| #define VERSION "0.23" |
| /* ns83820.c by Benjamin LaHaise with contributions. |
| * |
| * Questions/comments/discussion to linux-ns83820@kvack.org. |
| * |
| * $Revision: 1.34.2.23 $ |
| * |
| * Copyright 2001 Benjamin LaHaise. |
| * Copyright 2001, 2002 Red Hat. |
| * |
| * Mmmm, chocolate vanilla mocha... |
| * |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| * |
| * |
| * ChangeLog |
| * ========= |
| * 20010414 0.1 - created |
| * 20010622 0.2 - basic rx and tx. |
| * 20010711 0.3 - added duplex and link state detection support. |
| * 20010713 0.4 - zero copy, no hangs. |
| * 0.5 - 64 bit dma support (davem will hate me for this) |
| * - disable jumbo frames to avoid tx hangs |
| * - work around tx deadlocks on my 1.02 card via |
| * fiddling with TXCFG |
| * 20010810 0.6 - use pci dma api for ringbuffers, work on ia64 |
| * 20010816 0.7 - misc cleanups |
| * 20010826 0.8 - fix critical zero copy bugs |
| * 0.9 - internal experiment |
| * 20010827 0.10 - fix ia64 unaligned access. |
| * 20010906 0.11 - accept all packets with checksum errors as |
| * otherwise fragments get lost |
| * - fix >> 32 bugs |
| * 0.12 - add statistics counters |
| * - add allmulti/promisc support |
| * 20011009 0.13 - hotplug support, other smaller pci api cleanups |
| * 20011204 0.13a - optical transceiver support added |
| * by Michael Clark <michael@metaparadigm.com> |
| * 20011205 0.13b - call register_netdev earlier in initialization |
| * suppress duplicate link status messages |
| * 20011117 0.14 - ethtool GDRVINFO, GLINK support from jgarzik |
| * 20011204 0.15 get ppc (big endian) working |
| * 20011218 0.16 various cleanups |
| * 20020310 0.17 speedups |
| * 20020610 0.18 - actually use the pci dma api for highmem |
| * - remove pci latency register fiddling |
| * 0.19 - better bist support |
| * - add ihr and reset_phy parameters |
| * - gmii bus probing |
| * - fix missed txok introduced during performance |
| * tuning |
| * 0.20 - fix stupid RFEN thinko. i am such a smurf. |
| * 20040828 0.21 - add hardware vlan accleration |
| * by Neil Horman <nhorman@redhat.com> |
| * 20050406 0.22 - improved DAC ifdefs from Andi Kleen |
| * - removal of dead code from Adrian Bunk |
| * - fix half duplex collision behaviour |
| * Driver Overview |
| * =============== |
| * |
| * This driver was originally written for the National Semiconductor |
| * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC. Hopefully |
| * this code will turn out to be a) clean, b) correct, and c) fast. |
| * With that in mind, I'm aiming to split the code up as much as |
| * reasonably possible. At present there are X major sections that |
| * break down into a) packet receive, b) packet transmit, c) link |
| * management, d) initialization and configuration. Where possible, |
| * these code paths are designed to run in parallel. |
| * |
| * This driver has been tested and found to work with the following |
| * cards (in no particular order): |
| * |
| * Cameo SOHO-GA2000T SOHO-GA2500T |
| * D-Link DGE-500T |
| * PureData PDP8023Z-TG |
| * SMC SMC9452TX SMC9462TX |
| * Netgear GA621 |
| * |
| * Special thanks to SMC for providing hardware to test this driver on. |
| * |
| * Reports of success or failure would be greatly appreciated. |
| */ |
| //#define dprintk printk |
| #define dprintk(x...) do { } while (0) |
| |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/types.h> |
| #include <linux/pci.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/netdevice.h> |
| #include <linux/etherdevice.h> |
| #include <linux/delay.h> |
| #include <linux/workqueue.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/ip.h> /* for iph */ |
| #include <linux/in.h> /* for IPPROTO_... */ |
| #include <linux/compiler.h> |
| #include <linux/prefetch.h> |
| #include <linux/ethtool.h> |
| #include <linux/sched.h> |
| #include <linux/timer.h> |
| #include <linux/if_vlan.h> |
| #include <linux/rtnetlink.h> |
| #include <linux/jiffies.h> |
| #include <linux/slab.h> |
| |
| #include <asm/io.h> |
| #include <asm/uaccess.h> |
| |
| #define DRV_NAME "ns83820" |
| |
| /* Global parameters. See module_param near the bottom. */ |
| static int ihr = 2; |
| static int reset_phy = 0; |
| static int lnksts = 0; /* CFG_LNKSTS bit polarity */ |
| |
| /* Dprintk is used for more interesting debug events */ |
| #undef Dprintk |
| #define Dprintk dprintk |
| |
| /* tunables */ |
| #define RX_BUF_SIZE 1500 /* 8192 */ |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) |
| #define NS83820_VLAN_ACCEL_SUPPORT |
| #endif |
| |
| /* Must not exceed ~65000. */ |
| #define NR_RX_DESC 64 |
| #define NR_TX_DESC 128 |
| |
| /* not tunable */ |
| #define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14) /* rx/tx mac addr + type */ |
| |
| #define MIN_TX_DESC_FREE 8 |
| |
| /* register defines */ |
| #define CFGCS 0x04 |
| |
| #define CR_TXE 0x00000001 |
| #define CR_TXD 0x00000002 |
| /* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE |
| * The Receive engine skips one descriptor and moves |
| * onto the next one!! */ |
| #define CR_RXE 0x00000004 |
| #define CR_RXD 0x00000008 |
| #define CR_TXR 0x00000010 |
| #define CR_RXR 0x00000020 |
| #define CR_SWI 0x00000080 |
| #define CR_RST 0x00000100 |
| |
| #define PTSCR_EEBIST_FAIL 0x00000001 |
| #define PTSCR_EEBIST_EN 0x00000002 |
| #define PTSCR_EELOAD_EN 0x00000004 |
| #define PTSCR_RBIST_FAIL 0x000001b8 |
| #define PTSCR_RBIST_DONE 0x00000200 |
| #define PTSCR_RBIST_EN 0x00000400 |
| #define PTSCR_RBIST_RST 0x00002000 |
| |
| #define MEAR_EEDI 0x00000001 |
| #define MEAR_EEDO 0x00000002 |
| #define MEAR_EECLK 0x00000004 |
| #define MEAR_EESEL 0x00000008 |
| #define MEAR_MDIO 0x00000010 |
| #define MEAR_MDDIR 0x00000020 |
| #define MEAR_MDC 0x00000040 |
| |
| #define ISR_TXDESC3 0x40000000 |
| #define ISR_TXDESC2 0x20000000 |
| #define ISR_TXDESC1 0x10000000 |
| #define ISR_TXDESC0 0x08000000 |
| #define ISR_RXDESC3 0x04000000 |
| #define ISR_RXDESC2 0x02000000 |
| #define ISR_RXDESC1 0x01000000 |
| #define ISR_RXDESC0 0x00800000 |
| #define ISR_TXRCMP 0x00400000 |
| #define ISR_RXRCMP 0x00200000 |
| #define ISR_DPERR 0x00100000 |
| #define ISR_SSERR 0x00080000 |
| #define ISR_RMABT 0x00040000 |
| #define ISR_RTABT 0x00020000 |
| #define ISR_RXSOVR 0x00010000 |
| #define ISR_HIBINT 0x00008000 |
| #define ISR_PHY 0x00004000 |
| #define ISR_PME 0x00002000 |
| #define ISR_SWI 0x00001000 |
| #define ISR_MIB 0x00000800 |
| #define ISR_TXURN 0x00000400 |
| #define ISR_TXIDLE 0x00000200 |
| #define ISR_TXERR 0x00000100 |
| #define ISR_TXDESC 0x00000080 |
| #define ISR_TXOK 0x00000040 |
| #define ISR_RXORN 0x00000020 |
| #define ISR_RXIDLE 0x00000010 |
| #define ISR_RXEARLY 0x00000008 |
| #define ISR_RXERR 0x00000004 |
| #define ISR_RXDESC 0x00000002 |
| #define ISR_RXOK 0x00000001 |
| |
| #define TXCFG_CSI 0x80000000 |
| #define TXCFG_HBI 0x40000000 |
| #define TXCFG_MLB 0x20000000 |
| #define TXCFG_ATP 0x10000000 |
| #define TXCFG_ECRETRY 0x00800000 |
| #define TXCFG_BRST_DIS 0x00080000 |
| #define TXCFG_MXDMA1024 0x00000000 |
| #define TXCFG_MXDMA512 0x00700000 |
| #define TXCFG_MXDMA256 0x00600000 |
| #define TXCFG_MXDMA128 0x00500000 |
| #define TXCFG_MXDMA64 0x00400000 |
| #define TXCFG_MXDMA32 0x00300000 |
| #define TXCFG_MXDMA16 0x00200000 |
| #define TXCFG_MXDMA8 0x00100000 |
| |
| #define CFG_LNKSTS 0x80000000 |
| #define CFG_SPDSTS 0x60000000 |
| #define CFG_SPDSTS1 0x40000000 |
| #define CFG_SPDSTS0 0x20000000 |
| #define CFG_DUPSTS 0x10000000 |
| #define CFG_TBI_EN 0x01000000 |
| #define CFG_MODE_1000 0x00400000 |
| /* Ramit : Dont' ever use AUTO_1000, it never works and is buggy. |
| * Read the Phy response and then configure the MAC accordingly */ |
| #define CFG_AUTO_1000 0x00200000 |
| #define CFG_PINT_CTL 0x001c0000 |
| #define CFG_PINT_DUPSTS 0x00100000 |
| #define CFG_PINT_LNKSTS 0x00080000 |
| #define CFG_PINT_SPDSTS 0x00040000 |
| #define CFG_TMRTEST 0x00020000 |
| #define CFG_MRM_DIS 0x00010000 |
| #define CFG_MWI_DIS 0x00008000 |
| #define CFG_T64ADDR 0x00004000 |
| #define CFG_PCI64_DET 0x00002000 |
| #define CFG_DATA64_EN 0x00001000 |
| #define CFG_M64ADDR 0x00000800 |
| #define CFG_PHY_RST 0x00000400 |
| #define CFG_PHY_DIS 0x00000200 |
| #define CFG_EXTSTS_EN 0x00000100 |
| #define CFG_REQALG 0x00000080 |
| #define CFG_SB 0x00000040 |
| #define CFG_POW 0x00000020 |
| #define CFG_EXD 0x00000010 |
| #define CFG_PESEL 0x00000008 |
| #define CFG_BROM_DIS 0x00000004 |
| #define CFG_EXT_125 0x00000002 |
| #define CFG_BEM 0x00000001 |
| |
| #define EXTSTS_UDPPKT 0x00200000 |
| #define EXTSTS_TCPPKT 0x00080000 |
| #define EXTSTS_IPPKT 0x00020000 |
| #define EXTSTS_VPKT 0x00010000 |
| #define EXTSTS_VTG_MASK 0x0000ffff |
| |
| #define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0)) |
| |
| #define MIBC_MIBS 0x00000008 |
| #define MIBC_ACLR 0x00000004 |
| #define MIBC_FRZ 0x00000002 |
| #define MIBC_WRN 0x00000001 |
| |
| #define PCR_PSEN (1 << 31) |
| #define PCR_PS_MCAST (1 << 30) |
| #define PCR_PS_DA (1 << 29) |
| #define PCR_STHI_8 (3 << 23) |
| #define PCR_STLO_4 (1 << 23) |
| #define PCR_FFHI_8K (3 << 21) |
| #define PCR_FFLO_4K (1 << 21) |
| #define PCR_PAUSE_CNT 0xFFFE |
| |
| #define RXCFG_AEP 0x80000000 |
| #define RXCFG_ARP 0x40000000 |
| #define RXCFG_STRIPCRC 0x20000000 |
| #define RXCFG_RX_FD 0x10000000 |
| #define RXCFG_ALP 0x08000000 |
| #define RXCFG_AIRL 0x04000000 |
| #define RXCFG_MXDMA512 0x00700000 |
| #define RXCFG_DRTH 0x0000003e |
| #define RXCFG_DRTH0 0x00000002 |
| |
| #define RFCR_RFEN 0x80000000 |
| #define RFCR_AAB 0x40000000 |
| #define RFCR_AAM 0x20000000 |
| #define RFCR_AAU 0x10000000 |
| #define RFCR_APM 0x08000000 |
| #define RFCR_APAT 0x07800000 |
| #define RFCR_APAT3 0x04000000 |
| #define RFCR_APAT2 0x02000000 |
| #define RFCR_APAT1 0x01000000 |
| #define RFCR_APAT0 0x00800000 |
| #define RFCR_AARP 0x00400000 |
| #define RFCR_MHEN 0x00200000 |
| #define RFCR_UHEN 0x00100000 |
| #define RFCR_ULM 0x00080000 |
| |
| #define VRCR_RUDPE 0x00000080 |
| #define VRCR_RTCPE 0x00000040 |
| #define VRCR_RIPE 0x00000020 |
| #define VRCR_IPEN 0x00000010 |
| #define VRCR_DUTF 0x00000008 |
| #define VRCR_DVTF 0x00000004 |
| #define VRCR_VTREN 0x00000002 |
| #define VRCR_VTDEN 0x00000001 |
| |
| #define VTCR_PPCHK 0x00000008 |
| #define VTCR_GCHK 0x00000004 |
| #define VTCR_VPPTI 0x00000002 |
| #define VTCR_VGTI 0x00000001 |
| |
| #define CR 0x00 |
| #define CFG 0x04 |
| #define MEAR 0x08 |
| #define PTSCR 0x0c |
| #define ISR 0x10 |
| #define IMR 0x14 |
| #define IER 0x18 |
| #define IHR 0x1c |
| #define TXDP 0x20 |
| #define TXDP_HI 0x24 |
| #define TXCFG 0x28 |
| #define GPIOR 0x2c |
| #define RXDP 0x30 |
| #define RXDP_HI 0x34 |
| #define RXCFG 0x38 |
| #define PQCR 0x3c |
| #define WCSR 0x40 |
| #define PCR 0x44 |
| #define RFCR 0x48 |
| #define RFDR 0x4c |
| |
| #define SRR 0x58 |
| |
| #define VRCR 0xbc |
| #define VTCR 0xc0 |
| #define VDR 0xc4 |
| #define CCSR 0xcc |
| |
| #define TBICR 0xe0 |
| #define TBISR 0xe4 |
| #define TANAR 0xe8 |
| #define TANLPAR 0xec |
| #define TANER 0xf0 |
| #define TESR 0xf4 |
| |
| #define TBICR_MR_AN_ENABLE 0x00001000 |
| #define TBICR_MR_RESTART_AN 0x00000200 |
| |
| #define TBISR_MR_LINK_STATUS 0x00000020 |
| #define TBISR_MR_AN_COMPLETE 0x00000004 |
| |
| #define TANAR_PS2 0x00000100 |
| #define TANAR_PS1 0x00000080 |
| #define TANAR_HALF_DUP 0x00000040 |
| #define TANAR_FULL_DUP 0x00000020 |
| |
| #define GPIOR_GP5_OE 0x00000200 |
| #define GPIOR_GP4_OE 0x00000100 |
| #define GPIOR_GP3_OE 0x00000080 |
| #define GPIOR_GP2_OE 0x00000040 |
| #define GPIOR_GP1_OE 0x00000020 |
| #define GPIOR_GP3_OUT 0x00000004 |
| #define GPIOR_GP1_OUT 0x00000001 |
| |
| #define LINK_AUTONEGOTIATE 0x01 |
| #define LINK_DOWN 0x02 |
| #define LINK_UP 0x04 |
| |
| #define HW_ADDR_LEN sizeof(dma_addr_t) |
| #define desc_addr_set(desc, addr) \ |
| do { \ |
| ((desc)[0] = cpu_to_le32(addr)); \ |
| if (HW_ADDR_LEN == 8) \ |
| (desc)[1] = cpu_to_le32(((u64)addr) >> 32); \ |
| } while(0) |
| #define desc_addr_get(desc) \ |
| (le32_to_cpu((desc)[0]) | \ |
| (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0)) |
| |
| #define DESC_LINK 0 |
| #define DESC_BUFPTR (DESC_LINK + HW_ADDR_LEN/4) |
| #define DESC_CMDSTS (DESC_BUFPTR + HW_ADDR_LEN/4) |
| #define DESC_EXTSTS (DESC_CMDSTS + 4/4) |
| |
| #define CMDSTS_OWN 0x80000000 |
| #define CMDSTS_MORE 0x40000000 |
| #define CMDSTS_INTR 0x20000000 |
| #define CMDSTS_ERR 0x10000000 |
| #define CMDSTS_OK 0x08000000 |
| #define CMDSTS_RUNT 0x00200000 |
| #define CMDSTS_LEN_MASK 0x0000ffff |
| |
| #define CMDSTS_DEST_MASK 0x01800000 |
| #define CMDSTS_DEST_SELF 0x00800000 |
| #define CMDSTS_DEST_MULTI 0x01000000 |
| |
| #define DESC_SIZE 8 /* Should be cache line sized */ |
| |
| struct rx_info { |
| spinlock_t lock; |
| int up; |
| unsigned long idle; |
| |
| struct sk_buff *skbs[NR_RX_DESC]; |
| |
| __le32 *next_rx_desc; |
| u16 next_rx, next_empty; |
| |
| __le32 *descs; |
| dma_addr_t phy_descs; |
| }; |
| |
| |
| struct ns83820 { |
| u8 __iomem *base; |
| |
| struct pci_dev *pci_dev; |
| struct net_device *ndev; |
| |
| struct rx_info rx_info; |
| struct tasklet_struct rx_tasklet; |
| |
| unsigned ihr; |
| struct work_struct tq_refill; |
| |
| /* protects everything below. irqsave when using. */ |
| spinlock_t misc_lock; |
| |
| u32 CFG_cache; |
| |
| u32 MEAR_cache; |
| u32 IMR_cache; |
| |
| unsigned linkstate; |
| |
| spinlock_t tx_lock; |
| |
| u16 tx_done_idx; |
| u16 tx_idx; |
| volatile u16 tx_free_idx; /* idx of free desc chain */ |
| u16 tx_intr_idx; |
| |
| atomic_t nr_tx_skbs; |
| struct sk_buff *tx_skbs[NR_TX_DESC]; |
| |
| char pad[16] __attribute__((aligned(16))); |
| __le32 *tx_descs; |
| dma_addr_t tx_phy_descs; |
| |
| struct timer_list tx_watchdog; |
| }; |
| |
| static inline struct ns83820 *PRIV(struct net_device *dev) |
| { |
| return netdev_priv(dev); |
| } |
| |
| #define __kick_rx(dev) writel(CR_RXE, dev->base + CR) |
| |
| static inline void kick_rx(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| dprintk("kick_rx: maybe kicking\n"); |
| if (test_and_clear_bit(0, &dev->rx_info.idle)) { |
| dprintk("actually kicking\n"); |
| writel(dev->rx_info.phy_descs + |
| (4 * DESC_SIZE * dev->rx_info.next_rx), |
| dev->base + RXDP); |
| if (dev->rx_info.next_rx == dev->rx_info.next_empty) |
| printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n", |
| ndev->name); |
| __kick_rx(dev); |
| } |
| } |
| |
| //free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC |
| #define start_tx_okay(dev) \ |
| (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE) |
| |
| /* Packet Receiver |
| * |
| * The hardware supports linked lists of receive descriptors for |
| * which ownership is transferred back and forth by means of an |
| * ownership bit. While the hardware does support the use of a |
| * ring for receive descriptors, we only make use of a chain in |
| * an attempt to reduce bus traffic under heavy load scenarios. |
| * This will also make bugs a bit more obvious. The current code |
| * only makes use of a single rx chain; I hope to implement |
| * priority based rx for version 1.0. Goal: even under overload |
| * conditions, still route realtime traffic with as low jitter as |
| * possible. |
| */ |
| static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts) |
| { |
| desc_addr_set(desc + DESC_LINK, link); |
| desc_addr_set(desc + DESC_BUFPTR, buf); |
| desc[DESC_EXTSTS] = cpu_to_le32(extsts); |
| mb(); |
| desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); |
| } |
| |
| #define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC) |
| static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb) |
| { |
| unsigned next_empty; |
| u32 cmdsts; |
| __le32 *sg; |
| dma_addr_t buf; |
| |
| next_empty = dev->rx_info.next_empty; |
| |
| /* don't overrun last rx marker */ |
| if (unlikely(nr_rx_empty(dev) <= 2)) { |
| kfree_skb(skb); |
| return 1; |
| } |
| |
| #if 0 |
| dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n", |
| dev->rx_info.next_empty, |
| dev->rx_info.nr_used, |
| dev->rx_info.next_rx |
| ); |
| #endif |
| |
| sg = dev->rx_info.descs + (next_empty * DESC_SIZE); |
| BUG_ON(NULL != dev->rx_info.skbs[next_empty]); |
| dev->rx_info.skbs[next_empty] = skb; |
| |
| dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC; |
| cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR; |
| buf = pci_map_single(dev->pci_dev, skb->data, |
| REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE); |
| build_rx_desc(dev, sg, 0, buf, cmdsts, 0); |
| /* update link of previous rx */ |
| if (likely(next_empty != dev->rx_info.next_rx)) |
| dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4)); |
| |
| return 0; |
| } |
| |
| static inline int rx_refill(struct net_device *ndev, gfp_t gfp) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| unsigned i; |
| unsigned long flags = 0; |
| |
| if (unlikely(nr_rx_empty(dev) <= 2)) |
| return 0; |
| |
| dprintk("rx_refill(%p)\n", ndev); |
| if (gfp == GFP_ATOMIC) |
| spin_lock_irqsave(&dev->rx_info.lock, flags); |
| for (i=0; i<NR_RX_DESC; i++) { |
| struct sk_buff *skb; |
| long res; |
| |
| /* extra 16 bytes for alignment */ |
| skb = __netdev_alloc_skb(ndev, REAL_RX_BUF_SIZE+16, gfp); |
| if (unlikely(!skb)) |
| break; |
| |
| skb_reserve(skb, skb->data - PTR_ALIGN(skb->data, 16)); |
| if (gfp != GFP_ATOMIC) |
| spin_lock_irqsave(&dev->rx_info.lock, flags); |
| res = ns83820_add_rx_skb(dev, skb); |
| if (gfp != GFP_ATOMIC) |
| spin_unlock_irqrestore(&dev->rx_info.lock, flags); |
| if (res) { |
| i = 1; |
| break; |
| } |
| } |
| if (gfp == GFP_ATOMIC) |
| spin_unlock_irqrestore(&dev->rx_info.lock, flags); |
| |
| return i ? 0 : -ENOMEM; |
| } |
| |
| static void rx_refill_atomic(struct net_device *ndev) |
| { |
| rx_refill(ndev, GFP_ATOMIC); |
| } |
| |
| /* REFILL */ |
| static inline void queue_refill(struct work_struct *work) |
| { |
| struct ns83820 *dev = container_of(work, struct ns83820, tq_refill); |
| struct net_device *ndev = dev->ndev; |
| |
| rx_refill(ndev, GFP_KERNEL); |
| if (dev->rx_info.up) |
| kick_rx(ndev); |
| } |
| |
| static inline void clear_rx_desc(struct ns83820 *dev, unsigned i) |
| { |
| build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0); |
| } |
| |
| static void phy_intr(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" }; |
| u32 cfg, new_cfg; |
| u32 tbisr, tanar, tanlpar; |
| int speed, fullduplex, newlinkstate; |
| |
| cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; |
| |
| if (dev->CFG_cache & CFG_TBI_EN) { |
| /* we have an optical transceiver */ |
| tbisr = readl(dev->base + TBISR); |
| tanar = readl(dev->base + TANAR); |
| tanlpar = readl(dev->base + TANLPAR); |
| dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n", |
| tbisr, tanar, tanlpar); |
| |
| if ( (fullduplex = (tanlpar & TANAR_FULL_DUP) && |
| (tanar & TANAR_FULL_DUP)) ) { |
| |
| /* both of us are full duplex */ |
| writel(readl(dev->base + TXCFG) |
| | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, |
| dev->base + TXCFG); |
| writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, |
| dev->base + RXCFG); |
| /* Light up full duplex LED */ |
| writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, |
| dev->base + GPIOR); |
| |
| } else if (((tanlpar & TANAR_HALF_DUP) && |
| (tanar & TANAR_HALF_DUP)) || |
| ((tanlpar & TANAR_FULL_DUP) && |
| (tanar & TANAR_HALF_DUP)) || |
| ((tanlpar & TANAR_HALF_DUP) && |
| (tanar & TANAR_FULL_DUP))) { |
| |
| /* one or both of us are half duplex */ |
| writel((readl(dev->base + TXCFG) |
| & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP, |
| dev->base + TXCFG); |
| writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD, |
| dev->base + RXCFG); |
| /* Turn off full duplex LED */ |
| writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT, |
| dev->base + GPIOR); |
| } |
| |
| speed = 4; /* 1000F */ |
| |
| } else { |
| /* we have a copper transceiver */ |
| new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS); |
| |
| if (cfg & CFG_SPDSTS1) |
| new_cfg |= CFG_MODE_1000; |
| else |
| new_cfg &= ~CFG_MODE_1000; |
| |
| speed = ((cfg / CFG_SPDSTS0) & 3); |
| fullduplex = (cfg & CFG_DUPSTS); |
| |
| if (fullduplex) { |
| new_cfg |= CFG_SB; |
| writel(readl(dev->base + TXCFG) |
| | TXCFG_CSI | TXCFG_HBI, |
| dev->base + TXCFG); |
| writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, |
| dev->base + RXCFG); |
| } else { |
| writel(readl(dev->base + TXCFG) |
| & ~(TXCFG_CSI | TXCFG_HBI), |
| dev->base + TXCFG); |
| writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD), |
| dev->base + RXCFG); |
| } |
| |
| if ((cfg & CFG_LNKSTS) && |
| ((new_cfg ^ dev->CFG_cache) != 0)) { |
| writel(new_cfg, dev->base + CFG); |
| dev->CFG_cache = new_cfg; |
| } |
| |
| dev->CFG_cache &= ~CFG_SPDSTS; |
| dev->CFG_cache |= cfg & CFG_SPDSTS; |
| } |
| |
| newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN; |
| |
| if (newlinkstate & LINK_UP && |
| dev->linkstate != newlinkstate) { |
| netif_start_queue(ndev); |
| netif_wake_queue(ndev); |
| printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n", |
| ndev->name, |
| speeds[speed], |
| fullduplex ? "full" : "half"); |
| } else if (newlinkstate & LINK_DOWN && |
| dev->linkstate != newlinkstate) { |
| netif_stop_queue(ndev); |
| printk(KERN_INFO "%s: link now down.\n", ndev->name); |
| } |
| |
| dev->linkstate = newlinkstate; |
| } |
| |
| static int ns83820_setup_rx(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| unsigned i; |
| int ret; |
| |
| dprintk("ns83820_setup_rx(%p)\n", ndev); |
| |
| dev->rx_info.idle = 1; |
| dev->rx_info.next_rx = 0; |
| dev->rx_info.next_rx_desc = dev->rx_info.descs; |
| dev->rx_info.next_empty = 0; |
| |
| for (i=0; i<NR_RX_DESC; i++) |
| clear_rx_desc(dev, i); |
| |
| writel(0, dev->base + RXDP_HI); |
| writel(dev->rx_info.phy_descs, dev->base + RXDP); |
| |
| ret = rx_refill(ndev, GFP_KERNEL); |
| if (!ret) { |
| dprintk("starting receiver\n"); |
| /* prevent the interrupt handler from stomping on us */ |
| spin_lock_irq(&dev->rx_info.lock); |
| |
| writel(0x0001, dev->base + CCSR); |
| writel(0, dev->base + RFCR); |
| writel(0x7fc00000, dev->base + RFCR); |
| writel(0xffc00000, dev->base + RFCR); |
| |
| dev->rx_info.up = 1; |
| |
| phy_intr(ndev); |
| |
| /* Okay, let it rip */ |
| spin_lock(&dev->misc_lock); |
| dev->IMR_cache |= ISR_PHY; |
| dev->IMR_cache |= ISR_RXRCMP; |
| //dev->IMR_cache |= ISR_RXERR; |
| //dev->IMR_cache |= ISR_RXOK; |
| dev->IMR_cache |= ISR_RXORN; |
| dev->IMR_cache |= ISR_RXSOVR; |
| dev->IMR_cache |= ISR_RXDESC; |
| dev->IMR_cache |= ISR_RXIDLE; |
| dev->IMR_cache |= ISR_TXDESC; |
| dev->IMR_cache |= ISR_TXIDLE; |
| |
| writel(dev->IMR_cache, dev->base + IMR); |
| writel(1, dev->base + IER); |
| spin_unlock(&dev->misc_lock); |
| |
| kick_rx(ndev); |
| |
| spin_unlock_irq(&dev->rx_info.lock); |
| } |
| return ret; |
| } |
| |
| static void ns83820_cleanup_rx(struct ns83820 *dev) |
| { |
| unsigned i; |
| unsigned long flags; |
| |
| dprintk("ns83820_cleanup_rx(%p)\n", dev); |
| |
| /* disable receive interrupts */ |
| spin_lock_irqsave(&dev->misc_lock, flags); |
| dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE); |
| writel(dev->IMR_cache, dev->base + IMR); |
| spin_unlock_irqrestore(&dev->misc_lock, flags); |
| |
| /* synchronize with the interrupt handler and kill it */ |
| dev->rx_info.up = 0; |
| synchronize_irq(dev->pci_dev->irq); |
| |
| /* touch the pci bus... */ |
| readl(dev->base + IMR); |
| |
| /* assumes the transmitter is already disabled and reset */ |
| writel(0, dev->base + RXDP_HI); |
| writel(0, dev->base + RXDP); |
| |
| for (i=0; i<NR_RX_DESC; i++) { |
| struct sk_buff *skb = dev->rx_info.skbs[i]; |
| dev->rx_info.skbs[i] = NULL; |
| clear_rx_desc(dev, i); |
| kfree_skb(skb); |
| } |
| } |
| |
| static void ns83820_rx_kick(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ { |
| if (dev->rx_info.up) { |
| rx_refill_atomic(ndev); |
| kick_rx(ndev); |
| } |
| } |
| |
| if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4) |
| schedule_work(&dev->tq_refill); |
| else |
| kick_rx(ndev); |
| if (dev->rx_info.idle) |
| printk(KERN_DEBUG "%s: BAD\n", ndev->name); |
| } |
| |
| /* rx_irq |
| * |
| */ |
| static void rx_irq(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| struct rx_info *info = &dev->rx_info; |
| unsigned next_rx; |
| int rx_rc, len; |
| u32 cmdsts; |
| __le32 *desc; |
| unsigned long flags; |
| int nr = 0; |
| |
| dprintk("rx_irq(%p)\n", ndev); |
| dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n", |
| readl(dev->base + RXDP), |
| (long)(dev->rx_info.phy_descs), |
| (int)dev->rx_info.next_rx, |
| (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)), |
| (int)dev->rx_info.next_empty, |
| (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty)) |
| ); |
| |
| spin_lock_irqsave(&info->lock, flags); |
| if (!info->up) |
| goto out; |
| |
| dprintk("walking descs\n"); |
| next_rx = info->next_rx; |
| desc = info->next_rx_desc; |
| while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) && |
| (cmdsts != CMDSTS_OWN)) { |
| struct sk_buff *skb; |
| u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]); |
| dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR); |
| |
| dprintk("cmdsts: %08x\n", cmdsts); |
| dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK])); |
| dprintk("extsts: %08x\n", extsts); |
| |
| skb = info->skbs[next_rx]; |
| info->skbs[next_rx] = NULL; |
| info->next_rx = (next_rx + 1) % NR_RX_DESC; |
| |
| mb(); |
| clear_rx_desc(dev, next_rx); |
| |
| pci_unmap_single(dev->pci_dev, bufptr, |
| RX_BUF_SIZE, PCI_DMA_FROMDEVICE); |
| len = cmdsts & CMDSTS_LEN_MASK; |
| #ifdef NS83820_VLAN_ACCEL_SUPPORT |
| /* NH: As was mentioned below, this chip is kinda |
| * brain dead about vlan tag stripping. Frames |
| * that are 64 bytes with a vlan header appended |
| * like arp frames, or pings, are flagged as Runts |
| * when the tag is stripped and hardware. This |
| * also means that the OK bit in the descriptor |
| * is cleared when the frame comes in so we have |
| * to do a specific length check here to make sure |
| * the frame would have been ok, had we not stripped |
| * the tag. |
| */ |
| if (likely((CMDSTS_OK & cmdsts) || |
| ((cmdsts & CMDSTS_RUNT) && len >= 56))) { |
| #else |
| if (likely(CMDSTS_OK & cmdsts)) { |
| #endif |
| skb_put(skb, len); |
| if (unlikely(!skb)) |
| goto netdev_mangle_me_harder_failed; |
| if (cmdsts & CMDSTS_DEST_MULTI) |
| ndev->stats.multicast++; |
| ndev->stats.rx_packets++; |
| ndev->stats.rx_bytes += len; |
| if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) { |
| skb->ip_summed = CHECKSUM_UNNECESSARY; |
| } else { |
| skb_checksum_none_assert(skb); |
| } |
| skb->protocol = eth_type_trans(skb, ndev); |
| #ifdef NS83820_VLAN_ACCEL_SUPPORT |
| if(extsts & EXTSTS_VPKT) { |
| unsigned short tag; |
| |
| tag = ntohs(extsts & EXTSTS_VTG_MASK); |
| __vlan_hwaccel_put_tag(skb, tag); |
| } |
| #endif |
| rx_rc = netif_rx(skb); |
| if (NET_RX_DROP == rx_rc) { |
| netdev_mangle_me_harder_failed: |
| ndev->stats.rx_dropped++; |
| } |
| } else { |
| kfree_skb(skb); |
| } |
| |
| nr++; |
| next_rx = info->next_rx; |
| desc = info->descs + (DESC_SIZE * next_rx); |
| } |
| info->next_rx = next_rx; |
| info->next_rx_desc = info->descs + (DESC_SIZE * next_rx); |
| |
| out: |
| if (0 && !nr) { |
| Dprintk("dazed: cmdsts_f: %08x\n", cmdsts); |
| } |
| |
| spin_unlock_irqrestore(&info->lock, flags); |
| } |
| |
| static void rx_action(unsigned long _dev) |
| { |
| struct net_device *ndev = (void *)_dev; |
| struct ns83820 *dev = PRIV(ndev); |
| rx_irq(ndev); |
| writel(ihr, dev->base + IHR); |
| |
| spin_lock_irq(&dev->misc_lock); |
| dev->IMR_cache |= ISR_RXDESC; |
| writel(dev->IMR_cache, dev->base + IMR); |
| spin_unlock_irq(&dev->misc_lock); |
| |
| rx_irq(ndev); |
| ns83820_rx_kick(ndev); |
| } |
| |
| /* Packet Transmit code |
| */ |
| static inline void kick_tx(struct ns83820 *dev) |
| { |
| dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n", |
| dev, dev->tx_idx, dev->tx_free_idx); |
| writel(CR_TXE, dev->base + CR); |
| } |
| |
| /* No spinlock needed on the transmit irq path as the interrupt handler is |
| * serialized. |
| */ |
| static void do_tx_done(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u32 cmdsts, tx_done_idx; |
| __le32 *desc; |
| |
| dprintk("do_tx_done(%p)\n", ndev); |
| tx_done_idx = dev->tx_done_idx; |
| desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); |
| |
| dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", |
| tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); |
| while ((tx_done_idx != dev->tx_free_idx) && |
| !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) { |
| struct sk_buff *skb; |
| unsigned len; |
| dma_addr_t addr; |
| |
| if (cmdsts & CMDSTS_ERR) |
| ndev->stats.tx_errors++; |
| if (cmdsts & CMDSTS_OK) |
| ndev->stats.tx_packets++; |
| if (cmdsts & CMDSTS_OK) |
| ndev->stats.tx_bytes += cmdsts & 0xffff; |
| |
| dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n", |
| tx_done_idx, dev->tx_free_idx, cmdsts); |
| skb = dev->tx_skbs[tx_done_idx]; |
| dev->tx_skbs[tx_done_idx] = NULL; |
| dprintk("done(%p)\n", skb); |
| |
| len = cmdsts & CMDSTS_LEN_MASK; |
| addr = desc_addr_get(desc + DESC_BUFPTR); |
| if (skb) { |
| pci_unmap_single(dev->pci_dev, |
| addr, |
| len, |
| PCI_DMA_TODEVICE); |
| dev_kfree_skb_irq(skb); |
| atomic_dec(&dev->nr_tx_skbs); |
| } else |
| pci_unmap_page(dev->pci_dev, |
| addr, |
| len, |
| PCI_DMA_TODEVICE); |
| |
| tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC; |
| dev->tx_done_idx = tx_done_idx; |
| desc[DESC_CMDSTS] = cpu_to_le32(0); |
| mb(); |
| desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); |
| } |
| |
| /* Allow network stack to resume queueing packets after we've |
| * finished transmitting at least 1/4 of the packets in the queue. |
| */ |
| if (netif_queue_stopped(ndev) && start_tx_okay(dev)) { |
| dprintk("start_queue(%p)\n", ndev); |
| netif_start_queue(ndev); |
| netif_wake_queue(ndev); |
| } |
| } |
| |
| static void ns83820_cleanup_tx(struct ns83820 *dev) |
| { |
| unsigned i; |
| |
| for (i=0; i<NR_TX_DESC; i++) { |
| struct sk_buff *skb = dev->tx_skbs[i]; |
| dev->tx_skbs[i] = NULL; |
| if (skb) { |
| __le32 *desc = dev->tx_descs + (i * DESC_SIZE); |
| pci_unmap_single(dev->pci_dev, |
| desc_addr_get(desc + DESC_BUFPTR), |
| le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK, |
| PCI_DMA_TODEVICE); |
| dev_kfree_skb_irq(skb); |
| atomic_dec(&dev->nr_tx_skbs); |
| } |
| } |
| |
| memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4); |
| } |
| |
| /* transmit routine. This code relies on the network layer serializing |
| * its calls in, but will run happily in parallel with the interrupt |
| * handler. This code currently has provisions for fragmenting tx buffers |
| * while trying to track down a bug in either the zero copy code or |
| * the tx fifo (hence the MAX_FRAG_LEN). |
| */ |
| static netdev_tx_t ns83820_hard_start_xmit(struct sk_buff *skb, |
| struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u32 free_idx, cmdsts, extsts; |
| int nr_free, nr_frags; |
| unsigned tx_done_idx, last_idx; |
| dma_addr_t buf; |
| unsigned len; |
| skb_frag_t *frag; |
| int stopped = 0; |
| int do_intr = 0; |
| volatile __le32 *first_desc; |
| |
| dprintk("ns83820_hard_start_xmit\n"); |
| |
| nr_frags = skb_shinfo(skb)->nr_frags; |
| again: |
| if (unlikely(dev->CFG_cache & CFG_LNKSTS)) { |
| netif_stop_queue(ndev); |
| if (unlikely(dev->CFG_cache & CFG_LNKSTS)) |
| return NETDEV_TX_BUSY; |
| netif_start_queue(ndev); |
| } |
| |
| last_idx = free_idx = dev->tx_free_idx; |
| tx_done_idx = dev->tx_done_idx; |
| nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC; |
| nr_free -= 1; |
| if (nr_free <= nr_frags) { |
| dprintk("stop_queue - not enough(%p)\n", ndev); |
| netif_stop_queue(ndev); |
| |
| /* Check again: we may have raced with a tx done irq */ |
| if (dev->tx_done_idx != tx_done_idx) { |
| dprintk("restart queue(%p)\n", ndev); |
| netif_start_queue(ndev); |
| goto again; |
| } |
| return NETDEV_TX_BUSY; |
| } |
| |
| if (free_idx == dev->tx_intr_idx) { |
| do_intr = 1; |
| dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC; |
| } |
| |
| nr_free -= nr_frags; |
| if (nr_free < MIN_TX_DESC_FREE) { |
| dprintk("stop_queue - last entry(%p)\n", ndev); |
| netif_stop_queue(ndev); |
| stopped = 1; |
| } |
| |
| frag = skb_shinfo(skb)->frags; |
| if (!nr_frags) |
| frag = NULL; |
| extsts = 0; |
| if (skb->ip_summed == CHECKSUM_PARTIAL) { |
| extsts |= EXTSTS_IPPKT; |
| if (IPPROTO_TCP == ip_hdr(skb)->protocol) |
| extsts |= EXTSTS_TCPPKT; |
| else if (IPPROTO_UDP == ip_hdr(skb)->protocol) |
| extsts |= EXTSTS_UDPPKT; |
| } |
| |
| #ifdef NS83820_VLAN_ACCEL_SUPPORT |
| if(vlan_tx_tag_present(skb)) { |
| /* fetch the vlan tag info out of the |
| * ancillary data if the vlan code |
| * is using hw vlan acceleration |
| */ |
| short tag = vlan_tx_tag_get(skb); |
| extsts |= (EXTSTS_VPKT | htons(tag)); |
| } |
| #endif |
| |
| len = skb->len; |
| if (nr_frags) |
| len -= skb->data_len; |
| buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE); |
| |
| first_desc = dev->tx_descs + (free_idx * DESC_SIZE); |
| |
| for (;;) { |
| volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE); |
| |
| dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len, |
| (unsigned long long)buf); |
| last_idx = free_idx; |
| free_idx = (free_idx + 1) % NR_TX_DESC; |
| desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4)); |
| desc_addr_set(desc + DESC_BUFPTR, buf); |
| desc[DESC_EXTSTS] = cpu_to_le32(extsts); |
| |
| cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0); |
| cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN; |
| cmdsts |= len; |
| desc[DESC_CMDSTS] = cpu_to_le32(cmdsts); |
| |
| if (!nr_frags) |
| break; |
| |
| buf = skb_frag_dma_map(&dev->pci_dev->dev, frag, 0, |
| skb_frag_size(frag), DMA_TO_DEVICE); |
| dprintk("frag: buf=%08Lx page=%08lx offset=%08lx\n", |
| (long long)buf, (long) page_to_pfn(frag->page), |
| frag->page_offset); |
| len = skb_frag_size(frag); |
| frag++; |
| nr_frags--; |
| } |
| dprintk("done pkt\n"); |
| |
| spin_lock_irq(&dev->tx_lock); |
| dev->tx_skbs[last_idx] = skb; |
| first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN); |
| dev->tx_free_idx = free_idx; |
| atomic_inc(&dev->nr_tx_skbs); |
| spin_unlock_irq(&dev->tx_lock); |
| |
| kick_tx(dev); |
| |
| /* Check again: we may have raced with a tx done irq */ |
| if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev)) |
| netif_start_queue(ndev); |
| |
| return NETDEV_TX_OK; |
| } |
| |
| static void ns83820_update_stats(struct ns83820 *dev) |
| { |
| struct net_device *ndev = dev->ndev; |
| u8 __iomem *base = dev->base; |
| |
| /* the DP83820 will freeze counters, so we need to read all of them */ |
| ndev->stats.rx_errors += readl(base + 0x60) & 0xffff; |
| ndev->stats.rx_crc_errors += readl(base + 0x64) & 0xffff; |
| ndev->stats.rx_missed_errors += readl(base + 0x68) & 0xffff; |
| ndev->stats.rx_frame_errors += readl(base + 0x6c) & 0xffff; |
| /*ndev->stats.rx_symbol_errors +=*/ readl(base + 0x70); |
| ndev->stats.rx_length_errors += readl(base + 0x74) & 0xffff; |
| ndev->stats.rx_length_errors += readl(base + 0x78) & 0xffff; |
| /*ndev->stats.rx_badopcode_errors += */ readl(base + 0x7c); |
| /*ndev->stats.rx_pause_count += */ readl(base + 0x80); |
| /*ndev->stats.tx_pause_count += */ readl(base + 0x84); |
| ndev->stats.tx_carrier_errors += readl(base + 0x88) & 0xff; |
| } |
| |
| static struct net_device_stats *ns83820_get_stats(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| |
| /* somewhat overkill */ |
| spin_lock_irq(&dev->misc_lock); |
| ns83820_update_stats(dev); |
| spin_unlock_irq(&dev->misc_lock); |
| |
| return &ndev->stats; |
| } |
| |
| /* Let ethtool retrieve info */ |
| static int ns83820_get_settings(struct net_device *ndev, |
| struct ethtool_cmd *cmd) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u32 cfg, tanar, tbicr; |
| int fullduplex = 0; |
| |
| /* |
| * Here's the list of available ethtool commands from other drivers: |
| * cmd->advertising = |
| * ethtool_cmd_speed_set(cmd, ...) |
| * cmd->duplex = |
| * cmd->port = 0; |
| * cmd->phy_address = |
| * cmd->transceiver = 0; |
| * cmd->autoneg = |
| * cmd->maxtxpkt = 0; |
| * cmd->maxrxpkt = 0; |
| */ |
| |
| /* read current configuration */ |
| cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; |
| tanar = readl(dev->base + TANAR); |
| tbicr = readl(dev->base + TBICR); |
| |
| fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0; |
| |
| cmd->supported = SUPPORTED_Autoneg; |
| |
| if (dev->CFG_cache & CFG_TBI_EN) { |
| /* we have optical interface */ |
| cmd->supported |= SUPPORTED_1000baseT_Half | |
| SUPPORTED_1000baseT_Full | |
| SUPPORTED_FIBRE; |
| cmd->port = PORT_FIBRE; |
| } else { |
| /* we have copper */ |
| cmd->supported |= SUPPORTED_10baseT_Half | |
| SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half | |
| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Half | |
| SUPPORTED_1000baseT_Full | |
| SUPPORTED_MII; |
| cmd->port = PORT_MII; |
| } |
| |
| cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF; |
| switch (cfg / CFG_SPDSTS0 & 3) { |
| case 2: |
| ethtool_cmd_speed_set(cmd, SPEED_1000); |
| break; |
| case 1: |
| ethtool_cmd_speed_set(cmd, SPEED_100); |
| break; |
| default: |
| ethtool_cmd_speed_set(cmd, SPEED_10); |
| break; |
| } |
| cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) |
| ? AUTONEG_ENABLE : AUTONEG_DISABLE; |
| return 0; |
| } |
| |
| /* Let ethool change settings*/ |
| static int ns83820_set_settings(struct net_device *ndev, |
| struct ethtool_cmd *cmd) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u32 cfg, tanar; |
| int have_optical = 0; |
| int fullduplex = 0; |
| |
| /* read current configuration */ |
| cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; |
| tanar = readl(dev->base + TANAR); |
| |
| if (dev->CFG_cache & CFG_TBI_EN) { |
| /* we have optical */ |
| have_optical = 1; |
| fullduplex = (tanar & TANAR_FULL_DUP); |
| |
| } else { |
| /* we have copper */ |
| fullduplex = cfg & CFG_DUPSTS; |
| } |
| |
| spin_lock_irq(&dev->misc_lock); |
| spin_lock(&dev->tx_lock); |
| |
| /* Set duplex */ |
| if (cmd->duplex != fullduplex) { |
| if (have_optical) { |
| /*set full duplex*/ |
| if (cmd->duplex == DUPLEX_FULL) { |
| /* force full duplex */ |
| writel(readl(dev->base + TXCFG) |
| | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP, |
| dev->base + TXCFG); |
| writel(readl(dev->base + RXCFG) | RXCFG_RX_FD, |
| dev->base + RXCFG); |
| /* Light up full duplex LED */ |
| writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT, |
| dev->base + GPIOR); |
| } else { |
| /*TODO: set half duplex */ |
| } |
| |
| } else { |
| /*we have copper*/ |
| /* TODO: Set duplex for copper cards */ |
| } |
| printk(KERN_INFO "%s: Duplex set via ethtool\n", |
| ndev->name); |
| } |
| |
| /* Set autonegotiation */ |
| if (1) { |
| if (cmd->autoneg == AUTONEG_ENABLE) { |
| /* restart auto negotiation */ |
| writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, |
| dev->base + TBICR); |
| writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); |
| dev->linkstate = LINK_AUTONEGOTIATE; |
| |
| printk(KERN_INFO "%s: autoneg enabled via ethtool\n", |
| ndev->name); |
| } else { |
| /* disable auto negotiation */ |
| writel(0x00000000, dev->base + TBICR); |
| } |
| |
| printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name, |
| cmd->autoneg ? "ENABLED" : "DISABLED"); |
| } |
| |
| phy_intr(ndev); |
| spin_unlock(&dev->tx_lock); |
| spin_unlock_irq(&dev->misc_lock); |
| |
| return 0; |
| } |
| /* end ethtool get/set support -df */ |
| |
| static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| strlcpy(info->driver, "ns83820", sizeof(info->driver)); |
| strlcpy(info->version, VERSION, sizeof(info->version)); |
| strlcpy(info->bus_info, pci_name(dev->pci_dev), sizeof(info->bus_info)); |
| } |
| |
| static u32 ns83820_get_link(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY; |
| return cfg & CFG_LNKSTS ? 1 : 0; |
| } |
| |
| static const struct ethtool_ops ops = { |
| .get_settings = ns83820_get_settings, |
| .set_settings = ns83820_set_settings, |
| .get_drvinfo = ns83820_get_drvinfo, |
| .get_link = ns83820_get_link |
| }; |
| |
| static inline void ns83820_disable_interrupts(struct ns83820 *dev) |
| { |
| writel(0, dev->base + IMR); |
| writel(0, dev->base + IER); |
| readl(dev->base + IER); |
| } |
| |
| /* this function is called in irq context from the ISR */ |
| static void ns83820_mib_isr(struct ns83820 *dev) |
| { |
| unsigned long flags; |
| spin_lock_irqsave(&dev->misc_lock, flags); |
| ns83820_update_stats(dev); |
| spin_unlock_irqrestore(&dev->misc_lock, flags); |
| } |
| |
| static void ns83820_do_isr(struct net_device *ndev, u32 isr); |
| static irqreturn_t ns83820_irq(int foo, void *data) |
| { |
| struct net_device *ndev = data; |
| struct ns83820 *dev = PRIV(ndev); |
| u32 isr; |
| dprintk("ns83820_irq(%p)\n", ndev); |
| |
| dev->ihr = 0; |
| |
| isr = readl(dev->base + ISR); |
| dprintk("irq: %08x\n", isr); |
| ns83820_do_isr(ndev, isr); |
| return IRQ_HANDLED; |
| } |
| |
| static void ns83820_do_isr(struct net_device *ndev, u32 isr) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| unsigned long flags; |
| |
| #ifdef DEBUG |
| if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC)) |
| Dprintk("odd isr? 0x%08x\n", isr); |
| #endif |
| |
| if (ISR_RXIDLE & isr) { |
| dev->rx_info.idle = 1; |
| Dprintk("oh dear, we are idle\n"); |
| ns83820_rx_kick(ndev); |
| } |
| |
| if ((ISR_RXDESC | ISR_RXOK) & isr) { |
| prefetch(dev->rx_info.next_rx_desc); |
| |
| spin_lock_irqsave(&dev->misc_lock, flags); |
| dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK); |
| writel(dev->IMR_cache, dev->base + IMR); |
| spin_unlock_irqrestore(&dev->misc_lock, flags); |
| |
| tasklet_schedule(&dev->rx_tasklet); |
| //rx_irq(ndev); |
| //writel(4, dev->base + IHR); |
| } |
| |
| if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr) |
| ns83820_rx_kick(ndev); |
| |
| if (unlikely(ISR_RXSOVR & isr)) { |
| //printk("overrun: rxsovr\n"); |
| ndev->stats.rx_fifo_errors++; |
| } |
| |
| if (unlikely(ISR_RXORN & isr)) { |
| //printk("overrun: rxorn\n"); |
| ndev->stats.rx_fifo_errors++; |
| } |
| |
| if ((ISR_RXRCMP & isr) && dev->rx_info.up) |
| writel(CR_RXE, dev->base + CR); |
| |
| if (ISR_TXIDLE & isr) { |
| u32 txdp; |
| txdp = readl(dev->base + TXDP); |
| dprintk("txdp: %08x\n", txdp); |
| txdp -= dev->tx_phy_descs; |
| dev->tx_idx = txdp / (DESC_SIZE * 4); |
| if (dev->tx_idx >= NR_TX_DESC) { |
| printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name); |
| dev->tx_idx = 0; |
| } |
| /* The may have been a race between a pci originated read |
| * and the descriptor update from the cpu. Just in case, |
| * kick the transmitter if the hardware thinks it is on a |
| * different descriptor than we are. |
| */ |
| if (dev->tx_idx != dev->tx_free_idx) |
| kick_tx(dev); |
| } |
| |
| /* Defer tx ring processing until more than a minimum amount of |
| * work has accumulated |
| */ |
| if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) { |
| spin_lock_irqsave(&dev->tx_lock, flags); |
| do_tx_done(ndev); |
| spin_unlock_irqrestore(&dev->tx_lock, flags); |
| |
| /* Disable TxOk if there are no outstanding tx packets. |
| */ |
| if ((dev->tx_done_idx == dev->tx_free_idx) && |
| (dev->IMR_cache & ISR_TXOK)) { |
| spin_lock_irqsave(&dev->misc_lock, flags); |
| dev->IMR_cache &= ~ISR_TXOK; |
| writel(dev->IMR_cache, dev->base + IMR); |
| spin_unlock_irqrestore(&dev->misc_lock, flags); |
| } |
| } |
| |
| /* The TxIdle interrupt can come in before the transmit has |
| * completed. Normally we reap packets off of the combination |
| * of TxDesc and TxIdle and leave TxOk disabled (since it |
| * occurs on every packet), but when no further irqs of this |
| * nature are expected, we must enable TxOk. |
| */ |
| if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) { |
| spin_lock_irqsave(&dev->misc_lock, flags); |
| dev->IMR_cache |= ISR_TXOK; |
| writel(dev->IMR_cache, dev->base + IMR); |
| spin_unlock_irqrestore(&dev->misc_lock, flags); |
| } |
| |
| /* MIB interrupt: one of the statistics counters is about to overflow */ |
| if (unlikely(ISR_MIB & isr)) |
| ns83820_mib_isr(dev); |
| |
| /* PHY: Link up/down/negotiation state change */ |
| if (unlikely(ISR_PHY & isr)) |
| phy_intr(ndev); |
| |
| #if 0 /* Still working on the interrupt mitigation strategy */ |
| if (dev->ihr) |
| writel(dev->ihr, dev->base + IHR); |
| #endif |
| } |
| |
| static void ns83820_do_reset(struct ns83820 *dev, u32 which) |
| { |
| Dprintk("resetting chip...\n"); |
| writel(which, dev->base + CR); |
| do { |
| schedule(); |
| } while (readl(dev->base + CR) & which); |
| Dprintk("okay!\n"); |
| } |
| |
| static int ns83820_stop(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| |
| /* FIXME: protect against interrupt handler? */ |
| del_timer_sync(&dev->tx_watchdog); |
| |
| ns83820_disable_interrupts(dev); |
| |
| dev->rx_info.up = 0; |
| synchronize_irq(dev->pci_dev->irq); |
| |
| ns83820_do_reset(dev, CR_RST); |
| |
| synchronize_irq(dev->pci_dev->irq); |
| |
| spin_lock_irq(&dev->misc_lock); |
| dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK); |
| spin_unlock_irq(&dev->misc_lock); |
| |
| ns83820_cleanup_rx(dev); |
| ns83820_cleanup_tx(dev); |
| |
| return 0; |
| } |
| |
| static void ns83820_tx_timeout(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u32 tx_done_idx; |
| __le32 *desc; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&dev->tx_lock, flags); |
| |
| tx_done_idx = dev->tx_done_idx; |
| desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); |
| |
| printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", |
| ndev->name, |
| tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); |
| |
| #if defined(DEBUG) |
| { |
| u32 isr; |
| isr = readl(dev->base + ISR); |
| printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache); |
| ns83820_do_isr(ndev, isr); |
| } |
| #endif |
| |
| do_tx_done(ndev); |
| |
| tx_done_idx = dev->tx_done_idx; |
| desc = dev->tx_descs + (tx_done_idx * DESC_SIZE); |
| |
| printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n", |
| ndev->name, |
| tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS])); |
| |
| spin_unlock_irqrestore(&dev->tx_lock, flags); |
| } |
| |
| static void ns83820_tx_watch(unsigned long data) |
| { |
| struct net_device *ndev = (void *)data; |
| struct ns83820 *dev = PRIV(ndev); |
| |
| #if defined(DEBUG) |
| printk("ns83820_tx_watch: %u %u %d\n", |
| dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs) |
| ); |
| #endif |
| |
| if (time_after(jiffies, dev_trans_start(ndev) + 1*HZ) && |
| dev->tx_done_idx != dev->tx_free_idx) { |
| printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n", |
| ndev->name, |
| dev->tx_done_idx, dev->tx_free_idx, |
| atomic_read(&dev->nr_tx_skbs)); |
| ns83820_tx_timeout(ndev); |
| } |
| |
| mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); |
| } |
| |
| static int ns83820_open(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| unsigned i; |
| u32 desc; |
| int ret; |
| |
| dprintk("ns83820_open\n"); |
| |
| writel(0, dev->base + PQCR); |
| |
| ret = ns83820_setup_rx(ndev); |
| if (ret) |
| goto failed; |
| |
| memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE); |
| for (i=0; i<NR_TX_DESC; i++) { |
| dev->tx_descs[(i * DESC_SIZE) + DESC_LINK] |
| = cpu_to_le32( |
| dev->tx_phy_descs |
| + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4); |
| } |
| |
| dev->tx_idx = 0; |
| dev->tx_done_idx = 0; |
| desc = dev->tx_phy_descs; |
| writel(0, dev->base + TXDP_HI); |
| writel(desc, dev->base + TXDP); |
| |
| init_timer(&dev->tx_watchdog); |
| dev->tx_watchdog.data = (unsigned long)ndev; |
| dev->tx_watchdog.function = ns83820_tx_watch; |
| mod_timer(&dev->tx_watchdog, jiffies + 2*HZ); |
| |
| netif_start_queue(ndev); /* FIXME: wait for phy to come up */ |
| |
| return 0; |
| |
| failed: |
| ns83820_stop(ndev); |
| return ret; |
| } |
| |
| static void ns83820_getmac(struct ns83820 *dev, u8 *mac) |
| { |
| unsigned i; |
| for (i=0; i<3; i++) { |
| u32 data; |
| |
| /* Read from the perfect match memory: this is loaded by |
| * the chip from the EEPROM via the EELOAD self test. |
| */ |
| writel(i*2, dev->base + RFCR); |
| data = readl(dev->base + RFDR); |
| |
| *mac++ = data; |
| *mac++ = data >> 8; |
| } |
| } |
| |
| static int ns83820_change_mtu(struct net_device *ndev, int new_mtu) |
| { |
| if (new_mtu > RX_BUF_SIZE) |
| return -EINVAL; |
| ndev->mtu = new_mtu; |
| return 0; |
| } |
| |
| static void ns83820_set_multicast(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| u8 __iomem *rfcr = dev->base + RFCR; |
| u32 and_mask = 0xffffffff; |
| u32 or_mask = 0; |
| u32 val; |
| |
| if (ndev->flags & IFF_PROMISC) |
| or_mask |= RFCR_AAU | RFCR_AAM; |
| else |
| and_mask &= ~(RFCR_AAU | RFCR_AAM); |
| |
| if (ndev->flags & IFF_ALLMULTI || netdev_mc_count(ndev)) |
| or_mask |= RFCR_AAM; |
| else |
| and_mask &= ~RFCR_AAM; |
| |
| spin_lock_irq(&dev->misc_lock); |
| val = (readl(rfcr) & and_mask) | or_mask; |
| /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */ |
| writel(val & ~RFCR_RFEN, rfcr); |
| writel(val, rfcr); |
| spin_unlock_irq(&dev->misc_lock); |
| } |
| |
| static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| int timed_out = 0; |
| unsigned long start; |
| u32 status; |
| int loops = 0; |
| |
| dprintk("%s: start %s\n", ndev->name, name); |
| |
| start = jiffies; |
| |
| writel(enable, dev->base + PTSCR); |
| for (;;) { |
| loops++; |
| status = readl(dev->base + PTSCR); |
| if (!(status & enable)) |
| break; |
| if (status & done) |
| break; |
| if (status & fail) |
| break; |
| if (time_after_eq(jiffies, start + HZ)) { |
| timed_out = 1; |
| break; |
| } |
| schedule_timeout_uninterruptible(1); |
| } |
| |
| if (status & fail) |
| printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n", |
| ndev->name, name, status, fail); |
| else if (timed_out) |
| printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n", |
| ndev->name, name, status); |
| |
| dprintk("%s: done %s in %d loops\n", ndev->name, name, loops); |
| } |
| |
| #ifdef PHY_CODE_IS_FINISHED |
| static void ns83820_mii_write_bit(struct ns83820 *dev, int bit) |
| { |
| /* drive MDC low */ |
| dev->MEAR_cache &= ~MEAR_MDC; |
| writel(dev->MEAR_cache, dev->base + MEAR); |
| readl(dev->base + MEAR); |
| |
| /* enable output, set bit */ |
| dev->MEAR_cache |= MEAR_MDDIR; |
| if (bit) |
| dev->MEAR_cache |= MEAR_MDIO; |
| else |
| dev->MEAR_cache &= ~MEAR_MDIO; |
| |
| /* set the output bit */ |
| writel(dev->MEAR_cache, dev->base + MEAR); |
| readl(dev->base + MEAR); |
| |
| /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ |
| udelay(1); |
| |
| /* drive MDC high causing the data bit to be latched */ |
| dev->MEAR_cache |= MEAR_MDC; |
| writel(dev->MEAR_cache, dev->base + MEAR); |
| readl(dev->base + MEAR); |
| |
| /* Wait again... */ |
| udelay(1); |
| } |
| |
| static int ns83820_mii_read_bit(struct ns83820 *dev) |
| { |
| int bit; |
| |
| /* drive MDC low, disable output */ |
| dev->MEAR_cache &= ~MEAR_MDC; |
| dev->MEAR_cache &= ~MEAR_MDDIR; |
| writel(dev->MEAR_cache, dev->base + MEAR); |
| readl(dev->base + MEAR); |
| |
| /* Wait. Max clock rate is 2.5MHz, this way we come in under 1MHz */ |
| udelay(1); |
| |
| /* drive MDC high causing the data bit to be latched */ |
| bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0; |
| dev->MEAR_cache |= MEAR_MDC; |
| writel(dev->MEAR_cache, dev->base + MEAR); |
| |
| /* Wait again... */ |
| udelay(1); |
| |
| return bit; |
| } |
| |
| static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg) |
| { |
| unsigned data = 0; |
| int i; |
| |
| /* read some garbage so that we eventually sync up */ |
| for (i=0; i<64; i++) |
| ns83820_mii_read_bit(dev); |
| |
| ns83820_mii_write_bit(dev, 0); /* start */ |
| ns83820_mii_write_bit(dev, 1); |
| ns83820_mii_write_bit(dev, 1); /* opcode read */ |
| ns83820_mii_write_bit(dev, 0); |
| |
| /* write out the phy address: 5 bits, msb first */ |
| for (i=0; i<5; i++) |
| ns83820_mii_write_bit(dev, phy & (0x10 >> i)); |
| |
| /* write out the register address, 5 bits, msb first */ |
| for (i=0; i<5; i++) |
| ns83820_mii_write_bit(dev, reg & (0x10 >> i)); |
| |
| ns83820_mii_read_bit(dev); /* turn around cycles */ |
| ns83820_mii_read_bit(dev); |
| |
| /* read in the register data, 16 bits msb first */ |
| for (i=0; i<16; i++) { |
| data <<= 1; |
| data |= ns83820_mii_read_bit(dev); |
| } |
| |
| return data; |
| } |
| |
| static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data) |
| { |
| int i; |
| |
| /* read some garbage so that we eventually sync up */ |
| for (i=0; i<64; i++) |
| ns83820_mii_read_bit(dev); |
| |
| ns83820_mii_write_bit(dev, 0); /* start */ |
| ns83820_mii_write_bit(dev, 1); |
| ns83820_mii_write_bit(dev, 0); /* opcode read */ |
| ns83820_mii_write_bit(dev, 1); |
| |
| /* write out the phy address: 5 bits, msb first */ |
| for (i=0; i<5; i++) |
| ns83820_mii_write_bit(dev, phy & (0x10 >> i)); |
| |
| /* write out the register address, 5 bits, msb first */ |
| for (i=0; i<5; i++) |
| ns83820_mii_write_bit(dev, reg & (0x10 >> i)); |
| |
| ns83820_mii_read_bit(dev); /* turn around cycles */ |
| ns83820_mii_read_bit(dev); |
| |
| /* read in the register data, 16 bits msb first */ |
| for (i=0; i<16; i++) |
| ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1); |
| |
| return data; |
| } |
| |
| static void ns83820_probe_phy(struct net_device *ndev) |
| { |
| struct ns83820 *dev = PRIV(ndev); |
| static int first; |
| int i; |
| #define MII_PHYIDR1 0x02 |
| #define MII_PHYIDR2 0x03 |
| |
| #if 0 |
| if (!first) { |
| unsigned tmp; |
| ns83820_mii_read_reg(dev, 1, 0x09); |
| ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e); |
| |
| tmp = ns83820_mii_read_reg(dev, 1, 0x00); |
| ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000); |
| udelay(1300); |
| ns83820_mii_read_reg(dev, 1, 0x09); |
| } |
| #endif |
| first = 1; |
| |
| for (i=1; i<2; i++) { |
| int j; |
| unsigned a, b; |
| a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1); |
| b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2); |
| |
| //printk("%s: phy %d: 0x%04x 0x%04x\n", |
| // ndev->name, i, a, b); |
| |
| for (j=0; j<0x16; j+=4) { |
| dprintk("%s: [0x%02x] %04x %04x %04x %04x\n", |
| ndev->name, j, |
| ns83820_mii_read_reg(dev, i, 0 + j), |
| ns83820_mii_read_reg(dev, i, 1 + j), |
| ns83820_mii_read_reg(dev, i, 2 + j), |
| ns83820_mii_read_reg(dev, i, 3 + j) |
| ); |
| } |
| } |
| { |
| unsigned a, b; |
| /* read firmware version: memory addr is 0x8402 and 0x8403 */ |
| ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); |
| ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); |
| a = ns83820_mii_read_reg(dev, 1, 0x1d); |
| |
| ns83820_mii_write_reg(dev, 1, 0x16, 0x000d); |
| ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e); |
| b = ns83820_mii_read_reg(dev, 1, 0x1d); |
| dprintk("version: 0x%04x 0x%04x\n", a, b); |
| } |
| } |
| #endif |
| |
| static const struct net_device_ops netdev_ops = { |
| .ndo_open = ns83820_open, |
| .ndo_stop = ns83820_stop, |
| .ndo_start_xmit = ns83820_hard_start_xmit, |
| .ndo_get_stats = ns83820_get_stats, |
| .ndo_change_mtu = ns83820_change_mtu, |
| .ndo_set_rx_mode = ns83820_set_multicast, |
| .ndo_validate_addr = eth_validate_addr, |
| .ndo_set_mac_address = eth_mac_addr, |
| .ndo_tx_timeout = ns83820_tx_timeout, |
| }; |
| |
| static int ns83820_init_one(struct pci_dev *pci_dev, |
| const struct pci_device_id *id) |
| { |
| struct net_device *ndev; |
| struct ns83820 *dev; |
| long addr; |
| int err; |
| int using_dac = 0; |
| |
| /* See if we can set the dma mask early on; failure is fatal. */ |
| if (sizeof(dma_addr_t) == 8 && |
| !pci_set_dma_mask(pci_dev, DMA_BIT_MASK(64))) { |
| using_dac = 1; |
| } else if (!pci_set_dma_mask(pci_dev, DMA_BIT_MASK(32))) { |
| using_dac = 0; |
| } else { |
| dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n"); |
| return -ENODEV; |
| } |
| |
| ndev = alloc_etherdev(sizeof(struct ns83820)); |
| err = -ENOMEM; |
| if (!ndev) |
| goto out; |
| |
| dev = PRIV(ndev); |
| dev->ndev = ndev; |
| |
| spin_lock_init(&dev->rx_info.lock); |
| spin_lock_init(&dev->tx_lock); |
| spin_lock_init(&dev->misc_lock); |
| dev->pci_dev = pci_dev; |
| |
| SET_NETDEV_DEV(ndev, &pci_dev->dev); |
| |
| INIT_WORK(&dev->tq_refill, queue_refill); |
| tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev); |
| |
| err = pci_enable_device(pci_dev); |
| if (err) { |
| dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err); |
| goto out_free; |
| } |
| |
| pci_set_master(pci_dev); |
| addr = pci_resource_start(pci_dev, 1); |
| dev->base = ioremap_nocache(addr, PAGE_SIZE); |
| dev->tx_descs = pci_alloc_consistent(pci_dev, |
| 4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs); |
| dev->rx_info.descs = pci_alloc_consistent(pci_dev, |
| 4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs); |
| err = -ENOMEM; |
| if (!dev->base || !dev->tx_descs || !dev->rx_info.descs) |
| goto out_disable; |
| |
| dprintk("%p: %08lx %p: %08lx\n", |
| dev->tx_descs, (long)dev->tx_phy_descs, |
| dev->rx_info.descs, (long)dev->rx_info.phy_descs); |
| |
| ns83820_disable_interrupts(dev); |
| |
| dev->IMR_cache = 0; |
| |
| err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED, |
| DRV_NAME, ndev); |
| if (err) { |
| dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n", |
| pci_dev->irq, err); |
| goto out_disable; |
| } |
| |
| /* |
| * FIXME: we are holding rtnl_lock() over obscenely long area only |
| * because some of the setup code uses dev->name. It's Wrong(tm) - |
| * we should be using driver-specific names for all that stuff. |
| * For now that will do, but we really need to come back and kill |
| * most of the dev_alloc_name() users later. |
| */ |
| rtnl_lock(); |
| err = dev_alloc_name(ndev, ndev->name); |
| if (err < 0) { |
| dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err); |
| goto out_free_irq; |
| } |
| |
| printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n", |
| ndev->name, le32_to_cpu(readl(dev->base + 0x22c)), |
| pci_dev->subsystem_vendor, pci_dev->subsystem_device); |
| |
| ndev->netdev_ops = &netdev_ops; |
| SET_ETHTOOL_OPS(ndev, &ops); |
| ndev->watchdog_timeo = 5 * HZ; |
| pci_set_drvdata(pci_dev, ndev); |
| |
| ns83820_do_reset(dev, CR_RST); |
| |
| /* Must reset the ram bist before running it */ |
| writel(PTSCR_RBIST_RST, dev->base + PTSCR); |
| ns83820_run_bist(ndev, "sram bist", PTSCR_RBIST_EN, |
| PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL); |
| ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0, |
| PTSCR_EEBIST_FAIL); |
| ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0); |
| |
| /* I love config registers */ |
| dev->CFG_cache = readl(dev->base + CFG); |
| |
| if ((dev->CFG_cache & CFG_PCI64_DET)) { |
| printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n", |
| ndev->name); |
| /*dev->CFG_cache |= CFG_DATA64_EN;*/ |
| if (!(dev->CFG_cache & CFG_DATA64_EN)) |
| printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus. Disabled.\n", |
| ndev->name); |
| } else |
| dev->CFG_cache &= ~(CFG_DATA64_EN); |
| |
| dev->CFG_cache &= (CFG_TBI_EN | CFG_MRM_DIS | CFG_MWI_DIS | |
| CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 | |
| CFG_M64ADDR); |
| dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS | |
| CFG_EXTSTS_EN | CFG_EXD | CFG_PESEL; |
| dev->CFG_cache |= CFG_REQALG; |
| dev->CFG_cache |= CFG_POW; |
| dev->CFG_cache |= CFG_TMRTEST; |
| |
| /* When compiled with 64 bit addressing, we must always enable |
| * the 64 bit descriptor format. |
| */ |
| if (sizeof(dma_addr_t) == 8) |
| dev->CFG_cache |= CFG_M64ADDR; |
| if (using_dac) |
| dev->CFG_cache |= CFG_T64ADDR; |
| |
| /* Big endian mode does not seem to do what the docs suggest */ |
| dev->CFG_cache &= ~CFG_BEM; |
| |
| /* setup optical transceiver if we have one */ |
| if (dev->CFG_cache & CFG_TBI_EN) { |
| printk(KERN_INFO "%s: enabling optical transceiver\n", |
| ndev->name); |
| writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR); |
| |
| /* setup auto negotiation feature advertisement */ |
| writel(readl(dev->base + TANAR) |
| | TANAR_HALF_DUP | TANAR_FULL_DUP, |
| dev->base + TANAR); |
| |
| /* start auto negotiation */ |
| writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN, |
| dev->base + TBICR); |
| writel(TBICR_MR_AN_ENABLE, dev->base + TBICR); |
| dev->linkstate = LINK_AUTONEGOTIATE; |
| |
| dev->CFG_cache |= CFG_MODE_1000; |
| } |
| |
| writel(dev->CFG_cache, dev->base + CFG); |
| dprintk("CFG: %08x\n", dev->CFG_cache); |
| |
| if (reset_phy) { |
| printk(KERN_INFO "%s: resetting phy\n", ndev->name); |
| writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG); |
| msleep(10); |
| writel(dev->CFG_cache, dev->base + CFG); |
| } |
| |
| #if 0 /* Huh? This sets the PCI latency register. Should be done via |
| * the PCI layer. FIXME. |
| */ |
| if (readl(dev->base + SRR)) |
| writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c); |
| #endif |
| |
| /* Note! The DMA burst size interacts with packet |
| * transmission, such that the largest packet that |
| * can be transmitted is 8192 - FLTH - burst size. |
| * If only the transmit fifo was larger... |
| */ |
| /* Ramit : 1024 DMA is not a good idea, it ends up banging |
| * some DELL and COMPAQ SMP systems */ |
| writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512 |
| | ((1600 / 32) * 0x100), |
| dev->base + TXCFG); |
| |
| /* Flush the interrupt holdoff timer */ |
| writel(0x000, dev->base + IHR); |
| writel(0x100, dev->base + IHR); |
| writel(0x000, dev->base + IHR); |
| |
| /* Set Rx to full duplex, don't accept runt, errored, long or length |
| * range errored packets. Use 512 byte DMA. |
| */ |
| /* Ramit : 1024 DMA is not a good idea, it ends up banging |
| * some DELL and COMPAQ SMP systems |
| * Turn on ALP, only we are accpeting Jumbo Packets */ |
| writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD |
| | RXCFG_STRIPCRC |
| //| RXCFG_ALP |
| | (RXCFG_MXDMA512) | 0, dev->base + RXCFG); |
| |
| /* Disable priority queueing */ |
| writel(0, dev->base + PQCR); |
| |
| /* Enable IP checksum validation and detetion of VLAN headers. |
| * Note: do not set the reject options as at least the 0x102 |
| * revision of the chip does not properly accept IP fragments |
| * at least for UDP. |
| */ |
| /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since |
| * the MAC it calculates the packetsize AFTER stripping the VLAN |
| * header, and if a VLAN Tagged packet of 64 bytes is received (like |
| * a ping with a VLAN header) then the card, strips the 4 byte VLAN |
| * tag and then checks the packet size, so if RXCFG_ARP is not enabled, |
| * it discrards it!. These guys...... |
| * also turn on tag stripping if hardware acceleration is enabled |
| */ |
| #ifdef NS83820_VLAN_ACCEL_SUPPORT |
| #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN) |
| #else |
| #define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN) |
| #endif |
| writel(VRCR_INIT_VALUE, dev->base + VRCR); |
| |
| /* Enable per-packet TCP/UDP/IP checksumming |
| * and per packet vlan tag insertion if |
| * vlan hardware acceleration is enabled |
| */ |
| #ifdef NS83820_VLAN_ACCEL_SUPPORT |
| #define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI) |
| #else |
| #define VTCR_INIT_VALUE VTCR_PPCHK |
| #endif |
| writel(VTCR_INIT_VALUE, dev->base + VTCR); |
| |
| /* Ramit : Enable async and sync pause frames */ |
| /* writel(0, dev->base + PCR); */ |
| writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K | |
| PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT), |
| dev->base + PCR); |
| |
| /* Disable Wake On Lan */ |
| writel(0, dev->base + WCSR); |
| |
| ns83820_getmac(dev, ndev->dev_addr); |
| |
| /* Yes, we support dumb IP checksum on transmit */ |
| ndev->features |= NETIF_F_SG; |
| ndev->features |= NETIF_F_IP_CSUM; |
| |
| #ifdef NS83820_VLAN_ACCEL_SUPPORT |
| /* We also support hardware vlan acceleration */ |
| ndev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; |
| #endif |
| |
| if (using_dac) { |
| printk(KERN_INFO "%s: using 64 bit addressing.\n", |
| ndev->name); |
| ndev->features |= NETIF_F_HIGHDMA; |
| } |
| |
| printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %pM io=0x%08lx irq=%d f=%s\n", |
| ndev->name, |
| (unsigned)readl(dev->base + SRR) >> 8, |
| (unsigned)readl(dev->base + SRR) & 0xff, |
| ndev->dev_addr, addr, pci_dev->irq, |
| (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg" |
| ); |
| |
| #ifdef PHY_CODE_IS_FINISHED |
| ns83820_probe_phy(ndev); |
| #endif |
| |
| err = register_netdevice(ndev); |
| if (err) { |
| printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err); |
| goto out_cleanup; |
| } |
| rtnl_unlock(); |
| |
| return 0; |
| |
| out_cleanup: |
| ns83820_disable_interrupts(dev); /* paranoia */ |
| out_free_irq: |
| rtnl_unlock(); |
| free_irq(pci_dev->irq, ndev); |
| out_disable: |
| if (dev->base) |
| iounmap(dev->base); |
| pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs); |
| pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs); |
| pci_disable_device(pci_dev); |
| out_free: |
| free_netdev(ndev); |
| pci_set_drvdata(pci_dev, NULL); |
| out: |
| return err; |
| } |
| |
| static void ns83820_remove_one(struct pci_dev *pci_dev) |
| { |
| struct net_device *ndev = pci_get_drvdata(pci_dev); |
| struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */ |
| |
| if (!ndev) /* paranoia */ |
| return; |
| |
| ns83820_disable_interrupts(dev); /* paranoia */ |
| |
| unregister_netdev(ndev); |
| free_irq(dev->pci_dev->irq, ndev); |
| iounmap(dev->base); |
| pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC, |
| dev->tx_descs, dev->tx_phy_descs); |
| pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC, |
| dev->rx_info.descs, dev->rx_info.phy_descs); |
| pci_disable_device(dev->pci_dev); |
| free_netdev(ndev); |
| pci_set_drvdata(pci_dev, NULL); |
| } |
| |
| static DEFINE_PCI_DEVICE_TABLE(ns83820_pci_tbl) = { |
| { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, }, |
| { 0, }, |
| }; |
| |
| static struct pci_driver driver = { |
| .name = "ns83820", |
| .id_table = ns83820_pci_tbl, |
| .probe = ns83820_init_one, |
| .remove = ns83820_remove_one, |
| #if 0 /* FIXME: implement */ |
| .suspend = , |
| .resume = , |
| #endif |
| }; |
| |
| |
| static int __init ns83820_init(void) |
| { |
| printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n"); |
| return pci_register_driver(&driver); |
| } |
| |
| static void __exit ns83820_exit(void) |
| { |
| pci_unregister_driver(&driver); |
| } |
| |
| MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>"); |
| MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver"); |
| MODULE_LICENSE("GPL"); |
| |
| MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl); |
| |
| module_param(lnksts, int, 0); |
| MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit"); |
| |
| module_param(ihr, int, 0); |
| MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)"); |
| |
| module_param(reset_phy, int, 0); |
| MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup"); |
| |
| module_init(ns83820_init); |
| module_exit(ns83820_exit); |