Xiantao Zhang | 827fa69 | 2008-04-01 14:58:42 +0800 | [diff] [blame] | 1 | /* |
| 2 | * process.c: handle interruption inject for guests. |
| 3 | * Copyright (c) 2005, Intel Corporation. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify it |
| 6 | * under the terms and conditions of the GNU General Public License, |
| 7 | * version 2, as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 12 | * more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License along with |
| 15 | * this program; if not, write to the Free Software Foundation, Inc., 59 Temple |
| 16 | * Place - Suite 330, Boston, MA 02111-1307 USA. |
| 17 | * |
| 18 | * Shaofan Li (Susue Li) <susie.li@intel.com> |
| 19 | * Xiaoyan Feng (Fleming Feng) <fleming.feng@intel.com> |
| 20 | * Xuefei Xu (Anthony Xu) (Anthony.xu@intel.com) |
| 21 | * Xiantao Zhang (xiantao.zhang@intel.com) |
| 22 | */ |
| 23 | #include "vcpu.h" |
| 24 | |
| 25 | #include <asm/pal.h> |
| 26 | #include <asm/sal.h> |
| 27 | #include <asm/fpswa.h> |
| 28 | #include <asm/kregs.h> |
| 29 | #include <asm/tlb.h> |
| 30 | |
| 31 | fpswa_interface_t *vmm_fpswa_interface; |
| 32 | |
| 33 | #define IA64_VHPT_TRANS_VECTOR 0x0000 |
| 34 | #define IA64_INST_TLB_VECTOR 0x0400 |
| 35 | #define IA64_DATA_TLB_VECTOR 0x0800 |
| 36 | #define IA64_ALT_INST_TLB_VECTOR 0x0c00 |
| 37 | #define IA64_ALT_DATA_TLB_VECTOR 0x1000 |
| 38 | #define IA64_DATA_NESTED_TLB_VECTOR 0x1400 |
| 39 | #define IA64_INST_KEY_MISS_VECTOR 0x1800 |
| 40 | #define IA64_DATA_KEY_MISS_VECTOR 0x1c00 |
| 41 | #define IA64_DIRTY_BIT_VECTOR 0x2000 |
| 42 | #define IA64_INST_ACCESS_BIT_VECTOR 0x2400 |
| 43 | #define IA64_DATA_ACCESS_BIT_VECTOR 0x2800 |
| 44 | #define IA64_BREAK_VECTOR 0x2c00 |
| 45 | #define IA64_EXTINT_VECTOR 0x3000 |
| 46 | #define IA64_PAGE_NOT_PRESENT_VECTOR 0x5000 |
| 47 | #define IA64_KEY_PERMISSION_VECTOR 0x5100 |
| 48 | #define IA64_INST_ACCESS_RIGHTS_VECTOR 0x5200 |
| 49 | #define IA64_DATA_ACCESS_RIGHTS_VECTOR 0x5300 |
| 50 | #define IA64_GENEX_VECTOR 0x5400 |
| 51 | #define IA64_DISABLED_FPREG_VECTOR 0x5500 |
| 52 | #define IA64_NAT_CONSUMPTION_VECTOR 0x5600 |
| 53 | #define IA64_SPECULATION_VECTOR 0x5700 /* UNUSED */ |
| 54 | #define IA64_DEBUG_VECTOR 0x5900 |
| 55 | #define IA64_UNALIGNED_REF_VECTOR 0x5a00 |
| 56 | #define IA64_UNSUPPORTED_DATA_REF_VECTOR 0x5b00 |
| 57 | #define IA64_FP_FAULT_VECTOR 0x5c00 |
| 58 | #define IA64_FP_TRAP_VECTOR 0x5d00 |
| 59 | #define IA64_LOWERPRIV_TRANSFER_TRAP_VECTOR 0x5e00 |
| 60 | #define IA64_TAKEN_BRANCH_TRAP_VECTOR 0x5f00 |
| 61 | #define IA64_SINGLE_STEP_TRAP_VECTOR 0x6000 |
| 62 | |
| 63 | /* SDM vol2 5.5 - IVA based interruption handling */ |
| 64 | #define INITIAL_PSR_VALUE_AT_INTERRUPTION (IA64_PSR_UP | IA64_PSR_MFL |\ |
| 65 | IA64_PSR_MFH | IA64_PSR_PK | IA64_PSR_DT | \ |
| 66 | IA64_PSR_RT | IA64_PSR_MC|IA64_PSR_IT) |
| 67 | |
| 68 | #define DOMN_PAL_REQUEST 0x110000 |
| 69 | #define DOMN_SAL_REQUEST 0x110001 |
| 70 | |
| 71 | static u64 vec2off[68] = {0x0, 0x400, 0x800, 0xc00, 0x1000, 0x1400, 0x1800, |
| 72 | 0x1c00, 0x2000, 0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, |
| 73 | 0x4000, 0x4400, 0x4800, 0x4c00, 0x5000, 0x5100, 0x5200, 0x5300, 0x5400, |
| 74 | 0x5500, 0x5600, 0x5700, 0x5800, 0x5900, 0x5a00, 0x5b00, 0x5c00, 0x5d00, |
| 75 | 0x5e00, 0x5f00, 0x6000, 0x6100, 0x6200, 0x6300, 0x6400, 0x6500, 0x6600, |
| 76 | 0x6700, 0x6800, 0x6900, 0x6a00, 0x6b00, 0x6c00, 0x6d00, 0x6e00, 0x6f00, |
| 77 | 0x7000, 0x7100, 0x7200, 0x7300, 0x7400, 0x7500, 0x7600, 0x7700, 0x7800, |
| 78 | 0x7900, 0x7a00, 0x7b00, 0x7c00, 0x7d00, 0x7e00, 0x7f00 |
| 79 | }; |
| 80 | |
| 81 | static void collect_interruption(struct kvm_vcpu *vcpu) |
| 82 | { |
| 83 | u64 ipsr; |
| 84 | u64 vdcr; |
| 85 | u64 vifs; |
| 86 | unsigned long vpsr; |
| 87 | struct kvm_pt_regs *regs = vcpu_regs(vcpu); |
| 88 | |
| 89 | vpsr = vcpu_get_psr(vcpu); |
| 90 | vcpu_bsw0(vcpu); |
| 91 | if (vpsr & IA64_PSR_IC) { |
| 92 | |
| 93 | /* Sync mpsr id/da/dd/ss/ed bits to vipsr |
| 94 | * since after guest do rfi, we still want these bits on in |
| 95 | * mpsr |
| 96 | */ |
| 97 | |
| 98 | ipsr = regs->cr_ipsr; |
| 99 | vpsr = vpsr | (ipsr & (IA64_PSR_ID | IA64_PSR_DA |
| 100 | | IA64_PSR_DD | IA64_PSR_SS |
| 101 | | IA64_PSR_ED)); |
| 102 | vcpu_set_ipsr(vcpu, vpsr); |
| 103 | |
| 104 | /* Currently, for trap, we do not advance IIP to next |
| 105 | * instruction. That's because we assume caller already |
| 106 | * set up IIP correctly |
| 107 | */ |
| 108 | |
| 109 | vcpu_set_iip(vcpu , regs->cr_iip); |
| 110 | |
| 111 | /* set vifs.v to zero */ |
| 112 | vifs = VCPU(vcpu, ifs); |
| 113 | vifs &= ~IA64_IFS_V; |
| 114 | vcpu_set_ifs(vcpu, vifs); |
| 115 | |
| 116 | vcpu_set_iipa(vcpu, VMX(vcpu, cr_iipa)); |
| 117 | } |
| 118 | |
| 119 | vdcr = VCPU(vcpu, dcr); |
| 120 | |
| 121 | /* Set guest psr |
| 122 | * up/mfl/mfh/pk/dt/rt/mc/it keeps unchanged |
| 123 | * be: set to the value of dcr.be |
| 124 | * pp: set to the value of dcr.pp |
| 125 | */ |
| 126 | vpsr &= INITIAL_PSR_VALUE_AT_INTERRUPTION; |
| 127 | vpsr |= (vdcr & IA64_DCR_BE); |
| 128 | |
| 129 | /* VDCR pp bit position is different from VPSR pp bit */ |
| 130 | if (vdcr & IA64_DCR_PP) { |
| 131 | vpsr |= IA64_PSR_PP; |
| 132 | } else { |
| 133 | vpsr &= ~IA64_PSR_PP;; |
| 134 | } |
| 135 | |
| 136 | vcpu_set_psr(vcpu, vpsr); |
| 137 | |
| 138 | } |
| 139 | |
| 140 | void inject_guest_interruption(struct kvm_vcpu *vcpu, u64 vec) |
| 141 | { |
| 142 | u64 viva; |
| 143 | struct kvm_pt_regs *regs; |
| 144 | union ia64_isr pt_isr; |
| 145 | |
| 146 | regs = vcpu_regs(vcpu); |
| 147 | |
| 148 | /* clear cr.isr.ir (incomplete register frame)*/ |
| 149 | pt_isr.val = VMX(vcpu, cr_isr); |
| 150 | pt_isr.ir = 0; |
| 151 | VMX(vcpu, cr_isr) = pt_isr.val; |
| 152 | |
| 153 | collect_interruption(vcpu); |
| 154 | |
| 155 | viva = vcpu_get_iva(vcpu); |
| 156 | regs->cr_iip = viva + vec; |
| 157 | } |
| 158 | |
| 159 | static u64 vcpu_get_itir_on_fault(struct kvm_vcpu *vcpu, u64 ifa) |
| 160 | { |
| 161 | union ia64_rr rr, rr1; |
| 162 | |
| 163 | rr.val = vcpu_get_rr(vcpu, ifa); |
| 164 | rr1.val = 0; |
| 165 | rr1.ps = rr.ps; |
| 166 | rr1.rid = rr.rid; |
| 167 | return (rr1.val); |
| 168 | } |
| 169 | |
| 170 | |
| 171 | /* |
| 172 | * Set vIFA & vITIR & vIHA, when vPSR.ic =1 |
| 173 | * Parameter: |
| 174 | * set_ifa: if true, set vIFA |
| 175 | * set_itir: if true, set vITIR |
| 176 | * set_iha: if true, set vIHA |
| 177 | */ |
| 178 | void set_ifa_itir_iha(struct kvm_vcpu *vcpu, u64 vadr, |
| 179 | int set_ifa, int set_itir, int set_iha) |
| 180 | { |
| 181 | long vpsr; |
| 182 | u64 value; |
| 183 | |
| 184 | vpsr = VCPU(vcpu, vpsr); |
| 185 | /* Vol2, Table 8-1 */ |
| 186 | if (vpsr & IA64_PSR_IC) { |
| 187 | if (set_ifa) |
| 188 | vcpu_set_ifa(vcpu, vadr); |
| 189 | if (set_itir) { |
| 190 | value = vcpu_get_itir_on_fault(vcpu, vadr); |
| 191 | vcpu_set_itir(vcpu, value); |
| 192 | } |
| 193 | |
| 194 | if (set_iha) { |
| 195 | value = vcpu_thash(vcpu, vadr); |
| 196 | vcpu_set_iha(vcpu, value); |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Data TLB Fault |
| 203 | * @ Data TLB vector |
| 204 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 205 | */ |
| 206 | void dtlb_fault(struct kvm_vcpu *vcpu, u64 vadr) |
| 207 | { |
| 208 | /* If vPSR.ic, IFA, ITIR, IHA */ |
| 209 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 1); |
| 210 | inject_guest_interruption(vcpu, IA64_DATA_TLB_VECTOR); |
| 211 | } |
| 212 | |
| 213 | /* |
| 214 | * Instruction TLB Fault |
| 215 | * @ Instruction TLB vector |
| 216 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 217 | */ |
| 218 | void itlb_fault(struct kvm_vcpu *vcpu, u64 vadr) |
| 219 | { |
| 220 | /* If vPSR.ic, IFA, ITIR, IHA */ |
| 221 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 1); |
| 222 | inject_guest_interruption(vcpu, IA64_INST_TLB_VECTOR); |
| 223 | } |
| 224 | |
| 225 | |
| 226 | |
| 227 | /* |
| 228 | * Data Nested TLB Fault |
| 229 | * @ Data Nested TLB Vector |
| 230 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 231 | */ |
| 232 | void nested_dtlb(struct kvm_vcpu *vcpu) |
| 233 | { |
| 234 | inject_guest_interruption(vcpu, IA64_DATA_NESTED_TLB_VECTOR); |
| 235 | } |
| 236 | |
| 237 | /* |
| 238 | * Alternate Data TLB Fault |
| 239 | * @ Alternate Data TLB vector |
| 240 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 241 | */ |
| 242 | void alt_dtlb(struct kvm_vcpu *vcpu, u64 vadr) |
| 243 | { |
| 244 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); |
| 245 | inject_guest_interruption(vcpu, IA64_ALT_DATA_TLB_VECTOR); |
| 246 | } |
| 247 | |
| 248 | |
| 249 | /* |
| 250 | * Data TLB Fault |
| 251 | * @ Data TLB vector |
| 252 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 253 | */ |
| 254 | void alt_itlb(struct kvm_vcpu *vcpu, u64 vadr) |
| 255 | { |
| 256 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); |
| 257 | inject_guest_interruption(vcpu, IA64_ALT_INST_TLB_VECTOR); |
| 258 | } |
| 259 | |
| 260 | /* Deal with: |
| 261 | * VHPT Translation Vector |
| 262 | */ |
| 263 | static void _vhpt_fault(struct kvm_vcpu *vcpu, u64 vadr) |
| 264 | { |
| 265 | /* If vPSR.ic, IFA, ITIR, IHA*/ |
| 266 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 1); |
| 267 | inject_guest_interruption(vcpu, IA64_VHPT_TRANS_VECTOR); |
| 268 | |
| 269 | |
| 270 | } |
| 271 | |
| 272 | /* |
| 273 | * VHPT Instruction Fault |
| 274 | * @ VHPT Translation vector |
| 275 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 276 | */ |
| 277 | void ivhpt_fault(struct kvm_vcpu *vcpu, u64 vadr) |
| 278 | { |
| 279 | _vhpt_fault(vcpu, vadr); |
| 280 | } |
| 281 | |
| 282 | |
| 283 | /* |
| 284 | * VHPT Data Fault |
| 285 | * @ VHPT Translation vector |
| 286 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 287 | */ |
| 288 | void dvhpt_fault(struct kvm_vcpu *vcpu, u64 vadr) |
| 289 | { |
| 290 | _vhpt_fault(vcpu, vadr); |
| 291 | } |
| 292 | |
| 293 | |
| 294 | |
| 295 | /* |
| 296 | * Deal with: |
| 297 | * General Exception vector |
| 298 | */ |
| 299 | void _general_exception(struct kvm_vcpu *vcpu) |
| 300 | { |
| 301 | inject_guest_interruption(vcpu, IA64_GENEX_VECTOR); |
| 302 | } |
| 303 | |
| 304 | |
| 305 | /* |
| 306 | * Illegal Operation Fault |
| 307 | * @ General Exception Vector |
| 308 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 309 | */ |
| 310 | void illegal_op(struct kvm_vcpu *vcpu) |
| 311 | { |
| 312 | _general_exception(vcpu); |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * Illegal Dependency Fault |
| 317 | * @ General Exception Vector |
| 318 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 319 | */ |
| 320 | void illegal_dep(struct kvm_vcpu *vcpu) |
| 321 | { |
| 322 | _general_exception(vcpu); |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * Reserved Register/Field Fault |
| 327 | * @ General Exception Vector |
| 328 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 329 | */ |
| 330 | void rsv_reg_field(struct kvm_vcpu *vcpu) |
| 331 | { |
| 332 | _general_exception(vcpu); |
| 333 | } |
| 334 | /* |
| 335 | * Privileged Operation Fault |
| 336 | * @ General Exception Vector |
| 337 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 338 | */ |
| 339 | |
| 340 | void privilege_op(struct kvm_vcpu *vcpu) |
| 341 | { |
| 342 | _general_exception(vcpu); |
| 343 | } |
| 344 | |
| 345 | /* |
| 346 | * Unimplement Data Address Fault |
| 347 | * @ General Exception Vector |
| 348 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 349 | */ |
| 350 | void unimpl_daddr(struct kvm_vcpu *vcpu) |
| 351 | { |
| 352 | _general_exception(vcpu); |
| 353 | } |
| 354 | |
| 355 | /* |
| 356 | * Privileged Register Fault |
| 357 | * @ General Exception Vector |
| 358 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 359 | */ |
| 360 | void privilege_reg(struct kvm_vcpu *vcpu) |
| 361 | { |
| 362 | _general_exception(vcpu); |
| 363 | } |
| 364 | |
| 365 | /* Deal with |
| 366 | * Nat consumption vector |
| 367 | * Parameter: |
| 368 | * vaddr: Optional, if t == REGISTER |
| 369 | */ |
| 370 | static void _nat_consumption_fault(struct kvm_vcpu *vcpu, u64 vadr, |
| 371 | enum tlb_miss_type t) |
| 372 | { |
| 373 | /* If vPSR.ic && t == DATA/INST, IFA */ |
| 374 | if (t == DATA || t == INSTRUCTION) { |
| 375 | /* IFA */ |
| 376 | set_ifa_itir_iha(vcpu, vadr, 1, 0, 0); |
| 377 | } |
| 378 | |
| 379 | inject_guest_interruption(vcpu, IA64_NAT_CONSUMPTION_VECTOR); |
| 380 | } |
| 381 | |
| 382 | /* |
| 383 | * Instruction Nat Page Consumption Fault |
| 384 | * @ Nat Consumption Vector |
| 385 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 386 | */ |
| 387 | void inat_page_consumption(struct kvm_vcpu *vcpu, u64 vadr) |
| 388 | { |
| 389 | _nat_consumption_fault(vcpu, vadr, INSTRUCTION); |
| 390 | } |
| 391 | |
| 392 | /* |
| 393 | * Register Nat Consumption Fault |
| 394 | * @ Nat Consumption Vector |
| 395 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 396 | */ |
| 397 | void rnat_consumption(struct kvm_vcpu *vcpu) |
| 398 | { |
| 399 | _nat_consumption_fault(vcpu, 0, REGISTER); |
| 400 | } |
| 401 | |
| 402 | /* |
| 403 | * Data Nat Page Consumption Fault |
| 404 | * @ Nat Consumption Vector |
| 405 | * Refer to SDM Vol2 Table 5-6 & 8-1 |
| 406 | */ |
| 407 | void dnat_page_consumption(struct kvm_vcpu *vcpu, u64 vadr) |
| 408 | { |
| 409 | _nat_consumption_fault(vcpu, vadr, DATA); |
| 410 | } |
| 411 | |
| 412 | /* Deal with |
| 413 | * Page not present vector |
| 414 | */ |
| 415 | static void __page_not_present(struct kvm_vcpu *vcpu, u64 vadr) |
| 416 | { |
| 417 | /* If vPSR.ic, IFA, ITIR */ |
| 418 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); |
| 419 | inject_guest_interruption(vcpu, IA64_PAGE_NOT_PRESENT_VECTOR); |
| 420 | } |
| 421 | |
| 422 | |
| 423 | void data_page_not_present(struct kvm_vcpu *vcpu, u64 vadr) |
| 424 | { |
| 425 | __page_not_present(vcpu, vadr); |
| 426 | } |
| 427 | |
| 428 | |
| 429 | void inst_page_not_present(struct kvm_vcpu *vcpu, u64 vadr) |
| 430 | { |
| 431 | __page_not_present(vcpu, vadr); |
| 432 | } |
| 433 | |
| 434 | |
| 435 | /* Deal with |
| 436 | * Data access rights vector |
| 437 | */ |
| 438 | void data_access_rights(struct kvm_vcpu *vcpu, u64 vadr) |
| 439 | { |
| 440 | /* If vPSR.ic, IFA, ITIR */ |
| 441 | set_ifa_itir_iha(vcpu, vadr, 1, 1, 0); |
| 442 | inject_guest_interruption(vcpu, IA64_DATA_ACCESS_RIGHTS_VECTOR); |
| 443 | } |
| 444 | |
| 445 | fpswa_ret_t vmm_fp_emulate(int fp_fault, void *bundle, unsigned long *ipsr, |
| 446 | unsigned long *fpsr, unsigned long *isr, unsigned long *pr, |
| 447 | unsigned long *ifs, struct kvm_pt_regs *regs) |
| 448 | { |
| 449 | fp_state_t fp_state; |
| 450 | fpswa_ret_t ret; |
| 451 | struct kvm_vcpu *vcpu = current_vcpu; |
| 452 | |
| 453 | uint64_t old_rr7 = ia64_get_rr(7UL<<61); |
| 454 | |
| 455 | if (!vmm_fpswa_interface) |
| 456 | return (fpswa_ret_t) {-1, 0, 0, 0}; |
| 457 | |
| 458 | /* |
| 459 | * Just let fpswa driver to use hardware fp registers. |
| 460 | * No fp register is valid in memory. |
| 461 | */ |
| 462 | memset(&fp_state, 0, sizeof(fp_state_t)); |
| 463 | |
| 464 | /* |
| 465 | * unsigned long (*EFI_FPSWA) ( |
| 466 | * unsigned long trap_type, |
| 467 | * void *Bundle, |
| 468 | * unsigned long *pipsr, |
| 469 | * unsigned long *pfsr, |
| 470 | * unsigned long *pisr, |
| 471 | * unsigned long *ppreds, |
| 472 | * unsigned long *pifs, |
| 473 | * void *fp_state); |
| 474 | */ |
| 475 | /*Call host fpswa interface directly to virtualize |
| 476 | *guest fpswa request! |
| 477 | */ |
| 478 | ia64_set_rr(7UL << 61, vcpu->arch.host.rr[7]); |
| 479 | ia64_srlz_d(); |
| 480 | |
| 481 | ret = (*vmm_fpswa_interface->fpswa) (fp_fault, bundle, |
| 482 | ipsr, fpsr, isr, pr, ifs, &fp_state); |
| 483 | ia64_set_rr(7UL << 61, old_rr7); |
| 484 | ia64_srlz_d(); |
| 485 | return ret; |
| 486 | } |
| 487 | |
| 488 | /* |
| 489 | * Handle floating-point assist faults and traps for domain. |
| 490 | */ |
| 491 | unsigned long vmm_handle_fpu_swa(int fp_fault, struct kvm_pt_regs *regs, |
| 492 | unsigned long isr) |
| 493 | { |
| 494 | struct kvm_vcpu *v = current_vcpu; |
| 495 | IA64_BUNDLE bundle; |
| 496 | unsigned long fault_ip; |
| 497 | fpswa_ret_t ret; |
| 498 | |
| 499 | fault_ip = regs->cr_iip; |
| 500 | /* |
| 501 | * When the FP trap occurs, the trapping instruction is completed. |
| 502 | * If ipsr.ri == 0, there is the trapping instruction in previous |
| 503 | * bundle. |
| 504 | */ |
| 505 | if (!fp_fault && (ia64_psr(regs)->ri == 0)) |
| 506 | fault_ip -= 16; |
| 507 | |
| 508 | if (fetch_code(v, fault_ip, &bundle)) |
| 509 | return -EAGAIN; |
| 510 | |
| 511 | if (!bundle.i64[0] && !bundle.i64[1]) |
| 512 | return -EACCES; |
| 513 | |
| 514 | ret = vmm_fp_emulate(fp_fault, &bundle, ®s->cr_ipsr, ®s->ar_fpsr, |
| 515 | &isr, ®s->pr, ®s->cr_ifs, regs); |
| 516 | return ret.status; |
| 517 | } |
| 518 | |
| 519 | void reflect_interruption(u64 ifa, u64 isr, u64 iim, |
| 520 | u64 vec, struct kvm_pt_regs *regs) |
| 521 | { |
| 522 | u64 vector; |
| 523 | int status ; |
| 524 | struct kvm_vcpu *vcpu = current_vcpu; |
| 525 | u64 vpsr = VCPU(vcpu, vpsr); |
| 526 | |
| 527 | vector = vec2off[vec]; |
| 528 | |
| 529 | if (!(vpsr & IA64_PSR_IC) && (vector != IA64_DATA_NESTED_TLB_VECTOR)) { |
| 530 | panic_vm(vcpu); |
| 531 | return; |
| 532 | } |
| 533 | |
| 534 | switch (vec) { |
| 535 | case 32: /*IA64_FP_FAULT_VECTOR*/ |
| 536 | status = vmm_handle_fpu_swa(1, regs, isr); |
| 537 | if (!status) { |
| 538 | vcpu_increment_iip(vcpu); |
| 539 | return; |
| 540 | } else if (-EAGAIN == status) |
| 541 | return; |
| 542 | break; |
| 543 | case 33: /*IA64_FP_TRAP_VECTOR*/ |
| 544 | status = vmm_handle_fpu_swa(0, regs, isr); |
| 545 | if (!status) |
| 546 | return ; |
| 547 | else if (-EAGAIN == status) { |
| 548 | vcpu_decrement_iip(vcpu); |
| 549 | return ; |
| 550 | } |
| 551 | break; |
| 552 | } |
| 553 | |
| 554 | VCPU(vcpu, isr) = isr; |
| 555 | VCPU(vcpu, iipa) = regs->cr_iip; |
| 556 | if (vector == IA64_BREAK_VECTOR || vector == IA64_SPECULATION_VECTOR) |
| 557 | VCPU(vcpu, iim) = iim; |
| 558 | else |
| 559 | set_ifa_itir_iha(vcpu, ifa, 1, 1, 1); |
| 560 | |
| 561 | inject_guest_interruption(vcpu, vector); |
| 562 | } |
| 563 | |
| 564 | static void set_pal_call_data(struct kvm_vcpu *vcpu) |
| 565 | { |
| 566 | struct exit_ctl_data *p = &vcpu->arch.exit_data; |
| 567 | |
| 568 | /*FIXME:For static and stacked convention, firmware |
| 569 | * has put the parameters in gr28-gr31 before |
| 570 | * break to vmm !!*/ |
| 571 | |
| 572 | p->u.pal_data.gr28 = vcpu_get_gr(vcpu, 28); |
| 573 | p->u.pal_data.gr29 = vcpu_get_gr(vcpu, 29); |
| 574 | p->u.pal_data.gr30 = vcpu_get_gr(vcpu, 30); |
| 575 | p->u.pal_data.gr31 = vcpu_get_gr(vcpu, 31); |
| 576 | p->exit_reason = EXIT_REASON_PAL_CALL; |
| 577 | } |
| 578 | |
| 579 | static void set_pal_call_result(struct kvm_vcpu *vcpu) |
| 580 | { |
| 581 | struct exit_ctl_data *p = &vcpu->arch.exit_data; |
| 582 | |
| 583 | if (p->exit_reason == EXIT_REASON_PAL_CALL) { |
| 584 | vcpu_set_gr(vcpu, 8, p->u.pal_data.ret.status, 0); |
| 585 | vcpu_set_gr(vcpu, 9, p->u.pal_data.ret.v0, 0); |
| 586 | vcpu_set_gr(vcpu, 10, p->u.pal_data.ret.v1, 0); |
| 587 | vcpu_set_gr(vcpu, 11, p->u.pal_data.ret.v2, 0); |
| 588 | } else |
| 589 | panic_vm(vcpu); |
| 590 | } |
| 591 | |
| 592 | static void set_sal_call_data(struct kvm_vcpu *vcpu) |
| 593 | { |
| 594 | struct exit_ctl_data *p = &vcpu->arch.exit_data; |
| 595 | |
| 596 | p->u.sal_data.in0 = vcpu_get_gr(vcpu, 32); |
| 597 | p->u.sal_data.in1 = vcpu_get_gr(vcpu, 33); |
| 598 | p->u.sal_data.in2 = vcpu_get_gr(vcpu, 34); |
| 599 | p->u.sal_data.in3 = vcpu_get_gr(vcpu, 35); |
| 600 | p->u.sal_data.in4 = vcpu_get_gr(vcpu, 36); |
| 601 | p->u.sal_data.in5 = vcpu_get_gr(vcpu, 37); |
| 602 | p->u.sal_data.in6 = vcpu_get_gr(vcpu, 38); |
| 603 | p->u.sal_data.in7 = vcpu_get_gr(vcpu, 39); |
| 604 | p->exit_reason = EXIT_REASON_SAL_CALL; |
| 605 | } |
| 606 | |
| 607 | static void set_sal_call_result(struct kvm_vcpu *vcpu) |
| 608 | { |
| 609 | struct exit_ctl_data *p = &vcpu->arch.exit_data; |
| 610 | |
| 611 | if (p->exit_reason == EXIT_REASON_SAL_CALL) { |
| 612 | vcpu_set_gr(vcpu, 8, p->u.sal_data.ret.r8, 0); |
| 613 | vcpu_set_gr(vcpu, 9, p->u.sal_data.ret.r9, 0); |
| 614 | vcpu_set_gr(vcpu, 10, p->u.sal_data.ret.r10, 0); |
| 615 | vcpu_set_gr(vcpu, 11, p->u.sal_data.ret.r11, 0); |
| 616 | } else |
| 617 | panic_vm(vcpu); |
| 618 | } |
| 619 | |
| 620 | void kvm_ia64_handle_break(unsigned long ifa, struct kvm_pt_regs *regs, |
| 621 | unsigned long isr, unsigned long iim) |
| 622 | { |
| 623 | struct kvm_vcpu *v = current_vcpu; |
| 624 | |
| 625 | if (ia64_psr(regs)->cpl == 0) { |
| 626 | /* Allow hypercalls only when cpl = 0. */ |
| 627 | if (iim == DOMN_PAL_REQUEST) { |
| 628 | set_pal_call_data(v); |
| 629 | vmm_transition(v); |
| 630 | set_pal_call_result(v); |
| 631 | vcpu_increment_iip(v); |
| 632 | return; |
| 633 | } else if (iim == DOMN_SAL_REQUEST) { |
| 634 | set_sal_call_data(v); |
| 635 | vmm_transition(v); |
| 636 | set_sal_call_result(v); |
| 637 | vcpu_increment_iip(v); |
| 638 | return; |
| 639 | } |
| 640 | } |
| 641 | reflect_interruption(ifa, isr, iim, 11, regs); |
| 642 | } |
| 643 | |
| 644 | void check_pending_irq(struct kvm_vcpu *vcpu) |
| 645 | { |
| 646 | int mask, h_pending, h_inservice; |
| 647 | u64 isr; |
| 648 | unsigned long vpsr; |
| 649 | struct kvm_pt_regs *regs = vcpu_regs(vcpu); |
| 650 | |
| 651 | h_pending = highest_pending_irq(vcpu); |
| 652 | if (h_pending == NULL_VECTOR) { |
| 653 | update_vhpi(vcpu, NULL_VECTOR); |
| 654 | return; |
| 655 | } |
| 656 | h_inservice = highest_inservice_irq(vcpu); |
| 657 | |
| 658 | vpsr = VCPU(vcpu, vpsr); |
| 659 | mask = irq_masked(vcpu, h_pending, h_inservice); |
| 660 | if ((vpsr & IA64_PSR_I) && IRQ_NO_MASKED == mask) { |
| 661 | isr = vpsr & IA64_PSR_RI; |
| 662 | update_vhpi(vcpu, h_pending); |
| 663 | reflect_interruption(0, isr, 0, 12, regs); /* EXT IRQ */ |
| 664 | } else if (mask == IRQ_MASKED_BY_INSVC) { |
| 665 | if (VCPU(vcpu, vhpi)) |
| 666 | update_vhpi(vcpu, NULL_VECTOR); |
| 667 | } else { |
| 668 | /* masked by vpsr.i or vtpr.*/ |
| 669 | update_vhpi(vcpu, h_pending); |
| 670 | } |
| 671 | } |
| 672 | |
| 673 | static void generate_exirq(struct kvm_vcpu *vcpu) |
| 674 | { |
| 675 | unsigned vpsr; |
| 676 | uint64_t isr; |
| 677 | |
| 678 | struct kvm_pt_regs *regs = vcpu_regs(vcpu); |
| 679 | |
| 680 | vpsr = VCPU(vcpu, vpsr); |
| 681 | isr = vpsr & IA64_PSR_RI; |
| 682 | if (!(vpsr & IA64_PSR_IC)) |
| 683 | panic_vm(vcpu); |
| 684 | reflect_interruption(0, isr, 0, 12, regs); /* EXT IRQ */ |
| 685 | } |
| 686 | |
| 687 | void vhpi_detection(struct kvm_vcpu *vcpu) |
| 688 | { |
| 689 | uint64_t threshold, vhpi; |
| 690 | union ia64_tpr vtpr; |
| 691 | struct ia64_psr vpsr; |
| 692 | |
| 693 | vpsr = *(struct ia64_psr *)&VCPU(vcpu, vpsr); |
| 694 | vtpr.val = VCPU(vcpu, tpr); |
| 695 | |
| 696 | threshold = ((!vpsr.i) << 5) | (vtpr.mmi << 4) | vtpr.mic; |
| 697 | vhpi = VCPU(vcpu, vhpi); |
| 698 | if (vhpi > threshold) { |
| 699 | /* interrupt actived*/ |
| 700 | generate_exirq(vcpu); |
| 701 | } |
| 702 | } |
| 703 | |
| 704 | |
| 705 | void leave_hypervisor_tail(void) |
| 706 | { |
| 707 | struct kvm_vcpu *v = current_vcpu; |
| 708 | |
| 709 | if (VMX(v, timer_check)) { |
| 710 | VMX(v, timer_check) = 0; |
| 711 | if (VMX(v, itc_check)) { |
| 712 | if (vcpu_get_itc(v) > VCPU(v, itm)) { |
| 713 | if (!(VCPU(v, itv) & (1 << 16))) { |
| 714 | vcpu_pend_interrupt(v, VCPU(v, itv) |
| 715 | & 0xff); |
Xiantao Zhang | decc901 | 2008-10-16 15:58:15 +0800 | [diff] [blame] | 716 | VMX(v, itc_check) = 0; |
Xiantao Zhang | 827fa69 | 2008-04-01 14:58:42 +0800 | [diff] [blame] | 717 | } else { |
| 718 | v->arch.timer_pending = 1; |
| 719 | } |
| 720 | VMX(v, last_itc) = VCPU(v, itm) + 1; |
| 721 | } |
| 722 | } |
| 723 | } |
| 724 | |
| 725 | rmb(); |
| 726 | if (v->arch.irq_new_pending) { |
| 727 | v->arch.irq_new_pending = 0; |
| 728 | VMX(v, irq_check) = 0; |
| 729 | check_pending_irq(v); |
| 730 | return; |
| 731 | } |
| 732 | if (VMX(v, irq_check)) { |
| 733 | VMX(v, irq_check) = 0; |
| 734 | vhpi_detection(v); |
| 735 | } |
| 736 | } |
| 737 | |
| 738 | |
| 739 | static inline void handle_lds(struct kvm_pt_regs *regs) |
| 740 | { |
| 741 | regs->cr_ipsr |= IA64_PSR_ED; |
| 742 | } |
| 743 | |
| 744 | void physical_tlb_miss(struct kvm_vcpu *vcpu, unsigned long vadr, int type) |
| 745 | { |
| 746 | unsigned long pte; |
| 747 | union ia64_rr rr; |
| 748 | |
| 749 | rr.val = ia64_get_rr(vadr); |
| 750 | pte = vadr & _PAGE_PPN_MASK; |
| 751 | pte = pte | PHY_PAGE_WB; |
| 752 | thash_vhpt_insert(vcpu, pte, (u64)(rr.ps << 2), vadr, type); |
| 753 | return; |
| 754 | } |
| 755 | |
| 756 | void kvm_page_fault(u64 vadr , u64 vec, struct kvm_pt_regs *regs) |
| 757 | { |
| 758 | unsigned long vpsr; |
| 759 | int type; |
| 760 | |
| 761 | u64 vhpt_adr, gppa, pteval, rr, itir; |
| 762 | union ia64_isr misr; |
| 763 | union ia64_pta vpta; |
| 764 | struct thash_data *data; |
| 765 | struct kvm_vcpu *v = current_vcpu; |
| 766 | |
| 767 | vpsr = VCPU(v, vpsr); |
| 768 | misr.val = VMX(v, cr_isr); |
| 769 | |
| 770 | type = vec; |
| 771 | |
| 772 | if (is_physical_mode(v) && (!(vadr << 1 >> 62))) { |
| 773 | if (vec == 2) { |
| 774 | if (__gpfn_is_io((vadr << 1) >> (PAGE_SHIFT + 1))) { |
| 775 | emulate_io_inst(v, ((vadr << 1) >> 1), 4); |
| 776 | return; |
| 777 | } |
| 778 | } |
| 779 | physical_tlb_miss(v, vadr, type); |
| 780 | return; |
| 781 | } |
| 782 | data = vtlb_lookup(v, vadr, type); |
| 783 | if (data != 0) { |
| 784 | if (type == D_TLB) { |
| 785 | gppa = (vadr & ((1UL << data->ps) - 1)) |
| 786 | + (data->ppn >> (data->ps - 12) << data->ps); |
| 787 | if (__gpfn_is_io(gppa >> PAGE_SHIFT)) { |
| 788 | if (data->pl >= ((regs->cr_ipsr >> |
| 789 | IA64_PSR_CPL0_BIT) & 3)) |
| 790 | emulate_io_inst(v, gppa, data->ma); |
| 791 | else { |
| 792 | vcpu_set_isr(v, misr.val); |
| 793 | data_access_rights(v, vadr); |
| 794 | } |
| 795 | return ; |
| 796 | } |
| 797 | } |
| 798 | thash_vhpt_insert(v, data->page_flags, data->itir, vadr, type); |
| 799 | |
| 800 | } else if (type == D_TLB) { |
| 801 | if (misr.sp) { |
| 802 | handle_lds(regs); |
| 803 | return; |
| 804 | } |
| 805 | |
| 806 | rr = vcpu_get_rr(v, vadr); |
| 807 | itir = rr & (RR_RID_MASK | RR_PS_MASK); |
| 808 | |
| 809 | if (!vhpt_enabled(v, vadr, misr.rs ? RSE_REF : DATA_REF)) { |
| 810 | if (vpsr & IA64_PSR_IC) { |
| 811 | vcpu_set_isr(v, misr.val); |
| 812 | alt_dtlb(v, vadr); |
| 813 | } else { |
| 814 | nested_dtlb(v); |
| 815 | } |
| 816 | return ; |
| 817 | } |
| 818 | |
| 819 | vpta.val = vcpu_get_pta(v); |
| 820 | /* avoid recursively walking (short format) VHPT */ |
| 821 | |
| 822 | vhpt_adr = vcpu_thash(v, vadr); |
| 823 | if (!guest_vhpt_lookup(vhpt_adr, &pteval)) { |
| 824 | /* VHPT successfully read. */ |
| 825 | if (!(pteval & _PAGE_P)) { |
| 826 | if (vpsr & IA64_PSR_IC) { |
| 827 | vcpu_set_isr(v, misr.val); |
| 828 | dtlb_fault(v, vadr); |
| 829 | } else { |
| 830 | nested_dtlb(v); |
| 831 | } |
| 832 | } else if ((pteval & _PAGE_MA_MASK) != _PAGE_MA_ST) { |
| 833 | thash_purge_and_insert(v, pteval, itir, |
| 834 | vadr, D_TLB); |
| 835 | } else if (vpsr & IA64_PSR_IC) { |
| 836 | vcpu_set_isr(v, misr.val); |
| 837 | dtlb_fault(v, vadr); |
| 838 | } else { |
| 839 | nested_dtlb(v); |
| 840 | } |
| 841 | } else { |
| 842 | /* Can't read VHPT. */ |
| 843 | if (vpsr & IA64_PSR_IC) { |
| 844 | vcpu_set_isr(v, misr.val); |
| 845 | dvhpt_fault(v, vadr); |
| 846 | } else { |
| 847 | nested_dtlb(v); |
| 848 | } |
| 849 | } |
| 850 | } else if (type == I_TLB) { |
| 851 | if (!(vpsr & IA64_PSR_IC)) |
| 852 | misr.ni = 1; |
| 853 | if (!vhpt_enabled(v, vadr, INST_REF)) { |
| 854 | vcpu_set_isr(v, misr.val); |
| 855 | alt_itlb(v, vadr); |
| 856 | return; |
| 857 | } |
| 858 | |
| 859 | vpta.val = vcpu_get_pta(v); |
| 860 | |
| 861 | vhpt_adr = vcpu_thash(v, vadr); |
| 862 | if (!guest_vhpt_lookup(vhpt_adr, &pteval)) { |
| 863 | /* VHPT successfully read. */ |
| 864 | if (pteval & _PAGE_P) { |
| 865 | if ((pteval & _PAGE_MA_MASK) == _PAGE_MA_ST) { |
| 866 | vcpu_set_isr(v, misr.val); |
| 867 | itlb_fault(v, vadr); |
| 868 | return ; |
| 869 | } |
| 870 | rr = vcpu_get_rr(v, vadr); |
| 871 | itir = rr & (RR_RID_MASK | RR_PS_MASK); |
| 872 | thash_purge_and_insert(v, pteval, itir, |
| 873 | vadr, I_TLB); |
| 874 | } else { |
| 875 | vcpu_set_isr(v, misr.val); |
| 876 | inst_page_not_present(v, vadr); |
| 877 | } |
| 878 | } else { |
| 879 | vcpu_set_isr(v, misr.val); |
| 880 | ivhpt_fault(v, vadr); |
| 881 | } |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | void kvm_vexirq(struct kvm_vcpu *vcpu) |
| 886 | { |
| 887 | u64 vpsr, isr; |
| 888 | struct kvm_pt_regs *regs; |
| 889 | |
| 890 | regs = vcpu_regs(vcpu); |
| 891 | vpsr = VCPU(vcpu, vpsr); |
| 892 | isr = vpsr & IA64_PSR_RI; |
| 893 | reflect_interruption(0, isr, 0, 12, regs); /*EXT IRQ*/ |
| 894 | } |
| 895 | |
| 896 | void kvm_ia64_handle_irq(struct kvm_vcpu *v) |
| 897 | { |
| 898 | struct exit_ctl_data *p = &v->arch.exit_data; |
| 899 | long psr; |
| 900 | |
| 901 | local_irq_save(psr); |
| 902 | p->exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT; |
| 903 | vmm_transition(v); |
| 904 | local_irq_restore(psr); |
| 905 | |
| 906 | VMX(v, timer_check) = 1; |
| 907 | |
| 908 | } |
| 909 | |
| 910 | static void ptc_ga_remote_func(struct kvm_vcpu *v, int pos) |
| 911 | { |
| 912 | u64 oldrid, moldrid, oldpsbits, vaddr; |
| 913 | struct kvm_ptc_g *p = &v->arch.ptc_g_data[pos]; |
| 914 | vaddr = p->vaddr; |
| 915 | |
| 916 | oldrid = VMX(v, vrr[0]); |
| 917 | VMX(v, vrr[0]) = p->rr; |
| 918 | oldpsbits = VMX(v, psbits[0]); |
| 919 | VMX(v, psbits[0]) = VMX(v, psbits[REGION_NUMBER(vaddr)]); |
| 920 | moldrid = ia64_get_rr(0x0); |
| 921 | ia64_set_rr(0x0, vrrtomrr(p->rr)); |
| 922 | ia64_srlz_d(); |
| 923 | |
| 924 | vaddr = PAGEALIGN(vaddr, p->ps); |
| 925 | thash_purge_entries_remote(v, vaddr, p->ps); |
| 926 | |
| 927 | VMX(v, vrr[0]) = oldrid; |
| 928 | VMX(v, psbits[0]) = oldpsbits; |
| 929 | ia64_set_rr(0x0, moldrid); |
| 930 | ia64_dv_serialize_data(); |
| 931 | } |
| 932 | |
| 933 | static void vcpu_do_resume(struct kvm_vcpu *vcpu) |
| 934 | { |
| 935 | /*Re-init VHPT and VTLB once from resume*/ |
| 936 | vcpu->arch.vhpt.num = VHPT_NUM_ENTRIES; |
| 937 | thash_init(&vcpu->arch.vhpt, VHPT_SHIFT); |
| 938 | vcpu->arch.vtlb.num = VTLB_NUM_ENTRIES; |
| 939 | thash_init(&vcpu->arch.vtlb, VTLB_SHIFT); |
| 940 | |
| 941 | ia64_set_pta(vcpu->arch.vhpt.pta.val); |
| 942 | } |
| 943 | |
| 944 | static void kvm_do_resume_op(struct kvm_vcpu *vcpu) |
| 945 | { |
| 946 | if (test_and_clear_bit(KVM_REQ_RESUME, &vcpu->requests)) { |
| 947 | vcpu_do_resume(vcpu); |
| 948 | return; |
| 949 | } |
| 950 | |
| 951 | if (unlikely(test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))) { |
| 952 | thash_purge_all(vcpu); |
| 953 | return; |
| 954 | } |
| 955 | |
| 956 | if (test_and_clear_bit(KVM_REQ_PTC_G, &vcpu->requests)) { |
| 957 | while (vcpu->arch.ptc_g_count > 0) |
| 958 | ptc_ga_remote_func(vcpu, --vcpu->arch.ptc_g_count); |
| 959 | } |
| 960 | } |
| 961 | |
| 962 | void vmm_transition(struct kvm_vcpu *vcpu) |
| 963 | { |
| 964 | ia64_call_vsa(PAL_VPS_SAVE, (unsigned long)vcpu->arch.vpd, |
Xiantao Zhang | 81aec52 | 2008-09-12 20:23:11 +0800 | [diff] [blame] | 965 | 1, 0, 0, 0, 0, 0); |
Xiantao Zhang | 827fa69 | 2008-04-01 14:58:42 +0800 | [diff] [blame] | 966 | vmm_trampoline(&vcpu->arch.guest, &vcpu->arch.host); |
| 967 | ia64_call_vsa(PAL_VPS_RESTORE, (unsigned long)vcpu->arch.vpd, |
Xiantao Zhang | 81aec52 | 2008-09-12 20:23:11 +0800 | [diff] [blame] | 968 | 1, 0, 0, 0, 0, 0); |
Xiantao Zhang | 827fa69 | 2008-04-01 14:58:42 +0800 | [diff] [blame] | 969 | kvm_do_resume_op(vcpu); |
| 970 | } |