have been removed. |
| */ |
| bool kvm_mips_flush_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) |
| { |
| return kvm_mips_flush_gpa_pgd(kvm->arch.gpa_mm.pgd, |
| start_gfn << PAGE_SHIFT, |
| end_gfn << PAGE_SHIFT); |
| } |
| |
| #define BUILD_PTE_RANGE_OP(name, op) \ |
| static int kvm_mips_##name##_pte(pte_t *pte, unsigned long start, \ |
| unsigned long end) \ |
| { \ |
| int ret = 0; \ |
| int i_min = __pte_offset(start); \ |
| int i_max = __pte_offset(end); \ |
| int i; \ |
| pte_t old, new; \ |
| \ |
| for (i = i_min; i <= i_max; ++i) { \ |
| if (!pte_present(pte[i])) \ |
| continue; \ |
| \ |
| old = pte[i]; \ |
| new = op(old); \ |
| if (pte_val(new) == pte_val(old)) \ |
| continue; \ |
| set_pte(pte + i, new); \ |
| ret = 1; \ |
| } \ |
| return ret; \ |
| } \ |
| \ |
| /* returns true if anything was done */ \ |
| static int kvm_mips_##name##_pmd(pmd_t *pmd, unsigned long start, \ |
| unsigned long end) \ |
| { \ |
| int ret = 0; \ |
| pte_t *pte; \ |
| unsigned long cur_end = ~0ul; \ |
| int i_min = __pmd_offset(start); \ |
| int i_max = __pmd_offset(end); \ |
| int i; \ |
| \ |
| for (i = i_min; i <= i_max; ++i, start = 0) { \ |
| if (!pmd_present(pmd[i])) \ |
| continue; \ |
| \ |
| pte = pte_offset(pmd + i, 0); \ |
| if (i == i_max) \ |
| cur_end = end; \ |
| \ |
| ret |= kvm_mips_##name##_pte(pte, start, cur_end); \ |
| } \ |
| return ret; \ |
| } \ |
| \ |
| static int kvm_mips_##name##_pud(pud_t *pud, unsigned long start, \ |
| unsigned long end) \ |
| { \ |
| int ret = 0; \ |
| pmd_t *pmd; \ |
| unsigned long cur_end = ~0ul; \ |
| int i_min = __pud_offset(start); \ |
| int i_max = __pud_offset(end); \ |
| int i; \ |
| \ |
| for (i = i_min; i <= i_max; ++i, start = 0) { \ |
| if (!pud_present(pud[i])) \ |
| continue; \ |
| \ |
| pmd = pmd_offset(pud + i, 0); \ |
| if (i == i_max) \ |
| cur_end = end; \ |
| \ |
| ret |= kvm_mips_##name##_pmd(pmd, start, cur_end); \ |
| } \ |
| return ret; \ |
| } \ |
| \ |
| static int kvm_mips_##name##_pgd(pgd_t *pgd, unsigned long start, \ |
| unsigned long end) \ |
| { \ |
| int ret = 0; \ |
| pud_t *pud; \ |
| unsigned long cur_end = ~0ul; \ |
| int i_min = pgd_index(start); \ |
| int i_max = pgd_index(end); \ |
| int i; \ |
| \ |
| for (i = i_min; i <= i_max; ++i, start = 0) { \ |
| if (!pgd_present(pgd[i])) \ |
| continue; \ |
| \ |
| pud = pud_offset(pgd + i, 0); \ |
| if (i == i_max) \ |
| cur_end = end; \ |
| \ |
| ret |= kvm_mips_##name##_pud(pud, start, cur_end); \ |
| } \ |
| return ret; \ |
| } |
| |
| /* |
| * kvm_mips_mkclean_gpa_pt. |
| * Mark a range of guest physical address space clean (writes fault) in the VM's |
| * GPA page table to allow dirty page tracking. |
| */ |
| |
| BUILD_PTE_RANGE_OP(mkclean, pte_mkclean) |
| |
| /** |
| * kvm_mips_mkclean_gpa_pt() - Make a range of guest physical addresses clean. |
| * @kvm: KVM pointer. |
| * @start_gfn: Guest frame number of first page in GPA range to flush. |
| * @end_gfn: Guest frame number of last page in GPA range to flush. |
| * |
| * Make a range of GPA mappings clean so that guest writes will fault and |
| * trigger dirty page logging. |
| * |
| * The caller must hold the @kvm->mmu_lock spinlock. |
| * |
| * Returns: Whether any GPA mappings were modified, which would require |
| * derived mappings (GVA page tables & TLB enties) to be |
| * invalidated. |
| */ |
| int kvm_mips_mkclean_gpa_pt(struct kvm *kvm, gfn_t start_gfn, gfn_t end_gfn) |
| { |
| return kvm_mips_mkclean_pgd(kvm->arch.gpa_mm.pgd, |
| start_gfn << PAGE_SHIFT, |
| end_gfn << PAGE_SHIFT); |
| } |
| |
| /** |
| * kvm_arch_mmu_enable_log_dirty_pt_masked() - write protect dirty pages |
| * @kvm: The KVM pointer |
| * @slot: The memory slot associated with mask |
| * @gfn_offset: The gfn offset in memory slot |
| * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory |
| * slot to be write protected |
| * |
| * Walks bits set in mask write protects the associated pte's. Caller must |
| * acquire @kvm->mmu_lock. |
| */ |
| void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm, |
| struct kvm_memory_slot *slot, |
| gfn_t gfn_offset, unsigned long mask) |
| { |
| gfn_t base_gfn = slot->base_gfn + gfn_offset; |
| gfn_t start = base_gfn + __ffs(mask); |
| gfn_t end = base_gfn + __fls(mask); |
| |
| kvm_mips_mkclean_gpa_pt(kvm, start, end); |
| } |
| |
| /* |
| * kvm_mips_mkold_gpa_pt. |
| * Mark a range of guest physical address space old (all accesses fault) in the |
| * VM's GPA page table to allow detection of commonly used pages. |
| */ |
| |
| BUILD_PTE_RANGE_OP(mkold, pte_mkold) |
| |
| static int kvm_mips_mkold_gpa_pt(struct kvm *kvm, gfn_t start_gfn, |
| gfn_t end_gfn) |
| { |
| return kvm_mips_mkold_pgd(kvm->arch.gpa_mm.pgd, |
| start_gfn << PAGE_SHIFT, |
| end_gfn << PAGE_SHIFT); |
| } |
| |
| static int handle_hva_to_gpa(struct kvm *kvm, |
| unsigned long start, |
| unsigned long end, |
| int (*handler)(struct kvm *kvm, gfn_t gfn, |
| gpa_t gfn_end, |
| struct kvm_memory_slot *memslot, |
| void *data), |
| void *data) |
| { |
| struct kvm_memslots *slots; |
| struct kvm_memory_slot *memslot; |
| int ret = 0; |
| |
| slots = kvm_memslots(kvm); |
| |
| /* we only care about the pages that the guest sees */ |
| kvm_for_each_memslot(memslot, slots) { |
| unsigned long hva_start, hva_end; |
| gfn_t gfn, gfn_end; |
| |
| hva_start = max(start, memslot->userspace_addr); |
| hva_end = min(end, memslot->userspace_addr + |
| (memslot->npages << PAGE_SHIFT)); |
| if (hva_start >= hva_end) |
| continue; |
| |
| /* |
| * {gfn(page) | page intersects with [hva_start, hva_end)} = |
| * {gfn_start, gfn_start+1, ..., gfn_end-1}. |
| */ |
| gfn = hva_to_gfn_memslot(hva_start, memslot); |
| gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot); |
| |
| ret |= handler(kvm, gfn, gfn_end, memslot, data); |
| } |
| |
| return ret; |
| } |
| |
| |
| static int kvm_unmap_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| struct kvm_memory_slot *memslot, void *data) |
| { |
| kvm_mips_flush_gpa_pt(kvm, gfn, gfn_end); |
| return 1; |
| } |
| |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva) |
| { |
| unsigned long end = hva + PAGE_SIZE; |
| |
| handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL); |
| |
| kvm_mips_callbacks->flush_shadow_all(kvm); |
| return 0; |
| } |
| |
| int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL); |
| |
| kvm_mips_callbacks->flush_shadow_all(kvm); |
| return 0; |
| } |
| |
| static int kvm_set_spte_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| struct kvm_memory_slot *memslot, void *data) |
| { |
| gpa_t gpa = gfn << PAGE_SHIFT; |
| pte_t hva_pte = *(pte_t *)data; |
| pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); |
| pte_t old_pte; |
| |
| if (!gpa_pte) |
| return 0; |
| |
| /* Mapping may need adjusting depending on memslot flags */ |
| old_pte = *gpa_pte; |
| if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES && !pte_dirty(old_pte)) |
| hva_pte = pte_mkclean(hva_pte); |
| else if (memslot->flags & KVM_MEM_READONLY) |
| hva_pte = pte_wrprotect(hva_pte); |
| |
| set_pte(gpa_pte, hva_pte); |
| |
| /* Replacing an absent or old page doesn't need flushes */ |
| if (!pte_present(old_pte) || !pte_young(old_pte)) |
| return 0; |
| |
| /* Pages swapped, aged, moved, or cleaned require flushes */ |
| return !pte_present(hva_pte) || |
| !pte_young(hva_pte) || |
| pte_pfn(old_pte) != pte_pfn(hva_pte) || |
| (pte_dirty(old_pte) && !pte_dirty(hva_pte)); |
| } |
| |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte) |
| { |
| unsigned long end = hva + PAGE_SIZE; |
| int ret; |
| |
| ret = handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pte); |
| if (ret) |
| kvm_mips_callbacks->flush_shadow_all(kvm); |
| } |
| |
| static int kvm_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| struct kvm_memory_slot *memslot, void *data) |
| { |
| return kvm_mips_mkold_gpa_pt(kvm, gfn, gfn_end); |
| } |
| |
| static int kvm_test_age_hva_handler(struct kvm *kvm, gfn_t gfn, gfn_t gfn_end, |
| struct kvm_memory_slot *memslot, void *data) |
| { |
| gpa_t gpa = gfn << PAGE_SHIFT; |
| pte_t *gpa_pte = kvm_mips_pte_for_gpa(kvm, NULL, gpa); |
| |
| if (!gpa_pte) |
| return 0; |
| return pte_young(*gpa_pte); |
| } |
| |
| int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end) |
| { |
| return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL); |
| } |
| |
| int kvm_test_age_hva(struct kvm *kvm, unsigned long hva) |
| { |
| return handle_hva_to_gpa(kvm, hva, hva, kvm_test_age_hva_handler, NULL); |
| } |
| |
| /** |
| * _kvm_mips_map_page_fast() - Fast path GPA fault handler. |
| * @vcpu: VCPU pointer. |
| * @gpa: Guest physical address of fault. |
| * @write_fault: Whether the fault was due to a write. |
| * @out_entry: New PTE for @gpa (written on success unless NULL). |
| * @out_buddy: New PTE for @gpa's buddy (written on success unless |
| * NULL). |
| * |
| * Perform fast path GPA fault handling, doing all that can be done without |
| * calling into KVM. This handles marking old pages young (for idle page |
| * tracking), and dirtying of clean pages (for dirty page logging). |
| * |
| * Returns: 0 on success, in which case we can update derived mappings and |
| * resume guest execution. |
| * -EFAULT on failure due to absent GPA mapping or write to |
| * read-only page, in which case KVM must be consulted. |
| */ |
| static int _kvm_mips_map_page_fast(struct kvm_vcpu *vcpu, unsigned long gpa, |
| bool write_fault, |
| pte_t *out_entry, pte_t *out_buddy) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| pte_t *ptep; |
| kvm_pfn_t pfn = 0; /* silence bogus GCC warning */ |
| bool pfn_valid = false; |
| int ret = 0; |
| |
| spin_lock(&kvm->mmu_lock); |
| |
| /* Fast path - just check GPA page table for an existing entry */ |
| ptep = kvm_mips_pte_for_gpa(kvm, NULL, gpa); |
| if (!ptep || !pte_present(*ptep)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| /* Track access to pages marked old */ |
| if (!pte_young(*ptep)) { |
| set_pte(ptep, pte_mkyoung(*ptep)); |
| pfn = pte_pfn(*ptep); |
| pfn_valid = true; |
| /* call kvm_set_pfn_accessed() after unlock */ |
| } |
| if (write_fault && !pte_dirty(*ptep)) { |
| if (!pte_write(*ptep)) { |
| ret = -EFAULT; |
| goto out; |
| } |
| |
| /* Track dirtying of writeable pages */ |
| set_pte(ptep, pte_mkdirty(*ptep)); |
| pfn = pte_pfn(*ptep); |
| mark_page_dirty(kvm, gfn); |
| kvm_set_pfn_dirty(pfn); |
| } |
| |
| if (out_entry) |
| *out_entry = *ptep; |
| if (out_buddy) |
| *out_buddy = *ptep_buddy(ptep); |
| |
| out: |
| spin_unlock(&kvm->mmu_lock); |
| if (pfn_valid) |
| kvm_set_pfn_accessed(pfn); |
| return ret; |
| } |
| |
| /** |
| * kvm_mips_map_page() - Map a guest physical page. |
| * @vcpu: VCPU pointer. |
| * @gpa: Guest physical address of fault. |
| * @write_fault: Whether the fault was due to a write. |
| * @out_entry: New PTE for @gpa (written on success unless NULL). |
| * @out_buddy: New PTE for @gpa's buddy (written on success unless |
| * NULL). |
| * |
| * Handle GPA faults by creating a new GPA mapping (or updating an existing |
| * one). |
| * |
| * This takes care of marking pages young or dirty (idle/dirty page tracking), |
| * asking KVM for the corresponding PFN, and creating a mapping in the GPA page |
| * tables. Derived mappings (GVA page tables and TLBs) must be handled by the |
| * caller. |
| * |
| * Returns: 0 on success, in which case the caller may use the @out_entry |
| * and @out_buddy PTEs to update derived mappings and resume guest |
| * execution. |
| * -EFAULT if there is no memory region at @gpa or a write was |
| * attempted to a read-only memory region. This is usually handled |
| * as an MMIO access. |
| */ |
| static int kvm_mips_map_page(struct kvm_vcpu *vcpu, unsigned long gpa, |
| bool write_fault, |
| pte_t *out_entry, pte_t *out_buddy) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| gfn_t gfn = gpa >> PAGE_SHIFT; |
| int srcu_idx, err; |
| kvm_pfn_t pfn; |
| pte_t *ptep, entry; |
| bool writeable; |
| unsigned long prot_bits; |
| unsigned long mmu_seq; |
| |
| /* Try the fast path to handle old / clean pages */ |
| srcu_idx = srcu_read_lock(&kvm->srcu); |
| err = _kvm_mips_map_page_fast(vcpu, gpa, write_fault, out_entry, |
| out_buddy); |
| if (!err) |
| goto out; |
| |
| /* We need a minimum of cached pages ready for page table creation */ |
| err = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, |
| KVM_NR_MEM_OBJS); |
| if (err) |
| goto out; |
| |
| retry: |
| /* |
| * Used to check for invalidations in progress, of the pfn that is |
| * returned by pfn_to_pfn_prot below. |
| */ |
| mmu_seq = kvm->mmu_notifier_seq; |
| /* |
| * Ensure the read of mmu_notifier_seq isn't reordered with PTE reads in |
| * gfn_to_pfn_prot() (which calls get_user_pages()), so that we don't |
| * risk the page we get a reference to getting unmapped before we have a |
| * chance to grab the mmu_lock without mmu_notifier_retry() noticing. |
| * |
| * This smp_rmb() pairs with the effective smp_wmb() of the combination |
| * of the pte_unmap_unlock() after the PTE is zapped, and the |
| * spin_lock() in kvm_mmu_notifier_invalidate_<page|range_end>() before |
| * mmu_notifier_seq is incremented. |
| */ |
| smp_rmb(); |
| |
| /* Slow path - ask KVM core whether we can access this GPA */ |
| pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writeable); |
| if (is_error_noslot_pfn(pfn)) { |
| err = -EFAULT; |
| goto out; |
| } |
| |
| spin_lock(&kvm->mmu_lock); |
| /* Check if an invalidation has taken place since we got pfn */ |
| if (mmu_notifier_retry(kvm, mmu_seq)) { |
| /* |
| * This can happen when mappings are changed asynchronously, but |
| * also synchronously if a COW is triggered by |
| * gfn_to_pfn_prot(). |
| */ |
| spin_unlock(&kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| goto retry; |
| } |
| |
| /* Ensure page tables are allocated */ |
| ptep = kvm_mips_pte_for_gpa(kvm, memcache, gpa); |
| |
| /* Set up the PTE */ |
| prot_bits = _PAGE_PRESENT | __READABLE | _page_cachable_default; |
| if (writeable) { |
| prot_bits |= _PAGE_WRITE; |
| if (write_fault) { |
| prot_bits |= __WRITEABLE; |
| mark_page_dirty(kvm, gfn); |
| kvm_set_pfn_dirty(pfn); |
| } |
| } |
| entry = pfn_pte(pfn, __pgprot(prot_bits)); |
| |
| /* Write the PTE */ |
| set_pte(ptep, entry); |
| |
| err = 0; |
| if (out_entry) |
| *out_entry = *ptep; |
| if (out_buddy) |
| *out_buddy = *ptep_buddy(ptep); |
| |
| spin_unlock(&kvm->mmu_lock); |
| kvm_release_pfn_clean(pfn); |
| kvm_set_pfn_accessed(pfn); |
| out: |
| srcu_read_unlock(&kvm->srcu, srcu_idx); |
| return err; |
| } |
| |
| static pte_t *kvm_trap_emul_pte_for_gva(struct kvm_vcpu *vcpu, |
| unsigned long addr) |
| { |
| struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache; |
| pgd_t *pgdp; |
| int ret; |
| |
| /* We need a minimum of cached pages ready for page table creation */ |
| ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES, |
| KVM_NR_MEM_OBJS); |
| if (ret) |
| return NULL; |
| |
| if (KVM_GUEST_KERNEL_MODE(vcpu)) |
| pgdp = vcpu->arch.guest_kernel_mm.pgd; |
| else |
| pgdp = vcpu->arch.guest_user_mm.pgd; |
| |
| return kvm_mips_walk_pgd(pgdp, memcache, addr); |
| } |
| |
| void kvm_trap_emul_invalidate_gva(struct kvm_vcpu *vcpu, unsigned long addr, |
| bool user) |
| { |
| pgd_t *pgdp; |
| pte_t *ptep; |
| |
| addr &= PAGE_MASK << 1; |
| |
| pgdp = vcpu->arch.guest_kernel_mm.pgd; |
| ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); |
| if (ptep) { |
| ptep[0] = pfn_pte(0, __pgprot(0)); |
| ptep[1] = pfn_pte(0, __pgprot(0)); |
| } |
| |
| if (user) { |
| pgdp = vcpu->arch.guest_user_mm.pgd; |
| ptep = kvm_mips_walk_pgd(pgdp, NULL, addr); |
| if (ptep) { |
| ptep[0] = pfn_pte(0, __pgprot(0)); |
| ptep[1] = pfn_pte(0, __pgprot(0)); |
| } |
| } |
| } |
| |
| /* |
| * kvm_mips_flush_gva_{pte,pmd,pud,pgd,pt}. |
| * Flush a range of guest physical address space from the VM's GPA page tables. |
| */ |
| |
| static bool kvm_mips_flush_gva_pte(pte_t *pte, unsigned long start_gva, |
| unsigned long end_gva) |
| { |
| int i_min = __pte_offset(start_gva); |
| int i_max = __pte_offset(end_gva); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PTE - 1); |
| int i; |
| |
| /* |
| * There's no freeing to do, so there's no point clearing individual |
| * entries unless only part of the last level page table needs flushing. |
| */ |
| if (safe_to_remove) |
| return true; |
| |
| for (i = i_min; i <= i_max; ++i) { |
| if (!pte_present(pte[i])) |
| continue; |
| |
| set_pte(pte + i, __pte(0)); |
| } |
| return false; |
| } |
| |
| static bool kvm_mips_flush_gva_pmd(pmd_t *pmd, unsigned long start_gva, |
| unsigned long end_gva) |
| { |
| pte_t *pte; |
| unsigned long end = ~0ul; |
| int i_min = __pmd_offset(start_gva); |
| int i_max = __pmd_offset(end_gva); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PMD - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i, start_gva = 0) { |
| if (!pmd_present(pmd[i])) |
| continue; |
| |
| pte = pte_offset(pmd + i, 0); |
| if (i == i_max) |
| end = end_gva; |
| |
| if (kvm_mips_flush_gva_pte(pte, start_gva, end)) { |
| pmd_clear(pmd + i); |
| pte_free_kernel(NULL, pte); |
| } else { |
| safe_to_remove = false; |
| } |
| } |
| return safe_to_remove; |
| } |
| |
| static bool kvm_mips_flush_gva_pud(pud_t *pud, unsigned long start_gva, |
| unsigned long end_gva) |
| { |
| pmd_t *pmd; |
| unsigned long end = ~0ul; |
| int i_min = __pud_offset(start_gva); |
| int i_max = __pud_offset(end_gva); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PUD - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i, start_gva = 0) { |
| if (!pud_present(pud[i])) |
| continue; |
| |
| pmd = pmd_offset(pud + i, 0); |
| if (i == i_max) |
| end = end_gva; |
| |
| if (kvm_mips_flush_gva_pmd(pmd, start_gva, end)) { |
| pud_clear(pud + i); |
| pmd_free(NULL, pmd); |
| } else { |
| safe_to_remove = false; |
| } |
| } |
| return safe_to_remove; |
| } |
| |
| static bool kvm_mips_flush_gva_pgd(pgd_t *pgd, unsigned long start_gva, |
| unsigned long end_gva) |
| { |
| pud_t *pud; |
| unsigned long end = ~0ul; |
| int i_min = pgd_index(start_gva); |
| int i_max = pgd_index(end_gva); |
| bool safe_to_remove = (i_min == 0 && i_max == PTRS_PER_PGD - 1); |
| int i; |
| |
| for (i = i_min; i <= i_max; ++i, start_gva = 0) { |
| if (!pgd_present(pgd[i])) |
| continue; |
| |
| pud = pud_offset(pgd + i, 0); |
| if (i == i_max) |
| end = end_gva; |
| |
| if (kvm_mips_flush_gva_pud(pud, start_gva, end)) { |
| pgd_clear(pgd + i); |
| pud_free(NULL, pud); |
| } else { |
| safe_to_remove = false; |
| } |
| } |
| return safe_to_remove; |
| } |
| |
| void kvm_mips_flush_gva_pt(pgd_t *pgd, enum kvm_mips_flush flags) |
| { |
| if (flags & KMF_GPA) { |
| /* all of guest virtual address space could be affected */ |
| if (flags & KMF_KERN) |
| /* useg, kseg0, seg2/3 */ |
| kvm_mips_flush_gva_pgd(pgd, 0, 0x7fffffff); |
| else |
| /* useg */ |
| kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); |
| } else { |
| /* useg */ |
| kvm_mips_flush_gva_pgd(pgd, 0, 0x3fffffff); |
| |
| /* kseg2/3 */ |
| if (flags & KMF_KERN) |
| kvm_mips_flush_gva_pgd(pgd, 0x60000000, 0x7fffffff); |
| } |
| } |
| |
| static pte_t kvm_mips_gpa_pte_to_gva_unmapped(pte_t pte) |
| { |
| /* |
| * Don't leak writeable but clean entries from GPA page tables. We don't |
| * want the normal Linux tlbmod handler to handle dirtying when KVM |
| * accesses guest memory. |
| */ |
| if (!pte_dirty(pte)) |
| pte = pte_wrprotect(pte); |
| |
| return pte; |
| } |
| |
| static pte_t kvm_mips_gpa_pte_to_gva_mapped(pte_t pte, long entrylo) |
| { |
| /* Guest EntryLo overrides host EntryLo */ |
| if (!(entrylo & ENTRYLO_D)) |
| pte = pte_mkclean(pte); |
| |
| return kvm_mips_gpa_pte_to_gva_unmapped(pte); |
| } |
| |
| #ifdef CONFIG_KVM_MIPS_VZ |
| int kvm_mips_handle_vz_root_tlb_fault(unsigned long badvaddr, |
| struct kvm_vcpu *vcpu, |
| bool write_fault) |
| { |
| int ret; |
| |
| ret = kvm_mips_map_page(vcpu, badvaddr, write_fault, NULL, NULL); |
| if (ret) |
| return ret; |
| |
| /* Invalidate this entry in the TLB */ |
| return kvm_vz_host_tlb_inv(vcpu, badvaddr); |
| } |
| #endif |
| |
| /* XXXKYMA: Must be called with interrupts disabled */ |
| int kvm_mips_handle_kseg0_tlb_fault(unsigned long badvaddr, |
| struct kvm_vcpu *vcpu, |
| bool write_fault) |
| { |
| unsigned long gpa; |
| pte_t pte_gpa[2], *ptep_gva; |
| int idx; |
| |
| if (KVM_GUEST_KSEGX(badvaddr) != KVM_GUEST_KSEG0) { |
| kvm_err("%s: Invalid BadVaddr: %#lx\n", __func__, badvaddr); |
| kvm_mips_dump_host_tlbs(); |
| return -1; |
| } |
| |
| /* Get the GPA page table entry */ |
| gpa = KVM_GUEST_CPHYSADDR(badvaddr); |
| idx = (badvaddr >> PAGE_SHIFT) & 1; |
| if (kvm_mips_map_page(vcpu, gpa, write_fault, &pte_gpa[idx], |
| &pte_gpa[!idx]) < 0) |
| return -1; |
| |
| /* Get the GVA page table entry */ |
| ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, badvaddr & ~PAGE_SIZE); |
| if (!ptep_gva) { |
| kvm_err("No ptep for gva %lx\n", badvaddr); |
| return -1; |
| } |
| |
| /* Copy a pair of entries from GPA page table to GVA page table */ |
| ptep_gva[0] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[0]); |
| ptep_gva[1] = kvm_mips_gpa_pte_to_gva_unmapped(pte_gpa[1]); |
| |
| /* Invalidate this entry in the TLB, guest kernel ASID only */ |
| kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); |
| return 0; |
| } |
| |
| int kvm_mips_handle_mapped_seg_tlb_fault(struct kvm_vcpu *vcpu, |
| struct kvm_mips_tlb *tlb, |
| unsigned long gva, |
| bool write_fault) |
| { |
| struct kvm *kvm = vcpu->kvm; |
| long tlb_lo[2]; |
| pte_t pte_gpa[2], *ptep_buddy, *ptep_gva; |
| unsigned int idx = TLB_LO_IDX(*tlb, gva); |
| bool kernel = KVM_GUEST_KERNEL_MODE(vcpu); |
| |
| tlb_lo[0] = tlb->tlb_lo[0]; |
| tlb_lo[1] = tlb->tlb_lo[1]; |
| |
| /* |
| * The commpage address must not be mapped to anything else if the guest |
| * TLB contains entries nearby, or commpage accesses will break. |
| */ |
| if (!((gva ^ KVM_GUEST_COMMPAGE_ADDR) & VPN2_MASK & (PAGE_MASK << 1))) |
| tlb_lo[TLB_LO_IDX(*tlb, KVM_GUEST_COMMPAGE_ADDR)] = 0; |
| |
| /* Get the GPA page table entry */ |
| if (kvm_mips_map_page(vcpu, mips3_tlbpfn_to_paddr(tlb_lo[idx]), |
| write_fault, &pte_gpa[idx], NULL) < 0) |
| return -1; |
| |
| /* And its GVA buddy's GPA page table entry if it also exists */ |
| pte_gpa[!idx] = pfn_pte(0, __pgprot(0)); |
| if (tlb_lo[!idx] & ENTRYLO_V) { |
| spin_lock(&kvm->mmu_lock); |
| ptep_buddy = kvm_mips_pte_for_gpa(kvm, NULL, |
| mips3_tlbpfn_to_paddr(tlb_lo[!idx])); |
| if (ptep_buddy) |
| pte_gpa[!idx] = *ptep_buddy; |
| spin_unlock(&kvm->mmu_lock); |
| } |
| |
| /* Get the GVA page table entry pair */ |
| ptep_gva = kvm_trap_emul_pte_for_gva(vcpu, gva & ~PAGE_SIZE); |
| if (!ptep_gva) { |
| kvm_err("No ptep for gva %lx\n", gva); |
| return -1; |
| } |
| |
| /* Copy a pair of entries from GPA page table to GVA page table */ |
| ptep_gva[0] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[0], tlb_lo[0]); |
| ptep_gva[1] = kvm_mips_gpa_pte_to_gva_mapped(pte_gpa[1], tlb_lo[1]); |
| |
| /* Invalidate this entry in the TLB, current guest mode ASID only */ |
| kvm_mips_host_tlb_inv(vcpu, gva, !kernel, kernel); |
| |
| kvm_debug("@ %#lx tlb_lo0: 0x%08lx tlb_lo1: 0x%08lx\n", vcpu->arch.pc, |
| tlb->tlb_lo[0], tlb->tlb_lo[1]); |
| |
| return 0; |
| } |
| |
| int kvm_mips_handle_commpage_tlb_fault(unsigned long badvaddr, |
| struct kvm_vcpu *vcpu) |
| { |
| kvm_pfn_t pfn; |
| pte_t *ptep; |
| |
| ptep = kvm_trap_emul_pte_for_gva(vcpu, badvaddr); |
| if (!ptep) { |
| kvm_err("No ptep for commpage %lx\n", badvaddr); |
| return -1; |
| } |
| |
| pfn = PFN_DOWN(virt_to_phys(vcpu->arch.kseg0_commpage)); |
| /* Also set valid and dirty, so refill handler doesn't have to */ |
| *ptep = pte_mkyoung(pte_mkdirty(pfn_pte(pfn, PAGE_SHARED))); |
| |
| /* Invalidate this entry in the TLB, guest kernel ASID only */ |
| kvm_mips_host_tlb_inv(vcpu, badvaddr, false, true); |
| return 0; |
| } |
| |
| /** |
| * kvm_mips_migrate_count() - Migrate timer. |
| * @vcpu: Virtual CPU. |
| * |
| * Migrate CP0_Count hrtimer to the current CPU by cancelling and restarting it |
| * if it was running prior to being cancelled. |
| * |
| * Must be called when the VCPU is migrated to a different CPU to ensure that |
| * timer expiry during guest execution interrupts the guest and causes the |
| * interrupt to be delivered in a timely manner. |
| */ |
| static void kvm_mips_migrate_count(struct kvm_vcpu *vcpu) |
| { |
| if (hrtimer_cancel(&vcpu->arch.comparecount_timer)) |
| hrtimer_restart(&vcpu->arch.comparecount_timer); |
| } |
| |
| /* Restore ASID once we are scheduled back after preemption */ |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
| { |
| unsigned long flags; |
| |
| kvm_debug("%s: vcpu %p, cpu: %d\n", __func__, vcpu, cpu); |
| |
| local_irq_save(flags); |
| |
| vcpu->cpu = cpu; |
| if (vcpu->arch.last_sched_cpu != cpu) { |
| kvm_debug("[%d->%d]KVM VCPU[%d] switch\n", |
| vcpu->arch.last_sched_cpu, cpu, vcpu->vcpu_id); |
| /* |
| * Migrate the timer interrupt to the current CPU so that it |
| * always interrupts the guest and synchronously triggers a |
| * guest timer interrupt. |
| */ |
| kvm_mips_migrate_count(vcpu); |
| } |
| |
| /* restore guest state to registers */ |
| kvm_mips_callbacks->vcpu_load(vcpu, cpu); |
| |
| local_irq_restore(flags); |
| } |
| |
| /* ASID can change if another task is scheduled during preemption */ |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
| { |
| unsigned long flags; |
| int cpu; |
| |
| local_irq_save(flags); |
| |
| cpu = smp_processor_id(); |
| vcpu->arch.last_sched_cpu = cpu; |
| vcpu->cpu = -1; |
| |
| /* save guest state in registers */ |
| kvm_mips_callbacks->vcpu_put(vcpu, cpu); |
| |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * kvm_trap_emul_gva_fault() - Safely attempt to handle a GVA access fault. |
| * @vcpu: Virtual CPU. |
| * @gva: Guest virtual address to be accessed. |
| * @write: True if write attempted (must be dirtied and made writable). |
| * |
| * Safely attempt to handle a GVA fault, mapping GVA pages if necessary, and |
| * dirtying the page if @write so that guest instructions can be modified. |
| * |
| * Returns: KVM_MIPS_MAPPED on success. |
| * KVM_MIPS_GVA if bad guest virtual address. |
| * KVM_MIPS_GPA if bad guest physical address. |
| * KVM_MIPS_TLB if guest TLB not present. |
| * KVM_MIPS_TLBINV if guest TLB present but not valid. |
| * KVM_MIPS_TLBMOD if guest TLB read only. |
| */ |
| enum kvm_mips_fault_result kvm_trap_emul_gva_fault(struct kvm_vcpu *vcpu, |
| unsigned long gva, |
| bool write) |
| { |
| struct mips_coproc *cop0 = vcpu->arch.cop0; |
| struct kvm_mips_tlb *tlb; |
| int index; |
| |
| if (KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG0) { |
| if (kvm_mips_handle_kseg0_tlb_fault(gva, vcpu, write) < 0) |
| return KVM_MIPS_GPA; |
| } else if ((KVM_GUEST_KSEGX(gva) < KVM_GUEST_KSEG0) || |
| KVM_GUEST_KSEGX(gva) == KVM_GUEST_KSEG23) { |
| /* Address should be in the guest TLB */ |
| index = kvm_mips_guest_tlb_lookup(vcpu, (gva & VPN2_MASK) | |
| (kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID)); |
| if (index < 0) |
| return KVM_MIPS_TLB; |
| tlb = &vcpu->arch.guest_tlb[index]; |
| |
| /* Entry should be valid, and dirty for writes */ |
| if (!TLB_IS_VALID(*tlb, gva)) |
| return KVM_MIPS_TLBINV; |
| if (write && !TLB_IS_DIRTY(*tlb, gva)) |
| return KVM_MIPS_TLBMOD; |
| |
| if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, gva, write)) |
| return KVM_MIPS_GPA; |
| } else { |
| return KVM_MIPS_GVA; |
| } |
| |
| return KVM_MIPS_MAPPED; |
| } |
| |
| int kvm_get_inst(u32 *opc, struct kvm_vcpu *vcpu, u32 *out) |
| { |
| int err; |
| |
| if (WARN(IS_ENABLED(CONFIG_KVM_MIPS_VZ), |
| "Expect BadInstr/BadInstrP registers to be used with VZ\n")) |
| return -EINVAL; |
| |
| retry: |
| kvm_trap_emul_gva_lockless_begin(vcpu); |
| err = get_user(*out, opc); |
| kvm_trap_emul_gva_lockless_end(vcpu); |
| |
| if (unlikely(err)) { |
| /* |
| * Try to handle the fault, maybe we just raced with a GVA |
| * invalidation. |
| */ |
| err = kvm_trap_emul_gva_fault(vcpu, (unsigned long)opc, |
| false); |
| if (unlikely(err)) { |
| kvm_err("%s: illegal address: %p\n", |
| __func__, opc); |
| return -EFAULT; |
| } |
| |
| /* Hopefully it'll work now */ |
| goto retry; |
| } |
| return 0; |
| } |