blob: a577be2278621cd7281ae50b668abe5c860f1cfa [file] [log] [blame]
Ben Hutchings8e730c12009-11-29 15:14:45 +00001/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
Ben Hutchings906bb262009-11-29 15:16:19 +00004 * Copyright 2006-2009 Solarflare Communications Inc.
Ben Hutchings8e730c12009-11-29 15:14:45 +00005 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/pci.h>
14#include <linux/module.h>
15#include <linux/seq_file.h>
16#include "net_driver.h"
17#include "bitfield.h"
18#include "efx.h"
19#include "nic.h"
20#include "regs.h"
21#include "io.h"
22#include "workarounds.h"
23
24/**************************************************************************
25 *
26 * Configurable values
27 *
28 **************************************************************************
29 */
30
31/* This is set to 16 for a good reason. In summary, if larger than
32 * 16, the descriptor cache holds more than a default socket
33 * buffer's worth of packets (for UDP we can only have at most one
34 * socket buffer's worth outstanding). This combined with the fact
35 * that we only get 1 TX event per descriptor cache means the NIC
36 * goes idle.
37 */
38#define TX_DC_ENTRIES 16
39#define TX_DC_ENTRIES_ORDER 1
40
41#define RX_DC_ENTRIES 64
42#define RX_DC_ENTRIES_ORDER 3
43
44/* RX FIFO XOFF watermark
45 *
46 * When the amount of the RX FIFO increases used increases past this
47 * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A)
48 * This also has an effect on RX/TX arbitration
49 */
50int efx_nic_rx_xoff_thresh = -1;
51module_param_named(rx_xoff_thresh_bytes, efx_nic_rx_xoff_thresh, int, 0644);
52MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold");
53
54/* RX FIFO XON watermark
55 *
56 * When the amount of the RX FIFO used decreases below this
57 * watermark send XON. Only used if TX flow control is enabled (ethtool -A)
58 * This also has an effect on RX/TX arbitration
59 */
60int efx_nic_rx_xon_thresh = -1;
61module_param_named(rx_xon_thresh_bytes, efx_nic_rx_xon_thresh, int, 0644);
62MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold");
63
64/* If EFX_MAX_INT_ERRORS internal errors occur within
65 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
66 * disable it.
67 */
68#define EFX_INT_ERROR_EXPIRE 3600
69#define EFX_MAX_INT_ERRORS 5
70
71/* We poll for events every FLUSH_INTERVAL ms, and check FLUSH_POLL_COUNT times
72 */
73#define EFX_FLUSH_INTERVAL 10
74#define EFX_FLUSH_POLL_COUNT 100
75
76/* Size and alignment of special buffers (4KB) */
77#define EFX_BUF_SIZE 4096
78
79/* Depth of RX flush request fifo */
80#define EFX_RX_FLUSH_COUNT 4
81
82/**************************************************************************
83 *
84 * Solarstorm hardware access
85 *
86 **************************************************************************/
87
88static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
89 unsigned int index)
90{
91 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
92 value, index);
93}
94
95/* Read the current event from the event queue */
96static inline efx_qword_t *efx_event(struct efx_channel *channel,
97 unsigned int index)
98{
99 return (((efx_qword_t *) (channel->eventq.addr)) + index);
100}
101
102/* See if an event is present
103 *
104 * We check both the high and low dword of the event for all ones. We
105 * wrote all ones when we cleared the event, and no valid event can
106 * have all ones in either its high or low dwords. This approach is
107 * robust against reordering.
108 *
109 * Note that using a single 64-bit comparison is incorrect; even
110 * though the CPU read will be atomic, the DMA write may not be.
111 */
112static inline int efx_event_present(efx_qword_t *event)
113{
114 return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
115 EFX_DWORD_IS_ALL_ONES(event->dword[1])));
116}
117
118static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
119 const efx_oword_t *mask)
120{
121 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
122 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
123}
124
125int efx_nic_test_registers(struct efx_nic *efx,
126 const struct efx_nic_register_test *regs,
127 size_t n_regs)
128{
129 unsigned address = 0, i, j;
130 efx_oword_t mask, imask, original, reg, buf;
131
132 /* Falcon should be in loopback to isolate the XMAC from the PHY */
133 WARN_ON(!LOOPBACK_INTERNAL(efx));
134
135 for (i = 0; i < n_regs; ++i) {
136 address = regs[i].address;
137 mask = imask = regs[i].mask;
138 EFX_INVERT_OWORD(imask);
139
140 efx_reado(efx, &original, address);
141
142 /* bit sweep on and off */
143 for (j = 0; j < 128; j++) {
144 if (!EFX_EXTRACT_OWORD32(mask, j, j))
145 continue;
146
147 /* Test this testable bit can be set in isolation */
148 EFX_AND_OWORD(reg, original, mask);
149 EFX_SET_OWORD32(reg, j, j, 1);
150
151 efx_writeo(efx, &reg, address);
152 efx_reado(efx, &buf, address);
153
154 if (efx_masked_compare_oword(&reg, &buf, &mask))
155 goto fail;
156
157 /* Test this testable bit can be cleared in isolation */
158 EFX_OR_OWORD(reg, original, mask);
159 EFX_SET_OWORD32(reg, j, j, 0);
160
161 efx_writeo(efx, &reg, address);
162 efx_reado(efx, &buf, address);
163
164 if (efx_masked_compare_oword(&reg, &buf, &mask))
165 goto fail;
166 }
167
168 efx_writeo(efx, &original, address);
169 }
170
171 return 0;
172
173fail:
174 EFX_ERR(efx, "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
175 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
176 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
177 return -EIO;
178}
179
180/**************************************************************************
181 *
182 * Special buffer handling
183 * Special buffers are used for event queues and the TX and RX
184 * descriptor rings.
185 *
186 *************************************************************************/
187
188/*
189 * Initialise a special buffer
190 *
191 * This will define a buffer (previously allocated via
192 * efx_alloc_special_buffer()) in the buffer table, allowing
193 * it to be used for event queues, descriptor rings etc.
194 */
195static void
196efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197{
198 efx_qword_t buf_desc;
199 int index;
200 dma_addr_t dma_addr;
201 int i;
202
203 EFX_BUG_ON_PARANOID(!buffer->addr);
204
205 /* Write buffer descriptors to NIC */
206 for (i = 0; i < buffer->entries; i++) {
207 index = buffer->index + i;
208 dma_addr = buffer->dma_addr + (i * 4096);
209 EFX_LOG(efx, "mapping special buffer %d at %llx\n",
210 index, (unsigned long long)dma_addr);
211 EFX_POPULATE_QWORD_3(buf_desc,
212 FRF_AZ_BUF_ADR_REGION, 0,
213 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
214 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
215 efx_write_buf_tbl(efx, &buf_desc, index);
216 }
217}
218
219/* Unmaps a buffer and clears the buffer table entries */
220static void
221efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
222{
223 efx_oword_t buf_tbl_upd;
224 unsigned int start = buffer->index;
225 unsigned int end = (buffer->index + buffer->entries - 1);
226
227 if (!buffer->entries)
228 return;
229
230 EFX_LOG(efx, "unmapping special buffers %d-%d\n",
231 buffer->index, buffer->index + buffer->entries - 1);
232
233 EFX_POPULATE_OWORD_4(buf_tbl_upd,
234 FRF_AZ_BUF_UPD_CMD, 0,
235 FRF_AZ_BUF_CLR_CMD, 1,
236 FRF_AZ_BUF_CLR_END_ID, end,
237 FRF_AZ_BUF_CLR_START_ID, start);
238 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
239}
240
241/*
242 * Allocate a new special buffer
243 *
244 * This allocates memory for a new buffer, clears it and allocates a
245 * new buffer ID range. It does not write into the buffer table.
246 *
247 * This call will allocate 4KB buffers, since 8KB buffers can't be
248 * used for event queues and descriptor rings.
249 */
250static int efx_alloc_special_buffer(struct efx_nic *efx,
251 struct efx_special_buffer *buffer,
252 unsigned int len)
253{
254 len = ALIGN(len, EFX_BUF_SIZE);
255
256 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
257 &buffer->dma_addr);
258 if (!buffer->addr)
259 return -ENOMEM;
260 buffer->len = len;
261 buffer->entries = len / EFX_BUF_SIZE;
262 BUG_ON(buffer->dma_addr & (EFX_BUF_SIZE - 1));
263
264 /* All zeros is a potentially valid event so memset to 0xff */
265 memset(buffer->addr, 0xff, len);
266
267 /* Select new buffer ID */
268 buffer->index = efx->next_buffer_table;
269 efx->next_buffer_table += buffer->entries;
270
271 EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x "
272 "(virt %p phys %llx)\n", buffer->index,
273 buffer->index + buffer->entries - 1,
274 (u64)buffer->dma_addr, len,
275 buffer->addr, (u64)virt_to_phys(buffer->addr));
276
277 return 0;
278}
279
280static void
281efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
282{
283 if (!buffer->addr)
284 return;
285
286 EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x "
287 "(virt %p phys %llx)\n", buffer->index,
288 buffer->index + buffer->entries - 1,
289 (u64)buffer->dma_addr, buffer->len,
290 buffer->addr, (u64)virt_to_phys(buffer->addr));
291
292 pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr,
293 buffer->dma_addr);
294 buffer->addr = NULL;
295 buffer->entries = 0;
296}
297
298/**************************************************************************
299 *
300 * Generic buffer handling
301 * These buffers are used for interrupt status and MAC stats
302 *
303 **************************************************************************/
304
305int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
306 unsigned int len)
307{
308 buffer->addr = pci_alloc_consistent(efx->pci_dev, len,
309 &buffer->dma_addr);
310 if (!buffer->addr)
311 return -ENOMEM;
312 buffer->len = len;
313 memset(buffer->addr, 0, len);
314 return 0;
315}
316
317void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer)
318{
319 if (buffer->addr) {
320 pci_free_consistent(efx->pci_dev, buffer->len,
321 buffer->addr, buffer->dma_addr);
322 buffer->addr = NULL;
323 }
324}
325
326/**************************************************************************
327 *
328 * TX path
329 *
330 **************************************************************************/
331
332/* Returns a pointer to the specified transmit descriptor in the TX
333 * descriptor queue belonging to the specified channel.
334 */
335static inline efx_qword_t *
336efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
337{
338 return (((efx_qword_t *) (tx_queue->txd.addr)) + index);
339}
340
341/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
342static inline void efx_notify_tx_desc(struct efx_tx_queue *tx_queue)
343{
344 unsigned write_ptr;
345 efx_dword_t reg;
346
347 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
348 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
349 efx_writed_page(tx_queue->efx, &reg,
350 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
351}
352
353
354/* For each entry inserted into the software descriptor ring, create a
355 * descriptor in the hardware TX descriptor ring (in host memory), and
356 * write a doorbell.
357 */
358void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
359{
360
361 struct efx_tx_buffer *buffer;
362 efx_qword_t *txd;
363 unsigned write_ptr;
364
365 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
366
367 do {
368 write_ptr = tx_queue->write_count & EFX_TXQ_MASK;
369 buffer = &tx_queue->buffer[write_ptr];
370 txd = efx_tx_desc(tx_queue, write_ptr);
371 ++tx_queue->write_count;
372
373 /* Create TX descriptor ring entry */
374 EFX_POPULATE_QWORD_4(*txd,
375 FSF_AZ_TX_KER_CONT, buffer->continuation,
376 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
377 FSF_AZ_TX_KER_BUF_REGION, 0,
378 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
379 } while (tx_queue->write_count != tx_queue->insert_count);
380
381 wmb(); /* Ensure descriptors are written before they are fetched */
382 efx_notify_tx_desc(tx_queue);
383}
384
385/* Allocate hardware resources for a TX queue */
386int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
387{
388 struct efx_nic *efx = tx_queue->efx;
389 BUILD_BUG_ON(EFX_TXQ_SIZE < 512 || EFX_TXQ_SIZE > 4096 ||
390 EFX_TXQ_SIZE & EFX_TXQ_MASK);
391 return efx_alloc_special_buffer(efx, &tx_queue->txd,
392 EFX_TXQ_SIZE * sizeof(efx_qword_t));
393}
394
395void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
396{
397 efx_oword_t tx_desc_ptr;
398 struct efx_nic *efx = tx_queue->efx;
399
400 tx_queue->flushed = FLUSH_NONE;
401
402 /* Pin TX descriptor ring */
403 efx_init_special_buffer(efx, &tx_queue->txd);
404
405 /* Push TX descriptor ring to card */
406 EFX_POPULATE_OWORD_10(tx_desc_ptr,
407 FRF_AZ_TX_DESCQ_EN, 1,
408 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
409 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
410 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
411 FRF_AZ_TX_DESCQ_EVQ_ID,
412 tx_queue->channel->channel,
413 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
414 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
415 FRF_AZ_TX_DESCQ_SIZE,
416 __ffs(tx_queue->txd.entries),
417 FRF_AZ_TX_DESCQ_TYPE, 0,
418 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
419
420 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
421 int csum = tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM;
422 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
423 EFX_SET_OWORD_FIELD(tx_desc_ptr, FRF_BZ_TX_TCP_CHKSM_DIS,
424 !csum);
425 }
426
427 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
428 tx_queue->queue);
429
430 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
431 efx_oword_t reg;
432
433 /* Only 128 bits in this register */
434 BUILD_BUG_ON(EFX_TX_QUEUE_COUNT >= 128);
435
436 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
437 if (tx_queue->queue == EFX_TX_QUEUE_OFFLOAD_CSUM)
438 clear_bit_le(tx_queue->queue, (void *)&reg);
439 else
440 set_bit_le(tx_queue->queue, (void *)&reg);
441 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
442 }
443}
444
445static void efx_flush_tx_queue(struct efx_tx_queue *tx_queue)
446{
447 struct efx_nic *efx = tx_queue->efx;
448 efx_oword_t tx_flush_descq;
449
450 tx_queue->flushed = FLUSH_PENDING;
451
452 /* Post a flush command */
453 EFX_POPULATE_OWORD_2(tx_flush_descq,
454 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
455 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
456 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
457}
458
459void efx_nic_fini_tx(struct efx_tx_queue *tx_queue)
460{
461 struct efx_nic *efx = tx_queue->efx;
462 efx_oword_t tx_desc_ptr;
463
464 /* The queue should have been flushed */
465 WARN_ON(tx_queue->flushed != FLUSH_DONE);
466
467 /* Remove TX descriptor ring from card */
468 EFX_ZERO_OWORD(tx_desc_ptr);
469 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
470 tx_queue->queue);
471
472 /* Unpin TX descriptor ring */
473 efx_fini_special_buffer(efx, &tx_queue->txd);
474}
475
476/* Free buffers backing TX queue */
477void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
478{
479 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
480}
481
482/**************************************************************************
483 *
484 * RX path
485 *
486 **************************************************************************/
487
488/* Returns a pointer to the specified descriptor in the RX descriptor queue */
489static inline efx_qword_t *
490efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
491{
492 return (((efx_qword_t *) (rx_queue->rxd.addr)) + index);
493}
494
495/* This creates an entry in the RX descriptor queue */
496static inline void
497efx_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
498{
499 struct efx_rx_buffer *rx_buf;
500 efx_qword_t *rxd;
501
502 rxd = efx_rx_desc(rx_queue, index);
503 rx_buf = efx_rx_buffer(rx_queue, index);
504 EFX_POPULATE_QWORD_3(*rxd,
505 FSF_AZ_RX_KER_BUF_SIZE,
506 rx_buf->len -
507 rx_queue->efx->type->rx_buffer_padding,
508 FSF_AZ_RX_KER_BUF_REGION, 0,
509 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
510}
511
512/* This writes to the RX_DESC_WPTR register for the specified receive
513 * descriptor ring.
514 */
515void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
516{
517 efx_dword_t reg;
518 unsigned write_ptr;
519
520 while (rx_queue->notified_count != rx_queue->added_count) {
521 efx_build_rx_desc(rx_queue,
522 rx_queue->notified_count &
523 EFX_RXQ_MASK);
524 ++rx_queue->notified_count;
525 }
526
527 wmb();
528 write_ptr = rx_queue->added_count & EFX_RXQ_MASK;
529 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
530 efx_writed_page(rx_queue->efx, &reg,
531 FR_AZ_RX_DESC_UPD_DWORD_P0, rx_queue->queue);
532}
533
534int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
535{
536 struct efx_nic *efx = rx_queue->efx;
537 BUILD_BUG_ON(EFX_RXQ_SIZE < 512 || EFX_RXQ_SIZE > 4096 ||
538 EFX_RXQ_SIZE & EFX_RXQ_MASK);
539 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
540 EFX_RXQ_SIZE * sizeof(efx_qword_t));
541}
542
543void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
544{
545 efx_oword_t rx_desc_ptr;
546 struct efx_nic *efx = rx_queue->efx;
547 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
548 bool iscsi_digest_en = is_b0;
549
550 EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n",
551 rx_queue->queue, rx_queue->rxd.index,
552 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
553
554 rx_queue->flushed = FLUSH_NONE;
555
556 /* Pin RX descriptor ring */
557 efx_init_special_buffer(efx, &rx_queue->rxd);
558
559 /* Push RX descriptor ring to card */
560 EFX_POPULATE_OWORD_10(rx_desc_ptr,
561 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
562 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
563 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
564 FRF_AZ_RX_DESCQ_EVQ_ID,
565 rx_queue->channel->channel,
566 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
567 FRF_AZ_RX_DESCQ_LABEL, rx_queue->queue,
568 FRF_AZ_RX_DESCQ_SIZE,
569 __ffs(rx_queue->rxd.entries),
570 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
571 /* For >=B0 this is scatter so disable */
572 FRF_AZ_RX_DESCQ_JUMBO, !is_b0,
573 FRF_AZ_RX_DESCQ_EN, 1);
574 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
575 rx_queue->queue);
576}
577
578static void efx_flush_rx_queue(struct efx_rx_queue *rx_queue)
579{
580 struct efx_nic *efx = rx_queue->efx;
581 efx_oword_t rx_flush_descq;
582
583 rx_queue->flushed = FLUSH_PENDING;
584
585 /* Post a flush command */
586 EFX_POPULATE_OWORD_2(rx_flush_descq,
587 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
588 FRF_AZ_RX_FLUSH_DESCQ, rx_queue->queue);
589 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
590}
591
592void efx_nic_fini_rx(struct efx_rx_queue *rx_queue)
593{
594 efx_oword_t rx_desc_ptr;
595 struct efx_nic *efx = rx_queue->efx;
596
597 /* The queue should already have been flushed */
598 WARN_ON(rx_queue->flushed != FLUSH_DONE);
599
600 /* Remove RX descriptor ring from card */
601 EFX_ZERO_OWORD(rx_desc_ptr);
602 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
603 rx_queue->queue);
604
605 /* Unpin RX descriptor ring */
606 efx_fini_special_buffer(efx, &rx_queue->rxd);
607}
608
609/* Free buffers backing RX queue */
610void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
611{
612 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
613}
614
615/**************************************************************************
616 *
617 * Event queue processing
618 * Event queues are processed by per-channel tasklets.
619 *
620 **************************************************************************/
621
622/* Update a channel's event queue's read pointer (RPTR) register
623 *
624 * This writes the EVQ_RPTR_REG register for the specified channel's
625 * event queue.
626 *
627 * Note that EVQ_RPTR_REG contains the index of the "last read" event,
628 * whereas channel->eventq_read_ptr contains the index of the "next to
629 * read" event.
630 */
631void efx_nic_eventq_read_ack(struct efx_channel *channel)
632{
633 efx_dword_t reg;
634 struct efx_nic *efx = channel->efx;
635
636 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR, channel->eventq_read_ptr);
637 efx_writed_table(efx, &reg, efx->type->evq_rptr_tbl_base,
638 channel->channel);
639}
640
641/* Use HW to insert a SW defined event */
642void efx_generate_event(struct efx_channel *channel, efx_qword_t *event)
643{
644 efx_oword_t drv_ev_reg;
645
646 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
647 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
648 drv_ev_reg.u32[0] = event->u32[0];
649 drv_ev_reg.u32[1] = event->u32[1];
650 drv_ev_reg.u32[2] = 0;
651 drv_ev_reg.u32[3] = 0;
652 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, channel->channel);
653 efx_writeo(channel->efx, &drv_ev_reg, FR_AZ_DRV_EV);
654}
655
656/* Handle a transmit completion event
657 *
658 * The NIC batches TX completion events; the message we receive is of
659 * the form "complete all TX events up to this index".
660 */
661static void
662efx_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
663{
664 unsigned int tx_ev_desc_ptr;
665 unsigned int tx_ev_q_label;
666 struct efx_tx_queue *tx_queue;
667 struct efx_nic *efx = channel->efx;
668
669 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
670 /* Transmit completion */
671 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
672 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
673 tx_queue = &efx->tx_queue[tx_ev_q_label];
674 channel->irq_mod_score +=
675 (tx_ev_desc_ptr - tx_queue->read_count) &
676 EFX_TXQ_MASK;
677 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
678 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
679 /* Rewrite the FIFO write pointer */
680 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
681 tx_queue = &efx->tx_queue[tx_ev_q_label];
682
683 if (efx_dev_registered(efx))
684 netif_tx_lock(efx->net_dev);
685 efx_notify_tx_desc(tx_queue);
686 if (efx_dev_registered(efx))
687 netif_tx_unlock(efx->net_dev);
688 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
689 EFX_WORKAROUND_10727(efx)) {
690 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
691 } else {
692 EFX_ERR(efx, "channel %d unexpected TX event "
693 EFX_QWORD_FMT"\n", channel->channel,
694 EFX_QWORD_VAL(*event));
695 }
696}
697
698/* Detect errors included in the rx_evt_pkt_ok bit. */
699static void efx_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
700 const efx_qword_t *event,
701 bool *rx_ev_pkt_ok,
702 bool *discard)
703{
704 struct efx_nic *efx = rx_queue->efx;
705 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
706 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
707 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
708 bool rx_ev_other_err, rx_ev_pause_frm;
709 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
710 unsigned rx_ev_pkt_type;
711
712 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
713 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
714 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
715 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
716 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
717 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
718 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
719 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
720 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
721 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
722 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
723 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
724 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
725 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
726 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
727
728 /* Every error apart from tobe_disc and pause_frm */
729 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
730 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
731 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
732
733 /* Count errors that are not in MAC stats. Ignore expected
734 * checksum errors during self-test. */
735 if (rx_ev_frm_trunc)
736 ++rx_queue->channel->n_rx_frm_trunc;
737 else if (rx_ev_tobe_disc)
738 ++rx_queue->channel->n_rx_tobe_disc;
739 else if (!efx->loopback_selftest) {
740 if (rx_ev_ip_hdr_chksum_err)
741 ++rx_queue->channel->n_rx_ip_hdr_chksum_err;
742 else if (rx_ev_tcp_udp_chksum_err)
743 ++rx_queue->channel->n_rx_tcp_udp_chksum_err;
744 }
745
746 /* The frame must be discarded if any of these are true. */
747 *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
748 rx_ev_tobe_disc | rx_ev_pause_frm);
749
750 /* TOBE_DISC is expected on unicast mismatches; don't print out an
751 * error message. FRM_TRUNC indicates RXDP dropped the packet due
752 * to a FIFO overflow.
753 */
754#ifdef EFX_ENABLE_DEBUG
755 if (rx_ev_other_err) {
756 EFX_INFO_RL(efx, " RX queue %d unexpected RX event "
757 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
758 rx_queue->queue, EFX_QWORD_VAL(*event),
759 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
760 rx_ev_ip_hdr_chksum_err ?
761 " [IP_HDR_CHKSUM_ERR]" : "",
762 rx_ev_tcp_udp_chksum_err ?
763 " [TCP_UDP_CHKSUM_ERR]" : "",
764 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
765 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
766 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
767 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
768 rx_ev_pause_frm ? " [PAUSE]" : "");
769 }
770#endif
771}
772
773/* Handle receive events that are not in-order. */
774static void
775efx_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
776{
777 struct efx_nic *efx = rx_queue->efx;
778 unsigned expected, dropped;
779
780 expected = rx_queue->removed_count & EFX_RXQ_MASK;
781 dropped = (index - expected) & EFX_RXQ_MASK;
782 EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n",
783 dropped, index, expected);
784
785 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
786 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
787}
788
789/* Handle a packet received event
790 *
791 * The NIC gives a "discard" flag if it's a unicast packet with the
792 * wrong destination address
793 * Also "is multicast" and "matches multicast filter" flags can be used to
794 * discard non-matching multicast packets.
795 */
796static void
797efx_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
798{
799 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
800 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
801 unsigned expected_ptr;
802 bool rx_ev_pkt_ok, discard = false, checksummed;
803 struct efx_rx_queue *rx_queue;
804 struct efx_nic *efx = channel->efx;
805
806 /* Basic packet information */
807 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
808 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
809 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
810 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT));
811 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP) != 1);
812 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
813 channel->channel);
814
815 rx_queue = &efx->rx_queue[channel->channel];
816
817 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
818 expected_ptr = rx_queue->removed_count & EFX_RXQ_MASK;
819 if (unlikely(rx_ev_desc_ptr != expected_ptr))
820 efx_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr);
821
822 if (likely(rx_ev_pkt_ok)) {
823 /* If packet is marked as OK and packet type is TCP/IP or
824 * UDP/IP, then we can rely on the hardware checksum.
825 */
826 checksummed =
827 likely(efx->rx_checksum_enabled) &&
828 (rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP ||
829 rx_ev_hdr_type == FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP);
830 } else {
831 efx_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, &discard);
832 checksummed = false;
833 }
834
835 /* Detect multicast packets that didn't match the filter */
836 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
837 if (rx_ev_mcast_pkt) {
838 unsigned int rx_ev_mcast_hash_match =
839 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
840
841 if (unlikely(!rx_ev_mcast_hash_match)) {
842 ++channel->n_rx_mcast_mismatch;
843 discard = true;
844 }
845 }
846
847 channel->irq_mod_score += 2;
848
849 /* Handle received packet */
850 efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt,
851 checksummed, discard);
852}
853
854/* Global events are basically PHY events */
855static void
856efx_handle_global_event(struct efx_channel *channel, efx_qword_t *event)
857{
858 struct efx_nic *efx = channel->efx;
859 bool handled = false;
860
861 if (EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_G_PHY0_INTR) ||
862 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XG_PHY0_INTR) ||
863 EFX_QWORD_FIELD(*event, FSF_AB_GLB_EV_XFP_PHY0_INTR)) {
864 /* Ignored */
865 handled = true;
866 }
867
868 if ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) &&
869 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_XG_MGT_INTR)) {
870 efx->xmac_poll_required = true;
871 handled = true;
872 }
873
874 if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1 ?
875 EFX_QWORD_FIELD(*event, FSF_AA_GLB_EV_RX_RECOVERY) :
876 EFX_QWORD_FIELD(*event, FSF_BB_GLB_EV_RX_RECOVERY)) {
877 EFX_ERR(efx, "channel %d seen global RX_RESET "
878 "event. Resetting.\n", channel->channel);
879
880 atomic_inc(&efx->rx_reset);
881 efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ?
882 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
883 handled = true;
884 }
885
886 if (!handled)
887 EFX_ERR(efx, "channel %d unknown global event "
888 EFX_QWORD_FMT "\n", channel->channel,
889 EFX_QWORD_VAL(*event));
890}
891
892static void
893efx_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
894{
895 struct efx_nic *efx = channel->efx;
896 unsigned int ev_sub_code;
897 unsigned int ev_sub_data;
898
899 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
900 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
901
902 switch (ev_sub_code) {
903 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
904 EFX_TRACE(efx, "channel %d TXQ %d flushed\n",
905 channel->channel, ev_sub_data);
906 break;
907 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
908 EFX_TRACE(efx, "channel %d RXQ %d flushed\n",
909 channel->channel, ev_sub_data);
910 break;
911 case FSE_AZ_EVQ_INIT_DONE_EV:
912 EFX_LOG(efx, "channel %d EVQ %d initialised\n",
913 channel->channel, ev_sub_data);
914 break;
915 case FSE_AZ_SRM_UPD_DONE_EV:
916 EFX_TRACE(efx, "channel %d SRAM update done\n",
917 channel->channel);
918 break;
919 case FSE_AZ_WAKE_UP_EV:
920 EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n",
921 channel->channel, ev_sub_data);
922 break;
923 case FSE_AZ_TIMER_EV:
924 EFX_TRACE(efx, "channel %d RX queue %d timer expired\n",
925 channel->channel, ev_sub_data);
926 break;
927 case FSE_AA_RX_RECOVER_EV:
928 EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. "
929 "Resetting.\n", channel->channel);
930 atomic_inc(&efx->rx_reset);
931 efx_schedule_reset(efx,
932 EFX_WORKAROUND_6555(efx) ?
933 RESET_TYPE_RX_RECOVERY :
934 RESET_TYPE_DISABLE);
935 break;
936 case FSE_BZ_RX_DSC_ERROR_EV:
937 EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error."
938 " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
939 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
940 break;
941 case FSE_BZ_TX_DSC_ERROR_EV:
942 EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error."
943 " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data);
944 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
945 break;
946 default:
947 EFX_TRACE(efx, "channel %d unknown driver event code %d "
948 "data %04x\n", channel->channel, ev_sub_code,
949 ev_sub_data);
950 break;
951 }
952}
953
954int efx_nic_process_eventq(struct efx_channel *channel, int rx_quota)
955{
956 unsigned int read_ptr;
957 efx_qword_t event, *p_event;
958 int ev_code;
959 int rx_packets = 0;
960
961 read_ptr = channel->eventq_read_ptr;
962
963 do {
964 p_event = efx_event(channel, read_ptr);
965 event = *p_event;
966
967 if (!efx_event_present(&event))
968 /* End of events */
969 break;
970
971 EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n",
972 channel->channel, EFX_QWORD_VAL(event));
973
974 /* Clear this event by marking it all ones */
975 EFX_SET_QWORD(*p_event);
976
977 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
978
979 switch (ev_code) {
980 case FSE_AZ_EV_CODE_RX_EV:
981 efx_handle_rx_event(channel, &event);
982 ++rx_packets;
983 break;
984 case FSE_AZ_EV_CODE_TX_EV:
985 efx_handle_tx_event(channel, &event);
986 break;
987 case FSE_AZ_EV_CODE_DRV_GEN_EV:
988 channel->eventq_magic = EFX_QWORD_FIELD(
989 event, FSF_AZ_DRV_GEN_EV_MAGIC);
990 EFX_LOG(channel->efx, "channel %d received generated "
991 "event "EFX_QWORD_FMT"\n", channel->channel,
992 EFX_QWORD_VAL(event));
993 break;
994 case FSE_AZ_EV_CODE_GLOBAL_EV:
995 efx_handle_global_event(channel, &event);
996 break;
997 case FSE_AZ_EV_CODE_DRIVER_EV:
998 efx_handle_driver_event(channel, &event);
999 break;
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001000 case FSE_CZ_EV_CODE_MCDI_EV:
1001 efx_mcdi_process_event(channel, &event);
1002 break;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001003 default:
1004 EFX_ERR(channel->efx, "channel %d unknown event type %d"
1005 " (data " EFX_QWORD_FMT ")\n", channel->channel,
1006 ev_code, EFX_QWORD_VAL(event));
1007 }
1008
1009 /* Increment read pointer */
1010 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1011
1012 } while (rx_packets < rx_quota);
1013
1014 channel->eventq_read_ptr = read_ptr;
1015 return rx_packets;
1016}
1017
1018
1019/* Allocate buffer table entries for event queue */
1020int efx_nic_probe_eventq(struct efx_channel *channel)
1021{
1022 struct efx_nic *efx = channel->efx;
1023 BUILD_BUG_ON(EFX_EVQ_SIZE < 512 || EFX_EVQ_SIZE > 32768 ||
1024 EFX_EVQ_SIZE & EFX_EVQ_MASK);
1025 return efx_alloc_special_buffer(efx, &channel->eventq,
1026 EFX_EVQ_SIZE * sizeof(efx_qword_t));
1027}
1028
1029void efx_nic_init_eventq(struct efx_channel *channel)
1030{
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001031 efx_oword_t reg;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001032 struct efx_nic *efx = channel->efx;
1033
1034 EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n",
1035 channel->channel, channel->eventq.index,
1036 channel->eventq.index + channel->eventq.entries - 1);
1037
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001038 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1039 EFX_POPULATE_OWORD_3(reg,
1040 FRF_CZ_TIMER_Q_EN, 1,
1041 FRF_CZ_HOST_NOTIFY_MODE, 0,
1042 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1043 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1044 }
1045
Ben Hutchings8e730c12009-11-29 15:14:45 +00001046 /* Pin event queue buffer */
1047 efx_init_special_buffer(efx, &channel->eventq);
1048
1049 /* Fill event queue with all ones (i.e. empty events) */
1050 memset(channel->eventq.addr, 0xff, channel->eventq.len);
1051
1052 /* Push event queue to card */
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001053 EFX_POPULATE_OWORD_3(reg,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001054 FRF_AZ_EVQ_EN, 1,
1055 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1056 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001057 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001058 channel->channel);
1059
1060 efx->type->push_irq_moderation(channel);
1061}
1062
1063void efx_nic_fini_eventq(struct efx_channel *channel)
1064{
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001065 efx_oword_t reg;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001066 struct efx_nic *efx = channel->efx;
1067
1068 /* Remove event queue from card */
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001069 EFX_ZERO_OWORD(reg);
1070 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001071 channel->channel);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001072 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1073 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
Ben Hutchings8e730c12009-11-29 15:14:45 +00001074
1075 /* Unpin event queue */
1076 efx_fini_special_buffer(efx, &channel->eventq);
1077}
1078
1079/* Free buffers backing event queue */
1080void efx_nic_remove_eventq(struct efx_channel *channel)
1081{
1082 efx_free_special_buffer(channel->efx, &channel->eventq);
1083}
1084
1085
1086/* Generates a test event on the event queue. A subsequent call to
1087 * process_eventq() should pick up the event and place the value of
1088 * "magic" into channel->eventq_magic;
1089 */
1090void efx_nic_generate_test_event(struct efx_channel *channel, unsigned int magic)
1091{
1092 efx_qword_t test_event;
1093
1094 EFX_POPULATE_QWORD_2(test_event, FSF_AZ_EV_CODE,
1095 FSE_AZ_EV_CODE_DRV_GEN_EV,
1096 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
1097 efx_generate_event(channel, &test_event);
1098}
1099
1100/**************************************************************************
1101 *
1102 * Flush handling
1103 *
1104 **************************************************************************/
1105
1106
1107static void efx_poll_flush_events(struct efx_nic *efx)
1108{
1109 struct efx_channel *channel = &efx->channel[0];
1110 struct efx_tx_queue *tx_queue;
1111 struct efx_rx_queue *rx_queue;
1112 unsigned int read_ptr = channel->eventq_read_ptr;
1113 unsigned int end_ptr = (read_ptr - 1) & EFX_EVQ_MASK;
1114
1115 do {
1116 efx_qword_t *event = efx_event(channel, read_ptr);
1117 int ev_code, ev_sub_code, ev_queue;
1118 bool ev_failed;
1119
1120 if (!efx_event_present(event))
1121 break;
1122
1123 ev_code = EFX_QWORD_FIELD(*event, FSF_AZ_EV_CODE);
1124 ev_sub_code = EFX_QWORD_FIELD(*event,
1125 FSF_AZ_DRIVER_EV_SUBCODE);
1126 if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1127 ev_sub_code == FSE_AZ_TX_DESCQ_FLS_DONE_EV) {
1128 ev_queue = EFX_QWORD_FIELD(*event,
1129 FSF_AZ_DRIVER_EV_SUBDATA);
1130 if (ev_queue < EFX_TX_QUEUE_COUNT) {
1131 tx_queue = efx->tx_queue + ev_queue;
1132 tx_queue->flushed = FLUSH_DONE;
1133 }
1134 } else if (ev_code == FSE_AZ_EV_CODE_DRIVER_EV &&
1135 ev_sub_code == FSE_AZ_RX_DESCQ_FLS_DONE_EV) {
1136 ev_queue = EFX_QWORD_FIELD(
1137 *event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1138 ev_failed = EFX_QWORD_FIELD(
1139 *event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1140 if (ev_queue < efx->n_rx_queues) {
1141 rx_queue = efx->rx_queue + ev_queue;
1142 rx_queue->flushed =
1143 ev_failed ? FLUSH_FAILED : FLUSH_DONE;
1144 }
1145 }
1146
1147 /* We're about to destroy the queue anyway, so
1148 * it's ok to throw away every non-flush event */
1149 EFX_SET_QWORD(*event);
1150
1151 read_ptr = (read_ptr + 1) & EFX_EVQ_MASK;
1152 } while (read_ptr != end_ptr);
1153
1154 channel->eventq_read_ptr = read_ptr;
1155}
1156
1157/* Handle tx and rx flushes at the same time, since they run in
1158 * parallel in the hardware and there's no reason for us to
1159 * serialise them */
1160int efx_nic_flush_queues(struct efx_nic *efx)
1161{
1162 struct efx_rx_queue *rx_queue;
1163 struct efx_tx_queue *tx_queue;
1164 int i, tx_pending, rx_pending;
1165
1166 /* If necessary prepare the hardware for flushing */
1167 efx->type->prepare_flush(efx);
1168
1169 /* Flush all tx queues in parallel */
1170 efx_for_each_tx_queue(tx_queue, efx)
1171 efx_flush_tx_queue(tx_queue);
1172
1173 /* The hardware supports four concurrent rx flushes, each of which may
1174 * need to be retried if there is an outstanding descriptor fetch */
1175 for (i = 0; i < EFX_FLUSH_POLL_COUNT; ++i) {
1176 rx_pending = tx_pending = 0;
1177 efx_for_each_rx_queue(rx_queue, efx) {
1178 if (rx_queue->flushed == FLUSH_PENDING)
1179 ++rx_pending;
1180 }
1181 efx_for_each_rx_queue(rx_queue, efx) {
1182 if (rx_pending == EFX_RX_FLUSH_COUNT)
1183 break;
1184 if (rx_queue->flushed == FLUSH_FAILED ||
1185 rx_queue->flushed == FLUSH_NONE) {
1186 efx_flush_rx_queue(rx_queue);
1187 ++rx_pending;
1188 }
1189 }
1190 efx_for_each_tx_queue(tx_queue, efx) {
1191 if (tx_queue->flushed != FLUSH_DONE)
1192 ++tx_pending;
1193 }
1194
1195 if (rx_pending == 0 && tx_pending == 0)
1196 return 0;
1197
1198 msleep(EFX_FLUSH_INTERVAL);
1199 efx_poll_flush_events(efx);
1200 }
1201
1202 /* Mark the queues as all flushed. We're going to return failure
1203 * leading to a reset, or fake up success anyway */
1204 efx_for_each_tx_queue(tx_queue, efx) {
1205 if (tx_queue->flushed != FLUSH_DONE)
1206 EFX_ERR(efx, "tx queue %d flush command timed out\n",
1207 tx_queue->queue);
1208 tx_queue->flushed = FLUSH_DONE;
1209 }
1210 efx_for_each_rx_queue(rx_queue, efx) {
1211 if (rx_queue->flushed != FLUSH_DONE)
1212 EFX_ERR(efx, "rx queue %d flush command timed out\n",
1213 rx_queue->queue);
1214 rx_queue->flushed = FLUSH_DONE;
1215 }
1216
1217 if (EFX_WORKAROUND_7803(efx))
1218 return 0;
1219
1220 return -ETIMEDOUT;
1221}
1222
1223/**************************************************************************
1224 *
1225 * Hardware interrupts
1226 * The hardware interrupt handler does very little work; all the event
1227 * queue processing is carried out by per-channel tasklets.
1228 *
1229 **************************************************************************/
1230
1231/* Enable/disable/generate interrupts */
1232static inline void efx_nic_interrupts(struct efx_nic *efx,
1233 bool enabled, bool force)
1234{
1235 efx_oword_t int_en_reg_ker;
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001236 unsigned int level = 0;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001237
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001238 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1239 /* Set the level always even if we're generating a test
1240 * interrupt, because our legacy interrupt handler is safe */
1241 level = 0x1f;
1242
1243 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1244 FRF_AZ_KER_INT_LEVE_SEL, level,
Ben Hutchings8e730c12009-11-29 15:14:45 +00001245 FRF_AZ_KER_INT_KER, force,
1246 FRF_AZ_DRV_INT_EN_KER, enabled);
1247 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1248}
1249
1250void efx_nic_enable_interrupts(struct efx_nic *efx)
1251{
1252 struct efx_channel *channel;
1253
1254 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1255 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1256
1257 /* Enable interrupts */
1258 efx_nic_interrupts(efx, true, false);
1259
1260 /* Force processing of all the channels to get the EVQ RPTRs up to
1261 date */
1262 efx_for_each_channel(channel, efx)
1263 efx_schedule_channel(channel);
1264}
1265
1266void efx_nic_disable_interrupts(struct efx_nic *efx)
1267{
1268 /* Disable interrupts */
1269 efx_nic_interrupts(efx, false, false);
1270}
1271
1272/* Generate a test interrupt
1273 * Interrupt must already have been enabled, otherwise nasty things
1274 * may happen.
1275 */
1276void efx_nic_generate_interrupt(struct efx_nic *efx)
1277{
1278 efx_nic_interrupts(efx, true, true);
1279}
1280
1281/* Process a fatal interrupt
1282 * Disable bus mastering ASAP and schedule a reset
1283 */
1284irqreturn_t efx_nic_fatal_interrupt(struct efx_nic *efx)
1285{
1286 struct falcon_nic_data *nic_data = efx->nic_data;
1287 efx_oword_t *int_ker = efx->irq_status.addr;
1288 efx_oword_t fatal_intr;
1289 int error, mem_perr;
1290
1291 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1292 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1293
1294 EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status "
1295 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1296 EFX_OWORD_VAL(fatal_intr),
1297 error ? "disabling bus mastering" : "no recognised error");
1298 if (error == 0)
1299 goto out;
1300
1301 /* If this is a memory parity error dump which blocks are offending */
1302 mem_perr = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER);
1303 if (mem_perr) {
1304 efx_oword_t reg;
1305 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1306 EFX_ERR(efx, "SYSTEM ERROR: memory parity error "
1307 EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg));
1308 }
1309
1310 /* Disable both devices */
1311 pci_clear_master(efx->pci_dev);
1312 if (efx_nic_is_dual_func(efx))
1313 pci_clear_master(nic_data->pci_dev2);
1314 efx_nic_disable_interrupts(efx);
1315
1316 /* Count errors and reset or disable the NIC accordingly */
1317 if (efx->int_error_count == 0 ||
1318 time_after(jiffies, efx->int_error_expire)) {
1319 efx->int_error_count = 0;
1320 efx->int_error_expire =
1321 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1322 }
1323 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1324 EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n");
1325 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1326 } else {
1327 EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen."
1328 "NIC will be disabled\n");
1329 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1330 }
1331out:
1332 return IRQ_HANDLED;
1333}
1334
1335/* Handle a legacy interrupt
1336 * Acknowledges the interrupt and schedule event queue processing.
1337 */
1338static irqreturn_t efx_legacy_interrupt(int irq, void *dev_id)
1339{
1340 struct efx_nic *efx = dev_id;
1341 efx_oword_t *int_ker = efx->irq_status.addr;
1342 irqreturn_t result = IRQ_NONE;
1343 struct efx_channel *channel;
1344 efx_dword_t reg;
1345 u32 queues;
1346 int syserr;
1347
1348 /* Read the ISR which also ACKs the interrupts */
1349 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1350 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1351
1352 /* Check to see if we have a serious error condition */
1353 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1354 if (unlikely(syserr))
1355 return efx_nic_fatal_interrupt(efx);
1356
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001357 if (queues != 0) {
1358 if (EFX_WORKAROUND_15783(efx))
1359 efx->irq_zero_count = 0;
1360
1361 /* Schedule processing of any interrupting queues */
1362 efx_for_each_channel(channel, efx) {
1363 if (queues & 1)
Ben Hutchings8e730c12009-11-29 15:14:45 +00001364 efx_schedule_channel(channel);
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001365 queues >>= 1;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001366 }
Ben Hutchings8880f4e2009-11-29 15:15:41 +00001367 result = IRQ_HANDLED;
1368
1369 } else if (EFX_WORKAROUND_15783(efx) &&
1370 efx->irq_zero_count++ == 0) {
1371 efx_qword_t *event;
1372
1373 /* Ensure we rearm all event queues */
1374 efx_for_each_channel(channel, efx) {
1375 event = efx_event(channel, channel->eventq_read_ptr);
1376 if (efx_event_present(event))
1377 efx_schedule_channel(channel);
1378 }
1379
1380 result = IRQ_HANDLED;
Ben Hutchings8e730c12009-11-29 15:14:45 +00001381 }
1382
1383 if (result == IRQ_HANDLED) {
1384 efx->last_irq_cpu = raw_smp_processor_id();
1385 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1386 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1387 }
1388
1389 return result;
1390}
1391
1392/* Handle an MSI interrupt
1393 *
1394 * Handle an MSI hardware interrupt. This routine schedules event
1395 * queue processing. No interrupt acknowledgement cycle is necessary.
1396 * Also, we never need to check that the interrupt is for us, since
1397 * MSI interrupts cannot be shared.
1398 */
1399static irqreturn_t efx_msi_interrupt(int irq, void *dev_id)
1400{
1401 struct efx_channel *channel = dev_id;
1402 struct efx_nic *efx = channel->efx;
1403 efx_oword_t *int_ker = efx->irq_status.addr;
1404 int syserr;
1405
1406 efx->last_irq_cpu = raw_smp_processor_id();
1407 EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1408 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1409
1410 /* Check to see if we have a serious error condition */
1411 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1412 if (unlikely(syserr))
1413 return efx_nic_fatal_interrupt(efx);
1414
1415 /* Schedule processing of the channel */
1416 efx_schedule_channel(channel);
1417
1418 return IRQ_HANDLED;
1419}
1420
1421
1422/* Setup RSS indirection table.
1423 * This maps from the hash value of the packet to RXQ
1424 */
1425static void efx_setup_rss_indir_table(struct efx_nic *efx)
1426{
1427 int i = 0;
1428 unsigned long offset;
1429 efx_dword_t dword;
1430
1431 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1432 return;
1433
1434 for (offset = FR_BZ_RX_INDIRECTION_TBL;
1435 offset < FR_BZ_RX_INDIRECTION_TBL + 0x800;
1436 offset += 0x10) {
1437 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1438 i % efx->n_rx_queues);
1439 efx_writed(efx, &dword, offset);
1440 i++;
1441 }
1442}
1443
1444/* Hook interrupt handler(s)
1445 * Try MSI and then legacy interrupts.
1446 */
1447int efx_nic_init_interrupt(struct efx_nic *efx)
1448{
1449 struct efx_channel *channel;
1450 int rc;
1451
1452 if (!EFX_INT_MODE_USE_MSI(efx)) {
1453 irq_handler_t handler;
1454 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1455 handler = efx_legacy_interrupt;
1456 else
1457 handler = falcon_legacy_interrupt_a1;
1458
1459 rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED,
1460 efx->name, efx);
1461 if (rc) {
1462 EFX_ERR(efx, "failed to hook legacy IRQ %d\n",
1463 efx->pci_dev->irq);
1464 goto fail1;
1465 }
1466 return 0;
1467 }
1468
1469 /* Hook MSI or MSI-X interrupt */
1470 efx_for_each_channel(channel, efx) {
1471 rc = request_irq(channel->irq, efx_msi_interrupt,
1472 IRQF_PROBE_SHARED, /* Not shared */
1473 channel->name, channel);
1474 if (rc) {
1475 EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq);
1476 goto fail2;
1477 }
1478 }
1479
1480 return 0;
1481
1482 fail2:
1483 efx_for_each_channel(channel, efx)
1484 free_irq(channel->irq, channel);
1485 fail1:
1486 return rc;
1487}
1488
1489void efx_nic_fini_interrupt(struct efx_nic *efx)
1490{
1491 struct efx_channel *channel;
1492 efx_oword_t reg;
1493
1494 /* Disable MSI/MSI-X interrupts */
1495 efx_for_each_channel(channel, efx) {
1496 if (channel->irq)
1497 free_irq(channel->irq, channel);
1498 }
1499
1500 /* ACK legacy interrupt */
1501 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1502 efx_reado(efx, &reg, FR_BZ_INT_ISR0);
1503 else
1504 falcon_irq_ack_a1(efx);
1505
1506 /* Disable legacy interrupt */
1507 if (efx->legacy_irq)
1508 free_irq(efx->legacy_irq, efx);
1509}
1510
1511u32 efx_nic_fpga_ver(struct efx_nic *efx)
1512{
1513 efx_oword_t altera_build;
1514 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1515 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1516}
1517
1518void efx_nic_init_common(struct efx_nic *efx)
1519{
1520 efx_oword_t temp;
1521
1522 /* Set positions of descriptor caches in SRAM. */
1523 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR,
1524 efx->type->tx_dc_base / 8);
1525 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1526 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR,
1527 efx->type->rx_dc_base / 8);
1528 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1529
1530 /* Set TX descriptor cache size. */
1531 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1532 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1533 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1534
1535 /* Set RX descriptor cache size. Set low watermark to size-8, as
1536 * this allows most efficient prefetching.
1537 */
1538 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1539 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1540 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1541 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1542 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1543
1544 /* Program INT_KER address */
1545 EFX_POPULATE_OWORD_2(temp,
1546 FRF_AZ_NORM_INT_VEC_DIS_KER,
1547 EFX_INT_MODE_USE_MSI(efx),
1548 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1549 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1550
1551 /* Enable all the genuinely fatal interrupts. (They are still
1552 * masked by the overall interrupt mask, controlled by
1553 * falcon_interrupts()).
1554 *
1555 * Note: All other fatal interrupts are enabled
1556 */
1557 EFX_POPULATE_OWORD_3(temp,
1558 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1559 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1560 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1561 EFX_INVERT_OWORD(temp);
1562 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1563
1564 efx_setup_rss_indir_table(efx);
1565
1566 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1567 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1568 */
1569 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1570 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1571 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1572 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1573 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 0);
1574 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1575 /* Enable SW_EV to inherit in char driver - assume harmless here */
1576 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1577 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1578 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1579 /* Squash TX of packets of 16 bytes or less */
1580 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1581 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1582 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1583}