blob: f8c47c688443a612c0d328240d4491dbb456a44b [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
51DEFINE_SPINLOCK(rtc_lock);
52DEFINE_SPINLOCK(i8253_lock);
53
54static int nohpet __initdata = 0;
55static int notsc __initdata = 0;
56
57#undef HPET_HACK_ENABLE_DANGEROUS
58
59unsigned int cpu_khz; /* TSC clocks / usec, not used here */
60static unsigned long hpet_period; /* fsecs / HPET clock */
61unsigned long hpet_tick; /* HPET clocks / interrupt */
Andi Kleen68e18892005-12-12 22:17:07 -080062static int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070063unsigned long vxtime_hz = PIT_TICK_RATE;
64int report_lost_ticks; /* command line option */
65unsigned long long monotonic_base;
66
67struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
68
69volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
70unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
71struct timespec __xtime __section_xtime;
72struct timezone __sys_tz __section_sys_tz;
73
Linus Torvalds1da177e2005-04-16 15:20:36 -070074/*
75 * do_gettimeoffset() returns microseconds since last timer interrupt was
76 * triggered by hardware. A memory read of HPET is slower than a register read
77 * of TSC, but much more reliable. It's also synchronized to the timer
78 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
79 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
80 * This is not a problem, because jiffies hasn't updated either. They are bound
81 * together by xtime_lock.
82 */
83
84static inline unsigned int do_gettimeoffset_tsc(void)
85{
86 unsigned long t;
87 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010088 t = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -070089 if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */
90 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
91 return x;
92}
93
94static inline unsigned int do_gettimeoffset_hpet(void)
95{
john stultza3a00752005-06-23 00:08:36 -070096 /* cap counter read to one tick to avoid inconsistencies */
97 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
98 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -070099}
100
101unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
102
103/*
104 * This version of gettimeofday() has microsecond resolution and better than
105 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
106 * MHz) HPET timer.
107 */
108
109void do_gettimeofday(struct timeval *tv)
110{
111 unsigned long seq, t;
112 unsigned int sec, usec;
113
114 do {
115 seq = read_seqbegin(&xtime_lock);
116
117 sec = xtime.tv_sec;
118 usec = xtime.tv_nsec / 1000;
119
120 /* i386 does some correction here to keep the clock
121 monotonous even when ntpd is fixing drift.
122 But they didn't work for me, there is a non monotonic
123 clock anyways with ntp.
124 I dropped all corrections now until a real solution can
125 be found. Note when you fix it here you need to do the same
126 in arch/x86_64/kernel/vsyscall.c and export all needed
127 variables in vmlinux.lds. -AK */
128
129 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
130 do_gettimeoffset();
131 usec += t;
132
133 } while (read_seqretry(&xtime_lock, seq));
134
135 tv->tv_sec = sec + usec / 1000000;
136 tv->tv_usec = usec % 1000000;
137}
138
139EXPORT_SYMBOL(do_gettimeofday);
140
141/*
142 * settimeofday() first undoes the correction that gettimeofday would do
143 * on the time, and then saves it. This is ugly, but has been like this for
144 * ages already.
145 */
146
147int do_settimeofday(struct timespec *tv)
148{
149 time_t wtm_sec, sec = tv->tv_sec;
150 long wtm_nsec, nsec = tv->tv_nsec;
151
152 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
153 return -EINVAL;
154
155 write_seqlock_irq(&xtime_lock);
156
157 nsec -= do_gettimeoffset() * 1000 +
158 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
159
160 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
161 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
162
163 set_normalized_timespec(&xtime, sec, nsec);
164 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
165
john stultzb149ee22005-09-06 15:17:46 -0700166 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700167
168 write_sequnlock_irq(&xtime_lock);
169 clock_was_set();
170 return 0;
171}
172
173EXPORT_SYMBOL(do_settimeofday);
174
175unsigned long profile_pc(struct pt_regs *regs)
176{
177 unsigned long pc = instruction_pointer(regs);
178
179 /* Assume the lock function has either no stack frame or only a single word.
180 This checks if the address on the stack looks like a kernel text address.
181 There is a small window for false hits, but in that case the tick
182 is just accounted to the spinlock function.
183 Better would be to write these functions in assembler again
184 and check exactly. */
185 if (in_lock_functions(pc)) {
186 char *v = *(char **)regs->rsp;
187 if ((v >= _stext && v <= _etext) ||
188 (v >= _sinittext && v <= _einittext) ||
189 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
190 return (unsigned long)v;
191 return ((unsigned long *)regs->rsp)[1];
192 }
193 return pc;
194}
195EXPORT_SYMBOL(profile_pc);
196
197/*
198 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
199 * ms after the second nowtime has started, because when nowtime is written
200 * into the registers of the CMOS clock, it will jump to the next second
201 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
202 * sheet for details.
203 */
204
205static void set_rtc_mmss(unsigned long nowtime)
206{
207 int real_seconds, real_minutes, cmos_minutes;
208 unsigned char control, freq_select;
209
210/*
211 * IRQs are disabled when we're called from the timer interrupt,
212 * no need for spin_lock_irqsave()
213 */
214
215 spin_lock(&rtc_lock);
216
217/*
218 * Tell the clock it's being set and stop it.
219 */
220
221 control = CMOS_READ(RTC_CONTROL);
222 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
223
224 freq_select = CMOS_READ(RTC_FREQ_SELECT);
225 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
226
227 cmos_minutes = CMOS_READ(RTC_MINUTES);
228 BCD_TO_BIN(cmos_minutes);
229
230/*
231 * since we're only adjusting minutes and seconds, don't interfere with hour
232 * overflow. This avoids messing with unknown time zones but requires your RTC
233 * not to be off by more than 15 minutes. Since we're calling it only when
234 * our clock is externally synchronized using NTP, this shouldn't be a problem.
235 */
236
237 real_seconds = nowtime % 60;
238 real_minutes = nowtime / 60;
239 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
240 real_minutes += 30; /* correct for half hour time zone */
241 real_minutes %= 60;
242
243#if 0
244 /* AMD 8111 is a really bad time keeper and hits this regularly.
245 It probably was an attempt to avoid screwing up DST, but ignore
246 that for now. */
247 if (abs(real_minutes - cmos_minutes) >= 30) {
248 printk(KERN_WARNING "time.c: can't update CMOS clock "
249 "from %d to %d\n", cmos_minutes, real_minutes);
250 } else
251#endif
252
253 {
Andi Kleen0b913172006-01-11 22:45:33 +0100254 BIN_TO_BCD(real_seconds);
255 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700256 CMOS_WRITE(real_seconds, RTC_SECONDS);
257 CMOS_WRITE(real_minutes, RTC_MINUTES);
258 }
259
260/*
261 * The following flags have to be released exactly in this order, otherwise the
262 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
263 * not reset the oscillator and will not update precisely 500 ms later. You
264 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
265 * believes data sheets anyway ... -- Markus Kuhn
266 */
267
268 CMOS_WRITE(control, RTC_CONTROL);
269 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
270
271 spin_unlock(&rtc_lock);
272}
273
274
275/* monotonic_clock(): returns # of nanoseconds passed since time_init()
276 * Note: This function is required to return accurate
277 * time even in the absence of multiple timer ticks.
278 */
279unsigned long long monotonic_clock(void)
280{
281 unsigned long seq;
282 u32 last_offset, this_offset, offset;
283 unsigned long long base;
284
285 if (vxtime.mode == VXTIME_HPET) {
286 do {
287 seq = read_seqbegin(&xtime_lock);
288
289 last_offset = vxtime.last;
290 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700291 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700292 } while (read_seqretry(&xtime_lock, seq));
293 offset = (this_offset - last_offset);
294 offset *=(NSEC_PER_SEC/HZ)/hpet_tick;
295 return base + offset;
Andi Kleen0b913172006-01-11 22:45:33 +0100296 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700297 do {
298 seq = read_seqbegin(&xtime_lock);
299
300 last_offset = vxtime.last_tsc;
301 base = monotonic_base;
302 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100303 this_offset = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700304 offset = (this_offset - last_offset)*1000/cpu_khz;
305 return base + offset;
306 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700307}
308EXPORT_SYMBOL(monotonic_clock);
309
310static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
311{
312 static long lost_count;
313 static int warned;
314
315 if (report_lost_ticks) {
316 printk(KERN_WARNING "time.c: Lost %d timer "
317 "tick(s)! ", lost);
318 print_symbol("rip %s)\n", regs->rip);
319 }
320
321 if (lost_count == 1000 && !warned) {
322 printk(KERN_WARNING
323 "warning: many lost ticks.\n"
324 KERN_WARNING "Your time source seems to be instable or "
325 "some driver is hogging interupts\n");
326 print_symbol("rip %s\n", regs->rip);
327 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
328 printk(KERN_WARNING "Falling back to HPET\n");
329 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
330 vxtime.mode = VXTIME_HPET;
331 do_gettimeoffset = do_gettimeoffset_hpet;
332 }
333 /* else should fall back to PIT, but code missing. */
334 warned = 1;
335 } else
336 lost_count++;
337
338#ifdef CONFIG_CPU_FREQ
339 /* In some cases the CPU can change frequency without us noticing
340 (like going into thermal throttle)
341 Give cpufreq a change to catch up. */
342 if ((lost_count+1) % 25 == 0) {
343 cpufreq_delayed_get();
344 }
345#endif
346}
347
348static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
349{
350 static unsigned long rtc_update = 0;
351 unsigned long tsc;
352 int delay, offset = 0, lost = 0;
353
354/*
355 * Here we are in the timer irq handler. We have irqs locally disabled (so we
356 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
357 * on the other CPU, so we need a lock. We also need to lock the vsyscall
358 * variables, because both do_timer() and us change them -arca+vojtech
359 */
360
361 write_seqlock(&xtime_lock);
362
john stultza3a00752005-06-23 00:08:36 -0700363 if (vxtime.hpet_address)
364 offset = hpet_readl(HPET_COUNTER);
365
366 if (hpet_use_timer) {
367 /* if we're using the hpet timer functionality,
368 * we can more accurately know the counter value
369 * when the timer interrupt occured.
370 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700371 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
372 delay = hpet_readl(HPET_COUNTER) - offset;
373 } else {
374 spin_lock(&i8253_lock);
375 outb_p(0x00, 0x43);
376 delay = inb_p(0x40);
377 delay |= inb(0x40) << 8;
378 spin_unlock(&i8253_lock);
379 delay = LATCH - 1 - delay;
380 }
381
Andi Kleenc818a182006-01-11 22:45:24 +0100382 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700383
384 if (vxtime.mode == VXTIME_HPET) {
385 if (offset - vxtime.last > hpet_tick) {
386 lost = (offset - vxtime.last) / hpet_tick - 1;
387 }
388
389 monotonic_base +=
390 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
391
392 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700393#ifdef CONFIG_X86_PM_TIMER
394 } else if (vxtime.mode == VXTIME_PMTMR) {
395 lost = pmtimer_mark_offset();
396#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700397 } else {
398 offset = (((tsc - vxtime.last_tsc) *
399 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
400
401 if (offset < 0)
402 offset = 0;
403
404 if (offset > (USEC_PER_SEC / HZ)) {
405 lost = offset / (USEC_PER_SEC / HZ);
406 offset %= (USEC_PER_SEC / HZ);
407 }
408
409 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
410
411 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
412
413 if ((((tsc - vxtime.last_tsc) *
414 vxtime.tsc_quot) >> 32) < offset)
415 vxtime.last_tsc = tsc -
416 (((long) offset << 32) / vxtime.tsc_quot) - 1;
417 }
418
419 if (lost > 0) {
420 handle_lost_ticks(lost, regs);
421 jiffies += lost;
422 }
423
424/*
425 * Do the timer stuff.
426 */
427
428 do_timer(regs);
429#ifndef CONFIG_SMP
430 update_process_times(user_mode(regs));
431#endif
432
433/*
434 * In the SMP case we use the local APIC timer interrupt to do the profiling,
435 * except when we simulate SMP mode on a uniprocessor system, in that case we
436 * have to call the local interrupt handler.
437 */
438
439#ifndef CONFIG_X86_LOCAL_APIC
440 profile_tick(CPU_PROFILING, regs);
441#else
442 if (!using_apic_timer)
443 smp_local_timer_interrupt(regs);
444#endif
445
446/*
447 * If we have an externally synchronized Linux clock, then update CMOS clock
448 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
449 * closest to exactly 500 ms before the next second. If the update fails, we
450 * don't care, as it'll be updated on the next turn, and the problem (time way
451 * off) isn't likely to go away much sooner anyway.
452 */
453
john stultzb149ee22005-09-06 15:17:46 -0700454 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700455 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
456 set_rtc_mmss(xtime.tv_sec);
457 rtc_update = xtime.tv_sec + 660;
458 }
459
460 write_sequnlock(&xtime_lock);
461
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100462#ifdef CONFIG_X86_LOCAL_APIC
463 if (using_apic_timer)
464 smp_send_timer_broadcast_ipi();
465#endif
466
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467 return IRQ_HANDLED;
468}
469
470static unsigned int cyc2ns_scale;
471#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
472
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800473static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700474{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800475 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700476}
477
478static inline unsigned long long cycles_2_ns(unsigned long long cyc)
479{
480 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
481}
482
483unsigned long long sched_clock(void)
484{
485 unsigned long a = 0;
486
487#if 0
488 /* Don't do a HPET read here. Using TSC always is much faster
489 and HPET may not be mapped yet when the scheduler first runs.
490 Disadvantage is a small drift between CPUs in some configurations,
491 but that should be tolerable. */
492 if (__vxtime.mode == VXTIME_HPET)
493 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
494#endif
495
496 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
497 which means it is not completely exact and may not be monotonous between
498 CPUs. But the errors should be too small to matter for scheduling
499 purposes. */
500
501 rdtscll(a);
502 return cycles_2_ns(a);
503}
504
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100505static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700506{
Jan Beulich5329e13d2006-01-11 22:46:42 +0100507 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
508 unsigned char uip = 0, this = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700509 unsigned long flags;
510
511/*
512 * The Linux interpretation of the CMOS clock register contents: When the
513 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
514 * second which has precisely just started. Waiting for this can take up to 1
515 * second, we timeout approximately after 2.4 seconds on a machine with
516 * standard 8.3 MHz ISA bus.
517 */
518
519 spin_lock_irqsave(&rtc_lock, flags);
520
Jan Beulich5329e13d2006-01-11 22:46:42 +0100521 while (timeout && (!uip || this)) {
522 uip |= this;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700523 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
524 timeout--;
525 }
526
Andi Kleen0b913172006-01-11 22:45:33 +0100527 /*
528 * Here we are safe to assume the registers won't change for a whole
529 * second, so we just go ahead and read them.
530 */
531 sec = CMOS_READ(RTC_SECONDS);
532 min = CMOS_READ(RTC_MINUTES);
533 hour = CMOS_READ(RTC_HOURS);
534 day = CMOS_READ(RTC_DAY_OF_MONTH);
535 mon = CMOS_READ(RTC_MONTH);
536 year = CMOS_READ(RTC_YEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700537
538 spin_unlock_irqrestore(&rtc_lock, flags);
539
Andi Kleen0b913172006-01-11 22:45:33 +0100540 /*
541 * We know that x86-64 always uses BCD format, no need to check the
542 * config register.
543 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700544
Andi Kleen0b913172006-01-11 22:45:33 +0100545 BCD_TO_BIN(sec);
546 BCD_TO_BIN(min);
547 BCD_TO_BIN(hour);
548 BCD_TO_BIN(day);
549 BCD_TO_BIN(mon);
550 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551
Andi Kleen0b913172006-01-11 22:45:33 +0100552 /*
553 * x86-64 systems only exists since 2002.
554 * This will work up to Dec 31, 2100
555 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700556 year += 2000;
557
558 return mktime(year, mon, day, hour, min, sec);
559}
560
561#ifdef CONFIG_CPU_FREQ
562
563/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
564 changes.
565
566 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
567 not that important because current Opteron setups do not support
568 scaling on SMP anyroads.
569
570 Should fix up last_tsc too. Currently gettimeofday in the
571 first tick after the change will be slightly wrong. */
572
573#include <linux/workqueue.h>
574
575static unsigned int cpufreq_delayed_issched = 0;
576static unsigned int cpufreq_init = 0;
577static struct work_struct cpufreq_delayed_get_work;
578
579static void handle_cpufreq_delayed_get(void *v)
580{
581 unsigned int cpu;
582 for_each_online_cpu(cpu) {
583 cpufreq_get(cpu);
584 }
585 cpufreq_delayed_issched = 0;
586}
587
588/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
589 * to verify the CPU frequency the timing core thinks the CPU is running
590 * at is still correct.
591 */
592static void cpufreq_delayed_get(void)
593{
594 static int warned;
595 if (cpufreq_init && !cpufreq_delayed_issched) {
596 cpufreq_delayed_issched = 1;
597 if (!warned) {
598 warned = 1;
599 printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
600 }
601 schedule_work(&cpufreq_delayed_get_work);
602 }
603}
604
605static unsigned int ref_freq = 0;
606static unsigned long loops_per_jiffy_ref = 0;
607
608static unsigned long cpu_khz_ref = 0;
609
610static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
611 void *data)
612{
613 struct cpufreq_freqs *freq = data;
614 unsigned long *lpj, dummy;
615
Andi Kleenc29601e2005-04-16 15:25:05 -0700616 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
617 return 0;
618
Linus Torvalds1da177e2005-04-16 15:20:36 -0700619 lpj = &dummy;
620 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
621#ifdef CONFIG_SMP
622 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
623#else
624 lpj = &boot_cpu_data.loops_per_jiffy;
625#endif
626
Linus Torvalds1da177e2005-04-16 15:20:36 -0700627 if (!ref_freq) {
628 ref_freq = freq->old;
629 loops_per_jiffy_ref = *lpj;
630 cpu_khz_ref = cpu_khz;
631 }
632 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
633 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
634 (val == CPUFREQ_RESUMECHANGE)) {
635 *lpj =
636 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
637
638 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
639 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
640 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
641 }
642
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800643 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700644
645 return 0;
646}
647
648static struct notifier_block time_cpufreq_notifier_block = {
649 .notifier_call = time_cpufreq_notifier
650};
651
652static int __init cpufreq_tsc(void)
653{
654 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
655 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
656 CPUFREQ_TRANSITION_NOTIFIER))
657 cpufreq_init = 1;
658 return 0;
659}
660
661core_initcall(cpufreq_tsc);
662
663#endif
664
665/*
666 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
667 * it to the HPET timer of known frequency.
668 */
669
670#define TICK_COUNT 100000000
671
672static unsigned int __init hpet_calibrate_tsc(void)
673{
674 int tsc_start, hpet_start;
675 int tsc_now, hpet_now;
676 unsigned long flags;
677
678 local_irq_save(flags);
679 local_irq_disable();
680
681 hpet_start = hpet_readl(HPET_COUNTER);
682 rdtscl(tsc_start);
683
684 do {
685 local_irq_disable();
686 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100687 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700688 local_irq_restore(flags);
689 } while ((tsc_now - tsc_start) < TICK_COUNT &&
690 (hpet_now - hpet_start) < TICK_COUNT);
691
692 return (tsc_now - tsc_start) * 1000000000L
693 / ((hpet_now - hpet_start) * hpet_period / 1000);
694}
695
696
697/*
698 * pit_calibrate_tsc() uses the speaker output (channel 2) of
699 * the PIT. This is better than using the timer interrupt output,
700 * because we can read the value of the speaker with just one inb(),
701 * where we need three i/o operations for the interrupt channel.
702 * We count how many ticks the TSC does in 50 ms.
703 */
704
705static unsigned int __init pit_calibrate_tsc(void)
706{
707 unsigned long start, end;
708 unsigned long flags;
709
710 spin_lock_irqsave(&i8253_lock, flags);
711
712 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
713
714 outb(0xb0, 0x43);
715 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
716 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100717 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100719 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700720
721 spin_unlock_irqrestore(&i8253_lock, flags);
722
723 return (end - start) / 50;
724}
725
726#ifdef CONFIG_HPET
727static __init int late_hpet_init(void)
728{
729 struct hpet_data hd;
730 unsigned int ntimer;
731
732 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100733 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700734
735 memset(&hd, 0, sizeof (hd));
736
737 ntimer = hpet_readl(HPET_ID);
738 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
739 ntimer++;
740
741 /*
742 * Register with driver.
743 * Timer0 and Timer1 is used by platform.
744 */
745 hd.hd_phys_address = vxtime.hpet_address;
746 hd.hd_address = (void *)fix_to_virt(FIX_HPET_BASE);
747 hd.hd_nirqs = ntimer;
748 hd.hd_flags = HPET_DATA_PLATFORM;
749 hpet_reserve_timer(&hd, 0);
750#ifdef CONFIG_HPET_EMULATE_RTC
751 hpet_reserve_timer(&hd, 1);
752#endif
753 hd.hd_irq[0] = HPET_LEGACY_8254;
754 hd.hd_irq[1] = HPET_LEGACY_RTC;
755 if (ntimer > 2) {
756 struct hpet *hpet;
757 struct hpet_timer *timer;
758 int i;
759
760 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
761
762 for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
763 timer++, i++)
764 hd.hd_irq[i] = (timer->hpet_config &
765 Tn_INT_ROUTE_CNF_MASK) >>
766 Tn_INT_ROUTE_CNF_SHIFT;
767
768 }
769
770 hpet_alloc(&hd);
771 return 0;
772}
773fs_initcall(late_hpet_init);
774#endif
775
776static int hpet_timer_stop_set_go(unsigned long tick)
777{
778 unsigned int cfg;
779
780/*
781 * Stop the timers and reset the main counter.
782 */
783
784 cfg = hpet_readl(HPET_CFG);
785 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
786 hpet_writel(cfg, HPET_CFG);
787 hpet_writel(0, HPET_COUNTER);
788 hpet_writel(0, HPET_COUNTER + 4);
789
790/*
791 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
792 * and period also hpet_tick.
793 */
john stultza3a00752005-06-23 00:08:36 -0700794 if (hpet_use_timer) {
795 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700796 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700797 hpet_writel(hpet_tick, HPET_T0_CMP);
798 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
799 cfg |= HPET_CFG_LEGACY;
800 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700801/*
802 * Go!
803 */
804
john stultza3a00752005-06-23 00:08:36 -0700805 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 hpet_writel(cfg, HPET_CFG);
807
808 return 0;
809}
810
811static int hpet_init(void)
812{
813 unsigned int id;
814
815 if (!vxtime.hpet_address)
816 return -1;
817 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
818 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
819
820/*
821 * Read the period, compute tick and quotient.
822 */
823
824 id = hpet_readl(HPET_ID);
825
john stultza3a00752005-06-23 00:08:36 -0700826 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700827 return -1;
828
829 hpet_period = hpet_readl(HPET_PERIOD);
830 if (hpet_period < 100000 || hpet_period > 100000000)
831 return -1;
832
833 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
834 hpet_period;
835
john stultza3a00752005-06-23 00:08:36 -0700836 hpet_use_timer = (id & HPET_ID_LEGSUP);
837
Linus Torvalds1da177e2005-04-16 15:20:36 -0700838 return hpet_timer_stop_set_go(hpet_tick);
839}
840
841static int hpet_reenable(void)
842{
843 return hpet_timer_stop_set_go(hpet_tick);
844}
845
846void __init pit_init(void)
847{
848 unsigned long flags;
849
850 spin_lock_irqsave(&i8253_lock, flags);
851 outb_p(0x34, 0x43); /* binary, mode 2, LSB/MSB, ch 0 */
852 outb_p(LATCH & 0xff, 0x40); /* LSB */
853 outb_p(LATCH >> 8, 0x40); /* MSB */
854 spin_unlock_irqrestore(&i8253_lock, flags);
855}
856
857int __init time_setup(char *str)
858{
859 report_lost_ticks = 1;
860 return 1;
861}
862
863static struct irqaction irq0 = {
864 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
865};
866
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867void __init time_init(void)
868{
869 char *timename;
870
871#ifdef HPET_HACK_ENABLE_DANGEROUS
872 if (!vxtime.hpet_address) {
873 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
874 "manually!\n");
875 outl(0x800038a0, 0xcf8);
876 outl(0xff000001, 0xcfc);
877 outl(0x800038a0, 0xcf8);
878 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
879 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
880 "at %#lx.\n", vxtime.hpet_address);
881 }
882#endif
883 if (nohpet)
884 vxtime.hpet_address = 0;
885
886 xtime.tv_sec = get_cmos_time();
887 xtime.tv_nsec = 0;
888
889 set_normalized_timespec(&wall_to_monotonic,
890 -xtime.tv_sec, -xtime.tv_nsec);
891
john stultza3a00752005-06-23 00:08:36 -0700892 if (!hpet_init())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893 vxtime_hz = (1000000000000000L + hpet_period / 2) /
894 hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800895 else
896 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700897
898 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700899 cpu_khz = hpet_calibrate_tsc();
900 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700901#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800902 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700903 vxtime_hz = PM_TIMER_FREQUENCY;
904 timename = "PM";
905 pit_init();
906 cpu_khz = pit_calibrate_tsc();
907#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700908 } else {
909 pit_init();
910 cpu_khz = pit_calibrate_tsc();
911 timename = "PIT";
912 }
913
914 printk(KERN_INFO "time.c: Using %ld.%06ld MHz %s timer.\n",
915 vxtime_hz / 1000000, vxtime_hz % 1000000, timename);
916 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
917 cpu_khz / 1000, cpu_khz % 1000);
918 vxtime.mode = VXTIME_TSC;
919 vxtime.quot = (1000000L << 32) / vxtime_hz;
920 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100921 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 setup_irq(0, &irq0);
923
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800924 set_cyc2ns_scale(cpu_khz);
Andi Kleena8ab26f2005-04-16 15:25:19 -0700925
926#ifndef CONFIG_SMP
927 time_init_gtod();
928#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700929}
930
Andi Kleena8ab26f2005-04-16 15:25:19 -0700931/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700932 * Make an educated guess if the TSC is trustworthy and synchronized
933 * over all CPUs.
934 */
Andi Kleen737c5c32006-01-11 22:45:15 +0100935__init int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700936{
937#ifdef CONFIG_SMP
938 if (oem_force_hpet_timer())
939 return 1;
940 /* Intel systems are normally all synchronized. Exceptions
941 are handled in the OEM check above. */
942 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
943 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700944#endif
945 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100946 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700947}
948
949/*
Andi Kleena8ab26f2005-04-16 15:25:19 -0700950 * Decide after all CPUs are booted what mode gettimeofday should use.
951 */
952void __init time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700953{
954 char *timetype;
955
Andi Kleen312df5f2005-05-16 21:53:28 -0700956 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957 notsc = 1;
958 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -0700959 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Linus Torvalds1da177e2005-04-16 15:20:36 -0700960 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
961 vxtime.mode = VXTIME_HPET;
962 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -0700963#ifdef CONFIG_X86_PM_TIMER
964 /* Using PM for gettimeofday is quite slow, but we have no other
965 choice because the TSC is too unreliable on some systems. */
966 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
967 timetype = "PM";
968 do_gettimeoffset = do_gettimeoffset_pm;
969 vxtime.mode = VXTIME_PMTMR;
970 sysctl_vsyscall = 0;
971 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
972#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700973 } else {
john stultza3a00752005-06-23 00:08:36 -0700974 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -0700975 vxtime.mode = VXTIME_TSC;
976 }
977
978 printk(KERN_INFO "time.c: Using %s based timekeeping.\n", timetype);
979}
980
981__setup("report_lost_ticks", time_setup);
982
983static long clock_cmos_diff;
984static unsigned long sleep_start;
985
Andi Kleen0b913172006-01-11 22:45:33 +0100986/*
987 * sysfs support for the timer.
988 */
989
Pavel Machek0b9c33a2005-04-16 15:25:31 -0700990static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700991{
992 /*
993 * Estimate time zone so that set_time can update the clock
994 */
995 long cmos_time = get_cmos_time();
996
997 clock_cmos_diff = -cmos_time;
998 clock_cmos_diff += get_seconds();
999 sleep_start = cmos_time;
1000 return 0;
1001}
1002
1003static int timer_resume(struct sys_device *dev)
1004{
1005 unsigned long flags;
1006 unsigned long sec;
1007 unsigned long ctime = get_cmos_time();
1008 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1009
1010 if (vxtime.hpet_address)
1011 hpet_reenable();
1012 else
1013 i8254_timer_resume();
1014
1015 sec = ctime + clock_cmos_diff;
1016 write_seqlock_irqsave(&xtime_lock,flags);
1017 xtime.tv_sec = sec;
1018 xtime.tv_nsec = 0;
1019 write_sequnlock_irqrestore(&xtime_lock,flags);
1020 jiffies += sleep_length;
1021 wall_jiffies += sleep_length;
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001022 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001023 return 0;
1024}
1025
1026static struct sysdev_class timer_sysclass = {
1027 .resume = timer_resume,
1028 .suspend = timer_suspend,
1029 set_kset_name("timer"),
1030};
1031
Linus Torvalds1da177e2005-04-16 15:20:36 -07001032/* XXX this driverfs stuff should probably go elsewhere later -john */
1033static struct sys_device device_timer = {
1034 .id = 0,
1035 .cls = &timer_sysclass,
1036};
1037
1038static int time_init_device(void)
1039{
1040 int error = sysdev_class_register(&timer_sysclass);
1041 if (!error)
1042 error = sysdev_register(&device_timer);
1043 return error;
1044}
1045
1046device_initcall(time_init_device);
1047
1048#ifdef CONFIG_HPET_EMULATE_RTC
1049/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1050 * is enabled, we support RTC interrupt functionality in software.
1051 * RTC has 3 kinds of interrupts:
1052 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1053 * is updated
1054 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1055 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1056 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1057 * (1) and (2) above are implemented using polling at a frequency of
1058 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1059 * overhead. (DEFAULT_RTC_INT_FREQ)
1060 * For (3), we use interrupts at 64Hz or user specified periodic
1061 * frequency, whichever is higher.
1062 */
1063#include <linux/rtc.h>
1064
Linus Torvalds1da177e2005-04-16 15:20:36 -07001065#define DEFAULT_RTC_INT_FREQ 64
1066#define RTC_NUM_INTS 1
1067
1068static unsigned long UIE_on;
1069static unsigned long prev_update_sec;
1070
1071static unsigned long AIE_on;
1072static struct rtc_time alarm_time;
1073
1074static unsigned long PIE_on;
1075static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1076static unsigned long PIE_count;
1077
1078static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001079static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001080
1081int is_hpet_enabled(void)
1082{
1083 return vxtime.hpet_address != 0;
1084}
1085
1086/*
1087 * Timer 1 for RTC, we do not use periodic interrupt feature,
1088 * even if HPET supports periodic interrupts on Timer 1.
1089 * The reason being, to set up a periodic interrupt in HPET, we need to
1090 * stop the main counter. And if we do that everytime someone diables/enables
1091 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1092 * So, for the time being, simulate the periodic interrupt in software.
1093 *
1094 * hpet_rtc_timer_init() is called for the first time and during subsequent
1095 * interuppts reinit happens through hpet_rtc_timer_reinit().
1096 */
1097int hpet_rtc_timer_init(void)
1098{
1099 unsigned int cfg, cnt;
1100 unsigned long flags;
1101
1102 if (!is_hpet_enabled())
1103 return 0;
1104 /*
1105 * Set the counter 1 and enable the interrupts.
1106 */
1107 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1108 hpet_rtc_int_freq = PIE_freq;
1109 else
1110 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1111
1112 local_irq_save(flags);
1113 cnt = hpet_readl(HPET_COUNTER);
1114 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1115 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001116 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117 local_irq_restore(flags);
1118
1119 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001120 cfg &= ~HPET_TN_PERIODIC;
1121 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001122 hpet_writel(cfg, HPET_T1_CFG);
1123
1124 return 1;
1125}
1126
1127static void hpet_rtc_timer_reinit(void)
1128{
1129 unsigned int cfg, cnt;
1130
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001131 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1132 cfg = hpet_readl(HPET_T1_CFG);
1133 cfg &= ~HPET_TN_ENABLE;
1134 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001135 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001136 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001137
1138 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1139 hpet_rtc_int_freq = PIE_freq;
1140 else
1141 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1142
1143 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001144 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001145 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1146 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001147 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001148}
1149
1150/*
1151 * The functions below are called from rtc driver.
1152 * Return 0 if HPET is not being used.
1153 * Otherwise do the necessary changes and return 1.
1154 */
1155int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1156{
1157 if (!is_hpet_enabled())
1158 return 0;
1159
1160 if (bit_mask & RTC_UIE)
1161 UIE_on = 0;
1162 if (bit_mask & RTC_PIE)
1163 PIE_on = 0;
1164 if (bit_mask & RTC_AIE)
1165 AIE_on = 0;
1166
1167 return 1;
1168}
1169
1170int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1171{
1172 int timer_init_reqd = 0;
1173
1174 if (!is_hpet_enabled())
1175 return 0;
1176
1177 if (!(PIE_on | AIE_on | UIE_on))
1178 timer_init_reqd = 1;
1179
1180 if (bit_mask & RTC_UIE) {
1181 UIE_on = 1;
1182 }
1183 if (bit_mask & RTC_PIE) {
1184 PIE_on = 1;
1185 PIE_count = 0;
1186 }
1187 if (bit_mask & RTC_AIE) {
1188 AIE_on = 1;
1189 }
1190
1191 if (timer_init_reqd)
1192 hpet_rtc_timer_init();
1193
1194 return 1;
1195}
1196
1197int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1198{
1199 if (!is_hpet_enabled())
1200 return 0;
1201
1202 alarm_time.tm_hour = hrs;
1203 alarm_time.tm_min = min;
1204 alarm_time.tm_sec = sec;
1205
1206 return 1;
1207}
1208
1209int hpet_set_periodic_freq(unsigned long freq)
1210{
1211 if (!is_hpet_enabled())
1212 return 0;
1213
1214 PIE_freq = freq;
1215 PIE_count = 0;
1216
1217 return 1;
1218}
1219
1220int hpet_rtc_dropped_irq(void)
1221{
1222 if (!is_hpet_enabled())
1223 return 0;
1224
1225 return 1;
1226}
1227
1228irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1229{
1230 struct rtc_time curr_time;
1231 unsigned long rtc_int_flag = 0;
1232 int call_rtc_interrupt = 0;
1233
1234 hpet_rtc_timer_reinit();
1235
1236 if (UIE_on | AIE_on) {
1237 rtc_get_rtc_time(&curr_time);
1238 }
1239 if (UIE_on) {
1240 if (curr_time.tm_sec != prev_update_sec) {
1241 /* Set update int info, call real rtc int routine */
1242 call_rtc_interrupt = 1;
1243 rtc_int_flag = RTC_UF;
1244 prev_update_sec = curr_time.tm_sec;
1245 }
1246 }
1247 if (PIE_on) {
1248 PIE_count++;
1249 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1250 /* Set periodic int info, call real rtc int routine */
1251 call_rtc_interrupt = 1;
1252 rtc_int_flag |= RTC_PF;
1253 PIE_count = 0;
1254 }
1255 }
1256 if (AIE_on) {
1257 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1258 (curr_time.tm_min == alarm_time.tm_min) &&
1259 (curr_time.tm_hour == alarm_time.tm_hour)) {
1260 /* Set alarm int info, call real rtc int routine */
1261 call_rtc_interrupt = 1;
1262 rtc_int_flag |= RTC_AF;
1263 }
1264 }
1265 if (call_rtc_interrupt) {
1266 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1267 rtc_interrupt(rtc_int_flag, dev_id, regs);
1268 }
1269 return IRQ_HANDLED;
1270}
1271#endif
1272
Linus Torvalds1da177e2005-04-16 15:20:36 -07001273static int __init nohpet_setup(char *s)
1274{
1275 nohpet = 1;
1276 return 0;
1277}
1278
1279__setup("nohpet", nohpet_setup);
1280
1281
1282static int __init notsc_setup(char *s)
1283{
1284 notsc = 1;
1285 return 0;
1286}
1287
1288__setup("notsc", notsc_setup);