| |
| Overview of the Linux Virtual File System |
| |
| Original author: Richard Gooch <rgooch@atnf.csiro.au> |
| |
| Last updated on June 24, 2007. |
| |
| Copyright (C) 1999 Richard Gooch |
| Copyright (C) 2005 Pekka Enberg |
| |
| This file is released under the GPLv2. |
| |
| |
| Introduction |
| ============ |
| |
| The Virtual File System (also known as the Virtual Filesystem Switch) |
| is the software layer in the kernel that provides the filesystem |
| interface to userspace programs. It also provides an abstraction |
| within the kernel which allows different filesystem implementations to |
| coexist. |
| |
| VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so |
| on are called from a process context. Filesystem locking is described |
| in the document Documentation/filesystems/Locking. |
| |
| |
| Directory Entry Cache (dcache) |
| ------------------------------ |
| |
| The VFS implements the open(2), stat(2), chmod(2), and similar system |
| calls. The pathname argument that is passed to them is used by the VFS |
| to search through the directory entry cache (also known as the dentry |
| cache or dcache). This provides a very fast look-up mechanism to |
| translate a pathname (filename) into a specific dentry. Dentries live |
| in RAM and are never saved to disc: they exist only for performance. |
| |
| The dentry cache is meant to be a view into your entire filespace. As |
| most computers cannot fit all dentries in the RAM at the same time, |
| some bits of the cache are missing. In order to resolve your pathname |
| into a dentry, the VFS may have to resort to creating dentries along |
| the way, and then loading the inode. This is done by looking up the |
| inode. |
| |
| |
| The Inode Object |
| ---------------- |
| |
| An individual dentry usually has a pointer to an inode. Inodes are |
| filesystem objects such as regular files, directories, FIFOs and other |
| beasts. They live either on the disc (for block device filesystems) |
| or in the memory (for pseudo filesystems). Inodes that live on the |
| disc are copied into the memory when required and changes to the inode |
| are written back to disc. A single inode can be pointed to by multiple |
| dentries (hard links, for example, do this). |
| |
| To look up an inode requires that the VFS calls the lookup() method of |
| the parent directory inode. This method is installed by the specific |
| filesystem implementation that the inode lives in. Once the VFS has |
| the required dentry (and hence the inode), we can do all those boring |
| things like open(2) the file, or stat(2) it to peek at the inode |
| data. The stat(2) operation is fairly simple: once the VFS has the |
| dentry, it peeks at the inode data and passes some of it back to |
| userspace. |
| |
| |
| The File Object |
| --------------- |
| |
| Opening a file requires another operation: allocation of a file |
| structure (this is the kernel-side implementation of file |
| descriptors). The freshly allocated file structure is initialized with |
| a pointer to the dentry and a set of file operation member functions. |
| These are taken from the inode data. The open() file method is then |
| called so the specific filesystem implementation can do its work. You |
| can see that this is another switch performed by the VFS. The file |
| structure is placed into the file descriptor table for the process. |
| |
| Reading, writing and closing files (and other assorted VFS operations) |
| is done by using the userspace file descriptor to grab the appropriate |
| file structure, and then calling the required file structure method to |
| do whatever is required. For as long as the file is open, it keeps the |
| dentry in use, which in turn means that the VFS inode is still in use. |
| |
| |
| Registering and Mounting a Filesystem |
| ===================================== |
| |
| To register and unregister a filesystem, use the following API |
| functions: |
| |
| #include <linux/fs.h> |
| |
| extern int register_filesystem(struct file_system_type *); |
| extern int unregister_filesystem(struct file_system_type *); |
| |
| The passed struct file_system_type describes your filesystem. When a |
| request is made to mount a filesystem onto a directory in your namespace, |
| the VFS will call the appropriate mount() method for the specific |
| filesystem. New vfsmount referring to the tree returned by ->mount() |
| will be attached to the mountpoint, so that when pathname resolution |
| reaches the mountpoint it will jump into the root of that vfsmount. |
| |
| You can see all filesystems that are registered to the kernel in the |
| file /proc/filesystems. |
| |
| |
| struct file_system_type |
| ----------------------- |
| |
| This describes the filesystem. As of kernel 2.6.39, the following |
| members are defined: |
| |
| struct file_system_type { |
| const char *name; |
| int fs_flags; |
| struct dentry *(*mount) (struct file_system_type *, int, |
| const char *, void *); |
| void (*kill_sb) (struct super_block *); |
| struct module *owner; |
| struct file_system_type * next; |
| struct list_head fs_supers; |
| struct lock_class_key s_lock_key; |
| struct lock_class_key s_umount_key; |
| }; |
| |
| name: the name of the filesystem type, such as "ext2", "iso9660", |
| "msdos" and so on |
| |
| fs_flags: various flags (i.e. FS_REQUIRES_DEV, FS_NO_DCACHE, etc.) |
| |
| mount: the method to call when a new instance of this |
| filesystem should be mounted |
| |
| kill_sb: the method to call when an instance of this filesystem |
| should be shut down |
| |
| owner: for internal VFS use: you should initialize this to THIS_MODULE in |
| most cases. |
| |
| next: for internal VFS use: you should initialize this to NULL |
| |
| s_lock_key, s_umount_key: lockdep-specific |
| |
| The mount() method has the following arguments: |
| |
| struct file_system_type *fs_type: describes the filesystem, partly initialized |
| by the specific filesystem code |
| |
| int flags: mount flags |
| |
| const char *dev_name: the device name we are mounting. |
| |
| void *data: arbitrary mount options, usually comes as an ASCII |
| string (see "Mount Options" section) |
| |
| The mount() method must return the root dentry of the tree requested by |
| caller. An active reference to its superblock must be grabbed and the |
| superblock must be locked. On failure it should return ERR_PTR(error). |
| |
| The arguments match those of mount(2) and their interpretation |
| depends on filesystem type. E.g. for block filesystems, dev_name is |
| interpreted as block device name, that device is opened and if it |
| contains a suitable filesystem image the method creates and initializes |
| struct super_block accordingly, returning its root dentry to caller. |
| |
| ->mount() may choose to return a subtree of existing filesystem - it |
| doesn't have to create a new one. The main result from the caller's |
| point of view is a reference to dentry at the root of (sub)tree to |
| be attached; creation of new superblock is a common side effect. |
| |
| The most interesting member of the superblock structure that the |
| mount() method fills in is the "s_op" field. This is a pointer to |
| a "struct super_operations" which describes the next level of the |
| filesystem implementation. |
| |
| Usually, a filesystem uses one of the generic mount() implementations |
| and provides a fill_super() callback instead. The generic variants are: |
| |
| mount_bdev: mount a filesystem residing on a block device |
| |
| mount_nodev: mount a filesystem that is not backed by a device |
| |
| mount_single: mount a filesystem which shares the instance between |
| all mounts |
| |
| A fill_super() callback implementation has the following arguments: |
| |
| struct super_block *sb: the superblock structure. The callback |
| must initialize this properly. |
| |
| void *data: arbitrary mount options, usually comes as an ASCII |
| string (see "Mount Options" section) |
| |
| int silent: whether or not to be silent on error |
| |
| |
| The Superblock Object |
| ===================== |
| |
| A superblock object represents a mounted filesystem. |
| |
| |
| struct super_operations |
| ----------------------- |
| |
| This describes how the VFS can manipulate the superblock of your |
| filesystem. As of kernel 2.6.22, the following members are defined: |
| |
| struct super_operations { |
| struct inode *(*alloc_inode)(struct super_block *sb); |
| void (*destroy_inode)(struct inode *); |
| |
| void (*dirty_inode) (struct inode *, int flags); |
| int (*write_inode) (struct inode *, int); |
| void (*drop_inode) (struct inode *); |
| void (*delete_inode) (struct inode *); |
| void (*put_super) (struct super_block *); |
| int (*sync_fs)(struct super_block *sb, int wait); |
| int (*freeze_fs) (struct super_block *); |
| int (*unfreeze_fs) (struct super_block *); |
| int (*statfs) (struct dentry *, struct kstatfs *); |
| int (*remount_fs) (struct super_block *, int *, char *); |
| void (*clear_inode) (struct inode *); |
| void (*umount_begin) (struct super_block *); |
| |
| int (*show_options)(struct seq_file *, struct dentry *); |
| |
| ssize_t (*quota_read)(struct super_block *, int, char *, size_t, loff_t); |
| ssize_t (*quota_write)(struct super_block *, int, const char *, size_t, loff_t); |
| int (*nr_cached_objects)(struct super_block *); |
| void (*free_cached_objects)(struct super_block *, int); |
| }; |
| |
| All methods are called without any locks being held, unless otherwise |
| noted. This means that most methods can block safely. All methods are |
| only called from a process context (i.e. not from an interrupt handler |
| or bottom half). |
| |
| alloc_inode: this method is called by alloc_inode() to allocate memory |
| for struct inode and initialize it. If this function is not |
| defined, a simple 'struct inode' is allocated. Normally |
| alloc_inode will be used to allocate a larger structure which |
| contains a 'struct inode' embedded within it. |
| |
| destroy_inode: this method is called by destroy_inode() to release |
| resources allocated for struct inode. It is only required if |
| ->alloc_inode was defined and simply undoes anything done by |
| ->alloc_inode. |
| |
| dirty_inode: this method is called by the VFS to mark an inode dirty. |
| |
| write_inode: this method is called when the VFS needs to write an |
| inode to disc. The second parameter indicates whether the write |
| should be synchronous or not, not all filesystems check this flag. |
| |
| drop_inode: called when the last access to the inode is dropped, |
| with the inode->i_lock spinlock held. |
| |
| This method should be either NULL (normal UNIX filesystem |
| semantics) or "generic_delete_inode" (for filesystems that do not |
| want to cache inodes - causing "delete_inode" to always be |
| called regardless of the value of i_nlink) |
| |
| The "generic_delete_inode()" behavior is equivalent to the |
| old practice of using "force_delete" in the put_inode() case, |
| but does not have the races that the "force_delete()" approach |
| had. |
| |
| delete_inode: called when the VFS wants to delete an inode |
| |
| put_super: called when the VFS wishes to free the superblock |
| (i.e. unmount). This is called with the superblock lock held |
| |
| sync_fs: called when VFS is writing out all dirty data associated with |
| a superblock. The second parameter indicates whether the method |
| should wait until the write out has been completed. Optional. |
| |
| freeze_fs: called when VFS is locking a filesystem and |
| forcing it into a consistent state. This method is currently |
| used by the Logical Volume Manager (LVM). |
| |
| unfreeze_fs: called when VFS is unlocking a filesystem and making it writable |
| again. |
| |
| statfs: called when the VFS needs to get filesystem statistics. |
| |
| remount_fs: called when the filesystem is remounted. This is called |
| with the kernel lock held |
| |
| clear_inode: called then the VFS clears the inode. Optional |
| |
| umount_begin: called when the VFS is unmounting a filesystem. |
| |
| show_options: called by the VFS to show mount options for |
| /proc/<pid>/mounts. (see "Mount Options" section) |
| |
| quota_read: called by the VFS to read from filesystem quota file. |
| |
| quota_write: called by the VFS to write to filesystem quota file. |
| |
| nr_cached_objects: called by the sb cache shrinking function for the |
| filesystem to return the number of freeable cached objects it contains. |
| Optional. |
| |
| free_cache_objects: called by the sb cache shrinking function for the |
| filesystem to scan the number of objects indicated to try to free them. |
| Optional, but any filesystem implementing this method needs to also |
| implement ->nr_cached_objects for it to be called correctly. |
| |
| We can't do anything with any errors that the filesystem might |
| encountered, hence the void return type. This will never be called if |
| the VM is trying to reclaim under GFP_NOFS conditions, hence this |
| method does not need to handle that situation itself. |
| |
| Implementations must include conditional reschedule calls inside any |
| scanning loop that is done. This allows the VFS to determine |
| appropriate scan batch sizes without having to worry about whether |
| implementations will cause holdoff problems due to large scan batch |
| sizes. |
| |
| Whoever sets up the inode is responsible for filling in the "i_op" field. This |
| is a pointer to a "struct inode_operations" which describes the methods that |
| can be performed on individual inodes. |
| |
| struct xattr_handlers |
| --------------------- |
| |
| On filesystems that support extended attributes (xattrs), the s_xattr |
| superblock field points to a NULL-terminated array of xattr handlers. Extended |
| attributes are name:value pairs. |
| |
| name: Indicates that the handler matches attributes with the specified name |
| (such as "system.posix_acl_access"); the prefix field must be NULL. |
| |
| prefix: Indicates that the handler matches all attributes with the specified |
| name prefix (such as "user."); the name field must be NULL. |
| |
| list: Determine if attributes matching this xattr handler should be listed |
| for a particular dentry. Used by some listxattr implementations like |
| generic_listxattr. |
| |
| get: Called by the VFS to get the value of a particular extended attribute. |
| This method is called by the getxattr(2) system call. |
| |
| set: Called by the VFS to set the value of a particular extended attribute. |
| When the new value is NULL, called to remove a particular extended |
| attribute. This method is called by the the setxattr(2) and |
| removexattr(2) system calls. |
| |
| When none of the xattr handlers of a filesystem match the specified attribute |
| name or when a filesystem doesn't support extended attributes, the various |
| *xattr(2) system calls return -EOPNOTSUPP. |
| |
| |
| The Inode Object |
| ================ |
| |
| An inode object represents an object within the filesystem. |
| |
| |
| struct inode_operations |
| ----------------------- |
| |
| This describes how the VFS can manipulate an inode in your |
| filesystem. As of kernel 2.6.22, the following members are defined: |
| |
| struct inode_operations { |
| int (*create) (struct inode *,struct dentry *, umode_t, bool); |
| struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int); |
| int (*link) (struct dentry *,struct inode *,struct dentry *); |
| int (*unlink) (struct inode *,struct dentry *); |
| int (*symlink) (struct inode *,struct dentry *,const char *); |
| int (*mkdir) (struct inode *,struct dentry *,umode_t); |
| int (*rmdir) (struct inode *,struct dentry *); |
| int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t); |
| int (*rename) (struct inode *, struct dentry *, |
| struct inode *, struct dentry *, unsigned int); |
| int (*readlink) (struct dentry *, char __user *,int); |
| const char *(*get_link) (struct dentry *, struct inode *, |
| struct delayed_call *); |
| int (*permission) (struct inode *, int); |
| int (*get_acl)(struct inode *, int); |
| int (*setattr) (struct dentry *, struct iattr *); |
| int (*getattr) (const struct path *, struct kstat *, u32, unsigned int); |
| ssize_t (*listxattr) (struct dentry *, char *, size_t); |
| void (*update_time)(struct inode *, struct timespec *, int); |
| int (*atomic_open)(struct inode *, struct dentry *, struct file *, |
| unsigned open_flag, umode_t create_mode, int *opened); |
| int (*tmpfile) (struct inode *, struct dentry *, umode_t); |
| }; |
| |
| Again, all methods are called without any locks being held, unless |
| otherwise noted. |
| |
| create: called by the open(2) and creat(2) system calls. Only |
| required if you want to support regular files. The dentry you |
| get should not have an inode (i.e. it should be a negative |
| dentry). Here you will probably call d_instantiate() with the |
| dentry and the newly created inode |
| |
| lookup: called when the VFS needs to look up an inode in a parent |
| directory. The name to look for is found in the dentry. This |
| method must call d_add() to insert the found inode into the |
| dentry. The "i_count" field in the inode structure should be |
| incremented. If the named inode does not exist a NULL inode |
| should be inserted into the dentry (this is called a negative |
| dentry). Returning an error code from this routine must only |
| be done on a real error, otherwise creating inodes with system |
| calls like create(2), mknod(2), mkdir(2) and so on will fail. |
| If you wish to overload the dentry methods then you should |
| initialise the "d_dop" field in the dentry; this is a pointer |
| to a struct "dentry_operations". |
| This method is called with the directory inode semaphore held |
| |
| link: called by the link(2) system call. Only required if you want |
| to support hard links. You will probably need to call |
| d_instantiate() just as you would in the create() method |
| |
| unlink: called by the unlink(2) system call. Only required if you |
| want to support deleting inodes |
| |
| symlink: called by the symlink(2) system call. Only required if you |
| want to support symlinks. You will probably need to call |
| d_instantiate() just as you would in the create() method |
| |
| mkdir: called by the mkdir(2) system call. Only required if you want |
| to support creating subdirectories. You will probably need to |
| call d_instantiate() just as you would in the create() method |
| |
| rmdir: called by the rmdir(2) system call. Only required if you want |
| to support deleting subdirectories |
| |
| mknod: called by the mknod(2) system call to create a device (char, |
| block) inode or a named pipe (FIFO) or socket. Only required |
| if you want to support creating these types of inodes. You |
| will probably need to call d_instantiate() just as you would |
| in the create() method |
| |
| rename: called by the rename(2) system call to rename the object to |
| have the parent and name given by the second inode and dentry. |
| |
| The filesystem must return -EINVAL for any unsupported or |
| unknown flags. Currently the following flags are implemented: |
| (1) RENAME_NOREPLACE: this flag indicates that if the target |
| of the rename exists the rename should fail with -EEXIST |
| instead of replacing the target. The VFS already checks for |
| existence, so for local filesystems the RENAME_NOREPLACE |
| implementation is equivalent to plain rename. |
| (2) RENAME_EXCHANGE: exchange source and target. Both must |
| exist; this is checked by the VFS. Unlike plain rename, |
| source and target may be of different type. |
| |
| get_link: called by the VFS to follow a symbolic link to the |
| inode it points to. Only required if you want to support |
| symbolic links. This method returns the symlink body |
| to traverse (and possibly resets the current position with |
| nd_jump_link()). If the body won't go away until the inode |
| is gone, nothing else is needed; if it needs to be otherwise |
| pinned, arrange for its release by having get_link(..., ..., done) |
| do set_delayed_call(done, destructor, argument). |
| In that case destructor(argument) will be called once VFS is |
| done with the body you've returned. |
| May be called in RCU mode; that is indicated by NULL dentry |
| argument. If request can't be handled without leaving RCU mode, |
| have it return ERR_PTR(-ECHILD). |
| |
| readlink: this is now just an override for use by readlink(2) for the |
| cases when ->get_link uses nd_jump_link() or object is not in |
| fact a symlink. Normally filesystems should only implement |
| ->get_link for symlinks and readlink(2) will automatically use |
| that. |
| |
| permission: called by the VFS to check for access rights on a POSIX-like |
| filesystem. |
| |
| May be called in rcu-walk mode (mask & MAY_NOT_BLOCK). If in rcu-walk |
| mode, the filesystem must check the permission without blocking or |
| storing to the inode. |
| |
| If a situation is encountered that rcu-walk cannot handle, return |
| -ECHILD and it will be called again in ref-walk mode. |
| |
| setattr: called by the VFS to set attributes for a file. This method |
| is called by chmod(2) and related system calls. |
| |
| getattr: called by the VFS to get attributes of a file. This method |
| is called by stat(2) and related system calls. |
| |
| listxattr: called by the VFS to list all extended attributes for a |
| given file. This method is called by the listxattr(2) system call. |
| |
| update_time: called by the VFS to update a specific time or the i_version of |
| an inode. If this is not defined the VFS will update the inode itself |
| and call mark_inode_dirty_sync. |
| |
| atomic_open: called on the last component of an open. Using this optional |
| method the filesystem can look up, possibly create and open the file in |
| one atomic operation. If it cannot perform this (e.g. the file type |
| turned out to be wrong) it may signal this by returning 1 instead of |
| usual 0 or -ve . This method is only called if the last component is |
| negative or needs lookup. Cached positive dentries are still handled by |
| f_op->open(). If the file was created, the FILE_CREATED flag should be |
| set in "opened". In case of O_EXCL the method must only succeed if the |
| file didn't exist and hence FILE_CREATED shall always be set on success. |
| |
| tmpfile: called in the end of O_TMPFILE open(). Optional, equivalent to |
| atomically creating, opening and unlinking a file in given directory. |
| |
| The Address Space Object |
| ======================== |
| |
| The address space object is used to group and manage pages in the page |
| cache. It can be used to keep track of the pages in a file (or |
| anything else) and also track the mapping of sections of the file into |
| process address spaces. |
| |
| There are a number of distinct yet related services that an |
| address-space can provide. These include communicating memory |
| pressure, page lookup by address, and keeping track of pages tagged as |
| Dirty or Writeback. |
| |
| The first can be used independently to the others. The VM can try to |
| either write dirty pages in order to clean them, or release clean |
| pages in order to reuse them. To do this it can call the ->writepage |
| method on dirty pages, and ->releasepage on clean pages with |
| PagePrivate set. Clean pages without PagePrivate and with no external |
| references will be released without notice being given to the |
| address_space. |
| |
| To achieve this functionality, pages need to be placed on an LRU with |
| lru_cache_add and mark_page_active needs to be called whenever the |
| page is used. |
| |
| Pages are normally kept in a radix tree index by ->index. This tree |
| maintains information about the PG_Dirty and PG_Writeback status of |
| each page, so that pages with either of these flags can be found |
| quickly. |
| |
| The Dirty tag is primarily used by mpage_writepages - the default |
| ->writepages method. It uses the tag to find dirty pages to call |
| ->writepage on. If mpage_writepages is not used (i.e. the address |
| provides its own ->writepages) , the PAGECACHE_TAG_DIRTY tag is |
| almost unused. write_inode_now and sync_inode do use it (through |
| __sync_single_inode) to check if ->writepages has been successful in |
| writing out the whole address_space. |
| |
| The Writeback tag is used by filemap*wait* and sync_page* functions, |
| via filemap_fdatawait_range, to wait for all writeback to complete. |
| |
| An address_space handler may attach extra information to a page, |
| typically using the 'private' field in the 'struct page'. If such |
| information is attached, the PG_Private flag should be set. This will |
| cause various VM routines to make extra calls into the address_space |
| handler to deal with that data. |
| |
| An address space acts as an intermediate between storage and |
| application. Data is read into the address space a whole page at a |
| time, and provided to the application either by copying of the page, |
| or by memory-mapping the page. |
| Data is written into the address space by the application, and then |
| written-back to storage typically in whole pages, however the |
| address_space has finer control of write sizes. |
| |
| The read process essentially only requires 'readpage'. The write |
| process is more complicated and uses write_begin/write_end or |
| set_page_dirty to write data into the address_space, and writepage |
| and writepages to writeback data to storage. |
| |
| Adding and removing pages to/from an address_space is protected by the |
| inode's i_mutex. |
| |
| When data is written to a page, the PG_Dirty flag should be set. It |
| typically remains set until writepage asks for it to be written. This |
| should clear PG_Dirty and set PG_Writeback. It can be actually |
| written at any point after PG_Dirty is clear. Once it is known to be |
| safe, PG_Writeback is cleared. |
| |
| Writeback makes use of a writeback_control structure to direct the |
| operations. This gives the the writepage and writepages operations some |
| information about the nature of and reason for the writeback request, |
| and the constraints under which it is being done. It is also used to |
| return information back to the caller about the result of a writepage or |
| writepages request. |
| |
| Handling errors during writeback |
| -------------------------------- |
| Most applications that do buffered I/O will periodically call a file |
| synchronization call (fsync, fdatasync, msync or sync_file_range) to |
| ensure that data written has made it to the backing store. When there |
| is an error during writeback, they expect that error to be reported when |
| a file sync request is made. After an error has been reported on one |
| request, subsequent requests on the same file descriptor should return |
| 0, unless further writeback errors have occurred since the previous file |
| syncronization. |
| |
| Ideally, the kernel would report errors only on file descriptions on |
| which writes were done that subsequently failed to be written back. The |
| generic pagecache infrastructure does not track the file descriptions |
| that have dirtied each individual page however, so determining which |
| file descriptors should get back an error is not possible. |
| |
| Instead, the generic writeback error tracking infrastructure in the |
| kernel settles for reporting errors to fsync on all file descriptions |
| that were open at the time that the error occurred. In a situation with |
| multiple writers, all of them will get back an error on a subsequent fsync, |
| even if all of the writes done through that particular file descriptor |
| succeeded (or even if there were no writes on that file descriptor at all). |
| |
| Filesystems that wish to use this infrastructure should call |
| mapping_set_error to record the error in the address_space when it |
| occurs. Then, after writing back data from the pagecache in their |
| file->fsync operation, they should call file_check_and_advance_wb_err to |
| ensure that the struct file's error cursor has advanced to the correct |
| point in the stream of errors emitted by the backing device(s). |
| |
| struct address_space_operations |
| ------------------------------- |
| |
| This describes how the VFS can manipulate mapping of a file to page cache in |
| your filesystem. The following members are defined: |
| |
| struct address_space_operations { |
| int (*writepage)(struct page *page, struct writeback_control *wbc); |
| int (*readpage)(struct file *, struct page *); |
| int (*writepages)(struct address_space *, struct writeback_control *); |
| int (*set_page_dirty)(struct page *page); |
| int (*readpages)(struct file *filp, struct address_space *mapping, |
| struct list_head *pages, unsigned nr_pages); |
| int (*write_begin)(struct file *, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned flags, |
| struct page **pagep, void **fsdata); |
| int (*write_end)(struct file *, struct address_space *mapping, |
| loff_t pos, unsigned len, unsigned copied, |
| struct page *page, void *fsdata); |
| sector_t (*bmap)(struct address_space *, sector_t); |
| void (*invalidatepage) (struct page *, unsigned int, unsigned int); |
| int (*releasepage) (struct page *, int); |
| void (*freepage)(struct page *); |
| ssize_t (*direct_IO)(struct kiocb *, struct iov_iter *iter); |
| /* isolate a page for migration */ |
| bool (*isolate_page) (struct page *, isolate_mode_t); |
| /* migrate the contents of a page to the specified target */ |
| int (*migratepage) (struct page *, struct page *); |
| /* put migration-failed page back to right list */ |
| void (*putback_page) (struct page *); |
| int (*launder_page) (struct page *); |
| |
| int (*is_partially_uptodate) (struct page *, unsigned long, |
| unsigned long); |
| void (*is_dirty_writeback) (struct page *, bool *, bool *); |
| int (*error_remove_page) (struct mapping *mapping, struct page *page); |
| int (*swap_activate)(struct file *); |
| int (*swap_deactivate)(struct file *); |
| }; |
| |
| writepage: called by the VM to write a dirty page to backing store. |
| This may happen for data integrity reasons (i.e. 'sync'), or |
| to free up memory (flush). The difference can be seen in |
| wbc->sync_mode. |
| The PG_Dirty flag has been cleared and PageLocked is true. |
| writepage should start writeout, should set PG_Writeback, |
| and should make sure the page is unlocked, either synchronously |
| or asynchronously when the write operation completes. |
| |
| If wbc->sync_mode is WB_SYNC_NONE, ->writepage doesn't have to |
| try too hard if there are problems, and may choose to write out |
| other pages from the mapping if that is easier (e.g. due to |
| internal dependencies). If it chooses not to start writeout, it |
| should return AOP_WRITEPAGE_ACTIVATE so that the VM will not keep |
| calling ->writepage on that page. |
| |
| See the file "Locking" for more details. |
| |
| readpage: called by the VM to read a page from backing store. |
| The page will be Locked when readpage is called, and should be |
| unlocked and marked uptodate once the read completes. |
| If ->readpage discovers that it needs to unlock the page for |
| some reason, it can do so, and then return AOP_TRUNCATED_PAGE. |
| In this case, the page will be relocated, relocked and if |
| that all succeeds, ->readpage will be called again. |
| |
| writepages: called by the VM to write out pages associated with the |
| address_space object. If wbc->sync_mode is WBC_SYNC_ALL, then |
| the writeback_control will specify a range of pages that must be |
| written out. If it is WBC_SYNC_NONE, then a nr_to_write is given |
| and that many pages should be written if possible. |
| If no ->writepages is given, then mpage_writepages is used |
| instead. This will choose pages from the address space that are |
| tagged as DIRTY and will pass them to ->writepage. |
| |
| set_page_dirty: called by the VM to set a page dirty. |
| This is particularly needed if an address space attaches |
| private data to a page, and that data needs to be updated when |
| a page is dirtied. This is called, for example, when a memory |
| mapped page gets modified. |
| If defined, it should set the PageDirty flag, and the |
| PAGECACHE_TAG_DIRTY tag in the radix tree. |
| |
| readpages: called by the VM to read pages associated with the address_space |
| object. This is essentially just a vector version of |
| readpage. Instead of just one page, several pages are |
| requested. |
| readpages is only used for read-ahead, so read errors are |
| ignored. If anything goes wrong, feel free to give up. |
| |
| write_begin: |
| Called by the generic buffered write code to ask the filesystem to |
| prepare to write len bytes at the given offset in the file. The |
| address_space should check that the write will be able to complete, |
| by allocating space if necessary and doing any other internal |
| housekeeping. If the write will update parts of any basic-blocks on |
| storage, then those blocks should be pre-read (if they haven't been |
| read already) so that the updated blocks can be written out properly. |
| |
| The filesystem must return the locked pagecache page for the specified |
| offset, in *pagep, for the caller to write into. |
| |
| It must be able to cope with short writes (where the length passed to |
| write_begin is greater than the number of bytes copied into the page). |
| |
| flags is a field for AOP_FLAG_xxx flags, described in |
| include/linux/fs.h. |
| |
| A void * may be returned in fsdata, which then gets passed into |
| write_end. |
| |
| Returns 0 on success; < 0 on failure (which is the error code), in |
| which case write_end is not called. |
| |
| write_end: After a successful write_begin, and data copy, write_end must |
| be called. len is the original len passed to write_begin, and copied |
| is the amount that was able to be copied. |
| |
| The filesystem must take care of unlocking the page and releasing it |
| refcount, and updating i_size. |
| |
| Returns < 0 on failure, otherwise the number of bytes (<= 'copied') |
| that were able to be copied into pagecache. |
| |
| bmap: called by the VFS to map a logical block offset within object to |
| physical block number. This method is used by the FIBMAP |
| ioctl and for working with swap-files. To be able to swap to |
| a file, the file must have a stable mapping to a block |
| device. The swap system does not go through the filesystem |
| but instead uses bmap to find out where the blocks in the file |
| are and uses those addresses directly. |
| |
| invalidatepage: If a page has PagePrivate set, then invalidatepage |
| will be called when part or all of the page is to be removed |
| from the address space. This generally corresponds to either a |
| truncation, punch hole or a complete invalidation of the address |
| space (in the latter case 'offset' will always be 0 and 'length' |
| will be PAGE_SIZE). Any private data associated with the page |
| should be updated to reflect this truncation. If offset is 0 and |
| length is PAGE_SIZE, then the private data should be released, |
| because the page must be able to be completely discarded. This may |
| be done by calling the ->releasepage function, but in this case the |
| release MUST succeed. |
| |
| releasepage: releasepage is called on PagePrivate pages to indicate |
| that the page should be freed if possible. ->releasepage |
| should remove any private data from the page and clear the |
| PagePrivate flag. If releasepage() fails for some reason, it must |
| indicate failure with a 0 return value. |
| releasepage() is used in two distinct though related cases. The |
| first is when the VM finds a clean page with no active users and |
| wants to make it a free page. If ->releasepage succeeds, the |
| page will be removed from the address_space and become free. |
| |
| The second case is when a request has been made to invalidate |
| some or all pages in an address_space. This can happen |
| through the fadvise(POSIX_FADV_DONTNEED) system call or by the |
| filesystem explicitly requesting it as nfs and 9fs do (when |
| they believe the cache may be out of date with storage) by |
| calling invalidate_inode_pages2(). |
| If the filesystem makes such a call, and needs to be certain |
| that all pages are invalidated, then its releasepage will |
| need to ensure this. Possibly it can clear the PageUptodate |
| bit if it cannot free private data yet. |
| |
| freepage: freepage is called once the page is no longer visible in |
| the page cache in order to allow the cleanup of any private |
| data. Since it may be called by the memory reclaimer, it |
| should not assume that the original address_space mapping still |
| exists, and it should not block. |
| |
| direct_IO: called by the generic read/write routines to perform |
| direct_IO - that is IO requests which bypass the page cache |
| and transfer data directly between the storage and the |
| application's address space. |
| |
| isolate_page: Called by the VM when isolating a movable non-lru page. |
| If page is successfully isolated, VM marks the page as PG_isolated |
| via __SetPageIsolated. |
| |
| migrate_page: This is used to compact the physical memory usage. |
| If the VM wants to relocate a page (maybe off a memory card |
| that is signalling imminent failure) it will pass a new page |
| and an old page to this function. migrate_page should |
| transfer any private data across and update any references |
| that it has to the page. |
| |
| putback_page: Called by the VM when isolated page's migration fails. |
| |
| launder_page: Called before freeing a page - it writes back the dirty page. To |
| prevent redirtying the page, it is kept locked during the whole |
| operation. |
| |
| is_partially_uptodate: Called by the VM when reading a file through the |
| pagecache when the underlying blocksize != pagesize. If the required |
| block is up to date then the read can complete without needing the IO |
| to bring the whole page up to date. |
| |
| is_dirty_writeback: Called by the VM when attempting to reclaim a page. |
| The VM uses dirty and writeback information to determine if it needs |
| to stall to allow flushers a chance to complete some IO. Ordinarily |
| it can use PageDirty and PageWriteback but some filesystems have |
| more complex state (unstable pages in NFS prevent reclaim) or |
| do not set those flags due to locking problems. This callback |
| allows a filesystem to indicate to the VM if a page should be |
| treated as dirty or writeback for the purposes of stalling. |
| |
| error_remove_page: normally set to generic_error_remove_page if truncation |
| is ok for this address space. Used for memory failure handling. |
| Setting this implies you deal with pages going away under you, |
| unless you have them locked or reference counts increased. |
| |
| swap_activate: Called when swapon is used on a file to allocate |
| space if necessary and pin the block lookup information in |
| memory. A return value of zero indicates success, |
| in which case this file can be used to back swapspace. |
| |
| swap_deactivate: Called during swapoff on files where swap_activate |
| was successful. |
| |
| |
| The File Object |
| =============== |
| |
| A file object represents a file opened by a process. This is also known |
| as an "open file description" in POSIX parlance. |
| |
| |
| struct file_operations |
| ---------------------- |
| |
| This describes how the VFS can manipulate an open file. As of kernel |
| 4.1, the following members are defined: |
| |
| struct file_operations { |
| struct module *owner; |
| loff_t (*llseek) (struct file *, loff_t, int); |
| ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); |
| ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); |
| ssize_t (*read_iter) (struct kiocb *, struct iov_iter *); |
| ssize_t (*write_iter) (struct kiocb *, struct iov_iter *); |
| int (*iterate) (struct file *, struct dir_context *); |
| unsigned int (*poll) (struct file *, struct poll_table_struct *); |
| long (*unlocked_ioctl) (struct file *, unsigned int, unsigned long); |
| long (*compat_ioctl) (struct file *, unsigned int, unsigned long); |
| int (*mmap) (struct file *, struct vm_area_struct *); |
| int (*mremap)(struct file *, struct vm_area_struct *); |
| int (*open) (struct inode *, struct file *); |
| int (*flush) (struct file *, fl_owner_t id); |
| int (*release) (struct inode *, struct file *); |
| int (*fsync) (struct file *, loff_t, loff_t, int datasync); |
| int (*fasync) (int, struct file *, int); |
| int (*lock) (struct file *, int, struct file_lock *); |
| ssize_t (*sendpage) (struct file *, struct page *, int, size_t, loff_t *, int); |
| unsigned long (*get_unmapped_area)(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); |
| int (*check_flags)(int); |
| int (*flock) (struct file *, int, struct file_lock *); |
| ssize_t (*splice_write)(struct pipe_inode_info *, struct file *, loff_t *, size_t, unsigned int); |
| ssize_t (*splice_read)(struct file *, loff_t *, struct pipe_inode_info *, size_t, unsigned int); |
| int (*setlease)(struct file *, long, struct file_lock **, void **); |
| long (*fallocate)(struct file *file, int mode, loff_t offset, |
| loff_t len); |
| void (*show_fdinfo)(struct seq_file *m, struct file *f); |
| #ifndef CONFIG_MMU |
| unsigned (*mmap_capabilities)(struct file *); |
| #endif |
| }; |
| |
| Again, all methods are called without any locks being held, unless |
| otherwise noted. |
| |
| llseek: called when the VFS needs to move the file position index |
| |
| read: called by read(2) and related system calls |
| |
| read_iter: possibly asynchronous read with iov_iter as destination |
| |
| write: called by write(2) and related system calls |
| |
| write_iter: possibly asynchronous write with iov_iter as source |
| |
| iterate: called when the VFS needs to read the directory contents |
| |
| poll: called by the VFS when a process wants to check if there is |
| activity on this file and (optionally) go to sleep until there |
| is activity. Called by the select(2) and poll(2) system calls |
| |
| unlocked_ioctl: called by the ioctl(2) system call. |
| |
| compat_ioctl: called by the ioctl(2) system call when 32 bit system calls |
| are used on 64 bit kernels. |
| |
| mmap: called by the mmap(2) system call |
| |
| open: called by the VFS when an inode should be opened. When the VFS |
| opens a file, it creates a new "struct file". It then calls the |
| open method for the newly allocated file structure. You might |
| think that the open method really belongs in |
| "struct inode_operations", and you may be right. I think it's |
| done the way it is because it makes filesystems simpler to |
| implement. The open() method is a good place to initialize the |
| "private_data" member in the file structure if you want to point |
| to a device structure |
| |
| flush: called by the close(2) system call to flush a file |
| |
| release: called when the last reference to an open file is closed |
| |
| fsync: called by the fsync(2) system call. Also see the section above |
| entitled "Handling errors during writeback". |
| |
| fasync: called by the fcntl(2) system call when asynchronous |
| (non-blocking) mode is enabled for a file |
| |
| lock: called by the fcntl(2) system call for F_GETLK, F_SETLK, and F_SETLKW |
| commands |
| |
| get_unmapped_area: called by the mmap(2) system call |
| |
| check_flags: called by the fcntl(2) system call for F_SETFL command |
| |
| flock: called by the flock(2) system call |
| |
| splice_write: called by the VFS to splice data from a pipe to a file. This |
| method is used by the splice(2) system call |
| |
| splice_read: called by the VFS to splice data from file to a pipe. This |
| method is used by the splice(2) system call |
| |
| setlease: called by the VFS to set or release a file lock lease. setlease |
| implementations should call generic_setlease to record or remove |
| the lease in the inode after setting it. |
| |
| fallocate: called by the VFS to preallocate blocks or punch a hole. |
| |
| Note that the file operations are implemented by the specific |
| filesystem in which the inode resides. When opening a device node |
| (character or block special) most filesystems will call special |
| support routines in the VFS which will locate the required device |
| driver information. These support routines replace the filesystem file |
| operations with those for the device driver, and then proceed to call |
| the new open() method for the file. This is how opening a device file |
| in the filesystem eventually ends up calling the device driver open() |
| method. |
| |
| |
| Directory Entry Cache (dcache) |
| ============================== |
| |
| |
| struct dentry_operations |
| ------------------------ |
| |
| This describes how a filesystem can overload the standard dentry |
| operations. Dentries and the dcache are the domain of the VFS and the |
| individual filesystem implementations. Device drivers have no business |
| here. These methods may be set to NULL, as they are either optional or |
| the VFS uses a default. As of kernel 2.6.22, the following members are |
| defined: |
| |
| struct dentry_operations { |
| int (*d_revalidate)(struct dentry *, unsigned int); |
| int (*d_weak_revalidate)(struct dentry *, unsigned int); |
| int (*d_hash)(const struct dentry *, struct qstr *); |
| int (*d_compare)(const struct dentry *, |
| unsigned int, const char *, const struct qstr *); |
| int (*d_delete)(const struct dentry *); |
| int (*d_init)(struct dentry *); |
| void (*d_release)(struct dentry *); |
| void (*d_iput)(struct dentry *, struct inode *); |
| char *(*d_dname)(struct dentry *, char *, int); |
| struct vfsmount *(*d_automount)(struct path *); |
| int (*d_manage)(const struct path *, bool); |
| struct dentry *(*d_real)(struct dentry *, const struct inode *, |
| unsigned int, unsigned int); |
| }; |
| |
| d_revalidate: called when the VFS needs to revalidate a dentry. This |
| is called whenever a name look-up finds a dentry in the |
| dcache. Most local filesystems leave this as NULL, because all their |
| dentries in the dcache are valid. Network filesystems are different |
| since things can change on the server without the client necessarily |
| being aware of it. |
| |
| This function should return a positive value if the dentry is still |
| valid, and zero or a negative error code if it isn't. |
| |
| d_revalidate may be called in rcu-walk mode (flags & LOOKUP_RCU). |
| If in rcu-walk mode, the filesystem must revalidate the dentry without |
| blocking or storing to the dentry, d_parent and d_inode should not be |
| used without care (because they can change and, in d_inode case, even |
| become NULL under us). |
| |
| If a situation is encountered that rcu-walk cannot handle, return |
| -ECHILD and it will be called again in ref-walk mode. |
| |
| d_weak_revalidate: called when the VFS needs to revalidate a "jumped" dentry. |
| This is called when a path-walk ends at dentry that was not acquired by |
| doing a lookup in the parent directory. This includes "/", "." and "..", |
| as well as procfs-style symlinks and mountpoint traversal. |
| |
| In this case, we are less concerned with whether the dentry is still |
| fully correct, but rather that the inode is still valid. As with |
| d_revalidate, most local filesystems will set this to NULL since their |
| dcache entries are always valid. |
| |
| This function has the same return code semantics as d_revalidate. |
| |
| d_weak_revalidate is only called after leaving rcu-walk mode. |
| |
| d_hash: called when the VFS adds a dentry to the hash table. The first |
| dentry passed to d_hash is the parent directory that the name is |
| to be hashed into. |
| |
| Same locking and synchronisation rules as d_compare regarding |
| what is safe to dereference etc. |
| |
| d_compare: called to compare a dentry name with a given name. The first |
| dentry is the parent of the dentry to be compared, the second is |
| the child dentry. len and name string are properties of the dentry |
| to be compared. qstr is the name to compare it with. |
| |
| Must be constant and idempotent, and should not take locks if |
| possible, and should not or store into the dentry. |
| Should not dereference pointers outside the dentry without |
| lots of care (eg. d_parent, d_inode, d_name should not be used). |
| |
| However, our vfsmount is pinned, and RCU held, so the dentries and |
| inodes won't disappear, neither will our sb or filesystem module. |
| ->d_sb may be used. |
| |
| It is a tricky calling convention because it needs to be called under |
| "rcu-walk", ie. without any locks or references on things. |
| |
| d_delete: called when the last reference to a dentry is dropped and the |
| dcache is deciding whether or not to cache it. Return 1 to delete |
| immediately, or 0 to cache the dentry. Default is NULL which means to |
| always cache a reachable dentry. d_delete must be constant and |
| idempotent. |
| |
| d_init: called when a dentry is allocated |
| |
| d_release: called when a dentry is really deallocated |
| |
| d_iput: called when a dentry loses its inode (just prior to its |
| being deallocated). The default when this is NULL is that the |
| VFS calls iput(). If you define this method, you must call |
| iput() yourself |
| |
| d_dname: called when the pathname of a dentry should be generated. |
| Useful for some pseudo filesystems (sockfs, pipefs, ...) to delay |
| pathname generation. (Instead of doing it when dentry is created, |
| it's done only when the path is needed.). Real filesystems probably |
| dont want to use it, because their dentries are present in global |
| dcache hash, so their hash should be an invariant. As no lock is |
| held, d_dname() should not try to modify the dentry itself, unless |
| appropriate SMP safety is used. CAUTION : d_path() logic is quite |
| tricky. The correct way to return for example "Hello" is to put it |
| at the end of the buffer, and returns a pointer to the first char. |
| dynamic_dname() helper function is provided to take care of this. |
| |
| Example : |
| |
| static char *pipefs_dname(struct dentry *dent, char *buffer, int buflen) |
| { |
| return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]", |
| dentry->d_inode->i_ino); |
| } |
| |
| d_automount: called when an automount dentry is to be traversed (optional). |
| This should create a new VFS mount record and return the record to the |
| caller. The caller is supplied with a path parameter giving the |
| automount directory to describe the automount target and the parent |
| VFS mount record to provide inheritable mount parameters. NULL should |
| be returned if someone else managed to make the automount first. If |
| the vfsmount creation failed, then an error code should be returned. |
| If -EISDIR is returned, then the directory will be treated as an |
| ordinary directory and returned to pathwalk to continue walking. |
| |
| If a vfsmount is returned, the caller will attempt to mount it on the |
| mountpoint and will remove the vfsmount from its expiration list in |
| the case of failure. The vfsmount should be returned with 2 refs on |
| it to prevent automatic expiration - the caller will clean up the |
| additional ref. |
| |
| This function is only used if DCACHE_NEED_AUTOMOUNT is set on the |
| dentry. This is set by __d_instantiate() if S_AUTOMOUNT is set on the |
| inode being added. |
| |
| d_manage: called to allow the filesystem to manage the transition from a |
| dentry (optional). This allows autofs, for example, to hold up clients |
| waiting to explore behind a 'mountpoint' whilst letting the daemon go |
| past and construct the subtree there. 0 should be returned to let the |
| calling process continue. -EISDIR can be returned to tell pathwalk to |
| use this directory as an ordinary directory and to ignore anything |
| mounted on it and not to check the automount flag. Any other error |
| code will abort pathwalk completely. |
| |
| If the 'rcu_walk' parameter is true, then the caller is doing a |
| pathwalk in RCU-walk mode. Sleeping is not permitted in this mode, |
| and the caller can be asked to leave it and call again by returning |
| -ECHILD. -EISDIR may also be returned to tell pathwalk to |
| ignore d_automount or any mounts. |
| |
| This function is only used if DCACHE_MANAGE_TRANSIT is set on the |
| dentry being transited from. |
| |
| d_real: overlay/union type filesystems implement this method to return one of |
| the underlying dentries hidden by the overlay. It is used in three |
| different modes: |
| |
| Called from open it may need to copy-up the file depending on the |
| supplied open flags. This mode is selected with a non-zero flags |
| argument. In this mode the d_real method can return an error. |
| |
| Called from file_dentry() it returns the real dentry matching the inode |
| argument. The real dentry may be from a lower layer already copied up, |
| but still referenced from the file. This mode is selected with a |
| non-NULL inode argument. This will always succeed. |
| |
| With NULL inode and zero flags the topmost real underlying dentry is |
| returned. This will always succeed. |
| |
| This method is never called with both non-NULL inode and non-zero flags. |
| |
| Each dentry has a pointer to its parent dentry, as well as a hash list |
| of child dentries. Child dentries are basically like files in a |
| directory. |
| |
| |
| Directory Entry Cache API |
| -------------------------- |
| |
| There are a number of functions defined which permit a filesystem to |
| manipulate dentries: |
| |
| dget: open a new handle for an existing dentry (this just increments |
| the usage count) |
| |
| dput: close a handle for a dentry (decrements the usage count). If |
| the usage count drops to 0, and the dentry is still in its |
| parent's hash, the "d_delete" method is called to check whether |
| it should be cached. If it should not be cached, or if the dentry |
| is not hashed, it is deleted. Otherwise cached dentries are put |
| into an LRU list to be reclaimed on memory shortage. |
| |
| d_drop: this unhashes a dentry from its parents hash list. A |
| subsequent call to dput() will deallocate the dentry if its |
| usage count drops to 0 |
| |
| d_delete: delete a dentry. If there are no other open references to |
| the dentry then the dentry is turned into a negative dentry |
| (the d_iput() method is called). If there are other |
| references, then d_drop() is called instead |
| |
| d_add: add a dentry to its parents hash list and then calls |
| d_instantiate() |
| |
| d_instantiate: add a dentry to the alias hash list for the inode and |
| updates the "d_inode" member. The "i_count" member in the |
| inode structure should be set/incremented. If the inode |
| pointer is NULL, the dentry is called a "negative |
| dentry". This function is commonly called when an inode is |
| created for an existing negative dentry |
| |
| d_lookup: look up a dentry given its parent and path name component |
| It looks up the child of that given name from the dcache |
| hash table. If it is found, the reference count is incremented |
| and the dentry is returned. The caller must use dput() |
| to free the dentry when it finishes using it. |
| |
| Mount Options |
| ============= |
| |
| Parsing options |
| --------------- |
| |
| On mount and remount the filesystem is passed a string containing a |
| comma separated list of mount options. The options can have either of |
| these forms: |
| |
| option |
| option=value |
| |
| The <linux/parser.h> header defines an API that helps parse these |
| options. There are plenty of examples on how to use it in existing |
| filesystems. |
| |
| Showing options |
| --------------- |
| |
| If a filesystem accepts mount options, it must define show_options() |
| to show all the currently active options. The rules are: |
| |
| - options MUST be shown which are not default or their values differ |
| from the default |
| |
| - options MAY be shown which are enabled by default or have their |
| default value |
| |
| Options used only internally between a mount helper and the kernel |
| (such as file descriptors), or which only have an effect during the |
| mounting (such as ones controlling the creation of a journal) are exempt |
| from the above rules. |
| |
| The underlying reason for the above rules is to make sure, that a |
| mount can be accurately replicated (e.g. umounting and mounting again) |
| based on the information found in /proc/mounts. |
| |
| Resources |
| ========= |
| |
| (Note some of these resources are not up-to-date with the latest kernel |
| version.) |
| |
| Creating Linux virtual filesystems. 2002 |
| <http://lwn.net/Articles/13325/> |
| |
| The Linux Virtual File-system Layer by Neil Brown. 1999 |
| <http://www.cse.unsw.edu.au/~neilb/oss/linux-commentary/vfs.html> |
| |
| A tour of the Linux VFS by Michael K. Johnson. 1996 |
| <http://www.tldp.org/LDP/khg/HyperNews/get/fs/vfstour.html> |
| |
| A small trail through the Linux kernel by Andries Brouwer. 2001 |
| <http://www.win.tue.nl/~aeb/linux/vfs/trail.html> |