blob: de62eb098f687491dbb7d0a9872ae0f63ce4e9b7 [file] [log] [blame]
#ifndef __ASM_SPINLOCK_H
#define __ASM_SPINLOCK_H
#if __LINUX_ARM_ARCH__ < 6
#error SMP not supported on pre-ARMv6 CPUs
#endif
/*
* ARMv6 Spin-locking.
*
* We exclusively read the old value. If it is zero, we may have
* won the lock, so we try exclusively storing it. A memory barrier
* is required after we get a lock, and before we release it, because
* V6 CPUs are assumed to have weakly ordered memory.
*
* Unlocked value: 0
* Locked value: 1
*/
#define arch_spin_is_locked(x) ((x)->lock != 0)
#define arch_spin_unlock_wait(lock) \
do { while (arch_spin_is_locked(lock)) cpu_relax(); } while (0)
#define arch_spin_lock_flags(lock, flags) arch_spin_lock(lock)
static inline void arch_spin_lock(arch_spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
#ifdef CONFIG_CPU_32v6K
" wfene\n"
#endif
" strexeq %0, %2, [%1]\n"
" teqeq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
smp_mb();
}
static inline int arch_spin_trylock(arch_spinlock_t *lock)
{
unsigned long tmp;
__asm__ __volatile__(
" ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&lock->lock), "r" (1)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void arch_spin_unlock(arch_spinlock_t *lock)
{
smp_mb();
__asm__ __volatile__(
" str %1, [%0]\n"
#ifdef CONFIG_CPU_32v6K
" mcr p15, 0, %1, c7, c10, 4\n" /* DSB */
" sev"
#endif
:
: "r" (&lock->lock), "r" (0)
: "cc");
}
/*
* RWLOCKS
*
*
* Write locks are easy - we just set bit 31. When unlocking, we can
* just write zero since the lock is exclusively held.
*/
static inline void __raw_write_lock(raw_rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
#ifdef CONFIG_CPU_32v6K
" wfene\n"
#endif
" strexeq %0, %2, [%1]\n"
" teq %0, #0\n"
" bne 1b"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
smp_mb();
}
static inline int __raw_write_trylock(raw_rwlock_t *rw)
{
unsigned long tmp;
__asm__ __volatile__(
"1: ldrex %0, [%1]\n"
" teq %0, #0\n"
" strexeq %0, %2, [%1]"
: "=&r" (tmp)
: "r" (&rw->lock), "r" (0x80000000)
: "cc");
if (tmp == 0) {
smp_mb();
return 1;
} else {
return 0;
}
}
static inline void __raw_write_unlock(raw_rwlock_t *rw)
{
smp_mb();
__asm__ __volatile__(
"str %1, [%0]\n"
#ifdef CONFIG_CPU_32v6K
" mcr p15, 0, %1, c7, c10, 4\n" /* DSB */
" sev\n"
#endif
:
: "r" (&rw->lock), "r" (0)
: "cc");
}
/* write_can_lock - would write_trylock() succeed? */
#define __raw_write_can_lock(x) ((x)->lock == 0)
/*
* Read locks are a bit more hairy:
* - Exclusively load the lock value.
* - Increment it.
* - Store new lock value if positive, and we still own this location.
* If the value is negative, we've already failed.
* - If we failed to store the value, we want a negative result.
* - If we failed, try again.
* Unlocking is similarly hairy. We may have multiple read locks
* currently active. However, we know we won't have any write
* locks.
*/
static inline void __raw_read_lock(raw_rwlock_t *rw)
{
unsigned long tmp, tmp2;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
#ifdef CONFIG_CPU_32v6K
" wfemi\n"
#endif
" rsbpls %0, %1, #0\n"
" bmi 1b"
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
smp_mb();
}
static inline void __raw_read_unlock(raw_rwlock_t *rw)
{
unsigned long tmp, tmp2;
smp_mb();
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" sub %0, %0, #1\n"
" strex %1, %0, [%2]\n"
" teq %1, #0\n"
" bne 1b"
#ifdef CONFIG_CPU_32v6K
"\n cmp %0, #0\n"
" mcreq p15, 0, %0, c7, c10, 4\n"
" seveq"
#endif
: "=&r" (tmp), "=&r" (tmp2)
: "r" (&rw->lock)
: "cc");
}
static inline int __raw_read_trylock(raw_rwlock_t *rw)
{
unsigned long tmp, tmp2 = 1;
__asm__ __volatile__(
"1: ldrex %0, [%2]\n"
" adds %0, %0, #1\n"
" strexpl %1, %0, [%2]\n"
: "=&r" (tmp), "+r" (tmp2)
: "r" (&rw->lock)
: "cc");
smp_mb();
return tmp2 == 0;
}
/* read_can_lock - would read_trylock() succeed? */
#define __raw_read_can_lock(x) ((x)->lock < 0x80000000)
#define __raw_read_lock_flags(lock, flags) __raw_read_lock(lock)
#define __raw_write_lock_flags(lock, flags) __raw_write_lock(lock)
#define arch_spin_relax(lock) cpu_relax()
#define arch_read_relax(lock) cpu_relax()
#define arch_write_relax(lock) cpu_relax()
#endif /* __ASM_SPINLOCK_H */