| /* |
| * NVM Express device driver |
| * Copyright (c) 2011-2014, Intel Corporation. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| */ |
| |
| #include <linux/aer.h> |
| #include <linux/bitops.h> |
| #include <linux/blkdev.h> |
| #include <linux/blk-mq.h> |
| #include <linux/cpu.h> |
| #include <linux/delay.h> |
| #include <linux/errno.h> |
| #include <linux/fs.h> |
| #include <linux/genhd.h> |
| #include <linux/hdreg.h> |
| #include <linux/idr.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/kdev_t.h> |
| #include <linux/kernel.h> |
| #include <linux/mm.h> |
| #include <linux/module.h> |
| #include <linux/moduleparam.h> |
| #include <linux/mutex.h> |
| #include <linux/pci.h> |
| #include <linux/poison.h> |
| #include <linux/ptrace.h> |
| #include <linux/sched.h> |
| #include <linux/slab.h> |
| #include <linux/t10-pi.h> |
| #include <linux/timer.h> |
| #include <linux/types.h> |
| #include <linux/io-64-nonatomic-lo-hi.h> |
| #include <asm/unaligned.h> |
| |
| #include "nvme.h" |
| |
| #define NVME_Q_DEPTH 1024 |
| #define NVME_AQ_DEPTH 256 |
| #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command)) |
| #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion)) |
| |
| /* |
| * We handle AEN commands ourselves and don't even let the |
| * block layer know about them. |
| */ |
| #define NVME_AQ_BLKMQ_DEPTH (NVME_AQ_DEPTH - NVME_NR_AERS) |
| |
| static int use_threaded_interrupts; |
| module_param(use_threaded_interrupts, int, 0); |
| |
| static bool use_cmb_sqes = true; |
| module_param(use_cmb_sqes, bool, 0644); |
| MODULE_PARM_DESC(use_cmb_sqes, "use controller's memory buffer for I/O SQes"); |
| |
| static struct workqueue_struct *nvme_workq; |
| |
| struct nvme_dev; |
| struct nvme_queue; |
| |
| static int nvme_reset(struct nvme_dev *dev); |
| static void nvme_process_cq(struct nvme_queue *nvmeq); |
| static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown); |
| |
| /* |
| * Represents an NVM Express device. Each nvme_dev is a PCI function. |
| */ |
| struct nvme_dev { |
| struct nvme_queue **queues; |
| struct blk_mq_tag_set tagset; |
| struct blk_mq_tag_set admin_tagset; |
| u32 __iomem *dbs; |
| struct device *dev; |
| struct dma_pool *prp_page_pool; |
| struct dma_pool *prp_small_pool; |
| unsigned queue_count; |
| unsigned online_queues; |
| unsigned max_qid; |
| int q_depth; |
| u32 db_stride; |
| struct msix_entry *entry; |
| void __iomem *bar; |
| struct work_struct reset_work; |
| struct work_struct remove_work; |
| struct timer_list watchdog_timer; |
| struct mutex shutdown_lock; |
| bool subsystem; |
| void __iomem *cmb; |
| dma_addr_t cmb_dma_addr; |
| u64 cmb_size; |
| u32 cmbsz; |
| struct nvme_ctrl ctrl; |
| struct completion ioq_wait; |
| }; |
| |
| static inline struct nvme_dev *to_nvme_dev(struct nvme_ctrl *ctrl) |
| { |
| return container_of(ctrl, struct nvme_dev, ctrl); |
| } |
| |
| /* |
| * An NVM Express queue. Each device has at least two (one for admin |
| * commands and one for I/O commands). |
| */ |
| struct nvme_queue { |
| struct device *q_dmadev; |
| struct nvme_dev *dev; |
| char irqname[24]; /* nvme4294967295-65535\0 */ |
| spinlock_t q_lock; |
| struct nvme_command *sq_cmds; |
| struct nvme_command __iomem *sq_cmds_io; |
| volatile struct nvme_completion *cqes; |
| struct blk_mq_tags **tags; |
| dma_addr_t sq_dma_addr; |
| dma_addr_t cq_dma_addr; |
| u32 __iomem *q_db; |
| u16 q_depth; |
| s16 cq_vector; |
| u16 sq_tail; |
| u16 cq_head; |
| u16 qid; |
| u8 cq_phase; |
| u8 cqe_seen; |
| }; |
| |
| /* |
| * The nvme_iod describes the data in an I/O, including the list of PRP |
| * entries. You can't see it in this data structure because C doesn't let |
| * me express that. Use nvme_init_iod to ensure there's enough space |
| * allocated to store the PRP list. |
| */ |
| struct nvme_iod { |
| struct nvme_queue *nvmeq; |
| int aborted; |
| int npages; /* In the PRP list. 0 means small pool in use */ |
| int nents; /* Used in scatterlist */ |
| int length; /* Of data, in bytes */ |
| dma_addr_t first_dma; |
| struct scatterlist meta_sg; /* metadata requires single contiguous buffer */ |
| struct scatterlist *sg; |
| struct scatterlist inline_sg[0]; |
| }; |
| |
| /* |
| * Check we didin't inadvertently grow the command struct |
| */ |
| static inline void _nvme_check_size(void) |
| { |
| BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_features) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_command) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096); |
| BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096); |
| BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64); |
| BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512); |
| } |
| |
| /* |
| * Max size of iod being embedded in the request payload |
| */ |
| #define NVME_INT_PAGES 2 |
| #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->ctrl.page_size) |
| |
| /* |
| * Will slightly overestimate the number of pages needed. This is OK |
| * as it only leads to a small amount of wasted memory for the lifetime of |
| * the I/O. |
| */ |
| static int nvme_npages(unsigned size, struct nvme_dev *dev) |
| { |
| unsigned nprps = DIV_ROUND_UP(size + dev->ctrl.page_size, |
| dev->ctrl.page_size); |
| return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8); |
| } |
| |
| static unsigned int nvme_iod_alloc_size(struct nvme_dev *dev, |
| unsigned int size, unsigned int nseg) |
| { |
| return sizeof(__le64 *) * nvme_npages(size, dev) + |
| sizeof(struct scatterlist) * nseg; |
| } |
| |
| static unsigned int nvme_cmd_size(struct nvme_dev *dev) |
| { |
| return sizeof(struct nvme_iod) + |
| nvme_iod_alloc_size(dev, NVME_INT_BYTES(dev), NVME_INT_PAGES); |
| } |
| |
| static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| |
| WARN_ON(hctx_idx != 0); |
| WARN_ON(dev->admin_tagset.tags[0] != hctx->tags); |
| WARN_ON(nvmeq->tags); |
| |
| hctx->driver_data = nvmeq; |
| nvmeq->tags = &dev->admin_tagset.tags[0]; |
| return 0; |
| } |
| |
| static void nvme_admin_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx) |
| { |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| |
| nvmeq->tags = NULL; |
| } |
| |
| static int nvme_admin_init_request(void *data, struct request *req, |
| unsigned int hctx_idx, unsigned int rq_idx, |
| unsigned int numa_node) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| |
| BUG_ON(!nvmeq); |
| iod->nvmeq = nvmeq; |
| return 0; |
| } |
| |
| static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data, |
| unsigned int hctx_idx) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; |
| |
| if (!nvmeq->tags) |
| nvmeq->tags = &dev->tagset.tags[hctx_idx]; |
| |
| WARN_ON(dev->tagset.tags[hctx_idx] != hctx->tags); |
| hctx->driver_data = nvmeq; |
| return 0; |
| } |
| |
| static int nvme_init_request(void *data, struct request *req, |
| unsigned int hctx_idx, unsigned int rq_idx, |
| unsigned int numa_node) |
| { |
| struct nvme_dev *dev = data; |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1]; |
| |
| BUG_ON(!nvmeq); |
| iod->nvmeq = nvmeq; |
| return 0; |
| } |
| |
| /** |
| * __nvme_submit_cmd() - Copy a command into a queue and ring the doorbell |
| * @nvmeq: The queue to use |
| * @cmd: The command to send |
| * |
| * Safe to use from interrupt context |
| */ |
| static void __nvme_submit_cmd(struct nvme_queue *nvmeq, |
| struct nvme_command *cmd) |
| { |
| u16 tail = nvmeq->sq_tail; |
| |
| if (nvmeq->sq_cmds_io) |
| memcpy_toio(&nvmeq->sq_cmds_io[tail], cmd, sizeof(*cmd)); |
| else |
| memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd)); |
| |
| if (++tail == nvmeq->q_depth) |
| tail = 0; |
| writel(tail, nvmeq->q_db); |
| nvmeq->sq_tail = tail; |
| } |
| |
| static __le64 **iod_list(struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| return (__le64 **)(iod->sg + req->nr_phys_segments); |
| } |
| |
| static int nvme_init_iod(struct request *rq, unsigned size, |
| struct nvme_dev *dev) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(rq); |
| int nseg = rq->nr_phys_segments; |
| |
| if (nseg > NVME_INT_PAGES || size > NVME_INT_BYTES(dev)) { |
| iod->sg = kmalloc(nvme_iod_alloc_size(dev, size, nseg), GFP_ATOMIC); |
| if (!iod->sg) |
| return BLK_MQ_RQ_QUEUE_BUSY; |
| } else { |
| iod->sg = iod->inline_sg; |
| } |
| |
| iod->aborted = 0; |
| iod->npages = -1; |
| iod->nents = 0; |
| iod->length = size; |
| |
| if (!(rq->cmd_flags & REQ_DONTPREP)) { |
| rq->retries = 0; |
| rq->cmd_flags |= REQ_DONTPREP; |
| } |
| return 0; |
| } |
| |
| static void nvme_free_iod(struct nvme_dev *dev, struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| const int last_prp = dev->ctrl.page_size / 8 - 1; |
| int i; |
| __le64 **list = iod_list(req); |
| dma_addr_t prp_dma = iod->first_dma; |
| |
| nvme_cleanup_cmd(req); |
| |
| if (iod->npages == 0) |
| dma_pool_free(dev->prp_small_pool, list[0], prp_dma); |
| for (i = 0; i < iod->npages; i++) { |
| __le64 *prp_list = list[i]; |
| dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]); |
| dma_pool_free(dev->prp_page_pool, prp_list, prp_dma); |
| prp_dma = next_prp_dma; |
| } |
| |
| if (iod->sg != iod->inline_sg) |
| kfree(iod->sg); |
| } |
| |
| #ifdef CONFIG_BLK_DEV_INTEGRITY |
| static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| if (be32_to_cpu(pi->ref_tag) == v) |
| pi->ref_tag = cpu_to_be32(p); |
| } |
| |
| static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| if (be32_to_cpu(pi->ref_tag) == p) |
| pi->ref_tag = cpu_to_be32(v); |
| } |
| |
| /** |
| * nvme_dif_remap - remaps ref tags to bip seed and physical lba |
| * |
| * The virtual start sector is the one that was originally submitted by the |
| * block layer. Due to partitioning, MD/DM cloning, etc. the actual physical |
| * start sector may be different. Remap protection information to match the |
| * physical LBA on writes, and back to the original seed on reads. |
| * |
| * Type 0 and 3 do not have a ref tag, so no remapping required. |
| */ |
| static void nvme_dif_remap(struct request *req, |
| void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) |
| { |
| struct nvme_ns *ns = req->rq_disk->private_data; |
| struct bio_integrity_payload *bip; |
| struct t10_pi_tuple *pi; |
| void *p, *pmap; |
| u32 i, nlb, ts, phys, virt; |
| |
| if (!ns->pi_type || ns->pi_type == NVME_NS_DPS_PI_TYPE3) |
| return; |
| |
| bip = bio_integrity(req->bio); |
| if (!bip) |
| return; |
| |
| pmap = kmap_atomic(bip->bip_vec->bv_page) + bip->bip_vec->bv_offset; |
| |
| p = pmap; |
| virt = bip_get_seed(bip); |
| phys = nvme_block_nr(ns, blk_rq_pos(req)); |
| nlb = (blk_rq_bytes(req) >> ns->lba_shift); |
| ts = ns->disk->queue->integrity.tuple_size; |
| |
| for (i = 0; i < nlb; i++, virt++, phys++) { |
| pi = (struct t10_pi_tuple *)p; |
| dif_swap(phys, virt, pi); |
| p += ts; |
| } |
| kunmap_atomic(pmap); |
| } |
| #else /* CONFIG_BLK_DEV_INTEGRITY */ |
| static void nvme_dif_remap(struct request *req, |
| void (*dif_swap)(u32 p, u32 v, struct t10_pi_tuple *pi)) |
| { |
| } |
| static void nvme_dif_prep(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| } |
| static void nvme_dif_complete(u32 p, u32 v, struct t10_pi_tuple *pi) |
| { |
| } |
| #endif |
| |
| static bool nvme_setup_prps(struct nvme_dev *dev, struct request *req, |
| int total_len) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct dma_pool *pool; |
| int length = total_len; |
| struct scatterlist *sg = iod->sg; |
| int dma_len = sg_dma_len(sg); |
| u64 dma_addr = sg_dma_address(sg); |
| u32 page_size = dev->ctrl.page_size; |
| int offset = dma_addr & (page_size - 1); |
| __le64 *prp_list; |
| __le64 **list = iod_list(req); |
| dma_addr_t prp_dma; |
| int nprps, i; |
| |
| length -= (page_size - offset); |
| if (length <= 0) |
| return true; |
| |
| dma_len -= (page_size - offset); |
| if (dma_len) { |
| dma_addr += (page_size - offset); |
| } else { |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| if (length <= page_size) { |
| iod->first_dma = dma_addr; |
| return true; |
| } |
| |
| nprps = DIV_ROUND_UP(length, page_size); |
| if (nprps <= (256 / 8)) { |
| pool = dev->prp_small_pool; |
| iod->npages = 0; |
| } else { |
| pool = dev->prp_page_pool; |
| iod->npages = 1; |
| } |
| |
| prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); |
| if (!prp_list) { |
| iod->first_dma = dma_addr; |
| iod->npages = -1; |
| return false; |
| } |
| list[0] = prp_list; |
| iod->first_dma = prp_dma; |
| i = 0; |
| for (;;) { |
| if (i == page_size >> 3) { |
| __le64 *old_prp_list = prp_list; |
| prp_list = dma_pool_alloc(pool, GFP_ATOMIC, &prp_dma); |
| if (!prp_list) |
| return false; |
| list[iod->npages++] = prp_list; |
| prp_list[0] = old_prp_list[i - 1]; |
| old_prp_list[i - 1] = cpu_to_le64(prp_dma); |
| i = 1; |
| } |
| prp_list[i++] = cpu_to_le64(dma_addr); |
| dma_len -= page_size; |
| dma_addr += page_size; |
| length -= page_size; |
| if (length <= 0) |
| break; |
| if (dma_len > 0) |
| continue; |
| BUG_ON(dma_len < 0); |
| sg = sg_next(sg); |
| dma_addr = sg_dma_address(sg); |
| dma_len = sg_dma_len(sg); |
| } |
| |
| return true; |
| } |
| |
| static int nvme_map_data(struct nvme_dev *dev, struct request *req, |
| unsigned size, struct nvme_command *cmnd) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct request_queue *q = req->q; |
| enum dma_data_direction dma_dir = rq_data_dir(req) ? |
| DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| int ret = BLK_MQ_RQ_QUEUE_ERROR; |
| |
| sg_init_table(iod->sg, req->nr_phys_segments); |
| iod->nents = blk_rq_map_sg(q, req, iod->sg); |
| if (!iod->nents) |
| goto out; |
| |
| ret = BLK_MQ_RQ_QUEUE_BUSY; |
| if (!dma_map_sg(dev->dev, iod->sg, iod->nents, dma_dir)) |
| goto out; |
| |
| if (!nvme_setup_prps(dev, req, size)) |
| goto out_unmap; |
| |
| ret = BLK_MQ_RQ_QUEUE_ERROR; |
| if (blk_integrity_rq(req)) { |
| if (blk_rq_count_integrity_sg(q, req->bio) != 1) |
| goto out_unmap; |
| |
| sg_init_table(&iod->meta_sg, 1); |
| if (blk_rq_map_integrity_sg(q, req->bio, &iod->meta_sg) != 1) |
| goto out_unmap; |
| |
| if (rq_data_dir(req)) |
| nvme_dif_remap(req, nvme_dif_prep); |
| |
| if (!dma_map_sg(dev->dev, &iod->meta_sg, 1, dma_dir)) |
| goto out_unmap; |
| } |
| |
| cmnd->rw.dptr.prp1 = cpu_to_le64(sg_dma_address(iod->sg)); |
| cmnd->rw.dptr.prp2 = cpu_to_le64(iod->first_dma); |
| if (blk_integrity_rq(req)) |
| cmnd->rw.metadata = cpu_to_le64(sg_dma_address(&iod->meta_sg)); |
| return BLK_MQ_RQ_QUEUE_OK; |
| |
| out_unmap: |
| dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); |
| out: |
| return ret; |
| } |
| |
| static void nvme_unmap_data(struct nvme_dev *dev, struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| enum dma_data_direction dma_dir = rq_data_dir(req) ? |
| DMA_TO_DEVICE : DMA_FROM_DEVICE; |
| |
| if (iod->nents) { |
| dma_unmap_sg(dev->dev, iod->sg, iod->nents, dma_dir); |
| if (blk_integrity_rq(req)) { |
| if (!rq_data_dir(req)) |
| nvme_dif_remap(req, nvme_dif_complete); |
| dma_unmap_sg(dev->dev, &iod->meta_sg, 1, dma_dir); |
| } |
| } |
| |
| nvme_free_iod(dev, req); |
| } |
| |
| /* |
| * NOTE: ns is NULL when called on the admin queue. |
| */ |
| static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx, |
| const struct blk_mq_queue_data *bd) |
| { |
| struct nvme_ns *ns = hctx->queue->queuedata; |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| struct nvme_dev *dev = nvmeq->dev; |
| struct request *req = bd->rq; |
| struct nvme_command cmnd; |
| unsigned map_len; |
| int ret = BLK_MQ_RQ_QUEUE_OK; |
| |
| /* |
| * If formated with metadata, require the block layer provide a buffer |
| * unless this namespace is formated such that the metadata can be |
| * stripped/generated by the controller with PRACT=1. |
| */ |
| if (ns && ns->ms && !blk_integrity_rq(req)) { |
| if (!(ns->pi_type && ns->ms == 8) && |
| req->cmd_type != REQ_TYPE_DRV_PRIV) { |
| blk_mq_end_request(req, -EFAULT); |
| return BLK_MQ_RQ_QUEUE_OK; |
| } |
| } |
| |
| map_len = nvme_map_len(req); |
| ret = nvme_init_iod(req, map_len, dev); |
| if (ret) |
| return ret; |
| |
| ret = nvme_setup_cmd(ns, req, &cmnd); |
| if (ret) |
| goto out; |
| |
| if (req->nr_phys_segments) |
| ret = nvme_map_data(dev, req, map_len, &cmnd); |
| |
| if (ret) |
| goto out; |
| |
| cmnd.common.command_id = req->tag; |
| blk_mq_start_request(req); |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| if (unlikely(nvmeq->cq_vector < 0)) { |
| if (ns && !test_bit(NVME_NS_DEAD, &ns->flags)) |
| ret = BLK_MQ_RQ_QUEUE_BUSY; |
| else |
| ret = BLK_MQ_RQ_QUEUE_ERROR; |
| spin_unlock_irq(&nvmeq->q_lock); |
| goto out; |
| } |
| __nvme_submit_cmd(nvmeq, &cmnd); |
| nvme_process_cq(nvmeq); |
| spin_unlock_irq(&nvmeq->q_lock); |
| return BLK_MQ_RQ_QUEUE_OK; |
| out: |
| nvme_free_iod(dev, req); |
| return ret; |
| } |
| |
| static void nvme_complete_rq(struct request *req) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_dev *dev = iod->nvmeq->dev; |
| int error = 0; |
| |
| nvme_unmap_data(dev, req); |
| |
| if (unlikely(req->errors)) { |
| if (nvme_req_needs_retry(req, req->errors)) { |
| req->retries++; |
| nvme_requeue_req(req); |
| return; |
| } |
| |
| if (req->cmd_type == REQ_TYPE_DRV_PRIV) |
| error = req->errors; |
| else |
| error = nvme_error_status(req->errors); |
| } |
| |
| if (unlikely(iod->aborted)) { |
| dev_warn(dev->ctrl.device, |
| "completing aborted command with status: %04x\n", |
| req->errors); |
| } |
| |
| blk_mq_end_request(req, error); |
| } |
| |
| /* We read the CQE phase first to check if the rest of the entry is valid */ |
| static inline bool nvme_cqe_valid(struct nvme_queue *nvmeq, u16 head, |
| u16 phase) |
| { |
| return (le16_to_cpu(nvmeq->cqes[head].status) & 1) == phase; |
| } |
| |
| static void __nvme_process_cq(struct nvme_queue *nvmeq, unsigned int *tag) |
| { |
| u16 head, phase; |
| |
| head = nvmeq->cq_head; |
| phase = nvmeq->cq_phase; |
| |
| while (nvme_cqe_valid(nvmeq, head, phase)) { |
| struct nvme_completion cqe = nvmeq->cqes[head]; |
| struct request *req; |
| |
| if (++head == nvmeq->q_depth) { |
| head = 0; |
| phase = !phase; |
| } |
| |
| if (tag && *tag == cqe.command_id) |
| *tag = -1; |
| |
| if (unlikely(cqe.command_id >= nvmeq->q_depth)) { |
| dev_warn(nvmeq->dev->ctrl.device, |
| "invalid id %d completed on queue %d\n", |
| cqe.command_id, le16_to_cpu(cqe.sq_id)); |
| continue; |
| } |
| |
| /* |
| * AEN requests are special as they don't time out and can |
| * survive any kind of queue freeze and often don't respond to |
| * aborts. We don't even bother to allocate a struct request |
| * for them but rather special case them here. |
| */ |
| if (unlikely(nvmeq->qid == 0 && |
| cqe.command_id >= NVME_AQ_BLKMQ_DEPTH)) { |
| nvme_complete_async_event(&nvmeq->dev->ctrl, &cqe); |
| continue; |
| } |
| |
| req = blk_mq_tag_to_rq(*nvmeq->tags, cqe.command_id); |
| if (req->cmd_type == REQ_TYPE_DRV_PRIV && req->special) |
| memcpy(req->special, &cqe, sizeof(cqe)); |
| blk_mq_complete_request(req, le16_to_cpu(cqe.status) >> 1); |
| |
| } |
| |
| /* If the controller ignores the cq head doorbell and continuously |
| * writes to the queue, it is theoretically possible to wrap around |
| * the queue twice and mistakenly return IRQ_NONE. Linux only |
| * requires that 0.1% of your interrupts are handled, so this isn't |
| * a big problem. |
| */ |
| if (head == nvmeq->cq_head && phase == nvmeq->cq_phase) |
| return; |
| |
| if (likely(nvmeq->cq_vector >= 0)) |
| writel(head, nvmeq->q_db + nvmeq->dev->db_stride); |
| nvmeq->cq_head = head; |
| nvmeq->cq_phase = phase; |
| |
| nvmeq->cqe_seen = 1; |
| } |
| |
| static void nvme_process_cq(struct nvme_queue *nvmeq) |
| { |
| __nvme_process_cq(nvmeq, NULL); |
| } |
| |
| static irqreturn_t nvme_irq(int irq, void *data) |
| { |
| irqreturn_t result; |
| struct nvme_queue *nvmeq = data; |
| spin_lock(&nvmeq->q_lock); |
| nvme_process_cq(nvmeq); |
| result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE; |
| nvmeq->cqe_seen = 0; |
| spin_unlock(&nvmeq->q_lock); |
| return result; |
| } |
| |
| static irqreturn_t nvme_irq_check(int irq, void *data) |
| { |
| struct nvme_queue *nvmeq = data; |
| if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) |
| return IRQ_WAKE_THREAD; |
| return IRQ_NONE; |
| } |
| |
| static int nvme_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag) |
| { |
| struct nvme_queue *nvmeq = hctx->driver_data; |
| |
| if (nvme_cqe_valid(nvmeq, nvmeq->cq_head, nvmeq->cq_phase)) { |
| spin_lock_irq(&nvmeq->q_lock); |
| __nvme_process_cq(nvmeq, &tag); |
| spin_unlock_irq(&nvmeq->q_lock); |
| |
| if (tag == -1) |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static void nvme_pci_submit_async_event(struct nvme_ctrl *ctrl, int aer_idx) |
| { |
| struct nvme_dev *dev = to_nvme_dev(ctrl); |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.common.opcode = nvme_admin_async_event; |
| c.common.command_id = NVME_AQ_BLKMQ_DEPTH + aer_idx; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| __nvme_submit_cmd(nvmeq, &c); |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id) |
| { |
| struct nvme_command c; |
| |
| memset(&c, 0, sizeof(c)); |
| c.delete_queue.opcode = opcode; |
| c.delete_queue.qid = cpu_to_le16(id); |
| |
| return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED; |
| |
| /* |
| * Note: we (ab)use the fact the the prp fields survive if no data |
| * is attached to the request. |
| */ |
| memset(&c, 0, sizeof(c)); |
| c.create_cq.opcode = nvme_admin_create_cq; |
| c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr); |
| c.create_cq.cqid = cpu_to_le16(qid); |
| c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_cq.cq_flags = cpu_to_le16(flags); |
| c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector); |
| |
| return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid, |
| struct nvme_queue *nvmeq) |
| { |
| struct nvme_command c; |
| int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM; |
| |
| /* |
| * Note: we (ab)use the fact the the prp fields survive if no data |
| * is attached to the request. |
| */ |
| memset(&c, 0, sizeof(c)); |
| c.create_sq.opcode = nvme_admin_create_sq; |
| c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr); |
| c.create_sq.sqid = cpu_to_le16(qid); |
| c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1); |
| c.create_sq.sq_flags = cpu_to_le16(flags); |
| c.create_sq.cqid = cpu_to_le16(qid); |
| |
| return nvme_submit_sync_cmd(dev->ctrl.admin_q, &c, NULL, 0); |
| } |
| |
| static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid); |
| } |
| |
| static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid) |
| { |
| return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid); |
| } |
| |
| static void abort_endio(struct request *req, int error) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = iod->nvmeq; |
| u16 status = req->errors; |
| |
| dev_warn(nvmeq->dev->ctrl.device, "Abort status: 0x%x", status); |
| atomic_inc(&nvmeq->dev->ctrl.abort_limit); |
| blk_mq_free_request(req); |
| } |
| |
| static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved) |
| { |
| struct nvme_iod *iod = blk_mq_rq_to_pdu(req); |
| struct nvme_queue *nvmeq = iod->nvmeq; |
| struct nvme_dev *dev = nvmeq->dev; |
| struct request *abort_req; |
| struct nvme_command cmd; |
| |
| /* |
| * Shutdown immediately if controller times out while starting. The |
| * reset work will see the pci device disabled when it gets the forced |
| * cancellation error. All outstanding requests are completed on |
| * shutdown, so we return BLK_EH_HANDLED. |
| */ |
| if (dev->ctrl.state == NVME_CTRL_RESETTING) { |
| dev_warn(dev->ctrl.device, |
| "I/O %d QID %d timeout, disable controller\n", |
| req->tag, nvmeq->qid); |
| nvme_dev_disable(dev, false); |
| req->errors = NVME_SC_CANCELLED; |
| return BLK_EH_HANDLED; |
| } |
| |
| /* |
| * Shutdown the controller immediately and schedule a reset if the |
| * command was already aborted once before and still hasn't been |
| * returned to the driver, or if this is the admin queue. |
| */ |
| if (!nvmeq->qid || iod->aborted) { |
| dev_warn(dev->ctrl.device, |
| "I/O %d QID %d timeout, reset controller\n", |
| req->tag, nvmeq->qid); |
| nvme_dev_disable(dev, false); |
| queue_work(nvme_workq, &dev->reset_work); |
| |
| /* |
| * Mark the request as handled, since the inline shutdown |
| * forces all outstanding requests to complete. |
| */ |
| req->errors = NVME_SC_CANCELLED; |
| return BLK_EH_HANDLED; |
| } |
| |
| iod->aborted = 1; |
| |
| if (atomic_dec_return(&dev->ctrl.abort_limit) < 0) { |
| atomic_inc(&dev->ctrl.abort_limit); |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.abort.opcode = nvme_admin_abort_cmd; |
| cmd.abort.cid = req->tag; |
| cmd.abort.sqid = cpu_to_le16(nvmeq->qid); |
| |
| dev_warn(nvmeq->dev->ctrl.device, |
| "I/O %d QID %d timeout, aborting\n", |
| req->tag, nvmeq->qid); |
| |
| abort_req = nvme_alloc_request(dev->ctrl.admin_q, &cmd, |
| BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); |
| if (IS_ERR(abort_req)) { |
| atomic_inc(&dev->ctrl.abort_limit); |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| abort_req->timeout = ADMIN_TIMEOUT; |
| abort_req->end_io_data = NULL; |
| blk_execute_rq_nowait(abort_req->q, NULL, abort_req, 0, abort_endio); |
| |
| /* |
| * The aborted req will be completed on receiving the abort req. |
| * We enable the timer again. If hit twice, it'll cause a device reset, |
| * as the device then is in a faulty state. |
| */ |
| return BLK_EH_RESET_TIMER; |
| } |
| |
| static void nvme_free_queue(struct nvme_queue *nvmeq) |
| { |
| dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth), |
| (void *)nvmeq->cqes, nvmeq->cq_dma_addr); |
| if (nvmeq->sq_cmds) |
| dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth), |
| nvmeq->sq_cmds, nvmeq->sq_dma_addr); |
| kfree(nvmeq); |
| } |
| |
| static void nvme_free_queues(struct nvme_dev *dev, int lowest) |
| { |
| int i; |
| |
| for (i = dev->queue_count - 1; i >= lowest; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| dev->queue_count--; |
| dev->queues[i] = NULL; |
| nvme_free_queue(nvmeq); |
| } |
| } |
| |
| /** |
| * nvme_suspend_queue - put queue into suspended state |
| * @nvmeq - queue to suspend |
| */ |
| static int nvme_suspend_queue(struct nvme_queue *nvmeq) |
| { |
| int vector; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| if (nvmeq->cq_vector == -1) { |
| spin_unlock_irq(&nvmeq->q_lock); |
| return 1; |
| } |
| vector = nvmeq->dev->entry[nvmeq->cq_vector].vector; |
| nvmeq->dev->online_queues--; |
| nvmeq->cq_vector = -1; |
| spin_unlock_irq(&nvmeq->q_lock); |
| |
| if (!nvmeq->qid && nvmeq->dev->ctrl.admin_q) |
| blk_mq_stop_hw_queues(nvmeq->dev->ctrl.admin_q); |
| |
| irq_set_affinity_hint(vector, NULL); |
| free_irq(vector, nvmeq); |
| |
| return 0; |
| } |
| |
| static void nvme_disable_admin_queue(struct nvme_dev *dev, bool shutdown) |
| { |
| struct nvme_queue *nvmeq = dev->queues[0]; |
| |
| if (!nvmeq) |
| return; |
| if (nvme_suspend_queue(nvmeq)) |
| return; |
| |
| if (shutdown) |
| nvme_shutdown_ctrl(&dev->ctrl); |
| else |
| nvme_disable_ctrl(&dev->ctrl, lo_hi_readq( |
| dev->bar + NVME_REG_CAP)); |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| nvme_process_cq(nvmeq); |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| static int nvme_cmb_qdepth(struct nvme_dev *dev, int nr_io_queues, |
| int entry_size) |
| { |
| int q_depth = dev->q_depth; |
| unsigned q_size_aligned = roundup(q_depth * entry_size, |
| dev->ctrl.page_size); |
| |
| if (q_size_aligned * nr_io_queues > dev->cmb_size) { |
| u64 mem_per_q = div_u64(dev->cmb_size, nr_io_queues); |
| mem_per_q = round_down(mem_per_q, dev->ctrl.page_size); |
| q_depth = div_u64(mem_per_q, entry_size); |
| |
| /* |
| * Ensure the reduced q_depth is above some threshold where it |
| * would be better to map queues in system memory with the |
| * original depth |
| */ |
| if (q_depth < 64) |
| return -ENOMEM; |
| } |
| |
| return q_depth; |
| } |
| |
| static int nvme_alloc_sq_cmds(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
| int qid, int depth) |
| { |
| if (qid && dev->cmb && use_cmb_sqes && NVME_CMB_SQS(dev->cmbsz)) { |
| unsigned offset = (qid - 1) * roundup(SQ_SIZE(depth), |
| dev->ctrl.page_size); |
| nvmeq->sq_dma_addr = dev->cmb_dma_addr + offset; |
| nvmeq->sq_cmds_io = dev->cmb + offset; |
| } else { |
| nvmeq->sq_cmds = dma_alloc_coherent(dev->dev, SQ_SIZE(depth), |
| &nvmeq->sq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->sq_cmds) |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid, |
| int depth) |
| { |
| struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL); |
| if (!nvmeq) |
| return NULL; |
| |
| nvmeq->cqes = dma_zalloc_coherent(dev->dev, CQ_SIZE(depth), |
| &nvmeq->cq_dma_addr, GFP_KERNEL); |
| if (!nvmeq->cqes) |
| goto free_nvmeq; |
| |
| if (nvme_alloc_sq_cmds(dev, nvmeq, qid, depth)) |
| goto free_cqdma; |
| |
| nvmeq->q_dmadev = dev->dev; |
| nvmeq->dev = dev; |
| snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d", |
| dev->ctrl.instance, qid); |
| spin_lock_init(&nvmeq->q_lock); |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| nvmeq->q_depth = depth; |
| nvmeq->qid = qid; |
| nvmeq->cq_vector = -1; |
| dev->queues[qid] = nvmeq; |
| dev->queue_count++; |
| |
| return nvmeq; |
| |
| free_cqdma: |
| dma_free_coherent(dev->dev, CQ_SIZE(depth), (void *)nvmeq->cqes, |
| nvmeq->cq_dma_addr); |
| free_nvmeq: |
| kfree(nvmeq); |
| return NULL; |
| } |
| |
| static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq, |
| const char *name) |
| { |
| if (use_threaded_interrupts) |
| return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector, |
| nvme_irq_check, nvme_irq, IRQF_SHARED, |
| name, nvmeq); |
| return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq, |
| IRQF_SHARED, name, nvmeq); |
| } |
| |
| static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| |
| spin_lock_irq(&nvmeq->q_lock); |
| nvmeq->sq_tail = 0; |
| nvmeq->cq_head = 0; |
| nvmeq->cq_phase = 1; |
| nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride]; |
| memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth)); |
| dev->online_queues++; |
| spin_unlock_irq(&nvmeq->q_lock); |
| } |
| |
| static int nvme_create_queue(struct nvme_queue *nvmeq, int qid) |
| { |
| struct nvme_dev *dev = nvmeq->dev; |
| int result; |
| |
| nvmeq->cq_vector = qid - 1; |
| result = adapter_alloc_cq(dev, qid, nvmeq); |
| if (result < 0) |
| return result; |
| |
| result = adapter_alloc_sq(dev, qid, nvmeq); |
| if (result < 0) |
| goto release_cq; |
| |
| result = queue_request_irq(dev, nvmeq, nvmeq->irqname); |
| if (result < 0) |
| goto release_sq; |
| |
| nvme_init_queue(nvmeq, qid); |
| return result; |
| |
| release_sq: |
| adapter_delete_sq(dev, qid); |
| release_cq: |
| adapter_delete_cq(dev, qid); |
| return result; |
| } |
| |
| static struct blk_mq_ops nvme_mq_admin_ops = { |
| .queue_rq = nvme_queue_rq, |
| .complete = nvme_complete_rq, |
| .map_queue = blk_mq_map_queue, |
| .init_hctx = nvme_admin_init_hctx, |
| .exit_hctx = nvme_admin_exit_hctx, |
| .init_request = nvme_admin_init_request, |
| .timeout = nvme_timeout, |
| }; |
| |
| static struct blk_mq_ops nvme_mq_ops = { |
| .queue_rq = nvme_queue_rq, |
| .complete = nvme_complete_rq, |
| .map_queue = blk_mq_map_queue, |
| .init_hctx = nvme_init_hctx, |
| .init_request = nvme_init_request, |
| .timeout = nvme_timeout, |
| .poll = nvme_poll, |
| }; |
| |
| static void nvme_dev_remove_admin(struct nvme_dev *dev) |
| { |
| if (dev->ctrl.admin_q && !blk_queue_dying(dev->ctrl.admin_q)) { |
| /* |
| * If the controller was reset during removal, it's possible |
| * user requests may be waiting on a stopped queue. Start the |
| * queue to flush these to completion. |
| */ |
| blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); |
| blk_cleanup_queue(dev->ctrl.admin_q); |
| blk_mq_free_tag_set(&dev->admin_tagset); |
| } |
| } |
| |
| static int nvme_alloc_admin_tags(struct nvme_dev *dev) |
| { |
| if (!dev->ctrl.admin_q) { |
| dev->admin_tagset.ops = &nvme_mq_admin_ops; |
| dev->admin_tagset.nr_hw_queues = 1; |
| |
| /* |
| * Subtract one to leave an empty queue entry for 'Full Queue' |
| * condition. See NVM-Express 1.2 specification, section 4.1.2. |
| */ |
| dev->admin_tagset.queue_depth = NVME_AQ_BLKMQ_DEPTH - 1; |
| dev->admin_tagset.timeout = ADMIN_TIMEOUT; |
| dev->admin_tagset.numa_node = dev_to_node(dev->dev); |
| dev->admin_tagset.cmd_size = nvme_cmd_size(dev); |
| dev->admin_tagset.driver_data = dev; |
| |
| if (blk_mq_alloc_tag_set(&dev->admin_tagset)) |
| return -ENOMEM; |
| |
| dev->ctrl.admin_q = blk_mq_init_queue(&dev->admin_tagset); |
| if (IS_ERR(dev->ctrl.admin_q)) { |
| blk_mq_free_tag_set(&dev->admin_tagset); |
| return -ENOMEM; |
| } |
| if (!blk_get_queue(dev->ctrl.admin_q)) { |
| nvme_dev_remove_admin(dev); |
| dev->ctrl.admin_q = NULL; |
| return -ENODEV; |
| } |
| } else |
| blk_mq_start_stopped_hw_queues(dev->ctrl.admin_q, true); |
| |
| return 0; |
| } |
| |
| static int nvme_configure_admin_queue(struct nvme_dev *dev) |
| { |
| int result; |
| u32 aqa; |
| u64 cap = lo_hi_readq(dev->bar + NVME_REG_CAP); |
| struct nvme_queue *nvmeq; |
| |
| dev->subsystem = readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 1) ? |
| NVME_CAP_NSSRC(cap) : 0; |
| |
| if (dev->subsystem && |
| (readl(dev->bar + NVME_REG_CSTS) & NVME_CSTS_NSSRO)) |
| writel(NVME_CSTS_NSSRO, dev->bar + NVME_REG_CSTS); |
| |
| result = nvme_disable_ctrl(&dev->ctrl, cap); |
| if (result < 0) |
| return result; |
| |
| nvmeq = dev->queues[0]; |
| if (!nvmeq) { |
| nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH); |
| if (!nvmeq) |
| return -ENOMEM; |
| } |
| |
| aqa = nvmeq->q_depth - 1; |
| aqa |= aqa << 16; |
| |
| writel(aqa, dev->bar + NVME_REG_AQA); |
| lo_hi_writeq(nvmeq->sq_dma_addr, dev->bar + NVME_REG_ASQ); |
| lo_hi_writeq(nvmeq->cq_dma_addr, dev->bar + NVME_REG_ACQ); |
| |
| result = nvme_enable_ctrl(&dev->ctrl, cap); |
| if (result) |
| goto free_nvmeq; |
| |
| nvmeq->cq_vector = 0; |
| result = queue_request_irq(dev, nvmeq, nvmeq->irqname); |
| if (result) { |
| nvmeq->cq_vector = -1; |
| goto free_nvmeq; |
| } |
| |
| return result; |
| |
| free_nvmeq: |
| nvme_free_queues(dev, 0); |
| return result; |
| } |
| |
| static bool nvme_should_reset(struct nvme_dev *dev, u32 csts) |
| { |
| |
| /* If true, indicates loss of adapter communication, possibly by a |
| * NVMe Subsystem reset. |
| */ |
| bool nssro = dev->subsystem && (csts & NVME_CSTS_NSSRO); |
| |
| /* If there is a reset ongoing, we shouldn't reset again. */ |
| if (work_busy(&dev->reset_work)) |
| return false; |
| |
| /* We shouldn't reset unless the controller is on fatal error state |
| * _or_ if we lost the communication with it. |
| */ |
| if (!(csts & NVME_CSTS_CFS) && !nssro) |
| return false; |
| |
| /* If PCI error recovery process is happening, we cannot reset or |
| * the recovery mechanism will surely fail. |
| */ |
| if (pci_channel_offline(to_pci_dev(dev->dev))) |
| return false; |
| |
| return true; |
| } |
| |
| static void nvme_watchdog_timer(unsigned long data) |
| { |
| struct nvme_dev *dev = (struct nvme_dev *)data; |
| u32 csts = readl(dev->bar + NVME_REG_CSTS); |
| |
| /* Skip controllers under certain specific conditions. */ |
| if (nvme_should_reset(dev, csts)) { |
| if (queue_work(nvme_workq, &dev->reset_work)) |
| dev_warn(dev->dev, |
| "Failed status: 0x%x, reset controller.\n", |
| csts); |
| return; |
| } |
| |
| mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); |
| } |
| |
| static int nvme_create_io_queues(struct nvme_dev *dev) |
| { |
| unsigned i, max; |
| int ret = 0; |
| |
| for (i = dev->queue_count; i <= dev->max_qid; i++) { |
| if (!nvme_alloc_queue(dev, i, dev->q_depth)) { |
| ret = -ENOMEM; |
| break; |
| } |
| } |
| |
| max = min(dev->max_qid, dev->queue_count - 1); |
| for (i = dev->online_queues; i <= max; i++) { |
| ret = nvme_create_queue(dev->queues[i], i); |
| if (ret) { |
| nvme_free_queues(dev, i); |
| break; |
| } |
| } |
| |
| /* |
| * Ignore failing Create SQ/CQ commands, we can continue with less |
| * than the desired aount of queues, and even a controller without |
| * I/O queues an still be used to issue admin commands. This might |
| * be useful to upgrade a buggy firmware for example. |
| */ |
| return ret >= 0 ? 0 : ret; |
| } |
| |
| static void __iomem *nvme_map_cmb(struct nvme_dev *dev) |
| { |
| u64 szu, size, offset; |
| u32 cmbloc; |
| resource_size_t bar_size; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| void __iomem *cmb; |
| dma_addr_t dma_addr; |
| |
| if (!use_cmb_sqes) |
| return NULL; |
| |
| dev->cmbsz = readl(dev->bar + NVME_REG_CMBSZ); |
| if (!(NVME_CMB_SZ(dev->cmbsz))) |
| return NULL; |
| |
| cmbloc = readl(dev->bar + NVME_REG_CMBLOC); |
| |
| szu = (u64)1 << (12 + 4 * NVME_CMB_SZU(dev->cmbsz)); |
| size = szu * NVME_CMB_SZ(dev->cmbsz); |
| offset = szu * NVME_CMB_OFST(cmbloc); |
| bar_size = pci_resource_len(pdev, NVME_CMB_BIR(cmbloc)); |
| |
| if (offset > bar_size) |
| return NULL; |
| |
| /* |
| * Controllers may support a CMB size larger than their BAR, |
| * for example, due to being behind a bridge. Reduce the CMB to |
| * the reported size of the BAR |
| */ |
| if (size > bar_size - offset) |
| size = bar_size - offset; |
| |
| dma_addr = pci_resource_start(pdev, NVME_CMB_BIR(cmbloc)) + offset; |
| cmb = ioremap_wc(dma_addr, size); |
| if (!cmb) |
| return NULL; |
| |
| dev->cmb_dma_addr = dma_addr; |
| dev->cmb_size = size; |
| return cmb; |
| } |
| |
| static inline void nvme_release_cmb(struct nvme_dev *dev) |
| { |
| if (dev->cmb) { |
| iounmap(dev->cmb); |
| dev->cmb = NULL; |
| } |
| } |
| |
| static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues) |
| { |
| return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride); |
| } |
| |
| static int nvme_setup_io_queues(struct nvme_dev *dev) |
| { |
| struct nvme_queue *adminq = dev->queues[0]; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| int result, i, vecs, nr_io_queues, size; |
| |
| nr_io_queues = num_online_cpus(); |
| result = nvme_set_queue_count(&dev->ctrl, &nr_io_queues); |
| if (result < 0) |
| return result; |
| |
| if (nr_io_queues == 0) |
| return 0; |
| |
| if (dev->cmb && NVME_CMB_SQS(dev->cmbsz)) { |
| result = nvme_cmb_qdepth(dev, nr_io_queues, |
| sizeof(struct nvme_command)); |
| if (result > 0) |
| dev->q_depth = result; |
| else |
| nvme_release_cmb(dev); |
| } |
| |
| size = db_bar_size(dev, nr_io_queues); |
| if (size > 8192) { |
| iounmap(dev->bar); |
| do { |
| dev->bar = ioremap(pci_resource_start(pdev, 0), size); |
| if (dev->bar) |
| break; |
| if (!--nr_io_queues) |
| return -ENOMEM; |
| size = db_bar_size(dev, nr_io_queues); |
| } while (1); |
| dev->dbs = dev->bar + 4096; |
| adminq->q_db = dev->dbs; |
| } |
| |
| /* Deregister the admin queue's interrupt */ |
| free_irq(dev->entry[0].vector, adminq); |
| |
| /* |
| * If we enable msix early due to not intx, disable it again before |
| * setting up the full range we need. |
| */ |
| if (pdev->msi_enabled) |
| pci_disable_msi(pdev); |
| else if (pdev->msix_enabled) |
| pci_disable_msix(pdev); |
| |
| for (i = 0; i < nr_io_queues; i++) |
| dev->entry[i].entry = i; |
| vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues); |
| if (vecs < 0) { |
| vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32)); |
| if (vecs < 0) { |
| vecs = 1; |
| } else { |
| for (i = 0; i < vecs; i++) |
| dev->entry[i].vector = i + pdev->irq; |
| } |
| } |
| |
| /* |
| * Should investigate if there's a performance win from allocating |
| * more queues than interrupt vectors; it might allow the submission |
| * path to scale better, even if the receive path is limited by the |
| * number of interrupts. |
| */ |
| nr_io_queues = vecs; |
| dev->max_qid = nr_io_queues; |
| |
| result = queue_request_irq(dev, adminq, adminq->irqname); |
| if (result) { |
| adminq->cq_vector = -1; |
| goto free_queues; |
| } |
| return nvme_create_io_queues(dev); |
| |
| free_queues: |
| nvme_free_queues(dev, 1); |
| return result; |
| } |
| |
| static void nvme_pci_post_scan(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_dev *dev = to_nvme_dev(ctrl); |
| struct nvme_queue *nvmeq; |
| int i; |
| |
| for (i = 0; i < dev->online_queues; i++) { |
| nvmeq = dev->queues[i]; |
| |
| if (!nvmeq->tags || !(*nvmeq->tags)) |
| continue; |
| |
| irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector, |
| blk_mq_tags_cpumask(*nvmeq->tags)); |
| } |
| } |
| |
| static void nvme_del_queue_end(struct request *req, int error) |
| { |
| struct nvme_queue *nvmeq = req->end_io_data; |
| |
| blk_mq_free_request(req); |
| complete(&nvmeq->dev->ioq_wait); |
| } |
| |
| static void nvme_del_cq_end(struct request *req, int error) |
| { |
| struct nvme_queue *nvmeq = req->end_io_data; |
| |
| if (!error) { |
| unsigned long flags; |
| |
| /* |
| * We might be called with the AQ q_lock held |
| * and the I/O queue q_lock should always |
| * nest inside the AQ one. |
| */ |
| spin_lock_irqsave_nested(&nvmeq->q_lock, flags, |
| SINGLE_DEPTH_NESTING); |
| nvme_process_cq(nvmeq); |
| spin_unlock_irqrestore(&nvmeq->q_lock, flags); |
| } |
| |
| nvme_del_queue_end(req, error); |
| } |
| |
| static int nvme_delete_queue(struct nvme_queue *nvmeq, u8 opcode) |
| { |
| struct request_queue *q = nvmeq->dev->ctrl.admin_q; |
| struct request *req; |
| struct nvme_command cmd; |
| |
| memset(&cmd, 0, sizeof(cmd)); |
| cmd.delete_queue.opcode = opcode; |
| cmd.delete_queue.qid = cpu_to_le16(nvmeq->qid); |
| |
| req = nvme_alloc_request(q, &cmd, BLK_MQ_REQ_NOWAIT, NVME_QID_ANY); |
| if (IS_ERR(req)) |
| return PTR_ERR(req); |
| |
| req->timeout = ADMIN_TIMEOUT; |
| req->end_io_data = nvmeq; |
| |
| blk_execute_rq_nowait(q, NULL, req, false, |
| opcode == nvme_admin_delete_cq ? |
| nvme_del_cq_end : nvme_del_queue_end); |
| return 0; |
| } |
| |
| static void nvme_disable_io_queues(struct nvme_dev *dev) |
| { |
| int pass, queues = dev->online_queues - 1; |
| unsigned long timeout; |
| u8 opcode = nvme_admin_delete_sq; |
| |
| for (pass = 0; pass < 2; pass++) { |
| int sent = 0, i = queues; |
| |
| reinit_completion(&dev->ioq_wait); |
| retry: |
| timeout = ADMIN_TIMEOUT; |
| for (; i > 0; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| |
| if (!pass) |
| nvme_suspend_queue(nvmeq); |
| if (nvme_delete_queue(nvmeq, opcode)) |
| break; |
| ++sent; |
| } |
| while (sent--) { |
| timeout = wait_for_completion_io_timeout(&dev->ioq_wait, timeout); |
| if (timeout == 0) |
| return; |
| if (i) |
| goto retry; |
| } |
| opcode = nvme_admin_delete_cq; |
| } |
| } |
| |
| /* |
| * Return: error value if an error occurred setting up the queues or calling |
| * Identify Device. 0 if these succeeded, even if adding some of the |
| * namespaces failed. At the moment, these failures are silent. TBD which |
| * failures should be reported. |
| */ |
| static int nvme_dev_add(struct nvme_dev *dev) |
| { |
| if (!dev->ctrl.tagset) { |
| dev->tagset.ops = &nvme_mq_ops; |
| dev->tagset.nr_hw_queues = dev->online_queues - 1; |
| dev->tagset.timeout = NVME_IO_TIMEOUT; |
| dev->tagset.numa_node = dev_to_node(dev->dev); |
| dev->tagset.queue_depth = |
| min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1; |
| dev->tagset.cmd_size = nvme_cmd_size(dev); |
| dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE; |
| dev->tagset.driver_data = dev; |
| |
| if (blk_mq_alloc_tag_set(&dev->tagset)) |
| return 0; |
| dev->ctrl.tagset = &dev->tagset; |
| } else { |
| blk_mq_update_nr_hw_queues(&dev->tagset, dev->online_queues - 1); |
| |
| /* Free previously allocated queues that are no longer usable */ |
| nvme_free_queues(dev, dev->online_queues); |
| } |
| |
| return 0; |
| } |
| |
| static int nvme_pci_enable(struct nvme_dev *dev) |
| { |
| u64 cap; |
| int result = -ENOMEM; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pci_enable_device_mem(pdev)) |
| return result; |
| |
| pci_set_master(pdev); |
| |
| if (dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(64)) && |
| dma_set_mask_and_coherent(dev->dev, DMA_BIT_MASK(32))) |
| goto disable; |
| |
| if (readl(dev->bar + NVME_REG_CSTS) == -1) { |
| result = -ENODEV; |
| goto disable; |
| } |
| |
| /* |
| * Some devices and/or platforms don't advertise or work with INTx |
| * interrupts. Pre-enable a single MSIX or MSI vec for setup. We'll |
| * adjust this later. |
| */ |
| if (pci_enable_msix(pdev, dev->entry, 1)) { |
| pci_enable_msi(pdev); |
| dev->entry[0].vector = pdev->irq; |
| } |
| |
| if (!dev->entry[0].vector) { |
| result = -ENODEV; |
| goto disable; |
| } |
| |
| cap = lo_hi_readq(dev->bar + NVME_REG_CAP); |
| |
| dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH); |
| dev->db_stride = 1 << NVME_CAP_STRIDE(cap); |
| dev->dbs = dev->bar + 4096; |
| |
| /* |
| * Temporary fix for the Apple controller found in the MacBook8,1 and |
| * some MacBook7,1 to avoid controller resets and data loss. |
| */ |
| if (pdev->vendor == PCI_VENDOR_ID_APPLE && pdev->device == 0x2001) { |
| dev->q_depth = 2; |
| dev_warn(dev->dev, "detected Apple NVMe controller, set " |
| "queue depth=%u to work around controller resets\n", |
| dev->q_depth); |
| } |
| |
| if (readl(dev->bar + NVME_REG_VS) >= NVME_VS(1, 2)) |
| dev->cmb = nvme_map_cmb(dev); |
| |
| pci_enable_pcie_error_reporting(pdev); |
| pci_save_state(pdev); |
| return 0; |
| |
| disable: |
| pci_disable_device(pdev); |
| return result; |
| } |
| |
| static void nvme_dev_unmap(struct nvme_dev *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| int bars; |
| |
| if (dev->bar) |
| iounmap(dev->bar); |
| |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| pci_release_selected_regions(pdev, bars); |
| } |
| |
| static void nvme_pci_disable(struct nvme_dev *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| if (pdev->msi_enabled) |
| pci_disable_msi(pdev); |
| else if (pdev->msix_enabled) |
| pci_disable_msix(pdev); |
| |
| if (pci_is_enabled(pdev)) { |
| pci_disable_pcie_error_reporting(pdev); |
| pci_disable_device(pdev); |
| } |
| } |
| |
| static void nvme_dev_disable(struct nvme_dev *dev, bool shutdown) |
| { |
| int i; |
| u32 csts = -1; |
| |
| del_timer_sync(&dev->watchdog_timer); |
| |
| mutex_lock(&dev->shutdown_lock); |
| if (pci_is_enabled(to_pci_dev(dev->dev))) { |
| nvme_stop_queues(&dev->ctrl); |
| csts = readl(dev->bar + NVME_REG_CSTS); |
| } |
| if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) { |
| for (i = dev->queue_count - 1; i >= 0; i--) { |
| struct nvme_queue *nvmeq = dev->queues[i]; |
| nvme_suspend_queue(nvmeq); |
| } |
| } else { |
| nvme_disable_io_queues(dev); |
| nvme_disable_admin_queue(dev, shutdown); |
| } |
| nvme_pci_disable(dev); |
| |
| blk_mq_tagset_busy_iter(&dev->tagset, nvme_cancel_request, &dev->ctrl); |
| blk_mq_tagset_busy_iter(&dev->admin_tagset, nvme_cancel_request, &dev->ctrl); |
| mutex_unlock(&dev->shutdown_lock); |
| } |
| |
| static int nvme_setup_prp_pools(struct nvme_dev *dev) |
| { |
| dev->prp_page_pool = dma_pool_create("prp list page", dev->dev, |
| PAGE_SIZE, PAGE_SIZE, 0); |
| if (!dev->prp_page_pool) |
| return -ENOMEM; |
| |
| /* Optimisation for I/Os between 4k and 128k */ |
| dev->prp_small_pool = dma_pool_create("prp list 256", dev->dev, |
| 256, 256, 0); |
| if (!dev->prp_small_pool) { |
| dma_pool_destroy(dev->prp_page_pool); |
| return -ENOMEM; |
| } |
| return 0; |
| } |
| |
| static void nvme_release_prp_pools(struct nvme_dev *dev) |
| { |
| dma_pool_destroy(dev->prp_page_pool); |
| dma_pool_destroy(dev->prp_small_pool); |
| } |
| |
| static void nvme_pci_free_ctrl(struct nvme_ctrl *ctrl) |
| { |
| struct nvme_dev *dev = to_nvme_dev(ctrl); |
| |
| put_device(dev->dev); |
| if (dev->tagset.tags) |
| blk_mq_free_tag_set(&dev->tagset); |
| if (dev->ctrl.admin_q) |
| blk_put_queue(dev->ctrl.admin_q); |
| kfree(dev->queues); |
| kfree(dev->entry); |
| kfree(dev); |
| } |
| |
| static void nvme_remove_dead_ctrl(struct nvme_dev *dev, int status) |
| { |
| dev_warn(dev->ctrl.device, "Removing after probe failure status: %d\n", status); |
| |
| kref_get(&dev->ctrl.kref); |
| nvme_dev_disable(dev, false); |
| if (!schedule_work(&dev->remove_work)) |
| nvme_put_ctrl(&dev->ctrl); |
| } |
| |
| static void nvme_reset_work(struct work_struct *work) |
| { |
| struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work); |
| int result = -ENODEV; |
| |
| if (WARN_ON(dev->ctrl.state == NVME_CTRL_RESETTING)) |
| goto out; |
| |
| /* |
| * If we're called to reset a live controller first shut it down before |
| * moving on. |
| */ |
| if (dev->ctrl.ctrl_config & NVME_CC_ENABLE) |
| nvme_dev_disable(dev, false); |
| |
| if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_RESETTING)) |
| goto out; |
| |
| result = nvme_pci_enable(dev); |
| if (result) |
| goto out; |
| |
| result = nvme_configure_admin_queue(dev); |
| if (result) |
| goto out; |
| |
| nvme_init_queue(dev->queues[0], 0); |
| result = nvme_alloc_admin_tags(dev); |
| if (result) |
| goto out; |
| |
| result = nvme_init_identify(&dev->ctrl); |
| if (result) |
| goto out; |
| |
| result = nvme_setup_io_queues(dev); |
| if (result) |
| goto out; |
| |
| /* |
| * A controller that can not execute IO typically requires user |
| * intervention to correct. For such degraded controllers, the driver |
| * should not submit commands the user did not request, so skip |
| * registering for asynchronous event notification on this condition. |
| */ |
| if (dev->online_queues > 1) |
| nvme_queue_async_events(&dev->ctrl); |
| |
| mod_timer(&dev->watchdog_timer, round_jiffies(jiffies + HZ)); |
| |
| /* |
| * Keep the controller around but remove all namespaces if we don't have |
| * any working I/O queue. |
| */ |
| if (dev->online_queues < 2) { |
| dev_warn(dev->ctrl.device, "IO queues not created\n"); |
| nvme_kill_queues(&dev->ctrl); |
| nvme_remove_namespaces(&dev->ctrl); |
| } else { |
| nvme_start_queues(&dev->ctrl); |
| nvme_dev_add(dev); |
| } |
| |
| if (!nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_LIVE)) { |
| dev_warn(dev->ctrl.device, "failed to mark controller live\n"); |
| goto out; |
| } |
| |
| if (dev->online_queues > 1) |
| nvme_queue_scan(&dev->ctrl); |
| return; |
| |
| out: |
| nvme_remove_dead_ctrl(dev, result); |
| } |
| |
| static void nvme_remove_dead_ctrl_work(struct work_struct *work) |
| { |
| struct nvme_dev *dev = container_of(work, struct nvme_dev, remove_work); |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| nvme_kill_queues(&dev->ctrl); |
| if (pci_get_drvdata(pdev)) |
| device_release_driver(&pdev->dev); |
| nvme_put_ctrl(&dev->ctrl); |
| } |
| |
| static int nvme_reset(struct nvme_dev *dev) |
| { |
| if (!dev->ctrl.admin_q || blk_queue_dying(dev->ctrl.admin_q)) |
| return -ENODEV; |
| |
| if (!queue_work(nvme_workq, &dev->reset_work)) |
| return -EBUSY; |
| |
| flush_work(&dev->reset_work); |
| return 0; |
| } |
| |
| static int nvme_pci_reg_read32(struct nvme_ctrl *ctrl, u32 off, u32 *val) |
| { |
| *val = readl(to_nvme_dev(ctrl)->bar + off); |
| return 0; |
| } |
| |
| static int nvme_pci_reg_write32(struct nvme_ctrl *ctrl, u32 off, u32 val) |
| { |
| writel(val, to_nvme_dev(ctrl)->bar + off); |
| return 0; |
| } |
| |
| static int nvme_pci_reg_read64(struct nvme_ctrl *ctrl, u32 off, u64 *val) |
| { |
| *val = readq(to_nvme_dev(ctrl)->bar + off); |
| return 0; |
| } |
| |
| static int nvme_pci_reset_ctrl(struct nvme_ctrl *ctrl) |
| { |
| return nvme_reset(to_nvme_dev(ctrl)); |
| } |
| |
| static const struct nvme_ctrl_ops nvme_pci_ctrl_ops = { |
| .name = "pcie", |
| .module = THIS_MODULE, |
| .reg_read32 = nvme_pci_reg_read32, |
| .reg_write32 = nvme_pci_reg_write32, |
| .reg_read64 = nvme_pci_reg_read64, |
| .reset_ctrl = nvme_pci_reset_ctrl, |
| .free_ctrl = nvme_pci_free_ctrl, |
| .post_scan = nvme_pci_post_scan, |
| .submit_async_event = nvme_pci_submit_async_event, |
| }; |
| |
| static int nvme_dev_map(struct nvme_dev *dev) |
| { |
| int bars; |
| struct pci_dev *pdev = to_pci_dev(dev->dev); |
| |
| bars = pci_select_bars(pdev, IORESOURCE_MEM); |
| if (!bars) |
| return -ENODEV; |
| if (pci_request_selected_regions(pdev, bars, "nvme")) |
| return -ENODEV; |
| |
| dev->bar = ioremap(pci_resource_start(pdev, 0), 8192); |
| if (!dev->bar) |
| goto release; |
| |
| return 0; |
| release: |
| pci_release_selected_regions(pdev, bars); |
| return -ENODEV; |
| } |
| |
| static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id) |
| { |
| int node, result = -ENOMEM; |
| struct nvme_dev *dev; |
| |
| node = dev_to_node(&pdev->dev); |
| if (node == NUMA_NO_NODE) |
| set_dev_node(&pdev->dev, first_memory_node); |
| |
| dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node); |
| if (!dev) |
| return -ENOMEM; |
| dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry), |
| GFP_KERNEL, node); |
| if (!dev->entry) |
| goto free; |
| dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *), |
| GFP_KERNEL, node); |
| if (!dev->queues) |
| goto free; |
| |
| dev->dev = get_device(&pdev->dev); |
| pci_set_drvdata(pdev, dev); |
| |
| result = nvme_dev_map(dev); |
| if (result) |
| goto free; |
| |
| INIT_WORK(&dev->reset_work, nvme_reset_work); |
| INIT_WORK(&dev->remove_work, nvme_remove_dead_ctrl_work); |
| setup_timer(&dev->watchdog_timer, nvme_watchdog_timer, |
| (unsigned long)dev); |
| mutex_init(&dev->shutdown_lock); |
| init_completion(&dev->ioq_wait); |
| |
| result = nvme_setup_prp_pools(dev); |
| if (result) |
| goto put_pci; |
| |
| result = nvme_init_ctrl(&dev->ctrl, &pdev->dev, &nvme_pci_ctrl_ops, |
| id->driver_data); |
| if (result) |
| goto release_pools; |
| |
| dev_info(dev->ctrl.device, "pci function %s\n", dev_name(&pdev->dev)); |
| |
| queue_work(nvme_workq, &dev->reset_work); |
| return 0; |
| |
| release_pools: |
| nvme_release_prp_pools(dev); |
| put_pci: |
| put_device(dev->dev); |
| nvme_dev_unmap(dev); |
| free: |
| kfree(dev->queues); |
| kfree(dev->entry); |
| kfree(dev); |
| return result; |
| } |
| |
| static void nvme_reset_notify(struct pci_dev *pdev, bool prepare) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| if (prepare) |
| nvme_dev_disable(dev, false); |
| else |
| queue_work(nvme_workq, &dev->reset_work); |
| } |
| |
| static void nvme_shutdown(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| nvme_dev_disable(dev, true); |
| } |
| |
| /* |
| * The driver's remove may be called on a device in a partially initialized |
| * state. This function must not have any dependencies on the device state in |
| * order to proceed. |
| */ |
| static void nvme_remove(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DELETING); |
| |
| pci_set_drvdata(pdev, NULL); |
| |
| if (!pci_device_is_present(pdev)) |
| nvme_change_ctrl_state(&dev->ctrl, NVME_CTRL_DEAD); |
| |
| flush_work(&dev->reset_work); |
| nvme_uninit_ctrl(&dev->ctrl); |
| nvme_dev_disable(dev, true); |
| nvme_dev_remove_admin(dev); |
| nvme_free_queues(dev, 0); |
| nvme_release_cmb(dev); |
| nvme_release_prp_pools(dev); |
| nvme_dev_unmap(dev); |
| nvme_put_ctrl(&dev->ctrl); |
| } |
| |
| static int nvme_pci_sriov_configure(struct pci_dev *pdev, int numvfs) |
| { |
| int ret = 0; |
| |
| if (numvfs == 0) { |
| if (pci_vfs_assigned(pdev)) { |
| dev_warn(&pdev->dev, |
| "Cannot disable SR-IOV VFs while assigned\n"); |
| return -EPERM; |
| } |
| pci_disable_sriov(pdev); |
| return 0; |
| } |
| |
| ret = pci_enable_sriov(pdev, numvfs); |
| return ret ? ret : numvfs; |
| } |
| |
| #ifdef CONFIG_PM_SLEEP |
| static int nvme_suspend(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct nvme_dev *ndev = pci_get_drvdata(pdev); |
| |
| nvme_dev_disable(ndev, true); |
| return 0; |
| } |
| |
| static int nvme_resume(struct device *dev) |
| { |
| struct pci_dev *pdev = to_pci_dev(dev); |
| struct nvme_dev *ndev = pci_get_drvdata(pdev); |
| |
| queue_work(nvme_workq, &ndev->reset_work); |
| return 0; |
| } |
| #endif |
| |
| static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume); |
| |
| static pci_ers_result_t nvme_error_detected(struct pci_dev *pdev, |
| pci_channel_state_t state) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| /* |
| * A frozen channel requires a reset. When detected, this method will |
| * shutdown the controller to quiesce. The controller will be restarted |
| * after the slot reset through driver's slot_reset callback. |
| */ |
| switch (state) { |
| case pci_channel_io_normal: |
| return PCI_ERS_RESULT_CAN_RECOVER; |
| case pci_channel_io_frozen: |
| dev_warn(dev->ctrl.device, |
| "frozen state error detected, reset controller\n"); |
| nvme_dev_disable(dev, false); |
| return PCI_ERS_RESULT_NEED_RESET; |
| case pci_channel_io_perm_failure: |
| dev_warn(dev->ctrl.device, |
| "failure state error detected, request disconnect\n"); |
| return PCI_ERS_RESULT_DISCONNECT; |
| } |
| return PCI_ERS_RESULT_NEED_RESET; |
| } |
| |
| static pci_ers_result_t nvme_slot_reset(struct pci_dev *pdev) |
| { |
| struct nvme_dev *dev = pci_get_drvdata(pdev); |
| |
| dev_info(dev->ctrl.device, "restart after slot reset\n"); |
| pci_restore_state(pdev); |
| queue_work(nvme_workq, &dev->reset_work); |
| return PCI_ERS_RESULT_RECOVERED; |
| } |
| |
| static void nvme_error_resume(struct pci_dev *pdev) |
| { |
| pci_cleanup_aer_uncorrect_error_status(pdev); |
| } |
| |
| static const struct pci_error_handlers nvme_err_handler = { |
| .error_detected = nvme_error_detected, |
| .slot_reset = nvme_slot_reset, |
| .resume = nvme_error_resume, |
| .reset_notify = nvme_reset_notify, |
| }; |
| |
| /* Move to pci_ids.h later */ |
| #define PCI_CLASS_STORAGE_EXPRESS 0x010802 |
| |
| static const struct pci_device_id nvme_id_table[] = { |
| { PCI_VDEVICE(INTEL, 0x0953), |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DISCARD_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0x0a53), |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DISCARD_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0x0a54), |
| .driver_data = NVME_QUIRK_STRIPE_SIZE | |
| NVME_QUIRK_DISCARD_ZEROES, }, |
| { PCI_VDEVICE(INTEL, 0x5845), /* Qemu emulated controller */ |
| .driver_data = NVME_QUIRK_IDENTIFY_CNS, }, |
| { PCI_DEVICE(0x1c58, 0x0003), /* HGST adapter */ |
| .driver_data = NVME_QUIRK_DELAY_BEFORE_CHK_RDY, }, |
| { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) }, |
| { PCI_DEVICE(PCI_VENDOR_ID_APPLE, 0x2001) }, |
| { 0, } |
| }; |
| MODULE_DEVICE_TABLE(pci, nvme_id_table); |
| |
| static struct pci_driver nvme_driver = { |
| .name = "nvme", |
| .id_table = nvme_id_table, |
| .probe = nvme_probe, |
| .remove = nvme_remove, |
| .shutdown = nvme_shutdown, |
| .driver = { |
| .pm = &nvme_dev_pm_ops, |
| }, |
| .sriov_configure = nvme_pci_sriov_configure, |
| .err_handler = &nvme_err_handler, |
| }; |
| |
| static int __init nvme_init(void) |
| { |
| int result; |
| |
| nvme_workq = alloc_workqueue("nvme", WQ_UNBOUND | WQ_MEM_RECLAIM, 0); |
| if (!nvme_workq) |
| return -ENOMEM; |
| |
| result = pci_register_driver(&nvme_driver); |
| if (result) |
| destroy_workqueue(nvme_workq); |
| return result; |
| } |
| |
| static void __exit nvme_exit(void) |
| { |
| pci_unregister_driver(&nvme_driver); |
| destroy_workqueue(nvme_workq); |
| _nvme_check_size(); |
| } |
| |
| MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>"); |
| MODULE_LICENSE("GPL"); |
| MODULE_VERSION("1.0"); |
| module_init(nvme_init); |
| module_exit(nvme_exit); |