| /* |
| Copyright (C) 2010 Willow Garage <http://www.willowgarage.com> |
| Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com> |
| Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com> |
| <http://rt2x00.serialmonkey.com> |
| |
| This program is free software; you can redistribute it and/or modify |
| it under the terms of the GNU General Public License as published by |
| the Free Software Foundation; either version 2 of the License, or |
| (at your option) any later version. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU General Public License for more details. |
| |
| You should have received a copy of the GNU General Public License |
| along with this program; if not, write to the |
| Free Software Foundation, Inc., |
| 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. |
| */ |
| |
| /* |
| Module: rt2x00lib |
| Abstract: rt2x00 queue specific routines. |
| */ |
| |
| #include <linux/slab.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/dma-mapping.h> |
| |
| #include "rt2x00.h" |
| #include "rt2x00lib.h" |
| |
| struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp) |
| { |
| struct data_queue *queue = entry->queue; |
| struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; |
| struct sk_buff *skb; |
| struct skb_frame_desc *skbdesc; |
| unsigned int frame_size; |
| unsigned int head_size = 0; |
| unsigned int tail_size = 0; |
| |
| /* |
| * The frame size includes descriptor size, because the |
| * hardware directly receive the frame into the skbuffer. |
| */ |
| frame_size = queue->data_size + queue->desc_size + queue->winfo_size; |
| |
| /* |
| * The payload should be aligned to a 4-byte boundary, |
| * this means we need at least 3 bytes for moving the frame |
| * into the correct offset. |
| */ |
| head_size = 4; |
| |
| /* |
| * For IV/EIV/ICV assembly we must make sure there is |
| * at least 8 bytes bytes available in headroom for IV/EIV |
| * and 8 bytes for ICV data as tailroon. |
| */ |
| if (test_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags)) { |
| head_size += 8; |
| tail_size += 8; |
| } |
| |
| /* |
| * Allocate skbuffer. |
| */ |
| skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp); |
| if (!skb) |
| return NULL; |
| |
| /* |
| * Make sure we not have a frame with the requested bytes |
| * available in the head and tail. |
| */ |
| skb_reserve(skb, head_size); |
| skb_put(skb, frame_size); |
| |
| /* |
| * Populate skbdesc. |
| */ |
| skbdesc = get_skb_frame_desc(skb); |
| memset(skbdesc, 0, sizeof(*skbdesc)); |
| skbdesc->entry = entry; |
| |
| if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags)) { |
| dma_addr_t skb_dma; |
| |
| skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len, |
| DMA_FROM_DEVICE); |
| if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) { |
| dev_kfree_skb_any(skb); |
| return NULL; |
| } |
| |
| skbdesc->skb_dma = skb_dma; |
| skbdesc->flags |= SKBDESC_DMA_MAPPED_RX; |
| } |
| |
| return skb; |
| } |
| |
| int rt2x00queue_map_txskb(struct queue_entry *entry) |
| { |
| struct device *dev = entry->queue->rt2x00dev->dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| |
| skbdesc->skb_dma = |
| dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE); |
| |
| if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma))) |
| return -ENOMEM; |
| |
| skbdesc->flags |= SKBDESC_DMA_MAPPED_TX; |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb); |
| |
| void rt2x00queue_unmap_skb(struct queue_entry *entry) |
| { |
| struct device *dev = entry->queue->rt2x00dev->dev; |
| struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); |
| |
| if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) { |
| dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, |
| DMA_FROM_DEVICE); |
| skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX; |
| } else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) { |
| dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len, |
| DMA_TO_DEVICE); |
| skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb); |
| |
| void rt2x00queue_free_skb(struct queue_entry *entry) |
| { |
| if (!entry->skb) |
| return; |
| |
| rt2x00queue_unmap_skb(entry); |
| dev_kfree_skb_any(entry->skb); |
| entry->skb = NULL; |
| } |
| |
| void rt2x00queue_align_frame(struct sk_buff *skb) |
| { |
| unsigned int frame_length = skb->len; |
| unsigned int align = ALIGN_SIZE(skb, 0); |
| |
| if (!align) |
| return; |
| |
| skb_push(skb, align); |
| memmove(skb->data, skb->data + align, frame_length); |
| skb_trim(skb, frame_length); |
| } |
| |
| void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int header_length) |
| { |
| unsigned int payload_length = skb->len - header_length; |
| unsigned int header_align = ALIGN_SIZE(skb, 0); |
| unsigned int payload_align = ALIGN_SIZE(skb, header_length); |
| unsigned int l2pad = payload_length ? L2PAD_SIZE(header_length) : 0; |
| |
| /* |
| * Adjust the header alignment if the payload needs to be moved more |
| * than the header. |
| */ |
| if (payload_align > header_align) |
| header_align += 4; |
| |
| /* There is nothing to do if no alignment is needed */ |
| if (!header_align) |
| return; |
| |
| /* Reserve the amount of space needed in front of the frame */ |
| skb_push(skb, header_align); |
| |
| /* |
| * Move the header. |
| */ |
| memmove(skb->data, skb->data + header_align, header_length); |
| |
| /* Move the payload, if present and if required */ |
| if (payload_length && payload_align) |
| memmove(skb->data + header_length + l2pad, |
| skb->data + header_length + l2pad + payload_align, |
| payload_length); |
| |
| /* Trim the skb to the correct size */ |
| skb_trim(skb, header_length + l2pad + payload_length); |
| } |
| |
| void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int header_length) |
| { |
| /* |
| * L2 padding is only present if the skb contains more than just the |
| * IEEE 802.11 header. |
| */ |
| unsigned int l2pad = (skb->len > header_length) ? |
| L2PAD_SIZE(header_length) : 0; |
| |
| if (!l2pad) |
| return; |
| |
| memmove(skb->data + l2pad, skb->data, header_length); |
| skb_pull(skb, l2pad); |
| } |
| |
| static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct txentry_desc *txdesc) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif); |
| u16 seqno; |
| |
| if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) |
| return; |
| |
| __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); |
| |
| if (!test_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags)) { |
| /* |
| * rt2800 has a H/W (or F/W) bug, device incorrectly increase |
| * seqno on retransmited data (non-QOS) frames. To workaround |
| * the problem let's generate seqno in software if QOS is |
| * disabled. |
| */ |
| if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags)) |
| __clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags); |
| else |
| /* H/W will generate sequence number */ |
| return; |
| } |
| |
| /* |
| * The hardware is not able to insert a sequence number. Assign a |
| * software generated one here. |
| * |
| * This is wrong because beacons are not getting sequence |
| * numbers assigned properly. |
| * |
| * A secondary problem exists for drivers that cannot toggle |
| * sequence counting per-frame, since those will override the |
| * sequence counter given by mac80211. |
| */ |
| if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) |
| seqno = atomic_add_return(0x10, &intf->seqno); |
| else |
| seqno = atomic_read(&intf->seqno); |
| |
| hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); |
| hdr->seq_ctrl |= cpu_to_le16(seqno); |
| } |
| |
| static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct txentry_desc *txdesc, |
| const struct rt2x00_rate *hwrate) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; |
| unsigned int data_length; |
| unsigned int duration; |
| unsigned int residual; |
| |
| /* |
| * Determine with what IFS priority this frame should be send. |
| * Set ifs to IFS_SIFS when the this is not the first fragment, |
| * or this fragment came after RTS/CTS. |
| */ |
| if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)) |
| txdesc->u.plcp.ifs = IFS_BACKOFF; |
| else |
| txdesc->u.plcp.ifs = IFS_SIFS; |
| |
| /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */ |
| data_length = skb->len + 4; |
| data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb); |
| |
| /* |
| * PLCP setup |
| * Length calculation depends on OFDM/CCK rate. |
| */ |
| txdesc->u.plcp.signal = hwrate->plcp; |
| txdesc->u.plcp.service = 0x04; |
| |
| if (hwrate->flags & DEV_RATE_OFDM) { |
| txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f; |
| txdesc->u.plcp.length_low = data_length & 0x3f; |
| } else { |
| /* |
| * Convert length to microseconds. |
| */ |
| residual = GET_DURATION_RES(data_length, hwrate->bitrate); |
| duration = GET_DURATION(data_length, hwrate->bitrate); |
| |
| if (residual != 0) { |
| duration++; |
| |
| /* |
| * Check if we need to set the Length Extension |
| */ |
| if (hwrate->bitrate == 110 && residual <= 30) |
| txdesc->u.plcp.service |= 0x80; |
| } |
| |
| txdesc->u.plcp.length_high = (duration >> 8) & 0xff; |
| txdesc->u.plcp.length_low = duration & 0xff; |
| |
| /* |
| * When preamble is enabled we should set the |
| * preamble bit for the signal. |
| */ |
| if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) |
| txdesc->u.plcp.signal |= 0x08; |
| } |
| } |
| |
| static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct txentry_desc *txdesc, |
| struct ieee80211_sta *sta, |
| const struct rt2x00_rate *hwrate) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct rt2x00_sta *sta_priv = NULL; |
| |
| if (sta) { |
| txdesc->u.ht.mpdu_density = |
| sta->ht_cap.ampdu_density; |
| |
| sta_priv = sta_to_rt2x00_sta(sta); |
| txdesc->u.ht.wcid = sta_priv->wcid; |
| } |
| |
| /* |
| * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the |
| * mcs rate to be used |
| */ |
| if (txrate->flags & IEEE80211_TX_RC_MCS) { |
| txdesc->u.ht.mcs = txrate->idx; |
| |
| /* |
| * MIMO PS should be set to 1 for STA's using dynamic SM PS |
| * when using more then one tx stream (>MCS7). |
| */ |
| if (sta && txdesc->u.ht.mcs > 7 && |
| sta->smps_mode == IEEE80211_SMPS_DYNAMIC) |
| __set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags); |
| } else { |
| txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs); |
| if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) |
| txdesc->u.ht.mcs |= 0x08; |
| } |
| |
| if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) { |
| if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) |
| txdesc->u.ht.txop = TXOP_SIFS; |
| else |
| txdesc->u.ht.txop = TXOP_BACKOFF; |
| |
| /* Left zero on all other settings. */ |
| return; |
| } |
| |
| txdesc->u.ht.ba_size = 7; /* FIXME: What value is needed? */ |
| |
| /* |
| * Only one STBC stream is supported for now. |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_STBC) |
| txdesc->u.ht.stbc = 1; |
| |
| /* |
| * This frame is eligible for an AMPDU, however, don't aggregate |
| * frames that are intended to probe a specific tx rate. |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_AMPDU && |
| !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE)) |
| __set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags); |
| |
| /* |
| * Set 40Mhz mode if necessary (for legacy rates this will |
| * duplicate the frame to both channels). |
| */ |
| if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH || |
| txrate->flags & IEEE80211_TX_RC_DUP_DATA) |
| __set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags); |
| if (txrate->flags & IEEE80211_TX_RC_SHORT_GI) |
| __set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags); |
| |
| /* |
| * Determine IFS values |
| * - Use TXOP_BACKOFF for management frames except beacons |
| * - Use TXOP_SIFS for fragment bursts |
| * - Use TXOP_HTTXOP for everything else |
| * |
| * Note: rt2800 devices won't use CTS protection (if used) |
| * for frames not transmitted with TXOP_HTTXOP |
| */ |
| if (ieee80211_is_mgmt(hdr->frame_control) && |
| !ieee80211_is_beacon(hdr->frame_control)) |
| txdesc->u.ht.txop = TXOP_BACKOFF; |
| else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)) |
| txdesc->u.ht.txop = TXOP_SIFS; |
| else |
| txdesc->u.ht.txop = TXOP_HTTXOP; |
| } |
| |
| static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev, |
| struct sk_buff *skb, |
| struct txentry_desc *txdesc, |
| struct ieee80211_sta *sta) |
| { |
| struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); |
| struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; |
| struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0]; |
| struct ieee80211_rate *rate; |
| const struct rt2x00_rate *hwrate = NULL; |
| |
| memset(txdesc, 0, sizeof(*txdesc)); |
| |
| /* |
| * Header and frame information. |
| */ |
| txdesc->length = skb->len; |
| txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb); |
| |
| /* |
| * Check whether this frame is to be acked. |
| */ |
| if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) |
| __set_bit(ENTRY_TXD_ACK, &txdesc->flags); |
| |
| /* |
| * Check if this is a RTS/CTS frame |
| */ |
| if (ieee80211_is_rts(hdr->frame_control) || |
| ieee80211_is_cts(hdr->frame_control)) { |
| __set_bit(ENTRY_TXD_BURST, &txdesc->flags); |
| if (ieee80211_is_rts(hdr->frame_control)) |
| __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags); |
| else |
| __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags); |
| if (tx_info->control.rts_cts_rate_idx >= 0) |
| rate = |
| ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info); |
| } |
| |
| /* |
| * Determine retry information. |
| */ |
| txdesc->retry_limit = tx_info->control.rates[0].count - 1; |
| if (txdesc->retry_limit >= rt2x00dev->long_retry) |
| __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags); |
| |
| /* |
| * Check if more fragments are pending |
| */ |
| if (ieee80211_has_morefrags(hdr->frame_control)) { |
| __set_bit(ENTRY_TXD_BURST, &txdesc->flags); |
| __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags); |
| } |
| |
| /* |
| * Check if more frames (!= fragments) are pending |
| */ |
| if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES) |
| __set_bit(ENTRY_TXD_BURST, &txdesc->flags); |
| |
| /* |
| * Beacons and probe responses require the tsf timestamp |
| * to be inserted into the frame. |
| */ |
| if (ieee80211_is_beacon(hdr->frame_control) || |
| ieee80211_is_probe_resp(hdr->frame_control)) |
| __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags); |
| |
| if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) && |
| !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) |
| __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags); |
| |
| /* |
| * Determine rate modulation. |
| */ |
| if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD) |
| txdesc->rate_mode = RATE_MODE_HT_GREENFIELD; |
| else if (txrate->flags & IEEE80211_TX_RC_MCS) |
| txdesc->rate_mode = RATE_MODE_HT_MIX; |
| else { |
| rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info); |
| hwrate = rt2x00_get_rate(rate->hw_value); |
| if (hwrate->flags & DEV_RATE_OFDM) |
| txdesc->rate_mode = RATE_MODE_OFDM; |
| else |
| txdesc->rate_mode = RATE_MODE_CCK; |
| } |
| |
| /* |
| * Apply TX descriptor handling by components |
| */ |
| rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc); |
| rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc); |
| |
| if (test_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags)) |
| rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc, |
| sta, hwrate); |
| else |
| rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc, |
| hwrate); |
| } |
| |
| static int rt2x00queue_write_tx_data(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| |
| /* |
| * This should not happen, we already checked the entry |
| * was ours. When the hardware disagrees there has been |
| * a queue corruption! |
| */ |
| if (unlikely(rt2x00dev->ops->lib->get_entry_state && |
| rt2x00dev->ops->lib->get_entry_state(entry))) { |
| rt2x00_err(rt2x00dev, |
| "Corrupt queue %d, accessing entry which is not ours\n" |
| "Please file bug report to %s\n", |
| entry->queue->qid, DRV_PROJECT); |
| return -EINVAL; |
| } |
| |
| /* |
| * Add the requested extra tx headroom in front of the skb. |
| */ |
| skb_push(entry->skb, rt2x00dev->extra_tx_headroom); |
| memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom); |
| |
| /* |
| * Call the driver's write_tx_data function, if it exists. |
| */ |
| if (rt2x00dev->ops->lib->write_tx_data) |
| rt2x00dev->ops->lib->write_tx_data(entry, txdesc); |
| |
| /* |
| * Map the skb to DMA. |
| */ |
| if (test_bit(REQUIRE_DMA, &rt2x00dev->cap_flags) && |
| rt2x00queue_map_txskb(entry)) |
| return -ENOMEM; |
| |
| return 0; |
| } |
| |
| static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry, |
| struct txentry_desc *txdesc) |
| { |
| struct data_queue *queue = entry->queue; |
| |
| queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc); |
| |
| /* |
| * All processing on the frame has been completed, this means |
| * it is now ready to be dumped to userspace through debugfs. |
| */ |
| rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb); |
| } |
| |
| static void rt2x00queue_kick_tx_queue(struct data_queue *queue, |
| struct txentry_desc *txdesc) |
| { |
| /* |
| * Check if we need to kick the queue, there are however a few rules |
| * 1) Don't kick unless this is the last in frame in a burst. |
| * When the burst flag is set, this frame is always followed |
| * by another frame which in some way are related to eachother. |
| * This is true for fragments, RTS or CTS-to-self frames. |
| * 2) Rule 1 can be broken when the available entries |
| * in the queue are less then a certain threshold. |
| */ |
| if (rt2x00queue_threshold(queue) || |
| !test_bit(ENTRY_TXD_BURST, &txdesc->flags)) |
| queue->rt2x00dev->ops->lib->kick_queue(queue); |
| } |
| |
| static void rt2x00queue_bar_check(struct queue_entry *entry) |
| { |
| struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; |
| struct ieee80211_bar *bar = (void *) (entry->skb->data + |
| rt2x00dev->extra_tx_headroom); |
| struct rt2x00_bar_list_entry *bar_entry; |
| |
| if (likely(!ieee80211_is_back_req(bar->frame_control))) |
| return; |
| |
| bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC); |
| |
| /* |
| * If the alloc fails we still send the BAR out but just don't track |
| * it in our bar list. And as a result we will report it to mac80211 |
| * back as failed. |
| */ |
| if (!bar_entry) |
| return; |
| |
| bar_entry->entry = entry; |
| bar_entry->block_acked = 0; |
| |
| /* |
| * Copy the relevant parts of the 802.11 BAR into out check list |
| * such that we can use RCU for less-overhead in the RX path since |
| * sending BARs and processing the according BlockAck should be |
| * the exception. |
| */ |
| memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra)); |
| memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta)); |
| bar_entry->control = bar->control; |
| bar_entry->start_seq_num = bar->start_seq_num; |
| |
| /* |
| * Insert BAR into our BAR check list. |
| */ |
| spin_lock_bh(&rt2x00dev->bar_list_lock); |
| list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list); |
| spin_unlock_bh(&rt2x00dev->bar_list_lock); |
| } |
| |
| int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb, |
| bool local) |
| { |
| struct ieee80211_tx_info *tx_info; |
| struct queue_entry *entry; |
| struct txentry_desc txdesc; |
| struct skb_frame_desc *skbdesc; |
| u8 rate_idx, rate_flags; |
| int ret = 0; |
| |
| /* |
| * Copy all TX descriptor information into txdesc, |
| * after that we are free to use the skb->cb array |
| * for our information. |
| */ |
| rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, NULL); |
| |
| /* |
| * All information is retrieved from the skb->cb array, |
| * now we should claim ownership of the driver part of that |
| * array, preserving the bitrate index and flags. |
| */ |
| tx_info = IEEE80211_SKB_CB(skb); |
| rate_idx = tx_info->control.rates[0].idx; |
| rate_flags = tx_info->control.rates[0].flags; |
| skbdesc = get_skb_frame_desc(skb); |
| memset(skbdesc, 0, sizeof(*skbdesc)); |
| skbdesc->tx_rate_idx = rate_idx; |
| skbdesc->tx_rate_flags = rate_flags; |
| |
| if (local) |
| skbdesc->flags |= SKBDESC_NOT_MAC80211; |
| |
| /* |
| * When hardware encryption is supported, and this frame |
| * is to be encrypted, we should strip the IV/EIV data from |
| * the frame so we can provide it to the driver separately. |
| */ |
| if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) && |
| !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) { |
| if (test_bit(REQUIRE_COPY_IV, &queue->rt2x00dev->cap_flags)) |
| rt2x00crypto_tx_copy_iv(skb, &txdesc); |
| else |
| rt2x00crypto_tx_remove_iv(skb, &txdesc); |
| } |
| |
| /* |
| * When DMA allocation is required we should guarantee to the |
| * driver that the DMA is aligned to a 4-byte boundary. |
| * However some drivers require L2 padding to pad the payload |
| * rather then the header. This could be a requirement for |
| * PCI and USB devices, while header alignment only is valid |
| * for PCI devices. |
| */ |
| if (test_bit(REQUIRE_L2PAD, &queue->rt2x00dev->cap_flags)) |
| rt2x00queue_insert_l2pad(skb, txdesc.header_length); |
| else if (test_bit(REQUIRE_DMA, &queue->rt2x00dev->cap_flags)) |
| rt2x00queue_align_frame(skb); |
| |
| /* |
| * That function must be called with bh disabled. |
| */ |
| spin_lock(&queue->tx_lock); |
| |
| if (unlikely(rt2x00queue_full(queue))) { |
| rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n", |
| queue->qid); |
| ret = -ENOBUFS; |
| goto out; |
| } |
| |
| entry = rt2x00queue_get_entry(queue, Q_INDEX); |
| |
| if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, |
| &entry->flags))) { |
| rt2x00_err(queue->rt2x00dev, |
| "Arrived at non-free entry in the non-full queue %d\n" |
| "Please file bug report to %s\n", |
| queue->qid, DRV_PROJECT); |
| ret = -EINVAL; |
| goto out; |
| } |
| |
| skbdesc->entry = entry; |
| entry->skb = skb; |
| |
| /* |
| * It could be possible that the queue was corrupted and this |
| * call failed. Since we always return NETDEV_TX_OK to mac80211, |
| * this frame will simply be dropped. |
| */ |
| if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) { |
| clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags); |
| entry->skb = NULL; |
| ret = -EIO; |
| goto out; |
| } |
| |
| /* |
| * Put BlockAckReqs into our check list for driver BA processing. |
| */ |
| rt2x00queue_bar_check(entry); |
| |
| set_bit(ENTRY_DATA_PENDING, &entry->flags); |
| |
| rt2x00queue_index_inc(entry, Q_INDEX); |
| rt2x00queue_write_tx_descriptor(entry, &txdesc); |
| rt2x00queue_kick_tx_queue(queue, &txdesc); |
| |
| out: |
| spin_unlock(&queue->tx_lock); |
| return ret; |
| } |
| |
| int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| |
| if (unlikely(!intf->beacon)) |
| return -ENOBUFS; |
| |
| mutex_lock(&intf->beacon_skb_mutex); |
| |
| /* |
| * Clean up the beacon skb. |
| */ |
| rt2x00queue_free_skb(intf->beacon); |
| |
| /* |
| * Clear beacon (single bssid devices don't need to clear the beacon |
| * since the beacon queue will get stopped anyway). |
| */ |
| if (rt2x00dev->ops->lib->clear_beacon) |
| rt2x00dev->ops->lib->clear_beacon(intf->beacon); |
| |
| mutex_unlock(&intf->beacon_skb_mutex); |
| |
| return 0; |
| } |
| |
| int rt2x00queue_update_beacon_locked(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| struct skb_frame_desc *skbdesc; |
| struct txentry_desc txdesc; |
| |
| if (unlikely(!intf->beacon)) |
| return -ENOBUFS; |
| |
| /* |
| * Clean up the beacon skb. |
| */ |
| rt2x00queue_free_skb(intf->beacon); |
| |
| intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif); |
| if (!intf->beacon->skb) |
| return -ENOMEM; |
| |
| /* |
| * Copy all TX descriptor information into txdesc, |
| * after that we are free to use the skb->cb array |
| * for our information. |
| */ |
| rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL); |
| |
| /* |
| * Fill in skb descriptor |
| */ |
| skbdesc = get_skb_frame_desc(intf->beacon->skb); |
| memset(skbdesc, 0, sizeof(*skbdesc)); |
| skbdesc->entry = intf->beacon; |
| |
| /* |
| * Send beacon to hardware. |
| */ |
| rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc); |
| |
| return 0; |
| |
| } |
| |
| int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev, |
| struct ieee80211_vif *vif) |
| { |
| struct rt2x00_intf *intf = vif_to_intf(vif); |
| int ret; |
| |
| mutex_lock(&intf->beacon_skb_mutex); |
| ret = rt2x00queue_update_beacon_locked(rt2x00dev, vif); |
| mutex_unlock(&intf->beacon_skb_mutex); |
| |
| return ret; |
| } |
| |
| bool rt2x00queue_for_each_entry(struct data_queue *queue, |
| enum queue_index start, |
| enum queue_index end, |
| void *data, |
| bool (*fn)(struct queue_entry *entry, |
| void *data)) |
| { |
| unsigned long irqflags; |
| unsigned int index_start; |
| unsigned int index_end; |
| unsigned int i; |
| |
| if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) { |
| rt2x00_err(queue->rt2x00dev, |
| "Entry requested from invalid index range (%d - %d)\n", |
| start, end); |
| return true; |
| } |
| |
| /* |
| * Only protect the range we are going to loop over, |
| * if during our loop a extra entry is set to pending |
| * it should not be kicked during this run, since it |
| * is part of another TX operation. |
| */ |
| spin_lock_irqsave(&queue->index_lock, irqflags); |
| index_start = queue->index[start]; |
| index_end = queue->index[end]; |
| spin_unlock_irqrestore(&queue->index_lock, irqflags); |
| |
| /* |
| * Start from the TX done pointer, this guarantees that we will |
| * send out all frames in the correct order. |
| */ |
| if (index_start < index_end) { |
| for (i = index_start; i < index_end; i++) { |
| if (fn(&queue->entries[i], data)) |
| return true; |
| } |
| } else { |
| for (i = index_start; i < queue->limit; i++) { |
| if (fn(&queue->entries[i], data)) |
| return true; |
| } |
| |
| for (i = 0; i < index_end; i++) { |
| if (fn(&queue->entries[i], data)) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry); |
| |
| struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue, |
| enum queue_index index) |
| { |
| struct queue_entry *entry; |
| unsigned long irqflags; |
| |
| if (unlikely(index >= Q_INDEX_MAX)) { |
| rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n", |
| index); |
| return NULL; |
| } |
| |
| spin_lock_irqsave(&queue->index_lock, irqflags); |
| |
| entry = &queue->entries[queue->index[index]]; |
| |
| spin_unlock_irqrestore(&queue->index_lock, irqflags); |
| |
| return entry; |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_get_entry); |
| |
| void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index) |
| { |
| struct data_queue *queue = entry->queue; |
| unsigned long irqflags; |
| |
| if (unlikely(index >= Q_INDEX_MAX)) { |
| rt2x00_err(queue->rt2x00dev, |
| "Index change on invalid index type (%d)\n", index); |
| return; |
| } |
| |
| spin_lock_irqsave(&queue->index_lock, irqflags); |
| |
| queue->index[index]++; |
| if (queue->index[index] >= queue->limit) |
| queue->index[index] = 0; |
| |
| entry->last_action = jiffies; |
| |
| if (index == Q_INDEX) { |
| queue->length++; |
| } else if (index == Q_INDEX_DONE) { |
| queue->length--; |
| queue->count++; |
| } |
| |
| spin_unlock_irqrestore(&queue->index_lock, irqflags); |
| } |
| |
| void rt2x00queue_pause_queue(struct data_queue *queue) |
| { |
| if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || |
| !test_bit(QUEUE_STARTED, &queue->flags) || |
| test_and_set_bit(QUEUE_PAUSED, &queue->flags)) |
| return; |
| |
| switch (queue->qid) { |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| /* |
| * For TX queues, we have to disable the queue |
| * inside mac80211. |
| */ |
| ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid); |
| break; |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue); |
| |
| void rt2x00queue_unpause_queue(struct data_queue *queue) |
| { |
| if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || |
| !test_bit(QUEUE_STARTED, &queue->flags) || |
| !test_and_clear_bit(QUEUE_PAUSED, &queue->flags)) |
| return; |
| |
| switch (queue->qid) { |
| case QID_AC_VO: |
| case QID_AC_VI: |
| case QID_AC_BE: |
| case QID_AC_BK: |
| /* |
| * For TX queues, we have to enable the queue |
| * inside mac80211. |
| */ |
| ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid); |
| break; |
| case QID_RX: |
| /* |
| * For RX we need to kick the queue now in order to |
| * receive frames. |
| */ |
| queue->rt2x00dev->ops->lib->kick_queue(queue); |
| default: |
| break; |
| } |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue); |
| |
| void rt2x00queue_start_queue(struct data_queue *queue) |
| { |
| mutex_lock(&queue->status_lock); |
| |
| if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) || |
| test_and_set_bit(QUEUE_STARTED, &queue->flags)) { |
| mutex_unlock(&queue->status_lock); |
| return; |
| } |
| |
| set_bit(QUEUE_PAUSED, &queue->flags); |
| |
| queue->rt2x00dev->ops->lib->start_queue(queue); |
| |
| rt2x00queue_unpause_queue(queue); |
| |
| mutex_unlock(&queue->status_lock); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_start_queue); |
| |
| void rt2x00queue_stop_queue(struct data_queue *queue) |
| { |
| mutex_lock(&queue->status_lock); |
| |
| if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) { |
| mutex_unlock(&queue->status_lock); |
| return; |
| } |
| |
| rt2x00queue_pause_queue(queue); |
| |
| queue->rt2x00dev->ops->lib->stop_queue(queue); |
| |
| mutex_unlock(&queue->status_lock); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue); |
| |
| void rt2x00queue_flush_queue(struct data_queue *queue, bool drop) |
| { |
| bool started; |
| bool tx_queue = |
| (queue->qid == QID_AC_VO) || |
| (queue->qid == QID_AC_VI) || |
| (queue->qid == QID_AC_BE) || |
| (queue->qid == QID_AC_BK); |
| |
| mutex_lock(&queue->status_lock); |
| |
| /* |
| * If the queue has been started, we must stop it temporarily |
| * to prevent any new frames to be queued on the device. If |
| * we are not dropping the pending frames, the queue must |
| * only be stopped in the software and not the hardware, |
| * otherwise the queue will never become empty on its own. |
| */ |
| started = test_bit(QUEUE_STARTED, &queue->flags); |
| if (started) { |
| /* |
| * Pause the queue |
| */ |
| rt2x00queue_pause_queue(queue); |
| |
| /* |
| * If we are not supposed to drop any pending |
| * frames, this means we must force a start (=kick) |
| * to the queue to make sure the hardware will |
| * start transmitting. |
| */ |
| if (!drop && tx_queue) |
| queue->rt2x00dev->ops->lib->kick_queue(queue); |
| } |
| |
| /* |
| * Check if driver supports flushing, if that is the case we can |
| * defer the flushing to the driver. Otherwise we must use the |
| * alternative which just waits for the queue to become empty. |
| */ |
| if (likely(queue->rt2x00dev->ops->lib->flush_queue)) |
| queue->rt2x00dev->ops->lib->flush_queue(queue, drop); |
| |
| /* |
| * The queue flush has failed... |
| */ |
| if (unlikely(!rt2x00queue_empty(queue))) |
| rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n", |
| queue->qid); |
| |
| /* |
| * Restore the queue to the previous status |
| */ |
| if (started) |
| rt2x00queue_unpause_queue(queue); |
| |
| mutex_unlock(&queue->status_lock); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue); |
| |
| void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| |
| /* |
| * rt2x00queue_start_queue will call ieee80211_wake_queue |
| * for each queue after is has been properly initialized. |
| */ |
| tx_queue_for_each(rt2x00dev, queue) |
| rt2x00queue_start_queue(queue); |
| |
| rt2x00queue_start_queue(rt2x00dev->rx); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_start_queues); |
| |
| void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| |
| /* |
| * rt2x00queue_stop_queue will call ieee80211_stop_queue |
| * as well, but we are completely shutting doing everything |
| * now, so it is much safer to stop all TX queues at once, |
| * and use rt2x00queue_stop_queue for cleaning up. |
| */ |
| ieee80211_stop_queues(rt2x00dev->hw); |
| |
| tx_queue_for_each(rt2x00dev, queue) |
| rt2x00queue_stop_queue(queue); |
| |
| rt2x00queue_stop_queue(rt2x00dev->rx); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues); |
| |
| void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop) |
| { |
| struct data_queue *queue; |
| |
| tx_queue_for_each(rt2x00dev, queue) |
| rt2x00queue_flush_queue(queue, drop); |
| |
| rt2x00queue_flush_queue(rt2x00dev->rx, drop); |
| } |
| EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues); |
| |
| static void rt2x00queue_reset(struct data_queue *queue) |
| { |
| unsigned long irqflags; |
| unsigned int i; |
| |
| spin_lock_irqsave(&queue->index_lock, irqflags); |
| |
| queue->count = 0; |
| queue->length = 0; |
| |
| for (i = 0; i < Q_INDEX_MAX; i++) |
| queue->index[i] = 0; |
| |
| spin_unlock_irqrestore(&queue->index_lock, irqflags); |
| } |
| |
| void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| unsigned int i; |
| |
| queue_for_each(rt2x00dev, queue) { |
| rt2x00queue_reset(queue); |
| |
| for (i = 0; i < queue->limit; i++) |
| rt2x00dev->ops->lib->clear_entry(&queue->entries[i]); |
| } |
| } |
| |
| static int rt2x00queue_alloc_entries(struct data_queue *queue) |
| { |
| struct queue_entry *entries; |
| unsigned int entry_size; |
| unsigned int i; |
| |
| rt2x00queue_reset(queue); |
| |
| /* |
| * Allocate all queue entries. |
| */ |
| entry_size = sizeof(*entries) + queue->priv_size; |
| entries = kcalloc(queue->limit, entry_size, GFP_KERNEL); |
| if (!entries) |
| return -ENOMEM; |
| |
| #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \ |
| (((char *)(__base)) + ((__limit) * (__esize)) + \ |
| ((__index) * (__psize))) |
| |
| for (i = 0; i < queue->limit; i++) { |
| entries[i].flags = 0; |
| entries[i].queue = queue; |
| entries[i].skb = NULL; |
| entries[i].entry_idx = i; |
| entries[i].priv_data = |
| QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit, |
| sizeof(*entries), queue->priv_size); |
| } |
| |
| #undef QUEUE_ENTRY_PRIV_OFFSET |
| |
| queue->entries = entries; |
| |
| return 0; |
| } |
| |
| static void rt2x00queue_free_skbs(struct data_queue *queue) |
| { |
| unsigned int i; |
| |
| if (!queue->entries) |
| return; |
| |
| for (i = 0; i < queue->limit; i++) { |
| rt2x00queue_free_skb(&queue->entries[i]); |
| } |
| } |
| |
| static int rt2x00queue_alloc_rxskbs(struct data_queue *queue) |
| { |
| unsigned int i; |
| struct sk_buff *skb; |
| |
| for (i = 0; i < queue->limit; i++) { |
| skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL); |
| if (!skb) |
| return -ENOMEM; |
| queue->entries[i].skb = skb; |
| } |
| |
| return 0; |
| } |
| |
| int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| int status; |
| |
| status = rt2x00queue_alloc_entries(rt2x00dev->rx); |
| if (status) |
| goto exit; |
| |
| tx_queue_for_each(rt2x00dev, queue) { |
| status = rt2x00queue_alloc_entries(queue); |
| if (status) |
| goto exit; |
| } |
| |
| status = rt2x00queue_alloc_entries(rt2x00dev->bcn); |
| if (status) |
| goto exit; |
| |
| if (test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags)) { |
| status = rt2x00queue_alloc_entries(rt2x00dev->atim); |
| if (status) |
| goto exit; |
| } |
| |
| status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx); |
| if (status) |
| goto exit; |
| |
| return 0; |
| |
| exit: |
| rt2x00_err(rt2x00dev, "Queue entries allocation failed\n"); |
| |
| rt2x00queue_uninitialize(rt2x00dev); |
| |
| return status; |
| } |
| |
| void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| |
| rt2x00queue_free_skbs(rt2x00dev->rx); |
| |
| queue_for_each(rt2x00dev, queue) { |
| kfree(queue->entries); |
| queue->entries = NULL; |
| } |
| } |
| |
| static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev, |
| struct data_queue *queue, enum data_queue_qid qid) |
| { |
| mutex_init(&queue->status_lock); |
| spin_lock_init(&queue->tx_lock); |
| spin_lock_init(&queue->index_lock); |
| |
| queue->rt2x00dev = rt2x00dev; |
| queue->qid = qid; |
| queue->txop = 0; |
| queue->aifs = 2; |
| queue->cw_min = 5; |
| queue->cw_max = 10; |
| |
| rt2x00dev->ops->queue_init(queue); |
| |
| queue->threshold = DIV_ROUND_UP(queue->limit, 10); |
| } |
| |
| int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev) |
| { |
| struct data_queue *queue; |
| enum data_queue_qid qid; |
| unsigned int req_atim = |
| !!test_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); |
| |
| /* |
| * We need the following queues: |
| * RX: 1 |
| * TX: ops->tx_queues |
| * Beacon: 1 |
| * Atim: 1 (if required) |
| */ |
| rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim; |
| |
| queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL); |
| if (!queue) { |
| rt2x00_err(rt2x00dev, "Queue allocation failed\n"); |
| return -ENOMEM; |
| } |
| |
| /* |
| * Initialize pointers |
| */ |
| rt2x00dev->rx = queue; |
| rt2x00dev->tx = &queue[1]; |
| rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues]; |
| rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL; |
| |
| /* |
| * Initialize queue parameters. |
| * RX: qid = QID_RX |
| * TX: qid = QID_AC_VO + index |
| * TX: cw_min: 2^5 = 32. |
| * TX: cw_max: 2^10 = 1024. |
| * BCN: qid = QID_BEACON |
| * ATIM: qid = QID_ATIM |
| */ |
| rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX); |
| |
| qid = QID_AC_VO; |
| tx_queue_for_each(rt2x00dev, queue) |
| rt2x00queue_init(rt2x00dev, queue, qid++); |
| |
| rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON); |
| if (req_atim) |
| rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM); |
| |
| return 0; |
| } |
| |
| void rt2x00queue_free(struct rt2x00_dev *rt2x00dev) |
| { |
| kfree(rt2x00dev->rx); |
| rt2x00dev->rx = NULL; |
| rt2x00dev->tx = NULL; |
| rt2x00dev->bcn = NULL; |
| } |