| /* |
| * Copyright 2003 NVIDIA, Corporation |
| * Copyright 2006 Dave Airlie |
| * Copyright 2007 Maarten Maathuis |
| * Copyright 2007-2009 Stuart Bennett |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice (including the next |
| * paragraph) shall be included in all copies or substantial portions of the |
| * Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| */ |
| |
| #include "drmP.h" |
| #include "drm_crtc_helper.h" |
| |
| #include "nouveau_drv.h" |
| #include "nouveau_encoder.h" |
| #include "nouveau_connector.h" |
| #include "nouveau_crtc.h" |
| #include "nouveau_hw.h" |
| #include "nvreg.h" |
| |
| #include "i2c/sil164.h" |
| |
| #define FP_TG_CONTROL_ON (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | \ |
| NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS | \ |
| NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS) |
| #define FP_TG_CONTROL_OFF (NV_PRAMDAC_FP_TG_CONTROL_DISPEN_DISABLE | \ |
| NV_PRAMDAC_FP_TG_CONTROL_HSYNC_DISABLE | \ |
| NV_PRAMDAC_FP_TG_CONTROL_VSYNC_DISABLE) |
| |
| static inline bool is_fpc_off(uint32_t fpc) |
| { |
| return ((fpc & (FP_TG_CONTROL_ON | FP_TG_CONTROL_OFF)) == |
| FP_TG_CONTROL_OFF); |
| } |
| |
| int nv04_dfp_get_bound_head(struct drm_device *dev, struct dcb_entry *dcbent) |
| { |
| /* special case of nv_read_tmds to find crtc associated with an output. |
| * this does not give a correct answer for off-chip dvi, but there's no |
| * use for such an answer anyway |
| */ |
| int ramdac = (dcbent->or & OUTPUT_C) >> 2; |
| |
| NVWriteRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_CONTROL, |
| NV_PRAMDAC_FP_TMDS_CONTROL_WRITE_DISABLE | 0x4); |
| return ((NVReadRAMDAC(dev, ramdac, NV_PRAMDAC_FP_TMDS_DATA) & 0x8) >> 3) ^ ramdac; |
| } |
| |
| void nv04_dfp_bind_head(struct drm_device *dev, struct dcb_entry *dcbent, |
| int head, bool dl) |
| { |
| /* The BIOS scripts don't do this for us, sadly |
| * Luckily we do know the values ;-) |
| * |
| * head < 0 indicates we wish to force a setting with the overrideval |
| * (for VT restore etc.) |
| */ |
| |
| int ramdac = (dcbent->or & OUTPUT_C) >> 2; |
| uint8_t tmds04 = 0x80; |
| |
| if (head != ramdac) |
| tmds04 = 0x88; |
| |
| if (dcbent->type == OUTPUT_LVDS) |
| tmds04 |= 0x01; |
| |
| nv_write_tmds(dev, dcbent->or, 0, 0x04, tmds04); |
| |
| if (dl) /* dual link */ |
| nv_write_tmds(dev, dcbent->or, 1, 0x04, tmds04 ^ 0x08); |
| } |
| |
| void nv04_dfp_disable(struct drm_device *dev, int head) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg; |
| |
| if (NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL) & |
| FP_TG_CONTROL_ON) { |
| /* digital remnants must be cleaned before new crtc |
| * values programmed. delay is time for the vga stuff |
| * to realise it's in control again |
| */ |
| NVWriteRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL, |
| FP_TG_CONTROL_OFF); |
| msleep(50); |
| } |
| /* don't inadvertently turn it on when state written later */ |
| crtcstate[head].fp_control = FP_TG_CONTROL_OFF; |
| } |
| |
| void nv04_dfp_update_fp_control(struct drm_encoder *encoder, int mode) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct drm_crtc *crtc; |
| struct nouveau_crtc *nv_crtc; |
| uint32_t *fpc; |
| |
| if (mode == DRM_MODE_DPMS_ON) { |
| nv_crtc = nouveau_crtc(encoder->crtc); |
| fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control; |
| |
| if (is_fpc_off(*fpc)) { |
| /* using saved value is ok, as (is_digital && dpms_on && |
| * fp_control==OFF) is (at present) *only* true when |
| * fpc's most recent change was by below "off" code |
| */ |
| *fpc = nv_crtc->dpms_saved_fp_control; |
| } |
| |
| nv_crtc->fp_users |= 1 << nouveau_encoder(encoder)->dcb->index; |
| NVWriteRAMDAC(dev, nv_crtc->index, NV_PRAMDAC_FP_TG_CONTROL, *fpc); |
| } else { |
| list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) { |
| nv_crtc = nouveau_crtc(crtc); |
| fpc = &dev_priv->mode_reg.crtc_reg[nv_crtc->index].fp_control; |
| |
| nv_crtc->fp_users &= ~(1 << nouveau_encoder(encoder)->dcb->index); |
| if (!is_fpc_off(*fpc) && !nv_crtc->fp_users) { |
| nv_crtc->dpms_saved_fp_control = *fpc; |
| /* cut the FP output */ |
| *fpc &= ~FP_TG_CONTROL_ON; |
| *fpc |= FP_TG_CONTROL_OFF; |
| NVWriteRAMDAC(dev, nv_crtc->index, |
| NV_PRAMDAC_FP_TG_CONTROL, *fpc); |
| } |
| } |
| } |
| } |
| |
| static struct drm_encoder *get_tmds_slave(struct drm_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb; |
| struct drm_encoder *slave; |
| |
| if (dcb->type != OUTPUT_TMDS || dcb->location == DCB_LOC_ON_CHIP) |
| return NULL; |
| |
| /* Some BIOSes (e.g. the one in a Quadro FX1000) report several |
| * TMDS transmitters at the same I2C address, in the same I2C |
| * bus. This can still work because in that case one of them is |
| * always hard-wired to a reasonable configuration using straps, |
| * and the other one needs to be programmed. |
| * |
| * I don't think there's a way to know which is which, even the |
| * blob programs the one exposed via I2C for *both* heads, so |
| * let's do the same. |
| */ |
| list_for_each_entry(slave, &dev->mode_config.encoder_list, head) { |
| struct dcb_entry *slave_dcb = nouveau_encoder(slave)->dcb; |
| |
| if (slave_dcb->type == OUTPUT_TMDS && get_slave_funcs(slave) && |
| slave_dcb->tmdsconf.slave_addr == dcb->tmdsconf.slave_addr) |
| return slave; |
| } |
| |
| return NULL; |
| } |
| |
| static bool nv04_dfp_mode_fixup(struct drm_encoder *encoder, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); |
| |
| /* For internal panels and gpu scaling on DVI we need the native mode */ |
| if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { |
| if (!nv_connector->native_mode) |
| return false; |
| nv_encoder->mode = *nv_connector->native_mode; |
| adjusted_mode->clock = nv_connector->native_mode->clock; |
| } else { |
| nv_encoder->mode = *adjusted_mode; |
| } |
| |
| return true; |
| } |
| |
| static void nv04_dfp_prepare_sel_clk(struct drm_device *dev, |
| struct nouveau_encoder *nv_encoder, int head) |
| { |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nv04_mode_state *state = &dev_priv->mode_reg; |
| uint32_t bits1618 = nv_encoder->dcb->or & OUTPUT_A ? 0x10000 : 0x40000; |
| |
| if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP) |
| return; |
| |
| /* SEL_CLK is only used on the primary ramdac |
| * It toggles spread spectrum PLL output and sets the bindings of PLLs |
| * to heads on digital outputs |
| */ |
| if (head) |
| state->sel_clk |= bits1618; |
| else |
| state->sel_clk &= ~bits1618; |
| |
| /* nv30: |
| * bit 0 NVClk spread spectrum on/off |
| * bit 2 MemClk spread spectrum on/off |
| * bit 4 PixClk1 spread spectrum on/off toggle |
| * bit 6 PixClk2 spread spectrum on/off toggle |
| * |
| * nv40 (observations from bios behaviour and mmio traces): |
| * bits 4&6 as for nv30 |
| * bits 5&7 head dependent as for bits 4&6, but do not appear with 4&6; |
| * maybe a different spread mode |
| * bits 8&10 seen on dual-link dvi outputs, purpose unknown (set by POST scripts) |
| * The logic behind turning spread spectrum on/off in the first place, |
| * and which bit-pair to use, is unclear on nv40 (for earlier cards, the fp table |
| * entry has the necessary info) |
| */ |
| if (nv_encoder->dcb->type == OUTPUT_LVDS && dev_priv->saved_reg.sel_clk & 0xf0) { |
| int shift = (dev_priv->saved_reg.sel_clk & 0x50) ? 0 : 1; |
| |
| state->sel_clk &= ~0xf0; |
| state->sel_clk |= (head ? 0x40 : 0x10) << shift; |
| } |
| } |
| |
| static void nv04_dfp_prepare(struct drm_encoder *encoder) |
| { |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct drm_encoder_helper_funcs *helper = encoder->helper_private; |
| struct drm_device *dev = encoder->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int head = nouveau_crtc(encoder->crtc)->index; |
| struct nv04_crtc_reg *crtcstate = dev_priv->mode_reg.crtc_reg; |
| uint8_t *cr_lcd = &crtcstate[head].CRTC[NV_CIO_CRE_LCD__INDEX]; |
| uint8_t *cr_lcd_oth = &crtcstate[head ^ 1].CRTC[NV_CIO_CRE_LCD__INDEX]; |
| |
| helper->dpms(encoder, DRM_MODE_DPMS_OFF); |
| |
| nv04_dfp_prepare_sel_clk(dev, nv_encoder, head); |
| |
| /* Some NV4x have unknown values (0x3f, 0x50, 0x54, 0x6b, 0x79, 0x7f) |
| * at LCD__INDEX which we don't alter |
| */ |
| if (!(*cr_lcd & 0x44)) { |
| *cr_lcd = 0x3; |
| |
| if (nv_two_heads(dev)) { |
| if (nv_encoder->dcb->location == DCB_LOC_ON_CHIP) |
| *cr_lcd |= head ? 0x0 : 0x8; |
| else { |
| *cr_lcd |= (nv_encoder->dcb->or << 4) & 0x30; |
| if (nv_encoder->dcb->type == OUTPUT_LVDS) |
| *cr_lcd |= 0x30; |
| if ((*cr_lcd & 0x30) == (*cr_lcd_oth & 0x30)) { |
| /* avoid being connected to both crtcs */ |
| *cr_lcd_oth &= ~0x30; |
| NVWriteVgaCrtc(dev, head ^ 1, |
| NV_CIO_CRE_LCD__INDEX, |
| *cr_lcd_oth); |
| } |
| } |
| } |
| } |
| } |
| |
| |
| static void nv04_dfp_mode_set(struct drm_encoder *encoder, |
| struct drm_display_mode *mode, |
| struct drm_display_mode *adjusted_mode) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); |
| struct nv04_crtc_reg *regp = &dev_priv->mode_reg.crtc_reg[nv_crtc->index]; |
| struct nv04_crtc_reg *savep = &dev_priv->saved_reg.crtc_reg[nv_crtc->index]; |
| struct nouveau_connector *nv_connector = nouveau_crtc_connector_get(nv_crtc); |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct drm_display_mode *output_mode = &nv_encoder->mode; |
| uint32_t mode_ratio, panel_ratio; |
| |
| NV_DEBUG_KMS(dev, "Output mode on CRTC %d:\n", nv_crtc->index); |
| drm_mode_debug_printmodeline(output_mode); |
| |
| /* Initialize the FP registers in this CRTC. */ |
| regp->fp_horiz_regs[FP_DISPLAY_END] = output_mode->hdisplay - 1; |
| regp->fp_horiz_regs[FP_TOTAL] = output_mode->htotal - 1; |
| if (!nv_gf4_disp_arch(dev) || |
| (output_mode->hsync_start - output_mode->hdisplay) >= |
| dev_priv->vbios.digital_min_front_porch) |
| regp->fp_horiz_regs[FP_CRTC] = output_mode->hdisplay; |
| else |
| regp->fp_horiz_regs[FP_CRTC] = output_mode->hsync_start - dev_priv->vbios.digital_min_front_porch - 1; |
| regp->fp_horiz_regs[FP_SYNC_START] = output_mode->hsync_start - 1; |
| regp->fp_horiz_regs[FP_SYNC_END] = output_mode->hsync_end - 1; |
| regp->fp_horiz_regs[FP_VALID_START] = output_mode->hskew; |
| regp->fp_horiz_regs[FP_VALID_END] = output_mode->hdisplay - 1; |
| |
| regp->fp_vert_regs[FP_DISPLAY_END] = output_mode->vdisplay - 1; |
| regp->fp_vert_regs[FP_TOTAL] = output_mode->vtotal - 1; |
| regp->fp_vert_regs[FP_CRTC] = output_mode->vtotal - 5 - 1; |
| regp->fp_vert_regs[FP_SYNC_START] = output_mode->vsync_start - 1; |
| regp->fp_vert_regs[FP_SYNC_END] = output_mode->vsync_end - 1; |
| regp->fp_vert_regs[FP_VALID_START] = 0; |
| regp->fp_vert_regs[FP_VALID_END] = output_mode->vdisplay - 1; |
| |
| /* bit26: a bit seen on some g7x, no as yet discernable purpose */ |
| regp->fp_control = NV_PRAMDAC_FP_TG_CONTROL_DISPEN_POS | |
| (savep->fp_control & (1 << 26 | NV_PRAMDAC_FP_TG_CONTROL_READ_PROG)); |
| /* Deal with vsync/hsync polarity */ |
| /* LVDS screens do set this, but modes with +ve syncs are very rare */ |
| if (output_mode->flags & DRM_MODE_FLAG_PVSYNC) |
| regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_VSYNC_POS; |
| if (output_mode->flags & DRM_MODE_FLAG_PHSYNC) |
| regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_HSYNC_POS; |
| /* panel scaling first, as native would get set otherwise */ |
| if (nv_connector->scaling_mode == DRM_MODE_SCALE_NONE || |
| nv_connector->scaling_mode == DRM_MODE_SCALE_CENTER) /* panel handles it */ |
| regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_CENTER; |
| else if (adjusted_mode->hdisplay == output_mode->hdisplay && |
| adjusted_mode->vdisplay == output_mode->vdisplay) /* native mode */ |
| regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_NATIVE; |
| else /* gpu needs to scale */ |
| regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_MODE_SCALE; |
| if (nvReadEXTDEV(dev, NV_PEXTDEV_BOOT_0) & NV_PEXTDEV_BOOT_0_STRAP_FP_IFACE_12BIT) |
| regp->fp_control |= NV_PRAMDAC_FP_TG_CONTROL_WIDTH_12; |
| if (nv_encoder->dcb->location != DCB_LOC_ON_CHIP && |
| output_mode->clock > 165000) |
| regp->fp_control |= (2 << 24); |
| if (nv_encoder->dcb->type == OUTPUT_LVDS) { |
| bool duallink, dummy; |
| |
| nouveau_bios_parse_lvds_table(dev, nv_connector->native_mode-> |
| clock, &duallink, &dummy); |
| if (duallink) |
| regp->fp_control |= (8 << 28); |
| } else |
| if (output_mode->clock > 165000) |
| regp->fp_control |= (8 << 28); |
| |
| regp->fp_debug_0 = NV_PRAMDAC_FP_DEBUG_0_YWEIGHT_ROUND | |
| NV_PRAMDAC_FP_DEBUG_0_XWEIGHT_ROUND | |
| NV_PRAMDAC_FP_DEBUG_0_YINTERP_BILINEAR | |
| NV_PRAMDAC_FP_DEBUG_0_XINTERP_BILINEAR | |
| NV_RAMDAC_FP_DEBUG_0_TMDS_ENABLED | |
| NV_PRAMDAC_FP_DEBUG_0_YSCALE_ENABLE | |
| NV_PRAMDAC_FP_DEBUG_0_XSCALE_ENABLE; |
| |
| /* We want automatic scaling */ |
| regp->fp_debug_1 = 0; |
| /* This can override HTOTAL and VTOTAL */ |
| regp->fp_debug_2 = 0; |
| |
| /* Use 20.12 fixed point format to avoid floats */ |
| mode_ratio = (1 << 12) * adjusted_mode->hdisplay / adjusted_mode->vdisplay; |
| panel_ratio = (1 << 12) * output_mode->hdisplay / output_mode->vdisplay; |
| /* if ratios are equal, SCALE_ASPECT will automatically (and correctly) |
| * get treated the same as SCALE_FULLSCREEN */ |
| if (nv_connector->scaling_mode == DRM_MODE_SCALE_ASPECT && |
| mode_ratio != panel_ratio) { |
| uint32_t diff, scale; |
| bool divide_by_2 = nv_gf4_disp_arch(dev); |
| |
| if (mode_ratio < panel_ratio) { |
| /* vertical needs to expand to glass size (automatic) |
| * horizontal needs to be scaled at vertical scale factor |
| * to maintain aspect */ |
| |
| scale = (1 << 12) * adjusted_mode->vdisplay / output_mode->vdisplay; |
| regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_XSCALE_TESTMODE_ENABLE | |
| XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_XSCALE_VALUE); |
| |
| /* restrict area of screen used, horizontally */ |
| diff = output_mode->hdisplay - |
| output_mode->vdisplay * mode_ratio / (1 << 12); |
| regp->fp_horiz_regs[FP_VALID_START] += diff / 2; |
| regp->fp_horiz_regs[FP_VALID_END] -= diff / 2; |
| } |
| |
| if (mode_ratio > panel_ratio) { |
| /* horizontal needs to expand to glass size (automatic) |
| * vertical needs to be scaled at horizontal scale factor |
| * to maintain aspect */ |
| |
| scale = (1 << 12) * adjusted_mode->hdisplay / output_mode->hdisplay; |
| regp->fp_debug_1 = NV_PRAMDAC_FP_DEBUG_1_YSCALE_TESTMODE_ENABLE | |
| XLATE(scale, divide_by_2, NV_PRAMDAC_FP_DEBUG_1_YSCALE_VALUE); |
| |
| /* restrict area of screen used, vertically */ |
| diff = output_mode->vdisplay - |
| (1 << 12) * output_mode->hdisplay / mode_ratio; |
| regp->fp_vert_regs[FP_VALID_START] += diff / 2; |
| regp->fp_vert_regs[FP_VALID_END] -= diff / 2; |
| } |
| } |
| |
| /* Output property. */ |
| if (nv_connector->use_dithering) { |
| if (dev_priv->chipset == 0x11) |
| regp->dither = savep->dither | 0x00010000; |
| else { |
| int i; |
| regp->dither = savep->dither | 0x00000001; |
| for (i = 0; i < 3; i++) { |
| regp->dither_regs[i] = 0xe4e4e4e4; |
| regp->dither_regs[i + 3] = 0x44444444; |
| } |
| } |
| } else { |
| if (dev_priv->chipset != 0x11) { |
| /* reset them */ |
| int i; |
| for (i = 0; i < 3; i++) { |
| regp->dither_regs[i] = savep->dither_regs[i]; |
| regp->dither_regs[i + 3] = savep->dither_regs[i + 3]; |
| } |
| } |
| regp->dither = savep->dither; |
| } |
| |
| regp->fp_margin_color = 0; |
| } |
| |
| static void nv04_dfp_commit(struct drm_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct drm_encoder_helper_funcs *helper = encoder->helper_private; |
| struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct dcb_entry *dcbe = nv_encoder->dcb; |
| int head = nouveau_crtc(encoder->crtc)->index; |
| struct drm_encoder *slave_encoder; |
| |
| if (dcbe->type == OUTPUT_TMDS) |
| run_tmds_table(dev, dcbe, head, nv_encoder->mode.clock); |
| else if (dcbe->type == OUTPUT_LVDS) |
| call_lvds_script(dev, dcbe, head, LVDS_RESET, nv_encoder->mode.clock); |
| |
| /* update fp_control state for any changes made by scripts, |
| * so correct value is written at DPMS on */ |
| dev_priv->mode_reg.crtc_reg[head].fp_control = |
| NVReadRAMDAC(dev, head, NV_PRAMDAC_FP_TG_CONTROL); |
| |
| /* This could use refinement for flatpanels, but it should work this way */ |
| if (dev_priv->chipset < 0x44) |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0xf0000000); |
| else |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_TEST_CONTROL + nv04_dac_output_offset(encoder), 0x00100000); |
| |
| /* Init external transmitters */ |
| slave_encoder = get_tmds_slave(encoder); |
| if (slave_encoder) |
| get_slave_funcs(slave_encoder)->mode_set( |
| slave_encoder, &nv_encoder->mode, &nv_encoder->mode); |
| |
| helper->dpms(encoder, DRM_MODE_DPMS_ON); |
| |
| NV_INFO(dev, "Output %s is running on CRTC %d using output %c\n", |
| drm_get_connector_name(&nouveau_encoder_connector_get(nv_encoder)->base), |
| nv_crtc->index, '@' + ffs(nv_encoder->dcb->or)); |
| } |
| |
| static void nv04_dfp_update_backlight(struct drm_encoder *encoder, int mode) |
| { |
| #ifdef __powerpc__ |
| struct drm_device *dev = encoder->dev; |
| |
| /* BIOS scripts usually take care of the backlight, thanks |
| * Apple for your consistency. |
| */ |
| if (dev->pci_device == 0x0179 || dev->pci_device == 0x0189 || |
| dev->pci_device == 0x0329) { |
| if (mode == DRM_MODE_DPMS_ON) { |
| nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 0, 1 << 31); |
| nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 1); |
| } else { |
| nv_mask(dev, NV_PBUS_DEBUG_DUALHEAD_CTL, 1 << 31, 0); |
| nv_mask(dev, NV_PCRTC_GPIO_EXT, 3, 0); |
| } |
| } |
| #endif |
| } |
| |
| static inline bool is_powersaving_dpms(int mode) |
| { |
| return (mode != DRM_MODE_DPMS_ON); |
| } |
| |
| static void nv04_lvds_dpms(struct drm_encoder *encoder, int mode) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct drm_crtc *crtc = encoder->crtc; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| bool was_powersaving = is_powersaving_dpms(nv_encoder->last_dpms); |
| |
| if (nv_encoder->last_dpms == mode) |
| return; |
| nv_encoder->last_dpms = mode; |
| |
| NV_INFO(dev, "Setting dpms mode %d on lvds encoder (output %d)\n", |
| mode, nv_encoder->dcb->index); |
| |
| if (was_powersaving && is_powersaving_dpms(mode)) |
| return; |
| |
| if (nv_encoder->dcb->lvdsconf.use_power_scripts) { |
| struct nouveau_connector *nv_connector = nouveau_encoder_connector_get(nv_encoder); |
| |
| /* when removing an output, crtc may not be set, but PANEL_OFF |
| * must still be run |
| */ |
| int head = crtc ? nouveau_crtc(crtc)->index : |
| nv04_dfp_get_bound_head(dev, nv_encoder->dcb); |
| |
| if (mode == DRM_MODE_DPMS_ON) { |
| if (!nv_connector->native_mode) { |
| NV_ERROR(dev, "Not turning on LVDS without native mode\n"); |
| return; |
| } |
| call_lvds_script(dev, nv_encoder->dcb, head, |
| LVDS_PANEL_ON, nv_connector->native_mode->clock); |
| } else |
| /* pxclk of 0 is fine for PANEL_OFF, and for a |
| * disconnected LVDS encoder there is no native_mode |
| */ |
| call_lvds_script(dev, nv_encoder->dcb, head, |
| LVDS_PANEL_OFF, 0); |
| } |
| |
| nv04_dfp_update_backlight(encoder, mode); |
| nv04_dfp_update_fp_control(encoder, mode); |
| |
| if (mode == DRM_MODE_DPMS_ON) |
| nv04_dfp_prepare_sel_clk(dev, nv_encoder, nouveau_crtc(crtc)->index); |
| else { |
| dev_priv->mode_reg.sel_clk = NVReadRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK); |
| dev_priv->mode_reg.sel_clk &= ~0xf0; |
| } |
| NVWriteRAMDAC(dev, 0, NV_PRAMDAC_SEL_CLK, dev_priv->mode_reg.sel_clk); |
| } |
| |
| static void nv04_tmds_dpms(struct drm_encoder *encoder, int mode) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| |
| if (nv_encoder->last_dpms == mode) |
| return; |
| nv_encoder->last_dpms = mode; |
| |
| NV_INFO(dev, "Setting dpms mode %d on tmds encoder (output %d)\n", |
| mode, nv_encoder->dcb->index); |
| |
| nv04_dfp_update_backlight(encoder, mode); |
| nv04_dfp_update_fp_control(encoder, mode); |
| } |
| |
| static void nv04_dfp_save(struct drm_encoder *encoder) |
| { |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct drm_device *dev = encoder->dev; |
| |
| if (nv_two_heads(dev)) |
| nv_encoder->restore.head = |
| nv04_dfp_get_bound_head(dev, nv_encoder->dcb); |
| } |
| |
| static void nv04_dfp_restore(struct drm_encoder *encoder) |
| { |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| struct drm_device *dev = encoder->dev; |
| struct drm_nouveau_private *dev_priv = dev->dev_private; |
| int head = nv_encoder->restore.head; |
| |
| if (nv_encoder->dcb->type == OUTPUT_LVDS) { |
| struct drm_display_mode *native_mode = nouveau_encoder_connector_get(nv_encoder)->native_mode; |
| if (native_mode) |
| call_lvds_script(dev, nv_encoder->dcb, head, LVDS_PANEL_ON, |
| native_mode->clock); |
| else |
| NV_ERROR(dev, "Not restoring LVDS without native mode\n"); |
| |
| } else if (nv_encoder->dcb->type == OUTPUT_TMDS) { |
| int clock = nouveau_hw_pllvals_to_clk |
| (&dev_priv->saved_reg.crtc_reg[head].pllvals); |
| |
| run_tmds_table(dev, nv_encoder->dcb, head, clock); |
| } |
| |
| nv_encoder->last_dpms = NV_DPMS_CLEARED; |
| } |
| |
| static void nv04_dfp_destroy(struct drm_encoder *encoder) |
| { |
| struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); |
| |
| NV_DEBUG_KMS(encoder->dev, "\n"); |
| |
| if (get_slave_funcs(encoder)) |
| get_slave_funcs(encoder)->destroy(encoder); |
| |
| drm_encoder_cleanup(encoder); |
| kfree(nv_encoder); |
| } |
| |
| static void nv04_tmds_slave_init(struct drm_encoder *encoder) |
| { |
| struct drm_device *dev = encoder->dev; |
| struct dcb_entry *dcb = nouveau_encoder(encoder)->dcb; |
| struct nouveau_i2c_chan *i2c = nouveau_i2c_find(dev, 2); |
| struct i2c_board_info info[] = { |
| { |
| .type = "sil164", |
| .addr = (dcb->tmdsconf.slave_addr == 0x7 ? 0x3a : 0x38), |
| .platform_data = &(struct sil164_encoder_params) { |
| SIL164_INPUT_EDGE_RISING |
| } |
| }, |
| { } |
| }; |
| int type; |
| |
| if (!nv_gf4_disp_arch(dev) || !i2c || |
| get_tmds_slave(encoder)) |
| return; |
| |
| type = nouveau_i2c_identify(dev, "TMDS transmitter", info, 2); |
| if (type < 0) |
| return; |
| |
| drm_i2c_encoder_init(dev, to_encoder_slave(encoder), |
| &i2c->adapter, &info[type]); |
| } |
| |
| static const struct drm_encoder_helper_funcs nv04_lvds_helper_funcs = { |
| .dpms = nv04_lvds_dpms, |
| .save = nv04_dfp_save, |
| .restore = nv04_dfp_restore, |
| .mode_fixup = nv04_dfp_mode_fixup, |
| .prepare = nv04_dfp_prepare, |
| .commit = nv04_dfp_commit, |
| .mode_set = nv04_dfp_mode_set, |
| .detect = NULL, |
| }; |
| |
| static const struct drm_encoder_helper_funcs nv04_tmds_helper_funcs = { |
| .dpms = nv04_tmds_dpms, |
| .save = nv04_dfp_save, |
| .restore = nv04_dfp_restore, |
| .mode_fixup = nv04_dfp_mode_fixup, |
| .prepare = nv04_dfp_prepare, |
| .commit = nv04_dfp_commit, |
| .mode_set = nv04_dfp_mode_set, |
| .detect = NULL, |
| }; |
| |
| static const struct drm_encoder_funcs nv04_dfp_funcs = { |
| .destroy = nv04_dfp_destroy, |
| }; |
| |
| int |
| nv04_dfp_create(struct drm_connector *connector, struct dcb_entry *entry) |
| { |
| const struct drm_encoder_helper_funcs *helper; |
| struct nouveau_encoder *nv_encoder = NULL; |
| struct drm_encoder *encoder; |
| int type; |
| |
| switch (entry->type) { |
| case OUTPUT_TMDS: |
| type = DRM_MODE_ENCODER_TMDS; |
| helper = &nv04_tmds_helper_funcs; |
| break; |
| case OUTPUT_LVDS: |
| type = DRM_MODE_ENCODER_LVDS; |
| helper = &nv04_lvds_helper_funcs; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); |
| if (!nv_encoder) |
| return -ENOMEM; |
| |
| encoder = to_drm_encoder(nv_encoder); |
| |
| nv_encoder->dcb = entry; |
| nv_encoder->or = ffs(entry->or) - 1; |
| |
| drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type); |
| drm_encoder_helper_add(encoder, helper); |
| |
| encoder->possible_crtcs = entry->heads; |
| encoder->possible_clones = 0; |
| |
| if (entry->type == OUTPUT_TMDS && |
| entry->location != DCB_LOC_ON_CHIP) |
| nv04_tmds_slave_init(encoder); |
| |
| drm_mode_connector_attach_encoder(connector, encoder); |
| return 0; |
| } |