| /* |
| * sched_clock.c: support for extending counters to full 64-bit ns counter |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 as |
| * published by the Free Software Foundation. |
| */ |
| #include <linux/clocksource.h> |
| #include <linux/init.h> |
| #include <linux/jiffies.h> |
| #include <linux/ktime.h> |
| #include <linux/kernel.h> |
| #include <linux/moduleparam.h> |
| #include <linux/sched.h> |
| #include <linux/syscore_ops.h> |
| #include <linux/hrtimer.h> |
| #include <linux/sched_clock.h> |
| #include <linux/seqlock.h> |
| #include <linux/bitops.h> |
| |
| struct clock_data { |
| ktime_t wrap_kt; |
| u64 epoch_ns; |
| u64 epoch_cyc; |
| seqcount_t seq; |
| unsigned long rate; |
| u32 mult; |
| u32 shift; |
| bool suspended; |
| }; |
| |
| static struct hrtimer sched_clock_timer; |
| static int irqtime = -1; |
| |
| core_param(irqtime, irqtime, int, 0400); |
| |
| static struct clock_data cd = { |
| .mult = NSEC_PER_SEC / HZ, |
| }; |
| |
| static u64 __read_mostly sched_clock_mask; |
| |
| static u64 notrace jiffy_sched_clock_read(void) |
| { |
| /* |
| * We don't need to use get_jiffies_64 on 32-bit arches here |
| * because we register with BITS_PER_LONG |
| */ |
| return (u64)(jiffies - INITIAL_JIFFIES); |
| } |
| |
| static u32 __read_mostly (*read_sched_clock_32)(void); |
| |
| static u64 notrace read_sched_clock_32_wrapper(void) |
| { |
| return read_sched_clock_32(); |
| } |
| |
| static u64 __read_mostly (*read_sched_clock)(void) = jiffy_sched_clock_read; |
| |
| static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift) |
| { |
| return (cyc * mult) >> shift; |
| } |
| |
| static unsigned long long notrace sched_clock_32(void) |
| { |
| u64 epoch_ns; |
| u64 epoch_cyc; |
| u64 cyc; |
| unsigned long seq; |
| |
| if (cd.suspended) |
| return cd.epoch_ns; |
| |
| do { |
| seq = read_seqcount_begin(&cd.seq); |
| epoch_cyc = cd.epoch_cyc; |
| epoch_ns = cd.epoch_ns; |
| } while (read_seqcount_retry(&cd.seq, seq)); |
| |
| cyc = read_sched_clock(); |
| cyc = (cyc - epoch_cyc) & sched_clock_mask; |
| return epoch_ns + cyc_to_ns(cyc, cd.mult, cd.shift); |
| } |
| |
| /* |
| * Atomically update the sched_clock epoch. |
| */ |
| static void notrace update_sched_clock(void) |
| { |
| unsigned long flags; |
| u64 cyc; |
| u64 ns; |
| |
| cyc = read_sched_clock(); |
| ns = cd.epoch_ns + |
| cyc_to_ns((cyc - cd.epoch_cyc) & sched_clock_mask, |
| cd.mult, cd.shift); |
| |
| raw_local_irq_save(flags); |
| write_seqcount_begin(&cd.seq); |
| cd.epoch_ns = ns; |
| cd.epoch_cyc = cyc; |
| write_seqcount_end(&cd.seq); |
| raw_local_irq_restore(flags); |
| } |
| |
| static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt) |
| { |
| update_sched_clock(); |
| hrtimer_forward_now(hrt, cd.wrap_kt); |
| return HRTIMER_RESTART; |
| } |
| |
| void __init sched_clock_register(u64 (*read)(void), int bits, |
| unsigned long rate) |
| { |
| unsigned long r; |
| u64 res, wrap; |
| char r_unit; |
| |
| if (cd.rate > rate) |
| return; |
| |
| WARN_ON(!irqs_disabled()); |
| read_sched_clock = read; |
| sched_clock_mask = CLOCKSOURCE_MASK(bits); |
| cd.rate = rate; |
| |
| /* calculate the mult/shift to convert counter ticks to ns. */ |
| clocks_calc_mult_shift(&cd.mult, &cd.shift, rate, NSEC_PER_SEC, 3600); |
| |
| r = rate; |
| if (r >= 4000000) { |
| r /= 1000000; |
| r_unit = 'M'; |
| } else if (r >= 1000) { |
| r /= 1000; |
| r_unit = 'k'; |
| } else |
| r_unit = ' '; |
| |
| /* calculate how many ns until we wrap */ |
| wrap = clocks_calc_max_nsecs(cd.mult, cd.shift, 0, sched_clock_mask); |
| cd.wrap_kt = ns_to_ktime(wrap - (wrap >> 3)); |
| |
| /* calculate the ns resolution of this counter */ |
| res = cyc_to_ns(1ULL, cd.mult, cd.shift); |
| pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n", |
| bits, r, r_unit, res, wrap); |
| |
| update_sched_clock(); |
| |
| /* |
| * Ensure that sched_clock() starts off at 0ns |
| */ |
| cd.epoch_ns = 0; |
| |
| /* Enable IRQ time accounting if we have a fast enough sched_clock */ |
| if (irqtime > 0 || (irqtime == -1 && rate >= 1000000)) |
| enable_sched_clock_irqtime(); |
| |
| pr_debug("Registered %pF as sched_clock source\n", read); |
| } |
| |
| void __init setup_sched_clock(u32 (*read)(void), int bits, unsigned long rate) |
| { |
| read_sched_clock_32 = read; |
| sched_clock_register(read_sched_clock_32_wrapper, bits, rate); |
| } |
| |
| unsigned long long __read_mostly (*sched_clock_func)(void) = sched_clock_32; |
| |
| unsigned long long notrace sched_clock(void) |
| { |
| return sched_clock_func(); |
| } |
| |
| void __init sched_clock_postinit(void) |
| { |
| /* |
| * If no sched_clock function has been provided at that point, |
| * make it the final one one. |
| */ |
| if (read_sched_clock == jiffy_sched_clock_read) |
| sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ); |
| |
| update_sched_clock(); |
| |
| /* |
| * Start the timer to keep sched_clock() properly updated and |
| * sets the initial epoch. |
| */ |
| hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); |
| sched_clock_timer.function = sched_clock_poll; |
| hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL); |
| } |
| |
| static int sched_clock_suspend(void) |
| { |
| sched_clock_poll(&sched_clock_timer); |
| cd.suspended = true; |
| return 0; |
| } |
| |
| static void sched_clock_resume(void) |
| { |
| cd.epoch_cyc = read_sched_clock(); |
| cd.suspended = false; |
| } |
| |
| static struct syscore_ops sched_clock_ops = { |
| .suspend = sched_clock_suspend, |
| .resume = sched_clock_resume, |
| }; |
| |
| static int __init sched_clock_syscore_init(void) |
| { |
| register_syscore_ops(&sched_clock_ops); |
| return 0; |
| } |
| device_initcall(sched_clock_syscore_init); |