| /* |
| ** ----------------------------------------------------------------------------- |
| ** |
| ** Perle Specialix driver for Linux |
| ** Ported from existing RIO Driver for SCO sources. |
| * |
| * (C) 1990 - 2000 Specialix International Ltd., Byfleet, Surrey, UK. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, write to the Free Software |
| * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. |
| ** |
| ** Module : rioboot.c |
| ** SID : 1.3 |
| ** Last Modified : 11/6/98 10:33:36 |
| ** Retrieved : 11/6/98 10:33:48 |
| ** |
| ** ident @(#)rioboot.c 1.3 |
| ** |
| ** ----------------------------------------------------------------------------- |
| */ |
| |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| #include <linux/termios.h> |
| #include <linux/serial.h> |
| #include <asm/semaphore.h> |
| #include <linux/generic_serial.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/delay.h> |
| #include <asm/io.h> |
| #include <asm/system.h> |
| #include <asm/string.h> |
| #include <asm/uaccess.h> |
| |
| |
| #include "linux_compat.h" |
| #include "rio_linux.h" |
| #include "pkt.h" |
| #include "daemon.h" |
| #include "rio.h" |
| #include "riospace.h" |
| #include "cmdpkt.h" |
| #include "map.h" |
| #include "rup.h" |
| #include "port.h" |
| #include "riodrvr.h" |
| #include "rioinfo.h" |
| #include "func.h" |
| #include "errors.h" |
| #include "pci.h" |
| |
| #include "parmmap.h" |
| #include "unixrup.h" |
| #include "board.h" |
| #include "host.h" |
| #include "phb.h" |
| #include "link.h" |
| #include "cmdblk.h" |
| #include "route.h" |
| |
| static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd *PktCmdP); |
| |
| static const unsigned char RIOAtVec2Ctrl[] = { |
| /* 0 */ INTERRUPT_DISABLE, |
| /* 1 */ INTERRUPT_DISABLE, |
| /* 2 */ INTERRUPT_DISABLE, |
| /* 3 */ INTERRUPT_DISABLE, |
| /* 4 */ INTERRUPT_DISABLE, |
| /* 5 */ INTERRUPT_DISABLE, |
| /* 6 */ INTERRUPT_DISABLE, |
| /* 7 */ INTERRUPT_DISABLE, |
| /* 8 */ INTERRUPT_DISABLE, |
| /* 9 */ IRQ_9 | INTERRUPT_ENABLE, |
| /* 10 */ INTERRUPT_DISABLE, |
| /* 11 */ IRQ_11 | INTERRUPT_ENABLE, |
| /* 12 */ IRQ_12 | INTERRUPT_ENABLE, |
| /* 13 */ INTERRUPT_DISABLE, |
| /* 14 */ INTERRUPT_DISABLE, |
| /* 15 */ IRQ_15 | INTERRUPT_ENABLE |
| }; |
| |
| /** |
| * RIOBootCodeRTA - Load RTA boot code |
| * @p: RIO to load |
| * @rbp: Download descriptor |
| * |
| * Called when the user process initiates booting of the card firmware. |
| * Lads the firmware |
| */ |
| |
| int RIOBootCodeRTA(struct rio_info *p, struct DownLoad * rbp) |
| { |
| int offset; |
| |
| func_enter(); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Data at user address %p\n", rbp->DataP); |
| |
| /* |
| ** Check that we have set asside enough memory for this |
| */ |
| if (rbp->Count > SIXTY_FOUR_K) { |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code Too Large!\n"); |
| p->RIOError.Error = HOST_FILE_TOO_LARGE; |
| func_exit(); |
| return -ENOMEM; |
| } |
| |
| if (p->RIOBooting) { |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot Code : BUSY BUSY BUSY!\n"); |
| p->RIOError.Error = BOOT_IN_PROGRESS; |
| func_exit(); |
| return -EBUSY; |
| } |
| |
| /* |
| ** The data we load in must end on a (RTA_BOOT_DATA_SIZE) byte boundary, |
| ** so calculate how far we have to move the data up the buffer |
| ** to achieve this. |
| */ |
| offset = (RTA_BOOT_DATA_SIZE - (rbp->Count % RTA_BOOT_DATA_SIZE)) % RTA_BOOT_DATA_SIZE; |
| |
| /* |
| ** Be clean, and clear the 'unused' portion of the boot buffer, |
| ** because it will (eventually) be part of the Rta run time environment |
| ** and so should be zeroed. |
| */ |
| memset(p->RIOBootPackets, 0, offset); |
| |
| /* |
| ** Copy the data from user space into the array |
| */ |
| |
| if (copy_from_user(((u8 *)p->RIOBootPackets) + offset, rbp->DataP, rbp->Count)) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Bad data copy from user space\n"); |
| p->RIOError.Error = COPYIN_FAILED; |
| func_exit(); |
| return -EFAULT; |
| } |
| |
| /* |
| ** Make sure that our copy of the size includes that offset we discussed |
| ** earlier. |
| */ |
| p->RIONumBootPkts = (rbp->Count + offset) / RTA_BOOT_DATA_SIZE; |
| p->RIOBootCount = rbp->Count; |
| |
| func_exit(); |
| return 0; |
| } |
| |
| /** |
| * rio_start_card_running - host card start |
| * @HostP: The RIO to kick off |
| * |
| * Start a RIO processor unit running. Encapsulates the knowledge |
| * of the card type. |
| */ |
| |
| void rio_start_card_running(struct Host *HostP) |
| { |
| switch (HostP->Type) { |
| case RIO_AT: |
| rio_dprintk(RIO_DEBUG_BOOT, "Start ISA card running\n"); |
| writeb(BOOT_FROM_RAM | EXTERNAL_BUS_ON | HostP->Mode | RIOAtVec2Ctrl[HostP->Ivec & 0xF], &HostP->Control); |
| break; |
| case RIO_PCI: |
| /* |
| ** PCI is much the same as MCA. Everything is once again memory |
| ** mapped, so we are writing to memory registers instead of io |
| ** ports. |
| */ |
| rio_dprintk(RIO_DEBUG_BOOT, "Start PCI card running\n"); |
| writeb(PCITpBootFromRam | PCITpBusEnable | HostP->Mode, &HostP->Control); |
| break; |
| default: |
| rio_dprintk(RIO_DEBUG_BOOT, "Unknown host type %d\n", HostP->Type); |
| break; |
| } |
| return; |
| } |
| |
| /* |
| ** Load in the host boot code - load it directly onto all halted hosts |
| ** of the correct type. |
| ** |
| ** Put your rubber pants on before messing with this code - even the magic |
| ** numbers have trouble understanding what they are doing here. |
| */ |
| |
| int RIOBootCodeHOST(struct rio_info *p, struct DownLoad *rbp) |
| { |
| struct Host *HostP; |
| u8 *Cad; |
| PARM_MAP *ParmMapP; |
| int RupN; |
| int PortN; |
| unsigned int host; |
| u8 *StartP; |
| u8 *DestP; |
| int wait_count; |
| u16 OldParmMap; |
| u16 offset; /* It is very important that this is a u16 */ |
| u8 *DownCode = NULL; |
| unsigned long flags; |
| |
| HostP = NULL; /* Assure the compiler we've initialized it */ |
| |
| |
| /* Walk the hosts */ |
| for (host = 0; host < p->RIONumHosts; host++) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Attempt to boot host %d\n", host); |
| HostP = &p->RIOHosts[host]; |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec); |
| |
| /* Don't boot hosts already running */ |
| if ((HostP->Flags & RUN_STATE) != RC_WAITING) { |
| rio_dprintk(RIO_DEBUG_BOOT, "%s %d already running\n", "Host", host); |
| continue; |
| } |
| |
| /* |
| ** Grab a pointer to the card (ioremapped) |
| */ |
| Cad = HostP->Caddr; |
| |
| /* |
| ** We are going to (try) and load in rbp->Count bytes. |
| ** The last byte will reside at p->RIOConf.HostLoadBase-1; |
| ** Therefore, we need to start copying at address |
| ** (caddr+p->RIOConf.HostLoadBase-rbp->Count) |
| */ |
| StartP = &Cad[p->RIOConf.HostLoadBase - rbp->Count]; |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for host is %p\n", Cad); |
| rio_dprintk(RIO_DEBUG_BOOT, "kernel virtual address for download is %p\n", StartP); |
| rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase); |
| rio_dprintk(RIO_DEBUG_BOOT, "size of download is 0x%x\n", rbp->Count); |
| |
| /* Make sure it fits */ |
| if (p->RIOConf.HostLoadBase < rbp->Count) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Bin too large\n"); |
| p->RIOError.Error = HOST_FILE_TOO_LARGE; |
| func_exit(); |
| return -EFBIG; |
| } |
| /* |
| ** Ensure that the host really is stopped. |
| ** Disable it's external bus & twang its reset line. |
| */ |
| RIOHostReset(HostP->Type, (struct DpRam *) HostP->CardP, HostP->Slot); |
| |
| /* |
| ** Copy the data directly from user space to the SRAM. |
| ** This ain't going to be none too clever if the download |
| ** code is bigger than this segment. |
| */ |
| rio_dprintk(RIO_DEBUG_BOOT, "Copy in code\n"); |
| |
| /* Buffer to local memory as we want to use I/O space and |
| some cards only do 8 or 16 bit I/O */ |
| |
| DownCode = vmalloc(rbp->Count); |
| if (!DownCode) { |
| p->RIOError.Error = NOT_ENOUGH_CORE_FOR_PCI_COPY; |
| func_exit(); |
| return -ENOMEM; |
| } |
| if (copy_from_user(rbp->DataP, DownCode, rbp->Count)) { |
| kfree(DownCode); |
| p->RIOError.Error = COPYIN_FAILED; |
| func_exit(); |
| return -EFAULT; |
| } |
| HostP->Copy(DownCode, StartP, rbp->Count); |
| vfree(DownCode); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Copy completed\n"); |
| |
| /* |
| ** S T O P ! |
| ** |
| ** Upto this point the code has been fairly rational, and possibly |
| ** even straight forward. What follows is a pile of crud that will |
| ** magically turn into six bytes of transputer assembler. Normally |
| ** you would expect an array or something, but, being me, I have |
| ** chosen [been told] to use a technique whereby the startup code |
| ** will be correct if we change the loadbase for the code. Which |
| ** brings us onto another issue - the loadbase is the *end* of the |
| ** code, not the start. |
| ** |
| ** If I were you I wouldn't start from here. |
| */ |
| |
| /* |
| ** We now need to insert a short boot section into |
| ** the memory at the end of Sram2. This is normally (de)composed |
| ** of the last eight bytes of the download code. The |
| ** download has been assembled/compiled to expect to be |
| ** loaded from 0x7FFF downwards. We have loaded it |
| ** at some other address. The startup code goes into the small |
| ** ram window at Sram2, in the last 8 bytes, which are really |
| ** at addresses 0x7FF8-0x7FFF. |
| ** |
| ** If the loadbase is, say, 0x7C00, then we need to branch to |
| ** address 0x7BFE to run the host.bin startup code. We assemble |
| ** this jump manually. |
| ** |
| ** The two byte sequence 60 08 is loaded into memory at address |
| ** 0x7FFE,F. This is a local branch to location 0x7FF8 (60 is nfix 0, |
| ** which adds '0' to the .O register, complements .O, and then shifts |
| ** it left by 4 bit positions, 08 is a jump .O+8 instruction. This will |
| ** add 8 to .O (which was 0xFFF0), and will branch RELATIVE to the new |
| ** location. Now, the branch starts from the value of .PC (or .IP or |
| ** whatever the bloody register is called on this chip), and the .PC |
| ** will be pointing to the location AFTER the branch, in this case |
| ** .PC == 0x8000, so the branch will be to 0x8000+0xFFF8 = 0x7FF8. |
| ** |
| ** A long branch is coded at 0x7FF8. This consists of loading a four |
| ** byte offset into .O using nfix (as above) and pfix operators. The |
| ** pfix operates in exactly the same way as the nfix operator, but |
| ** without the complement operation. The offset, of course, must be |
| ** relative to the address of the byte AFTER the branch instruction, |
| ** which will be (urm) 0x7FFC, so, our final destination of the branch |
| ** (loadbase-2), has to be reached from here. Imagine that the loadbase |
| ** is 0x7C00 (which it is), then we will need to branch to 0x7BFE (which |
| ** is the first byte of the initial two byte short local branch of the |
| ** download code). |
| ** |
| ** To code a jump from 0x7FFC (which is where the branch will start |
| ** from) to 0x7BFE, we will need to branch 0xFC02 bytes (0x7FFC+0xFC02)= |
| ** 0x7BFE. |
| ** This will be coded as four bytes: |
| ** 60 2C 20 02 |
| ** being nfix .O+0 |
| ** pfix .O+C |
| ** pfix .O+0 |
| ** jump .O+2 |
| ** |
| ** The nfix operator is used, so that the startup code will be |
| ** compatible with the whole Tp family. (lies, damn lies, it'll never |
| ** work in a month of Sundays). |
| ** |
| ** The nfix nyble is the 1s complement of the nyble value you |
| ** want to load - in this case we wanted 'F' so we nfix loaded '0'. |
| */ |
| |
| |
| /* |
| ** Dest points to the top 8 bytes of Sram2. The Tp jumps |
| ** to 0x7FFE at reset time, and starts executing. This is |
| ** a short branch to 0x7FF8, where a long branch is coded. |
| */ |
| |
| DestP = (u8 *) &Cad[0x7FF8]; /* <<<---- READ THE ABOVE COMMENTS */ |
| |
| #define NFIX(N) (0x60 | (N)) /* .O = (~(.O + N))<<4 */ |
| #define PFIX(N) (0x20 | (N)) /* .O = (.O + N)<<4 */ |
| #define JUMP(N) (0x00 | (N)) /* .PC = .PC + .O */ |
| |
| /* |
| ** 0x7FFC is the address of the location following the last byte of |
| ** the four byte jump instruction. |
| ** READ THE ABOVE COMMENTS |
| ** |
| ** offset is (TO-FROM) % MEMSIZE, but with compound buggering about. |
| ** Memsize is 64K for this range of Tp, so offset is a short (unsigned, |
| ** cos I don't understand 2's complement). |
| */ |
| offset = (p->RIOConf.HostLoadBase - 2) - 0x7FFC; |
| |
| writeb(NFIX(((unsigned short) (~offset) >> (unsigned short) 12) & 0xF), DestP); |
| writeb(PFIX((offset >> 8) & 0xF), DestP + 1); |
| writeb(PFIX((offset >> 4) & 0xF), DestP + 2); |
| writeb(JUMP(offset & 0xF), DestP + 3); |
| |
| writeb(NFIX(0), DestP + 6); |
| writeb(JUMP(8), DestP + 7); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "host loadbase is 0x%x\n", p->RIOConf.HostLoadBase); |
| rio_dprintk(RIO_DEBUG_BOOT, "startup offset is 0x%x\n", offset); |
| |
| /* |
| ** Flag what is going on |
| */ |
| HostP->Flags &= ~RUN_STATE; |
| HostP->Flags |= RC_STARTUP; |
| |
| /* |
| ** Grab a copy of the current ParmMap pointer, so we |
| ** can tell when it has changed. |
| */ |
| OldParmMap = readw(&HostP->__ParmMapR); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Original parmmap is 0x%x\n", OldParmMap); |
| |
| /* |
| ** And start it running (I hope). |
| ** As there is nothing dodgy or obscure about the |
| ** above code, this is guaranteed to work every time. |
| */ |
| rio_dprintk(RIO_DEBUG_BOOT, "Host Type = 0x%x, Mode = 0x%x, IVec = 0x%x\n", HostP->Type, HostP->Mode, HostP->Ivec); |
| |
| rio_start_card_running(HostP); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Set control port\n"); |
| |
| /* |
| ** Now, wait for upto five seconds for the Tp to setup the parmmap |
| ** pointer: |
| */ |
| for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && (readw(&HostP->__ParmMapR) == OldParmMap); wait_count++) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Checkout %d, 0x%x\n", wait_count, readw(&HostP->__ParmMapR)); |
| mdelay(100); |
| |
| } |
| |
| /* |
| ** If the parmmap pointer is unchanged, then the host code |
| ** has crashed & burned in a really spectacular way |
| */ |
| if (readw(&HostP->__ParmMapR) == OldParmMap) { |
| rio_dprintk(RIO_DEBUG_BOOT, "parmmap 0x%x\n", readw(&HostP->__ParmMapR)); |
| rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail\n"); |
| HostP->Flags &= ~RUN_STATE; |
| HostP->Flags |= RC_STUFFED; |
| RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); |
| continue; |
| } |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Running 0x%x\n", readw(&HostP->__ParmMapR)); |
| |
| /* |
| ** Well, the board thought it was OK, and setup its parmmap |
| ** pointer. For the time being, we will pretend that this |
| ** board is running, and check out what the error flag says. |
| */ |
| |
| /* |
| ** Grab a 32 bit pointer to the parmmap structure |
| */ |
| ParmMapP = (PARM_MAP *) RIO_PTR(Cad, readw(&HostP->__ParmMapR)); |
| rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP); |
| ParmMapP = (PARM_MAP *) ((unsigned long) Cad + readw(&HostP->__ParmMapR)); |
| rio_dprintk(RIO_DEBUG_BOOT, "ParmMapP : %p\n", ParmMapP); |
| |
| /* |
| ** The links entry should be 0xFFFF; we set it up |
| ** with a mask to say how many PHBs to use, and |
| ** which links to use. |
| */ |
| if (readw(&ParmMapP->links) != 0xFFFF) { |
| rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); |
| rio_dprintk(RIO_DEBUG_BOOT, "Links = 0x%x\n", readw(&ParmMapP->links)); |
| HostP->Flags &= ~RUN_STATE; |
| HostP->Flags |= RC_STUFFED; |
| RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); |
| continue; |
| } |
| |
| writew(RIO_LINK_ENABLE, &ParmMapP->links); |
| |
| /* |
| ** now wait for the card to set all the parmmap->XXX stuff |
| ** this is a wait of upto two seconds.... |
| */ |
| rio_dprintk(RIO_DEBUG_BOOT, "Looking for init_done - %d ticks\n", p->RIOConf.StartupTime); |
| HostP->timeout_id = 0; |
| for (wait_count = 0; (wait_count < p->RIOConf.StartupTime) && !readw(&ParmMapP->init_done); wait_count++) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Waiting for init_done\n"); |
| mdelay(100); |
| } |
| rio_dprintk(RIO_DEBUG_BOOT, "OK! init_done!\n"); |
| |
| if (readw(&ParmMapP->error) != E_NO_ERROR || !readw(&ParmMapP->init_done)) { |
| rio_dprintk(RIO_DEBUG_BOOT, "RIO Mesg Run Fail %s\n", HostP->Name); |
| rio_dprintk(RIO_DEBUG_BOOT, "Timedout waiting for init_done\n"); |
| HostP->Flags &= ~RUN_STATE; |
| HostP->Flags |= RC_STUFFED; |
| RIOHostReset( HostP->Type, (struct DpRam *)HostP->CardP, HostP->Slot ); |
| continue; |
| } |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Got init_done\n"); |
| |
| /* |
| ** It runs! It runs! |
| */ |
| rio_dprintk(RIO_DEBUG_BOOT, "Host ID %x Running\n", HostP->UniqueNum); |
| |
| /* |
| ** set the time period between interrupts. |
| */ |
| writew(p->RIOConf.Timer, &ParmMapP->timer); |
| |
| /* |
| ** Translate all the 16 bit pointers in the __ParmMapR into |
| ** 32 bit pointers for the driver in ioremap space. |
| */ |
| HostP->ParmMapP = ParmMapP; |
| HostP->PhbP = (struct PHB *) RIO_PTR(Cad, readw(&ParmMapP->phb_ptr)); |
| HostP->RupP = (struct RUP *) RIO_PTR(Cad, readw(&ParmMapP->rups)); |
| HostP->PhbNumP = (unsigned short *) RIO_PTR(Cad, readw(&ParmMapP->phb_num_ptr)); |
| HostP->LinkStrP = (struct LPB *) RIO_PTR(Cad, readw(&ParmMapP->link_str_ptr)); |
| |
| /* |
| ** point the UnixRups at the real Rups |
| */ |
| for (RupN = 0; RupN < MAX_RUP; RupN++) { |
| HostP->UnixRups[RupN].RupP = &HostP->RupP[RupN]; |
| HostP->UnixRups[RupN].Id = RupN + 1; |
| HostP->UnixRups[RupN].BaseSysPort = NO_PORT; |
| spin_lock_init(&HostP->UnixRups[RupN].RupLock); |
| } |
| |
| for (RupN = 0; RupN < LINKS_PER_UNIT; RupN++) { |
| HostP->UnixRups[RupN + MAX_RUP].RupP = &HostP->LinkStrP[RupN].rup; |
| HostP->UnixRups[RupN + MAX_RUP].Id = 0; |
| HostP->UnixRups[RupN + MAX_RUP].BaseSysPort = NO_PORT; |
| spin_lock_init(&HostP->UnixRups[RupN + MAX_RUP].RupLock); |
| } |
| |
| /* |
| ** point the PortP->Phbs at the real Phbs |
| */ |
| for (PortN = p->RIOFirstPortsMapped; PortN < p->RIOLastPortsMapped + PORTS_PER_RTA; PortN++) { |
| if (p->RIOPortp[PortN]->HostP == HostP) { |
| struct Port *PortP = p->RIOPortp[PortN]; |
| struct PHB *PhbP; |
| /* int oldspl; */ |
| |
| if (!PortP->Mapped) |
| continue; |
| |
| PhbP = &HostP->PhbP[PortP->HostPort]; |
| rio_spin_lock_irqsave(&PortP->portSem, flags); |
| |
| PortP->PhbP = PhbP; |
| |
| PortP->TxAdd = (u16 *) RIO_PTR(Cad, readw(&PhbP->tx_add)); |
| PortP->TxStart = (u16 *) RIO_PTR(Cad, readw(&PhbP->tx_start)); |
| PortP->TxEnd = (u16 *) RIO_PTR(Cad, readw(&PhbP->tx_end)); |
| PortP->RxRemove = (u16 *) RIO_PTR(Cad, readw(&PhbP->rx_remove)); |
| PortP->RxStart = (u16 *) RIO_PTR(Cad, readw(&PhbP->rx_start)); |
| PortP->RxEnd = (u16 *) RIO_PTR(Cad, readw(&PhbP->rx_end)); |
| |
| rio_spin_unlock_irqrestore(&PortP->portSem, flags); |
| /* |
| ** point the UnixRup at the base SysPort |
| */ |
| if (!(PortN % PORTS_PER_RTA)) |
| HostP->UnixRups[PortP->RupNum].BaseSysPort = PortN; |
| } |
| } |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Set the card running... \n"); |
| /* |
| ** last thing - show the world that everything is in place |
| */ |
| HostP->Flags &= ~RUN_STATE; |
| HostP->Flags |= RC_RUNNING; |
| } |
| /* |
| ** MPX always uses a poller. This is actually patched into the system |
| ** configuration and called directly from each clock tick. |
| ** |
| */ |
| p->RIOPolling = 1; |
| |
| p->RIOSystemUp++; |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Done everything %x\n", HostP->Ivec); |
| func_exit(); |
| return 0; |
| } |
| |
| |
| |
| /** |
| * RIOBootRup - Boot an RTA |
| * @p: rio we are working with |
| * @Rup: Rup number |
| * @HostP: host object |
| * @PacketP: packet to use |
| * |
| * If we have successfully processed this boot, then |
| * return 1. If we havent, then return 0. |
| */ |
| |
| int RIOBootRup(struct rio_info *p, unsigned int Rup, struct Host *HostP, struct PKT *PacketP) |
| { |
| struct PktCmd *PktCmdP = (struct PktCmd *) PacketP->data; |
| struct PktCmd_M *PktReplyP; |
| struct CmdBlk *CmdBlkP; |
| unsigned int sequence; |
| |
| /* |
| ** If we haven't been told what to boot, we can't boot it. |
| */ |
| if (p->RIONumBootPkts == 0) { |
| rio_dprintk(RIO_DEBUG_BOOT, "No RTA code to download yet\n"); |
| return 0; |
| } |
| |
| /* |
| ** Special case of boot completed - if we get one of these then we |
| ** don't need a command block. For all other cases we do, so handle |
| ** this first and then get a command block, then handle every other |
| ** case, relinquishing the command block if disaster strikes! |
| */ |
| if ((readb(&PacketP->len) & PKT_CMD_BIT) && (readb(&PktCmdP->Command) == BOOT_COMPLETED)) |
| return RIOBootComplete(p, HostP, Rup, PktCmdP); |
| |
| /* |
| ** Try to allocate a command block. This is in kernel space |
| */ |
| if (!(CmdBlkP = RIOGetCmdBlk())) { |
| rio_dprintk(RIO_DEBUG_BOOT, "No command blocks to boot RTA! come back later.\n"); |
| return 0; |
| } |
| |
| /* |
| ** Fill in the default info on the command block |
| */ |
| CmdBlkP->Packet.dest_unit = Rup < (unsigned short) MAX_RUP ? Rup : 0; |
| CmdBlkP->Packet.dest_port = BOOT_RUP; |
| CmdBlkP->Packet.src_unit = 0; |
| CmdBlkP->Packet.src_port = BOOT_RUP; |
| |
| CmdBlkP->PreFuncP = CmdBlkP->PostFuncP = NULL; |
| PktReplyP = (struct PktCmd_M *) CmdBlkP->Packet.data; |
| |
| /* |
| ** process COMMANDS on the boot rup! |
| */ |
| if (readb(&PacketP->len) & PKT_CMD_BIT) { |
| /* |
| ** We only expect one type of command - a BOOT_REQUEST! |
| */ |
| if (readb(&PktCmdP->Command) != BOOT_REQUEST) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Unexpected command %d on BOOT RUP %d of host %Zd\n", readb(&PktCmdP->Command), Rup, HostP - p->RIOHosts); |
| RIOFreeCmdBlk(CmdBlkP); |
| return 1; |
| } |
| |
| /* |
| ** Build a Boot Sequence command block |
| ** |
| ** We no longer need to use "Boot Mode", we'll always allow |
| ** boot requests - the boot will not complete if the device |
| ** appears in the bindings table. |
| ** |
| ** We'll just (always) set the command field in packet reply |
| ** to allow an attempted boot sequence : |
| */ |
| PktReplyP->Command = BOOT_SEQUENCE; |
| |
| PktReplyP->BootSequence.NumPackets = p->RIONumBootPkts; |
| PktReplyP->BootSequence.LoadBase = p->RIOConf.RtaLoadBase; |
| PktReplyP->BootSequence.CodeSize = p->RIOBootCount; |
| |
| CmdBlkP->Packet.len = BOOT_SEQUENCE_LEN | PKT_CMD_BIT; |
| |
| memcpy((void *) &CmdBlkP->Packet.data[BOOT_SEQUENCE_LEN], "BOOT", 4); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Boot RTA on Host %Zd Rup %d - %d (0x%x) packets to 0x%x\n", HostP - p->RIOHosts, Rup, p->RIONumBootPkts, p->RIONumBootPkts, p->RIOConf.RtaLoadBase); |
| |
| /* |
| ** If this host is in slave mode, send the RTA an invalid boot |
| ** sequence command block to force it to kill the boot. We wait |
| ** for half a second before sending this packet to prevent the RTA |
| ** attempting to boot too often. The master host should then grab |
| ** the RTA and make it its own. |
| */ |
| p->RIOBooting++; |
| RIOQueueCmdBlk(HostP, Rup, CmdBlkP); |
| return 1; |
| } |
| |
| /* |
| ** It is a request for boot data. |
| */ |
| sequence = readw(&PktCmdP->Sequence); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "Boot block %d on Host %Zd Rup%d\n", sequence, HostP - p->RIOHosts, Rup); |
| |
| if (sequence >= p->RIONumBootPkts) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Got a request for packet %d, max is %d\n", sequence, p->RIONumBootPkts); |
| } |
| |
| PktReplyP->Sequence = sequence; |
| memcpy(PktReplyP->BootData, p->RIOBootPackets[p->RIONumBootPkts - sequence - 1], RTA_BOOT_DATA_SIZE); |
| CmdBlkP->Packet.len = PKT_MAX_DATA_LEN; |
| RIOQueueCmdBlk(HostP, Rup, CmdBlkP); |
| return 1; |
| } |
| |
| /** |
| * RIOBootComplete - RTA boot is done |
| * @p: RIO we are working with |
| * @HostP: Host structure |
| * @Rup: RUP being used |
| * @PktCmdP: Packet command that was used |
| * |
| * This function is called when an RTA been booted. |
| * If booted by a host, HostP->HostUniqueNum is the booting host. |
| * If booted by an RTA, HostP->Mapping[Rup].RtaUniqueNum is the booting RTA. |
| * RtaUniq is the booted RTA. |
| */ |
| |
| static int RIOBootComplete(struct rio_info *p, struct Host *HostP, unsigned int Rup, struct PktCmd *PktCmdP) |
| { |
| struct Map *MapP = NULL; |
| struct Map *MapP2 = NULL; |
| int Flag; |
| int found; |
| int host, rta; |
| int EmptySlot = -1; |
| int entry, entry2; |
| char *MyType, *MyName; |
| unsigned int MyLink; |
| unsigned short RtaType; |
| u32 RtaUniq = (readb(&PktCmdP->UniqNum[0])) + (readb(&PktCmdP->UniqNum[1]) << 8) + (readb(&PktCmdP->UniqNum[2]) << 16) + (readb(&PktCmdP->UniqNum[3]) << 24); |
| |
| p->RIOBooting = 0; |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA Boot completed - BootInProgress now %d\n", p->RIOBooting); |
| |
| /* |
| ** Determine type of unit (16/8 port RTA). |
| */ |
| |
| RtaType = GetUnitType(RtaUniq); |
| if (Rup >= (unsigned short) MAX_RUP) |
| rio_dprintk(RIO_DEBUG_BOOT, "RIO: Host %s has booted an RTA(%d) on link %c\n", HostP->Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A'); |
| else |
| rio_dprintk(RIO_DEBUG_BOOT, "RIO: RTA %s has booted an RTA(%d) on link %c\n", HostP->Mapping[Rup].Name, 8 * RtaType, readb(&PktCmdP->LinkNum) + 'A'); |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "UniqNum is 0x%x\n", RtaUniq); |
| |
| if (RtaUniq == 0x00000000 || RtaUniq == 0xffffffff) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Illegal RTA Uniq Number\n"); |
| return 1; |
| } |
| |
| /* |
| ** If this RTA has just booted an RTA which doesn't belong to this |
| ** system, or the system is in slave mode, do not attempt to create |
| ** a new table entry for it. |
| */ |
| |
| if (!RIOBootOk(p, HostP, RtaUniq)) { |
| MyLink = readb(&PktCmdP->LinkNum); |
| if (Rup < (unsigned short) MAX_RUP) { |
| /* |
| ** RtaUniq was clone booted (by this RTA). Instruct this RTA |
| ** to hold off further attempts to boot on this link for 30 |
| ** seconds. |
| */ |
| if (RIOSuspendBootRta(HostP, HostP->Mapping[Rup].ID, MyLink)) { |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA failed to suspend booting on link %c\n", 'A' + MyLink); |
| } |
| } else |
| /* |
| ** RtaUniq was booted by this host. Set the booting link |
| ** to hold off for 30 seconds to give another unit a |
| ** chance to boot it. |
| */ |
| writew(30, &HostP->LinkStrP[MyLink].WaitNoBoot); |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA %x not owned - suspend booting down link %c on unit %x\n", RtaUniq, 'A' + MyLink, HostP->Mapping[Rup].RtaUniqueNum); |
| return 1; |
| } |
| |
| /* |
| ** Check for a SLOT_IN_USE entry for this RTA attached to the |
| ** current host card in the driver table. |
| ** |
| ** If it exists, make a note that we have booted it. Other parts of |
| ** the driver are interested in this information at a later date, |
| ** in particular when the booting RTA asks for an ID for this unit, |
| ** we must have set the BOOTED flag, and the NEWBOOT flag is used |
| ** to force an open on any ports that where previously open on this |
| ** unit. |
| */ |
| for (entry = 0; entry < MAX_RUP; entry++) { |
| unsigned int sysport; |
| |
| if ((HostP->Mapping[entry].Flags & SLOT_IN_USE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) { |
| HostP->Mapping[entry].Flags |= RTA_BOOTED | RTA_NEWBOOT; |
| if ((sysport = HostP->Mapping[entry].SysPort) != NO_PORT) { |
| if (sysport < p->RIOFirstPortsBooted) |
| p->RIOFirstPortsBooted = sysport; |
| if (sysport > p->RIOLastPortsBooted) |
| p->RIOLastPortsBooted = sysport; |
| /* |
| ** For a 16 port RTA, check the second bank of 8 ports |
| */ |
| if (RtaType == TYPE_RTA16) { |
| entry2 = HostP->Mapping[entry].ID2 - 1; |
| HostP->Mapping[entry2].Flags |= RTA_BOOTED | RTA_NEWBOOT; |
| sysport = HostP->Mapping[entry2].SysPort; |
| if (sysport < p->RIOFirstPortsBooted) |
| p->RIOFirstPortsBooted = sysport; |
| if (sysport > p->RIOLastPortsBooted) |
| p->RIOLastPortsBooted = sysport; |
| } |
| } |
| if (RtaType == TYPE_RTA16) |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given IDs %d+%d\n", entry + 1, entry2 + 1); |
| else |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA will be given ID %d\n", entry + 1); |
| return 1; |
| } |
| } |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "RTA not configured for this host\n"); |
| |
| if (Rup >= (unsigned short) MAX_RUP) { |
| /* |
| ** It was a host that did the booting |
| */ |
| MyType = "Host"; |
| MyName = HostP->Name; |
| } else { |
| /* |
| ** It was an RTA that did the booting |
| */ |
| MyType = "RTA"; |
| MyName = HostP->Mapping[Rup].Name; |
| } |
| MyLink = readb(&PktCmdP->LinkNum); |
| |
| /* |
| ** There is no SLOT_IN_USE entry for this RTA attached to the current |
| ** host card in the driver table. |
| ** |
| ** Check for a SLOT_TENTATIVE entry for this RTA attached to the |
| ** current host card in the driver table. |
| ** |
| ** If we find one, then we re-use that slot. |
| */ |
| for (entry = 0; entry < MAX_RUP; entry++) { |
| if ((HostP->Mapping[entry].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry].RtaUniqueNum == RtaUniq)) { |
| if (RtaType == TYPE_RTA16) { |
| entry2 = HostP->Mapping[entry].ID2 - 1; |
| if ((HostP->Mapping[entry2].Flags & SLOT_TENTATIVE) && (HostP->Mapping[entry2].RtaUniqueNum == RtaUniq)) |
| rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slots (%d+%d)\n", entry, entry2); |
| else |
| continue; |
| } else |
| rio_dprintk(RIO_DEBUG_BOOT, "Found previous tentative slot (%d)\n", entry); |
| if (!p->RIONoMessage) |
| printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A'); |
| return 1; |
| } |
| } |
| |
| /* |
| ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| ** attached to the current host card in the driver table. |
| ** |
| ** Check if there is a SLOT_IN_USE or SLOT_TENTATIVE entry on another |
| ** host for this RTA in the driver table. |
| ** |
| ** For a SLOT_IN_USE entry on another host, we need to delete the RTA |
| ** entry from the other host and add it to this host (using some of |
| ** the functions from table.c which do this). |
| ** For a SLOT_TENTATIVE entry on another host, we must cope with the |
| ** following scenario: |
| ** |
| ** + Plug 8 port RTA into host A. (This creates SLOT_TENTATIVE entry |
| ** in table) |
| ** + Unplug RTA and plug into host B. (We now have 2 SLOT_TENTATIVE |
| ** entries) |
| ** + Configure RTA on host B. (This slot now becomes SLOT_IN_USE) |
| ** + Unplug RTA and plug back into host A. |
| ** + Configure RTA on host A. We now have the same RTA configured |
| ** with different ports on two different hosts. |
| */ |
| rio_dprintk(RIO_DEBUG_BOOT, "Have we seen RTA %x before?\n", RtaUniq); |
| found = 0; |
| Flag = 0; /* Convince the compiler this variable is initialized */ |
| for (host = 0; !found && (host < p->RIONumHosts); host++) { |
| for (rta = 0; rta < MAX_RUP; rta++) { |
| if ((p->RIOHosts[host].Mapping[rta].Flags & (SLOT_IN_USE | SLOT_TENTATIVE)) && (p->RIOHosts[host].Mapping[rta].RtaUniqueNum == RtaUniq)) { |
| Flag = p->RIOHosts[host].Mapping[rta].Flags; |
| MapP = &p->RIOHosts[host].Mapping[rta]; |
| if (RtaType == TYPE_RTA16) { |
| MapP2 = &p->RIOHosts[host].Mapping[MapP->ID2 - 1]; |
| rio_dprintk(RIO_DEBUG_BOOT, "This RTA is units %d+%d from host %s\n", rta + 1, MapP->ID2, p->RIOHosts[host].Name); |
| } else |
| rio_dprintk(RIO_DEBUG_BOOT, "This RTA is unit %d from host %s\n", rta + 1, p->RIOHosts[host].Name); |
| found = 1; |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| ** attached to the current host card in the driver table. |
| ** |
| ** If we have not found a SLOT_IN_USE or SLOT_TENTATIVE entry on |
| ** another host for this RTA in the driver table... |
| ** |
| ** Check for a SLOT_IN_USE entry for this RTA in the config table. |
| */ |
| if (!MapP) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Look for RTA %x in RIOSavedTable\n", RtaUniq); |
| for (rta = 0; rta < TOTAL_MAP_ENTRIES; rta++) { |
| rio_dprintk(RIO_DEBUG_BOOT, "Check table entry %d (%x)", rta, p->RIOSavedTable[rta].RtaUniqueNum); |
| |
| if ((p->RIOSavedTable[rta].Flags & SLOT_IN_USE) && (p->RIOSavedTable[rta].RtaUniqueNum == RtaUniq)) { |
| MapP = &p->RIOSavedTable[rta]; |
| Flag = p->RIOSavedTable[rta].Flags; |
| if (RtaType == TYPE_RTA16) { |
| for (entry2 = rta + 1; entry2 < TOTAL_MAP_ENTRIES; entry2++) { |
| if (p->RIOSavedTable[entry2].RtaUniqueNum == RtaUniq) |
| break; |
| } |
| MapP2 = &p->RIOSavedTable[entry2]; |
| rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entries %d+%d\n", rta, entry2); |
| } else |
| rio_dprintk(RIO_DEBUG_BOOT, "This RTA is from table entry %d\n", rta); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| ** attached to the current host card in the driver table. |
| ** |
| ** We may have found a SLOT_IN_USE entry on another host for this |
| ** RTA in the config table, or a SLOT_IN_USE or SLOT_TENTATIVE entry |
| ** on another host for this RTA in the driver table. |
| ** |
| ** Check the driver table for room to fit this newly discovered RTA. |
| ** RIOFindFreeID() first looks for free slots and if it does not |
| ** find any free slots it will then attempt to oust any |
| ** tentative entry in the table. |
| */ |
| EmptySlot = 1; |
| if (RtaType == TYPE_RTA16) { |
| if (RIOFindFreeID(p, HostP, &entry, &entry2) == 0) { |
| RIODefaultName(p, HostP, entry); |
| rio_fill_host_slot(entry, entry2, RtaUniq, HostP); |
| EmptySlot = 0; |
| } |
| } else { |
| if (RIOFindFreeID(p, HostP, &entry, NULL) == 0) { |
| RIODefaultName(p, HostP, entry); |
| rio_fill_host_slot(entry, 0, RtaUniq, HostP); |
| EmptySlot = 0; |
| } |
| } |
| |
| /* |
| ** There is no SLOT_IN_USE or SLOT_TENTATIVE entry for this RTA |
| ** attached to the current host card in the driver table. |
| ** |
| ** If we found a SLOT_IN_USE entry on another host for this |
| ** RTA in the config or driver table, and there are enough free |
| ** slots in the driver table, then we need to move it over and |
| ** delete it from the other host. |
| ** If we found a SLOT_TENTATIVE entry on another host for this |
| ** RTA in the driver table, just delete the other host entry. |
| */ |
| if (EmptySlot == 0) { |
| if (MapP) { |
| if (Flag & SLOT_IN_USE) { |
| rio_dprintk(RIO_DEBUG_BOOT, "This RTA configured on another host - move entry to current host (1)\n"); |
| HostP->Mapping[entry].SysPort = MapP->SysPort; |
| memcpy(HostP->Mapping[entry].Name, MapP->Name, MAX_NAME_LEN); |
| HostP->Mapping[entry].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT; |
| RIOReMapPorts(p, HostP, &HostP->Mapping[entry]); |
| if (HostP->Mapping[entry].SysPort < p->RIOFirstPortsBooted) |
| p->RIOFirstPortsBooted = HostP->Mapping[entry].SysPort; |
| if (HostP->Mapping[entry].SysPort > p->RIOLastPortsBooted) |
| p->RIOLastPortsBooted = HostP->Mapping[entry].SysPort; |
| rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) MapP->SysPort, MapP->Name); |
| } else { |
| rio_dprintk(RIO_DEBUG_BOOT, "This RTA has a tentative entry on another host - delete that entry (1)\n"); |
| HostP->Mapping[entry].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT; |
| } |
| if (RtaType == TYPE_RTA16) { |
| if (Flag & SLOT_IN_USE) { |
| HostP->Mapping[entry2].Flags = SLOT_IN_USE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; |
| HostP->Mapping[entry2].SysPort = MapP2->SysPort; |
| /* |
| ** Map second block of ttys for 16 port RTA |
| */ |
| RIOReMapPorts(p, HostP, &HostP->Mapping[entry2]); |
| if (HostP->Mapping[entry2].SysPort < p->RIOFirstPortsBooted) |
| p->RIOFirstPortsBooted = HostP->Mapping[entry2].SysPort; |
| if (HostP->Mapping[entry2].SysPort > p->RIOLastPortsBooted) |
| p->RIOLastPortsBooted = HostP->Mapping[entry2].SysPort; |
| rio_dprintk(RIO_DEBUG_BOOT, "SysPort %d, Name %s\n", (int) HostP->Mapping[entry2].SysPort, HostP->Mapping[entry].Name); |
| } else |
| HostP->Mapping[entry2].Flags = SLOT_TENTATIVE | RTA_BOOTED | RTA_NEWBOOT | RTA16_SECOND_SLOT; |
| memset(MapP2, 0, sizeof(struct Map)); |
| } |
| memset(MapP, 0, sizeof(struct Map)); |
| if (!p->RIONoMessage) |
| printk("An orphaned RTA has been adopted by %s '%s' (%c).\n", MyType, MyName, MyLink + 'A'); |
| } else if (!p->RIONoMessage) |
| printk("RTA connected to %s '%s' (%c) not configured.\n", MyType, MyName, MyLink + 'A'); |
| RIOSetChange(p); |
| return 1; |
| } |
| |
| /* |
| ** There is no room in the driver table to make an entry for the |
| ** booted RTA. Keep a note of its Uniq Num in the overflow table, |
| ** so we can ignore it's ID requests. |
| */ |
| if (!p->RIONoMessage) |
| printk("The RTA connected to %s '%s' (%c) cannot be configured. You cannot configure more than 128 ports to one host card.\n", MyType, MyName, MyLink + 'A'); |
| for (entry = 0; entry < HostP->NumExtraBooted; entry++) { |
| if (HostP->ExtraUnits[entry] == RtaUniq) { |
| /* |
| ** already got it! |
| */ |
| return 1; |
| } |
| } |
| /* |
| ** If there is room, add the unit to the list of extras |
| */ |
| if (HostP->NumExtraBooted < MAX_EXTRA_UNITS) |
| HostP->ExtraUnits[HostP->NumExtraBooted++] = RtaUniq; |
| return 1; |
| } |
| |
| |
| /* |
| ** If the RTA or its host appears in the RIOBindTab[] structure then |
| ** we mustn't boot the RTA and should return 0. |
| ** This operation is slightly different from the other drivers for RIO |
| ** in that this is designed to work with the new utilities |
| ** not config.rio and is FAR SIMPLER. |
| ** We no longer support the RIOBootMode variable. It is all done from the |
| ** "boot/noboot" field in the rio.cf file. |
| */ |
| int RIOBootOk(struct rio_info *p, struct Host *HostP, unsigned long RtaUniq) |
| { |
| int Entry; |
| unsigned int HostUniq = HostP->UniqueNum; |
| |
| /* |
| ** Search bindings table for RTA or its parent. |
| ** If it exists, return 0, else 1. |
| */ |
| for (Entry = 0; (Entry < MAX_RTA_BINDINGS) && (p->RIOBindTab[Entry] != 0); Entry++) { |
| if ((p->RIOBindTab[Entry] == HostUniq) || (p->RIOBindTab[Entry] == RtaUniq)) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| ** Make an empty slot tentative. If this is a 16 port RTA, make both |
| ** slots tentative, and the second one RTA_SECOND_SLOT as well. |
| */ |
| |
| void rio_fill_host_slot(int entry, int entry2, unsigned int rta_uniq, struct Host *host) |
| { |
| int link; |
| |
| rio_dprintk(RIO_DEBUG_BOOT, "rio_fill_host_slot(%d, %d, 0x%x...)\n", entry, entry2, rta_uniq); |
| |
| host->Mapping[entry].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE); |
| host->Mapping[entry].SysPort = NO_PORT; |
| host->Mapping[entry].RtaUniqueNum = rta_uniq; |
| host->Mapping[entry].HostUniqueNum = host->UniqueNum; |
| host->Mapping[entry].ID = entry + 1; |
| host->Mapping[entry].ID2 = 0; |
| if (entry2) { |
| host->Mapping[entry2].Flags = (RTA_BOOTED | RTA_NEWBOOT | SLOT_TENTATIVE | RTA16_SECOND_SLOT); |
| host->Mapping[entry2].SysPort = NO_PORT; |
| host->Mapping[entry2].RtaUniqueNum = rta_uniq; |
| host->Mapping[entry2].HostUniqueNum = host->UniqueNum; |
| host->Mapping[entry2].Name[0] = '\0'; |
| host->Mapping[entry2].ID = entry2 + 1; |
| host->Mapping[entry2].ID2 = entry + 1; |
| host->Mapping[entry].ID2 = entry2 + 1; |
| } |
| /* |
| ** Must set these up, so that utilities show |
| ** topology of 16 port RTAs correctly |
| */ |
| for (link = 0; link < LINKS_PER_UNIT; link++) { |
| host->Mapping[entry].Topology[link].Unit = ROUTE_DISCONNECT; |
| host->Mapping[entry].Topology[link].Link = NO_LINK; |
| if (entry2) { |
| host->Mapping[entry2].Topology[link].Unit = ROUTE_DISCONNECT; |
| host->Mapping[entry2].Topology[link].Link = NO_LINK; |
| } |
| } |
| } |