| /* |
| * linux/arch/x86-64/kernel/time.c |
| * |
| * "High Precision Event Timer" based timekeeping. |
| * |
| * Copyright (c) 1991,1992,1995 Linus Torvalds |
| * Copyright (c) 1994 Alan Modra |
| * Copyright (c) 1995 Markus Kuhn |
| * Copyright (c) 1996 Ingo Molnar |
| * Copyright (c) 1998 Andrea Arcangeli |
| * Copyright (c) 2002,2006 Vojtech Pavlik |
| * Copyright (c) 2003 Andi Kleen |
| * RTC support code taken from arch/i386/kernel/timers/time_hpet.c |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/sched.h> |
| #include <linux/interrupt.h> |
| #include <linux/init.h> |
| #include <linux/mc146818rtc.h> |
| #include <linux/time.h> |
| #include <linux/ioport.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/sysdev.h> |
| #include <linux/bcd.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/kallsyms.h> |
| #include <linux/acpi.h> |
| #ifdef CONFIG_ACPI |
| #include <acpi/achware.h> /* for PM timer frequency */ |
| #include <acpi/acpi_bus.h> |
| #endif |
| #include <asm/8253pit.h> |
| #include <asm/pgtable.h> |
| #include <asm/vsyscall.h> |
| #include <asm/timex.h> |
| #include <asm/proto.h> |
| #include <asm/hpet.h> |
| #include <asm/sections.h> |
| #include <linux/hpet.h> |
| #include <asm/apic.h> |
| #include <asm/hpet.h> |
| #include <asm/mpspec.h> |
| #include <asm/nmi.h> |
| |
| static char *timename = NULL; |
| |
| DEFINE_SPINLOCK(rtc_lock); |
| EXPORT_SYMBOL(rtc_lock); |
| DEFINE_SPINLOCK(i8253_lock); |
| |
| volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES; |
| |
| unsigned long profile_pc(struct pt_regs *regs) |
| { |
| unsigned long pc = instruction_pointer(regs); |
| |
| /* Assume the lock function has either no stack frame or a copy |
| of eflags from PUSHF |
| Eflags always has bits 22 and up cleared unlike kernel addresses. */ |
| if (!user_mode(regs) && in_lock_functions(pc)) { |
| unsigned long *sp = (unsigned long *)regs->rsp; |
| if (sp[0] >> 22) |
| return sp[0]; |
| if (sp[1] >> 22) |
| return sp[1]; |
| } |
| return pc; |
| } |
| EXPORT_SYMBOL(profile_pc); |
| |
| /* |
| * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500 |
| * ms after the second nowtime has started, because when nowtime is written |
| * into the registers of the CMOS clock, it will jump to the next second |
| * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data |
| * sheet for details. |
| */ |
| |
| static void set_rtc_mmss(unsigned long nowtime) |
| { |
| int real_seconds, real_minutes, cmos_minutes; |
| unsigned char control, freq_select; |
| |
| /* |
| * IRQs are disabled when we're called from the timer interrupt, |
| * no need for spin_lock_irqsave() |
| */ |
| |
| spin_lock(&rtc_lock); |
| |
| /* |
| * Tell the clock it's being set and stop it. |
| */ |
| |
| control = CMOS_READ(RTC_CONTROL); |
| CMOS_WRITE(control | RTC_SET, RTC_CONTROL); |
| |
| freq_select = CMOS_READ(RTC_FREQ_SELECT); |
| CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT); |
| |
| cmos_minutes = CMOS_READ(RTC_MINUTES); |
| BCD_TO_BIN(cmos_minutes); |
| |
| /* |
| * since we're only adjusting minutes and seconds, don't interfere with hour |
| * overflow. This avoids messing with unknown time zones but requires your RTC |
| * not to be off by more than 15 minutes. Since we're calling it only when |
| * our clock is externally synchronized using NTP, this shouldn't be a problem. |
| */ |
| |
| real_seconds = nowtime % 60; |
| real_minutes = nowtime / 60; |
| if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1) |
| real_minutes += 30; /* correct for half hour time zone */ |
| real_minutes %= 60; |
| |
| if (abs(real_minutes - cmos_minutes) >= 30) { |
| printk(KERN_WARNING "time.c: can't update CMOS clock " |
| "from %d to %d\n", cmos_minutes, real_minutes); |
| } else { |
| BIN_TO_BCD(real_seconds); |
| BIN_TO_BCD(real_minutes); |
| CMOS_WRITE(real_seconds, RTC_SECONDS); |
| CMOS_WRITE(real_minutes, RTC_MINUTES); |
| } |
| |
| /* |
| * The following flags have to be released exactly in this order, otherwise the |
| * DS12887 (popular MC146818A clone with integrated battery and quartz) will |
| * not reset the oscillator and will not update precisely 500 ms later. You |
| * won't find this mentioned in the Dallas Semiconductor data sheets, but who |
| * believes data sheets anyway ... -- Markus Kuhn |
| */ |
| |
| CMOS_WRITE(control, RTC_CONTROL); |
| CMOS_WRITE(freq_select, RTC_FREQ_SELECT); |
| |
| spin_unlock(&rtc_lock); |
| } |
| |
| |
| void main_timer_handler(void) |
| { |
| static unsigned long rtc_update = 0; |
| /* |
| * Here we are in the timer irq handler. We have irqs locally disabled (so we |
| * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running |
| * on the other CPU, so we need a lock. We also need to lock the vsyscall |
| * variables, because both do_timer() and us change them -arca+vojtech |
| */ |
| |
| write_seqlock(&xtime_lock); |
| |
| /* |
| * Do the timer stuff. |
| */ |
| |
| do_timer(1); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(get_irq_regs())); |
| #endif |
| |
| /* |
| * In the SMP case we use the local APIC timer interrupt to do the profiling, |
| * except when we simulate SMP mode on a uniprocessor system, in that case we |
| * have to call the local interrupt handler. |
| */ |
| |
| if (!using_apic_timer) |
| smp_local_timer_interrupt(); |
| |
| /* |
| * If we have an externally synchronized Linux clock, then update CMOS clock |
| * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy |
| * closest to exactly 500 ms before the next second. If the update fails, we |
| * don't care, as it'll be updated on the next turn, and the problem (time way |
| * off) isn't likely to go away much sooner anyway. |
| */ |
| |
| if (ntp_synced() && xtime.tv_sec > rtc_update && |
| abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) { |
| set_rtc_mmss(xtime.tv_sec); |
| rtc_update = xtime.tv_sec + 660; |
| } |
| |
| write_sequnlock(&xtime_lock); |
| } |
| |
| static irqreturn_t timer_interrupt(int irq, void *dev_id) |
| { |
| if (apic_runs_main_timer > 1) |
| return IRQ_HANDLED; |
| main_timer_handler(); |
| if (using_apic_timer) |
| smp_send_timer_broadcast_ipi(); |
| return IRQ_HANDLED; |
| } |
| |
| static unsigned long get_cmos_time(void) |
| { |
| unsigned int year, mon, day, hour, min, sec; |
| unsigned long flags; |
| unsigned century = 0; |
| |
| spin_lock_irqsave(&rtc_lock, flags); |
| |
| do { |
| sec = CMOS_READ(RTC_SECONDS); |
| min = CMOS_READ(RTC_MINUTES); |
| hour = CMOS_READ(RTC_HOURS); |
| day = CMOS_READ(RTC_DAY_OF_MONTH); |
| mon = CMOS_READ(RTC_MONTH); |
| year = CMOS_READ(RTC_YEAR); |
| #ifdef CONFIG_ACPI |
| if (acpi_gbl_FADT.header.revision >= FADT2_REVISION_ID && |
| acpi_gbl_FADT.century) |
| century = CMOS_READ(acpi_gbl_FADT.century); |
| #endif |
| } while (sec != CMOS_READ(RTC_SECONDS)); |
| |
| spin_unlock_irqrestore(&rtc_lock, flags); |
| |
| /* |
| * We know that x86-64 always uses BCD format, no need to check the |
| * config register. |
| */ |
| |
| BCD_TO_BIN(sec); |
| BCD_TO_BIN(min); |
| BCD_TO_BIN(hour); |
| BCD_TO_BIN(day); |
| BCD_TO_BIN(mon); |
| BCD_TO_BIN(year); |
| |
| if (century) { |
| BCD_TO_BIN(century); |
| year += century * 100; |
| printk(KERN_INFO "Extended CMOS year: %d\n", century * 100); |
| } else { |
| /* |
| * x86-64 systems only exists since 2002. |
| * This will work up to Dec 31, 2100 |
| */ |
| year += 2000; |
| } |
| |
| return mktime(year, mon, day, hour, min, sec); |
| } |
| |
| /* calibrate_cpu is used on systems with fixed rate TSCs to determine |
| * processor frequency */ |
| #define TICK_COUNT 100000000 |
| static unsigned int __init tsc_calibrate_cpu_khz(void) |
| { |
| int tsc_start, tsc_now; |
| int i, no_ctr_free; |
| unsigned long evntsel3 = 0, pmc3 = 0, pmc_now = 0; |
| unsigned long flags; |
| |
| for (i = 0; i < 4; i++) |
| if (avail_to_resrv_perfctr_nmi_bit(i)) |
| break; |
| no_ctr_free = (i == 4); |
| if (no_ctr_free) { |
| i = 3; |
| rdmsrl(MSR_K7_EVNTSEL3, evntsel3); |
| wrmsrl(MSR_K7_EVNTSEL3, 0); |
| rdmsrl(MSR_K7_PERFCTR3, pmc3); |
| } else { |
| reserve_perfctr_nmi(MSR_K7_PERFCTR0 + i); |
| reserve_evntsel_nmi(MSR_K7_EVNTSEL0 + i); |
| } |
| local_irq_save(flags); |
| /* start meauring cycles, incrementing from 0 */ |
| wrmsrl(MSR_K7_PERFCTR0 + i, 0); |
| wrmsrl(MSR_K7_EVNTSEL0 + i, 1 << 22 | 3 << 16 | 0x76); |
| rdtscl(tsc_start); |
| do { |
| rdmsrl(MSR_K7_PERFCTR0 + i, pmc_now); |
| tsc_now = get_cycles_sync(); |
| } while ((tsc_now - tsc_start) < TICK_COUNT); |
| |
| local_irq_restore(flags); |
| if (no_ctr_free) { |
| wrmsrl(MSR_K7_EVNTSEL3, 0); |
| wrmsrl(MSR_K7_PERFCTR3, pmc3); |
| wrmsrl(MSR_K7_EVNTSEL3, evntsel3); |
| } else { |
| release_perfctr_nmi(MSR_K7_PERFCTR0 + i); |
| release_evntsel_nmi(MSR_K7_EVNTSEL0 + i); |
| } |
| |
| return pmc_now * tsc_khz / (tsc_now - tsc_start); |
| } |
| |
| /* |
| * pit_calibrate_tsc() uses the speaker output (channel 2) of |
| * the PIT. This is better than using the timer interrupt output, |
| * because we can read the value of the speaker with just one inb(), |
| * where we need three i/o operations for the interrupt channel. |
| * We count how many ticks the TSC does in 50 ms. |
| */ |
| |
| static unsigned int __init pit_calibrate_tsc(void) |
| { |
| unsigned long start, end; |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8253_lock, flags); |
| |
| outb((inb(0x61) & ~0x02) | 0x01, 0x61); |
| |
| outb(0xb0, 0x43); |
| outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42); |
| outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42); |
| start = get_cycles_sync(); |
| while ((inb(0x61) & 0x20) == 0); |
| end = get_cycles_sync(); |
| |
| spin_unlock_irqrestore(&i8253_lock, flags); |
| |
| return (end - start) / 50; |
| } |
| |
| #define PIT_MODE 0x43 |
| #define PIT_CH0 0x40 |
| |
| static void __pit_init(int val, u8 mode) |
| { |
| unsigned long flags; |
| |
| spin_lock_irqsave(&i8253_lock, flags); |
| outb_p(mode, PIT_MODE); |
| outb_p(val & 0xff, PIT_CH0); /* LSB */ |
| outb_p(val >> 8, PIT_CH0); /* MSB */ |
| spin_unlock_irqrestore(&i8253_lock, flags); |
| } |
| |
| void __init pit_init(void) |
| { |
| __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */ |
| } |
| |
| void pit_stop_interrupt(void) |
| { |
| __pit_init(0, 0x30); /* mode 0 */ |
| } |
| |
| void stop_timer_interrupt(void) |
| { |
| char *name; |
| if (hpet_address) { |
| name = "HPET"; |
| hpet_timer_stop_set_go(0); |
| } else { |
| name = "PIT"; |
| pit_stop_interrupt(); |
| } |
| printk(KERN_INFO "timer: %s interrupt stopped.\n", name); |
| } |
| |
| static struct irqaction irq0 = { |
| timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL |
| }; |
| |
| void __init time_init(void) |
| { |
| if (nohpet) |
| hpet_address = 0; |
| xtime.tv_sec = get_cmos_time(); |
| xtime.tv_nsec = 0; |
| |
| set_normalized_timespec(&wall_to_monotonic, |
| -xtime.tv_sec, -xtime.tv_nsec); |
| |
| if (hpet_arch_init()) |
| hpet_address = 0; |
| |
| if (hpet_use_timer) { |
| /* set tick_nsec to use the proper rate for HPET */ |
| tick_nsec = TICK_NSEC_HPET; |
| tsc_khz = hpet_calibrate_tsc(); |
| timename = "HPET"; |
| } else { |
| pit_init(); |
| tsc_khz = pit_calibrate_tsc(); |
| timename = "PIT"; |
| } |
| |
| cpu_khz = tsc_khz; |
| if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) && |
| boot_cpu_data.x86_vendor == X86_VENDOR_AMD && |
| boot_cpu_data.x86 == 16) |
| cpu_khz = tsc_calibrate_cpu_khz(); |
| |
| if (unsynchronized_tsc()) |
| mark_tsc_unstable("TSCs unsynchronized"); |
| |
| if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP)) |
| vgetcpu_mode = VGETCPU_RDTSCP; |
| else |
| vgetcpu_mode = VGETCPU_LSL; |
| |
| set_cyc2ns_scale(tsc_khz); |
| printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n", |
| cpu_khz / 1000, cpu_khz % 1000); |
| init_tsc_clocksource(); |
| |
| setup_irq(0, &irq0); |
| } |
| |
| |
| static long clock_cmos_diff; |
| static unsigned long sleep_start; |
| |
| /* |
| * sysfs support for the timer. |
| */ |
| |
| static int timer_suspend(struct sys_device *dev, pm_message_t state) |
| { |
| /* |
| * Estimate time zone so that set_time can update the clock |
| */ |
| long cmos_time = get_cmos_time(); |
| |
| clock_cmos_diff = -cmos_time; |
| clock_cmos_diff += get_seconds(); |
| sleep_start = cmos_time; |
| return 0; |
| } |
| |
| static int timer_resume(struct sys_device *dev) |
| { |
| unsigned long flags; |
| unsigned long sec; |
| unsigned long ctime = get_cmos_time(); |
| long sleep_length = (ctime - sleep_start) * HZ; |
| |
| if (sleep_length < 0) { |
| printk(KERN_WARNING "Time skew detected in timer resume!\n"); |
| /* The time after the resume must not be earlier than the time |
| * before the suspend or some nasty things will happen |
| */ |
| sleep_length = 0; |
| ctime = sleep_start; |
| } |
| if (hpet_address) |
| hpet_reenable(); |
| else |
| i8254_timer_resume(); |
| |
| sec = ctime + clock_cmos_diff; |
| write_seqlock_irqsave(&xtime_lock,flags); |
| xtime.tv_sec = sec; |
| xtime.tv_nsec = 0; |
| jiffies += sleep_length; |
| write_sequnlock_irqrestore(&xtime_lock,flags); |
| touch_softlockup_watchdog(); |
| return 0; |
| } |
| |
| static struct sysdev_class timer_sysclass = { |
| .resume = timer_resume, |
| .suspend = timer_suspend, |
| set_kset_name("timer"), |
| }; |
| |
| /* XXX this sysfs stuff should probably go elsewhere later -john */ |
| static struct sys_device device_timer = { |
| .id = 0, |
| .cls = &timer_sysclass, |
| }; |
| |
| static int time_init_device(void) |
| { |
| int error = sysdev_class_register(&timer_sysclass); |
| if (!error) |
| error = sysdev_register(&device_timer); |
| return error; |
| } |
| |
| device_initcall(time_init_device); |