| /* |
| * linux/arch/i386/kernel/time_hpet.c |
| * This code largely copied from arch/x86_64/kernel/time.c |
| * See that file for credits. |
| * |
| * 2003-06-30 Venkatesh Pallipadi - Additional changes for HPET support |
| */ |
| |
| #include <linux/errno.h> |
| #include <linux/kernel.h> |
| #include <linux/param.h> |
| #include <linux/string.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| |
| #include <asm/timer.h> |
| #include <asm/fixmap.h> |
| #include <asm/apic.h> |
| |
| #include <linux/timex.h> |
| #include <linux/config.h> |
| |
| #include <asm/hpet.h> |
| #include <linux/hpet.h> |
| |
| static unsigned long hpet_period; /* fsecs / HPET clock */ |
| unsigned long hpet_tick; /* hpet clks count per tick */ |
| unsigned long hpet_address; /* hpet memory map physical address */ |
| int hpet_use_timer; |
| |
| static int use_hpet; /* can be used for runtime check of hpet */ |
| static int boot_hpet_disable; /* boottime override for HPET timer */ |
| static void __iomem * hpet_virt_address; /* hpet kernel virtual address */ |
| |
| #define FSEC_TO_USEC (1000000000UL) |
| |
| int hpet_readl(unsigned long a) |
| { |
| return readl(hpet_virt_address + a); |
| } |
| |
| static void hpet_writel(unsigned long d, unsigned long a) |
| { |
| writel(d, hpet_virt_address + a); |
| } |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| /* |
| * HPET counters dont wrap around on every tick. They just change the |
| * comparator value and continue. Next tick can be caught by checking |
| * for a change in the comparator value. Used in apic.c. |
| */ |
| static void __devinit wait_hpet_tick(void) |
| { |
| unsigned int start_cmp_val, end_cmp_val; |
| |
| start_cmp_val = hpet_readl(HPET_T0_CMP); |
| do { |
| end_cmp_val = hpet_readl(HPET_T0_CMP); |
| } while (start_cmp_val == end_cmp_val); |
| } |
| #endif |
| |
| static int hpet_timer_stop_set_go(unsigned long tick) |
| { |
| unsigned int cfg; |
| |
| /* |
| * Stop the timers and reset the main counter. |
| */ |
| cfg = hpet_readl(HPET_CFG); |
| cfg &= ~HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| hpet_writel(0, HPET_COUNTER); |
| hpet_writel(0, HPET_COUNTER + 4); |
| |
| if (hpet_use_timer) { |
| /* |
| * Set up timer 0, as periodic with first interrupt to happen at |
| * hpet_tick, and period also hpet_tick. |
| */ |
| cfg = hpet_readl(HPET_T0_CFG); |
| cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | |
| HPET_TN_SETVAL | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T0_CFG); |
| |
| /* |
| * The first write after writing TN_SETVAL to the config register sets |
| * the counter value, the second write sets the threshold. |
| */ |
| hpet_writel(tick, HPET_T0_CMP); |
| hpet_writel(tick, HPET_T0_CMP); |
| } |
| /* |
| * Go! |
| */ |
| cfg = hpet_readl(HPET_CFG); |
| if (hpet_use_timer) |
| cfg |= HPET_CFG_LEGACY; |
| cfg |= HPET_CFG_ENABLE; |
| hpet_writel(cfg, HPET_CFG); |
| |
| return 0; |
| } |
| |
| /* |
| * Check whether HPET was found by ACPI boot parse. If yes setup HPET |
| * counter 0 for kernel base timer. |
| */ |
| int __init hpet_enable(void) |
| { |
| unsigned int id; |
| unsigned long tick_fsec_low, tick_fsec_high; /* tick in femto sec */ |
| unsigned long hpet_tick_rem; |
| |
| if (boot_hpet_disable) |
| return -1; |
| |
| if (!hpet_address) { |
| return -1; |
| } |
| hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE); |
| /* |
| * Read the period, compute tick and quotient. |
| */ |
| id = hpet_readl(HPET_ID); |
| |
| /* |
| * We are checking for value '1' or more in number field if |
| * CONFIG_HPET_EMULATE_RTC is set because we will need an |
| * additional timer for RTC emulation. |
| * However, we can do with one timer otherwise using the |
| * the single HPET timer for system time. |
| */ |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| if (!(id & HPET_ID_NUMBER)) |
| return -1; |
| #endif |
| |
| |
| hpet_period = hpet_readl(HPET_PERIOD); |
| if ((hpet_period < HPET_MIN_PERIOD) || (hpet_period > HPET_MAX_PERIOD)) |
| return -1; |
| |
| /* |
| * 64 bit math |
| * First changing tick into fsec |
| * Then 64 bit div to find number of hpet clk per tick |
| */ |
| ASM_MUL64_REG(tick_fsec_low, tick_fsec_high, |
| KERNEL_TICK_USEC, FSEC_TO_USEC); |
| ASM_DIV64_REG(hpet_tick, hpet_tick_rem, |
| hpet_period, tick_fsec_low, tick_fsec_high); |
| |
| if (hpet_tick_rem > (hpet_period >> 1)) |
| hpet_tick++; /* rounding the result */ |
| |
| hpet_use_timer = id & HPET_ID_LEGSUP; |
| |
| if (hpet_timer_stop_set_go(hpet_tick)) |
| return -1; |
| |
| use_hpet = 1; |
| |
| #ifdef CONFIG_HPET |
| { |
| struct hpet_data hd; |
| unsigned int ntimer; |
| |
| memset(&hd, 0, sizeof (hd)); |
| |
| ntimer = hpet_readl(HPET_ID); |
| ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT; |
| ntimer++; |
| |
| /* |
| * Register with driver. |
| * Timer0 and Timer1 is used by platform. |
| */ |
| hd.hd_phys_address = hpet_address; |
| hd.hd_address = hpet_virt_address; |
| hd.hd_nirqs = ntimer; |
| hd.hd_flags = HPET_DATA_PLATFORM; |
| hpet_reserve_timer(&hd, 0); |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| hpet_reserve_timer(&hd, 1); |
| #endif |
| hd.hd_irq[0] = HPET_LEGACY_8254; |
| hd.hd_irq[1] = HPET_LEGACY_RTC; |
| if (ntimer > 2) { |
| struct hpet __iomem *hpet; |
| struct hpet_timer __iomem *timer; |
| int i; |
| |
| hpet = hpet_virt_address; |
| |
| for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer; |
| timer++, i++) |
| hd.hd_irq[i] = (timer->hpet_config & |
| Tn_INT_ROUTE_CNF_MASK) >> |
| Tn_INT_ROUTE_CNF_SHIFT; |
| |
| } |
| |
| hpet_alloc(&hd); |
| } |
| #endif |
| |
| #ifdef CONFIG_X86_LOCAL_APIC |
| if (hpet_use_timer) |
| wait_timer_tick = wait_hpet_tick; |
| #endif |
| return 0; |
| } |
| |
| int hpet_reenable(void) |
| { |
| return hpet_timer_stop_set_go(hpet_tick); |
| } |
| |
| int is_hpet_enabled(void) |
| { |
| return use_hpet; |
| } |
| |
| int is_hpet_capable(void) |
| { |
| if (!boot_hpet_disable && hpet_address) |
| return 1; |
| return 0; |
| } |
| |
| static int __init hpet_setup(char* str) |
| { |
| if (str) { |
| if (!strncmp("disable", str, 7)) |
| boot_hpet_disable = 1; |
| } |
| return 1; |
| } |
| |
| __setup("hpet=", hpet_setup); |
| |
| #ifdef CONFIG_HPET_EMULATE_RTC |
| /* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET |
| * is enabled, we support RTC interrupt functionality in software. |
| * RTC has 3 kinds of interrupts: |
| * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock |
| * is updated |
| * 2) Alarm Interrupt - generate an interrupt at a specific time of day |
| * 3) Periodic Interrupt - generate periodic interrupt, with frequencies |
| * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2) |
| * (1) and (2) above are implemented using polling at a frequency of |
| * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt |
| * overhead. (DEFAULT_RTC_INT_FREQ) |
| * For (3), we use interrupts at 64Hz or user specified periodic |
| * frequency, whichever is higher. |
| */ |
| #include <linux/mc146818rtc.h> |
| #include <linux/rtc.h> |
| |
| extern irqreturn_t rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs); |
| |
| #define DEFAULT_RTC_INT_FREQ 64 |
| #define RTC_NUM_INTS 1 |
| |
| static unsigned long UIE_on; |
| static unsigned long prev_update_sec; |
| |
| static unsigned long AIE_on; |
| static struct rtc_time alarm_time; |
| |
| static unsigned long PIE_on; |
| static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ; |
| static unsigned long PIE_count; |
| |
| static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */ |
| |
| /* |
| * Timer 1 for RTC, we do not use periodic interrupt feature, |
| * even if HPET supports periodic interrupts on Timer 1. |
| * The reason being, to set up a periodic interrupt in HPET, we need to |
| * stop the main counter. And if we do that everytime someone diables/enables |
| * RTC, we will have adverse effect on main kernel timer running on Timer 0. |
| * So, for the time being, simulate the periodic interrupt in software. |
| * |
| * hpet_rtc_timer_init() is called for the first time and during subsequent |
| * interuppts reinit happens through hpet_rtc_timer_reinit(). |
| */ |
| int hpet_rtc_timer_init(void) |
| { |
| unsigned int cfg, cnt; |
| unsigned long flags; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| /* |
| * Set the counter 1 and enable the interrupts. |
| */ |
| if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| hpet_rtc_int_freq = PIE_freq; |
| else |
| hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| |
| local_irq_save(flags); |
| cnt = hpet_readl(HPET_COUNTER); |
| cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq); |
| hpet_writel(cnt, HPET_T1_CMP); |
| local_irq_restore(flags); |
| |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T1_CFG); |
| |
| return 1; |
| } |
| |
| static void hpet_rtc_timer_reinit(void) |
| { |
| unsigned int cfg, cnt; |
| |
| if (unlikely(!(PIE_on | AIE_on | UIE_on))) { |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg &= ~HPET_TN_ENABLE; |
| hpet_writel(cfg, HPET_T1_CFG); |
| return; |
| } |
| |
| if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ)) |
| hpet_rtc_int_freq = PIE_freq; |
| else |
| hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ; |
| |
| /* It is more accurate to use the comparator value than current count.*/ |
| cnt = hpet_readl(HPET_T1_CMP); |
| cnt += hpet_tick*HZ/hpet_rtc_int_freq; |
| hpet_writel(cnt, HPET_T1_CMP); |
| |
| cfg = hpet_readl(HPET_T1_CFG); |
| cfg |= HPET_TN_ENABLE | HPET_TN_SETVAL | HPET_TN_32BIT; |
| hpet_writel(cfg, HPET_T1_CFG); |
| |
| return; |
| } |
| |
| /* |
| * The functions below are called from rtc driver. |
| * Return 0 if HPET is not being used. |
| * Otherwise do the necessary changes and return 1. |
| */ |
| int hpet_mask_rtc_irq_bit(unsigned long bit_mask) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (bit_mask & RTC_UIE) |
| UIE_on = 0; |
| if (bit_mask & RTC_PIE) |
| PIE_on = 0; |
| if (bit_mask & RTC_AIE) |
| AIE_on = 0; |
| |
| return 1; |
| } |
| |
| int hpet_set_rtc_irq_bit(unsigned long bit_mask) |
| { |
| int timer_init_reqd = 0; |
| |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| if (!(PIE_on | AIE_on | UIE_on)) |
| timer_init_reqd = 1; |
| |
| if (bit_mask & RTC_UIE) { |
| UIE_on = 1; |
| } |
| if (bit_mask & RTC_PIE) { |
| PIE_on = 1; |
| PIE_count = 0; |
| } |
| if (bit_mask & RTC_AIE) { |
| AIE_on = 1; |
| } |
| |
| if (timer_init_reqd) |
| hpet_rtc_timer_init(); |
| |
| return 1; |
| } |
| |
| int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| alarm_time.tm_hour = hrs; |
| alarm_time.tm_min = min; |
| alarm_time.tm_sec = sec; |
| |
| return 1; |
| } |
| |
| int hpet_set_periodic_freq(unsigned long freq) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| PIE_freq = freq; |
| PIE_count = 0; |
| |
| return 1; |
| } |
| |
| int hpet_rtc_dropped_irq(void) |
| { |
| if (!is_hpet_enabled()) |
| return 0; |
| |
| return 1; |
| } |
| |
| irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| struct rtc_time curr_time; |
| unsigned long rtc_int_flag = 0; |
| int call_rtc_interrupt = 0; |
| |
| hpet_rtc_timer_reinit(); |
| |
| if (UIE_on | AIE_on) { |
| rtc_get_rtc_time(&curr_time); |
| } |
| if (UIE_on) { |
| if (curr_time.tm_sec != prev_update_sec) { |
| /* Set update int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag = RTC_UF; |
| prev_update_sec = curr_time.tm_sec; |
| } |
| } |
| if (PIE_on) { |
| PIE_count++; |
| if (PIE_count >= hpet_rtc_int_freq/PIE_freq) { |
| /* Set periodic int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag |= RTC_PF; |
| PIE_count = 0; |
| } |
| } |
| if (AIE_on) { |
| if ((curr_time.tm_sec == alarm_time.tm_sec) && |
| (curr_time.tm_min == alarm_time.tm_min) && |
| (curr_time.tm_hour == alarm_time.tm_hour)) { |
| /* Set alarm int info, call real rtc int routine */ |
| call_rtc_interrupt = 1; |
| rtc_int_flag |= RTC_AF; |
| } |
| } |
| if (call_rtc_interrupt) { |
| rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8)); |
| rtc_interrupt(rtc_int_flag, dev_id, regs); |
| } |
| return IRQ_HANDLED; |
| } |
| #endif |
| |