| /* |
| * Copyright 2010 Tilera Corporation. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License |
| * as published by the Free Software Foundation, version 2. |
| * |
| * This program is distributed in the hope that it will be useful, but |
| * WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or |
| * NON INFRINGEMENT. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/seq_file.h> |
| #include <linux/interrupt.h> |
| #include <linux/irq.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/uaccess.h> |
| #include <hv/drv_pcie_rc_intf.h> |
| #include <arch/spr_def.h> |
| #include <asm/traps.h> |
| |
| /* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */ |
| #define IS_HW_CLEARED 1 |
| |
| /* |
| * The set of interrupts we enable for arch_local_irq_enable(). |
| * This is initialized to have just a single interrupt that the kernel |
| * doesn't actually use as a sentinel. During kernel init, |
| * interrupts are added as the kernel gets prepared to support them. |
| * NOTE: we could probably initialize them all statically up front. |
| */ |
| DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) = |
| INITIAL_INTERRUPTS_ENABLED; |
| EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask); |
| |
| /* Define per-tile device interrupt statistics state. */ |
| DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp; |
| EXPORT_PER_CPU_SYMBOL(irq_stat); |
| |
| /* |
| * Define per-tile irq disable mask; the hardware/HV only has a single |
| * mask that we use to implement both masking and disabling. |
| */ |
| static DEFINE_PER_CPU(unsigned long, irq_disable_mask) |
| ____cacheline_internodealigned_in_smp; |
| |
| /* |
| * Per-tile IRQ nesting depth. Used to make sure we enable newly |
| * enabled IRQs before exiting the outermost interrupt. |
| */ |
| static DEFINE_PER_CPU(int, irq_depth); |
| |
| /* State for allocating IRQs on Gx. */ |
| #if CHIP_HAS_IPI() |
| static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE); |
| static DEFINE_SPINLOCK(available_irqs_lock); |
| #endif |
| |
| #if CHIP_HAS_IPI() |
| /* Use SPRs to manipulate device interrupts. */ |
| #define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_K, irq_mask) |
| #define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_K, irq_mask) |
| #define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_K, irq_mask) |
| #else |
| /* Use HV to manipulate device interrupts. */ |
| #define mask_irqs(irq_mask) hv_disable_intr(irq_mask) |
| #define unmask_irqs(irq_mask) hv_enable_intr(irq_mask) |
| #define clear_irqs(irq_mask) hv_clear_intr(irq_mask) |
| #endif |
| |
| /* |
| * The interrupt handling path, implemented in terms of HV interrupt |
| * emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx. |
| */ |
| void tile_dev_intr(struct pt_regs *regs, int intnum) |
| { |
| int depth = __get_cpu_var(irq_depth)++; |
| unsigned long original_irqs; |
| unsigned long remaining_irqs; |
| struct pt_regs *old_regs; |
| |
| #if CHIP_HAS_IPI() |
| /* |
| * Pending interrupts are listed in an SPR. We might be |
| * nested, so be sure to only handle irqs that weren't already |
| * masked by a previous interrupt. Then, mask out the ones |
| * we're going to handle. |
| */ |
| unsigned long masked = __insn_mfspr(SPR_IPI_MASK_K); |
| original_irqs = __insn_mfspr(SPR_IPI_EVENT_K) & ~masked; |
| __insn_mtspr(SPR_IPI_MASK_SET_K, original_irqs); |
| #else |
| /* |
| * Hypervisor performs the equivalent of the Gx code above and |
| * then puts the pending interrupt mask into a system save reg |
| * for us to find. |
| */ |
| original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_K_3); |
| #endif |
| remaining_irqs = original_irqs; |
| |
| /* Track time spent here in an interrupt context. */ |
| old_regs = set_irq_regs(regs); |
| irq_enter(); |
| |
| #ifdef CONFIG_DEBUG_STACKOVERFLOW |
| /* Debugging check for stack overflow: less than 1/8th stack free? */ |
| { |
| long sp = stack_pointer - (long) current_thread_info(); |
| if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) { |
| pr_emerg("tile_dev_intr: " |
| "stack overflow: %ld\n", |
| sp - sizeof(struct thread_info)); |
| dump_stack(); |
| } |
| } |
| #endif |
| while (remaining_irqs) { |
| unsigned long irq = __ffs(remaining_irqs); |
| remaining_irqs &= ~(1UL << irq); |
| |
| /* Count device irqs; Linux IPIs are counted elsewhere. */ |
| if (irq != IRQ_RESCHEDULE) |
| __get_cpu_var(irq_stat).irq_dev_intr_count++; |
| |
| generic_handle_irq(irq); |
| } |
| |
| /* |
| * If we weren't nested, turn on all enabled interrupts, |
| * including any that were reenabled during interrupt |
| * handling. |
| */ |
| if (depth == 0) |
| unmask_irqs(~__get_cpu_var(irq_disable_mask)); |
| |
| __get_cpu_var(irq_depth)--; |
| |
| /* |
| * Track time spent against the current process again and |
| * process any softirqs if they are waiting. |
| */ |
| irq_exit(); |
| set_irq_regs(old_regs); |
| } |
| |
| |
| /* |
| * Remove an irq from the disabled mask. If we're in an interrupt |
| * context, defer enabling the HW interrupt until we leave. |
| */ |
| void enable_percpu_irq(unsigned int irq) |
| { |
| get_cpu_var(irq_disable_mask) &= ~(1UL << irq); |
| if (__get_cpu_var(irq_depth) == 0) |
| unmask_irqs(1UL << irq); |
| put_cpu_var(irq_disable_mask); |
| } |
| EXPORT_SYMBOL(enable_percpu_irq); |
| |
| /* |
| * Add an irq to the disabled mask. We disable the HW interrupt |
| * immediately so that there's no possibility of it firing. If we're |
| * in an interrupt context, the return path is careful to avoid |
| * unmasking a newly disabled interrupt. |
| */ |
| void disable_percpu_irq(unsigned int irq) |
| { |
| get_cpu_var(irq_disable_mask) |= (1UL << irq); |
| mask_irqs(1UL << irq); |
| put_cpu_var(irq_disable_mask); |
| } |
| EXPORT_SYMBOL(disable_percpu_irq); |
| |
| /* Mask an interrupt. */ |
| static void tile_irq_chip_mask(struct irq_data *d) |
| { |
| mask_irqs(1UL << d->irq); |
| } |
| |
| /* Unmask an interrupt. */ |
| static void tile_irq_chip_unmask(struct irq_data *d) |
| { |
| unmask_irqs(1UL << d->irq); |
| } |
| |
| /* |
| * Clear an interrupt before processing it so that any new assertions |
| * will trigger another irq. |
| */ |
| static void tile_irq_chip_ack(struct irq_data *d) |
| { |
| if ((unsigned long)irq_data_get_irq_chip_data(d) != IS_HW_CLEARED) |
| clear_irqs(1UL << d->irq); |
| } |
| |
| /* |
| * For per-cpu interrupts, we need to avoid unmasking any interrupts |
| * that we disabled via disable_percpu_irq(). |
| */ |
| static void tile_irq_chip_eoi(struct irq_data *d) |
| { |
| if (!(__get_cpu_var(irq_disable_mask) & (1UL << d->irq))) |
| unmask_irqs(1UL << d->irq); |
| } |
| |
| static struct irq_chip tile_irq_chip = { |
| .name = "tile_irq_chip", |
| .irq_ack = tile_irq_chip_ack, |
| .irq_eoi = tile_irq_chip_eoi, |
| .irq_mask = tile_irq_chip_mask, |
| .irq_unmask = tile_irq_chip_unmask, |
| }; |
| |
| void __init init_IRQ(void) |
| { |
| ipi_init(); |
| } |
| |
| void __cpuinit setup_irq_regs(void) |
| { |
| /* Enable interrupt delivery. */ |
| unmask_irqs(~0UL); |
| #if CHIP_HAS_IPI() |
| arch_local_irq_unmask(INT_IPI_K); |
| #endif |
| } |
| |
| void tile_irq_activate(unsigned int irq, int tile_irq_type) |
| { |
| /* |
| * We use handle_level_irq() by default because the pending |
| * interrupt vector (whether modeled by the HV on TILE64 and |
| * TILEPro or implemented in hardware on TILE-Gx) has |
| * level-style semantics for each bit. An interrupt fires |
| * whenever a bit is high, not just at edges. |
| */ |
| irq_flow_handler_t handle = handle_level_irq; |
| if (tile_irq_type == TILE_IRQ_PERCPU) |
| handle = handle_percpu_irq; |
| set_irq_chip_and_handler(irq, &tile_irq_chip, handle); |
| |
| /* |
| * Flag interrupts that are hardware-cleared so that ack() |
| * won't clear them. |
| */ |
| if (tile_irq_type == TILE_IRQ_HW_CLEAR) |
| set_irq_chip_data(irq, (void *)IS_HW_CLEARED); |
| } |
| EXPORT_SYMBOL(tile_irq_activate); |
| |
| |
| void ack_bad_irq(unsigned int irq) |
| { |
| pr_err("unexpected IRQ trap at vector %02x\n", irq); |
| } |
| |
| /* |
| * Generic, controller-independent functions: |
| */ |
| |
| int show_interrupts(struct seq_file *p, void *v) |
| { |
| int i = *(loff_t *) v, j; |
| struct irqaction *action; |
| unsigned long flags; |
| |
| if (i == 0) { |
| seq_printf(p, " "); |
| for (j = 0; j < NR_CPUS; j++) |
| if (cpu_online(j)) |
| seq_printf(p, "CPU%-8d", j); |
| seq_putc(p, '\n'); |
| } |
| |
| if (i < NR_IRQS) { |
| raw_spin_lock_irqsave(&irq_desc[i].lock, flags); |
| action = irq_desc[i].action; |
| if (!action) |
| goto skip; |
| seq_printf(p, "%3d: ", i); |
| #ifndef CONFIG_SMP |
| seq_printf(p, "%10u ", kstat_irqs(i)); |
| #else |
| for_each_online_cpu(j) |
| seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); |
| #endif |
| seq_printf(p, " %14s", irq_desc[i].chip->name); |
| seq_printf(p, " %s", action->name); |
| |
| for (action = action->next; action; action = action->next) |
| seq_printf(p, ", %s", action->name); |
| |
| seq_putc(p, '\n'); |
| skip: |
| raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); |
| } |
| return 0; |
| } |
| |
| #if CHIP_HAS_IPI() |
| int create_irq(void) |
| { |
| unsigned long flags; |
| int result; |
| |
| spin_lock_irqsave(&available_irqs_lock, flags); |
| if (available_irqs == 0) |
| result = -ENOMEM; |
| else { |
| result = __ffs(available_irqs); |
| available_irqs &= ~(1UL << result); |
| dynamic_irq_init(result); |
| } |
| spin_unlock_irqrestore(&available_irqs_lock, flags); |
| |
| return result; |
| } |
| EXPORT_SYMBOL(create_irq); |
| |
| void destroy_irq(unsigned int irq) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&available_irqs_lock, flags); |
| available_irqs |= (1UL << irq); |
| dynamic_irq_cleanup(irq); |
| spin_unlock_irqrestore(&available_irqs_lock, flags); |
| } |
| EXPORT_SYMBOL(destroy_irq); |
| #endif |