| #ifndef __ASM_SH64_PGTABLE_H |
| #define __ASM_SH64_PGTABLE_H |
| |
| #include <asm-generic/4level-fixup.h> |
| |
| /* |
| * This file is subject to the terms and conditions of the GNU General Public |
| * License. See the file "COPYING" in the main directory of this archive |
| * for more details. |
| * |
| * include/asm-sh64/pgtable.h |
| * |
| * Copyright (C) 2000, 2001 Paolo Alberelli |
| * Copyright (C) 2003, 2004 Paul Mundt |
| * Copyright (C) 2003, 2004 Richard Curnow |
| * |
| * This file contains the functions and defines necessary to modify and use |
| * the SuperH page table tree. |
| */ |
| |
| #ifndef __ASSEMBLY__ |
| #include <asm/processor.h> |
| #include <asm/page.h> |
| #include <linux/threads.h> |
| #include <linux/config.h> |
| |
| extern void paging_init(void); |
| |
| /* We provide our own get_unmapped_area to avoid cache synonym issue */ |
| #define HAVE_ARCH_UNMAPPED_AREA |
| |
| /* |
| * Basically we have the same two-level (which is the logical three level |
| * Linux page table layout folded) page tables as the i386. |
| */ |
| |
| /* |
| * ZERO_PAGE is a global shared page that is always zero: used |
| * for zero-mapped memory areas etc.. |
| */ |
| extern unsigned char empty_zero_page[PAGE_SIZE]; |
| #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page)) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * NEFF and NPHYS related defines. |
| * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103 |
| * implement 32 bits effective and 32 bits physical. But future implementations may |
| * extend beyond this. |
| */ |
| #define NEFF 32 |
| #define NEFF_SIGN (1LL << (NEFF - 1)) |
| #define NEFF_MASK (-1LL << NEFF) |
| |
| #define NPHYS 32 |
| #define NPHYS_SIGN (1LL << (NPHYS - 1)) |
| #define NPHYS_MASK (-1LL << NPHYS) |
| |
| /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond |
| that 3-level would be appropriate. */ |
| #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) |
| /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */ |
| #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) |
| #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ |
| #define PTE_SHIFT PAGE_SHIFT |
| #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) |
| |
| /* top level: PMD. */ |
| #define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS) |
| #define PGD_BITS (NEFF - PGDIR_SHIFT) |
| #define PTRS_PER_PGD (1<<PGD_BITS) |
| |
| /* middle level: PMD. This doesn't do anything for the 2-level case. */ |
| #define PTRS_PER_PMD (1) |
| |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| #define PMD_SHIFT PGDIR_SHIFT |
| #define PMD_SIZE PGDIR_SIZE |
| #define PMD_MASK PGDIR_MASK |
| |
| #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) |
| /* |
| * three-level asymmetric paging structure: PGD is top level. |
| * The asymmetry comes from 32-bit pointers and 64-bit PTEs. |
| */ |
| /* bottom level: PTE. It's 9 bits = 512 pointers */ |
| #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long)) |
| #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */ |
| #define PTE_SHIFT PAGE_SHIFT |
| #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE) |
| |
| /* middle level: PMD. It's 10 bits = 1024 pointers */ |
| #define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *)) |
| #define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */ |
| #define PMD_SHIFT (PTE_SHIFT + PTE_BITS) |
| #define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE) |
| |
| /* top level: PMD. It's 1 bit = 2 pointers */ |
| #define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS) |
| #define PGD_BITS (NEFF - PGDIR_SHIFT) |
| #define PTRS_PER_PGD (1<<PGD_BITS) |
| |
| #define PMD_SIZE (1UL << PMD_SHIFT) |
| #define PMD_MASK (~(PMD_SIZE-1)) |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| #else |
| #error "No defined number of page table levels" |
| #endif |
| |
| /* |
| * Error outputs. |
| */ |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pmd_ERROR(e) \ |
| printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| /* |
| * Table setting routines. Used within arch/mm only. |
| */ |
| #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval) |
| #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval) |
| |
| static __inline__ void set_pte(pte_t *pteptr, pte_t pteval) |
| { |
| unsigned long long x = ((unsigned long long) pteval.pte); |
| unsigned long long *xp = (unsigned long long *) pteptr; |
| /* |
| * Sign-extend based on NPHYS. |
| */ |
| *(xp) = (x & NPHYS_SIGN) ? (x | NPHYS_MASK) : x; |
| } |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) |
| |
| static __inline__ void pmd_set(pmd_t *pmdp,pte_t *ptep) |
| { |
| pmd_val(*pmdp) = (unsigned long) ptep; |
| } |
| |
| /* |
| * PGD defines. Top level. |
| */ |
| |
| /* To find an entry in a generic PGD. */ |
| #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) |
| #define __pgd_offset(address) pgd_index(address) |
| #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address)) |
| |
| /* To find an entry in a kernel PGD. */ |
| #define pgd_offset_k(address) pgd_offset(&init_mm, address) |
| |
| /* |
| * PGD level access routines. |
| * |
| * Note1: |
| * There's no need to use physical addresses since the tree walk is all |
| * in performed in software, until the PTE translation. |
| * |
| * Note 2: |
| * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad, |
| * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain |
| * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must |
| * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and |
| * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a |
| * bad pgd that must be notified via printk(). |
| * |
| */ |
| #define _PGD_EMPTY 0x0 |
| |
| #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) |
| static inline int pgd_none(pgd_t pgd) { return 0; } |
| static inline int pgd_bad(pgd_t pgd) { return 0; } |
| #define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0) |
| #define pgd_clear(xx) do { } while(0) |
| |
| #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) |
| #define pgd_present(pgd_entry) (1) |
| #define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY) |
| /* TODO: Think later about what a useful definition of 'bad' would be now. */ |
| #define pgd_bad(pgd_entry) (0) |
| #define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY))) |
| |
| #endif |
| |
| |
| #define pgd_page(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK)) |
| |
| /* |
| * PMD defines. Middle level. |
| */ |
| |
| /* PGD to PMD dereferencing */ |
| #if defined(CONFIG_SH64_PGTABLE_2_LEVEL) |
| static inline pmd_t * pmd_offset(pgd_t * dir, unsigned long address) |
| { |
| return (pmd_t *) dir; |
| } |
| #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL) |
| #define __pmd_offset(address) \ |
| (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) |
| #define pmd_offset(dir, addr) \ |
| ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr))) |
| #endif |
| |
| /* |
| * PMD level access routines. Same notes as above. |
| */ |
| #define _PMD_EMPTY 0x0 |
| /* Either the PMD is empty or present, it's not paged out */ |
| #define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT) |
| #define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY))) |
| #define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY) |
| #define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE) |
| |
| #define pmd_page_kernel(pmd_entry) \ |
| ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK)) |
| |
| #define pmd_page(pmd) \ |
| (virt_to_page(pmd_val(pmd))) |
| |
| /* PMD to PTE dereferencing */ |
| #define pte_index(address) \ |
| ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) |
| |
| #define pte_offset_kernel(dir, addr) \ |
| ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr))) |
| |
| #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr) |
| #define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr) |
| #define pte_unmap(pte) do { } while (0) |
| #define pte_unmap_nested(pte) do { } while (0) |
| |
| /* Round it up ! */ |
| #define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0 |
| |
| #ifndef __ASSEMBLY__ |
| #define VMALLOC_END 0xff000000 |
| #define VMALLOC_START 0xf0000000 |
| #define VMALLOC_VMADDR(x) ((unsigned long)(x)) |
| |
| #define IOBASE_VADDR 0xff000000 |
| #define IOBASE_END 0xffffffff |
| |
| /* |
| * PTEL coherent flags. |
| * See Chapter 17 ST50 CPU Core Volume 1, Architecture. |
| */ |
| /* The bits that are required in the SH-5 TLB are placed in the h/w-defined |
| positions, to avoid expensive bit shuffling on every refill. The remaining |
| bits are used for s/w purposes and masked out on each refill. |
| |
| Note, the PTE slots are used to hold data of type swp_entry_t when a page is |
| swapped out. Only the _PAGE_PRESENT flag is significant when the page is |
| swapped out, and it must be placed so that it doesn't overlap either the |
| type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type |
| at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This |
| scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit |
| [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split |
| into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */ |
| #define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */ |
| #define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */ |
| #define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */ |
| #define _PAGE_PRESENT 0x004 /* software: page referenced */ |
| #define _PAGE_FILE 0x004 /* software: only when !present */ |
| #define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */ |
| #define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */ |
| #define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */ |
| #define _PAGE_READ 0x040 /* PR0-bit : read access allowed */ |
| #define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */ |
| #define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */ |
| #define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */ |
| #define _PAGE_DIRTY 0x400 /* software: page accessed in write */ |
| #define _PAGE_ACCESSED 0x800 /* software: page referenced */ |
| |
| /* Mask which drops software flags */ |
| #define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL |
| |
| /* |
| * HugeTLB support |
| */ |
| #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K) |
| #define _PAGE_SZHUGE (_PAGE_SIZE0) |
| #elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB) |
| #define _PAGE_SZHUGE (_PAGE_SIZE1) |
| #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB) |
| #define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1) |
| #endif |
| |
| /* |
| * Default flags for a Kernel page. |
| * This is fundametally also SHARED because the main use of this define |
| * (other than for PGD/PMD entries) is for the VMALLOC pool which is |
| * contextless. |
| * |
| * _PAGE_EXECUTE is required for modules |
| * |
| */ |
| #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ |
| _PAGE_EXECUTE | \ |
| _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \ |
| _PAGE_SHARED) |
| |
| /* Default flags for a User page */ |
| #define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER) |
| |
| #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| |
| #define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED) |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ |
| _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \ |
| _PAGE_SHARED) |
| /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default |
| * protection mode for the stack. */ |
| #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ |
| _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE) |
| #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \ |
| _PAGE_ACCESSED | _PAGE_USER) |
| #define PAGE_KERNEL __pgprot(_KERNPG_TABLE) |
| |
| |
| /* |
| * In ST50 we have full permissions (Read/Write/Execute/Shared). |
| * Just match'em all. These are for mmap(), therefore all at least |
| * User/Cachable/Present/Accessed. No point in making Fault on Write. |
| */ |
| #define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED) |
| /* sxwr */ |
| #define __P000 __pgprot(__MMAP_COMMON) |
| #define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ) |
| #define __P010 __pgprot(__MMAP_COMMON) |
| #define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ) |
| #define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) |
| #define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) |
| #define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE) |
| #define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ) |
| |
| #define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED) |
| #define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ) |
| #define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE) |
| #define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE) |
| #define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE) |
| #define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ) |
| #define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE) |
| #define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE) |
| |
| /* Make it a device mapping for maximum safety (e.g. for mapping device |
| registers into user-space via /dev/map). */ |
| #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE) |
| #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE) |
| |
| /* |
| * Handling allocation failures during page table setup. |
| */ |
| extern void __handle_bad_pmd_kernel(pmd_t * pmd); |
| #define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x) |
| |
| /* |
| * PTE level access routines. |
| * |
| * Note1: |
| * It's the tree walk leaf. This is physical address to be stored. |
| * |
| * Note 2: |
| * Regarding the choice of _PTE_EMPTY: |
| |
| We must choose a bit pattern that cannot be valid, whether or not the page |
| is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped |
| out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is |
| left for us to select. If we force bit[7]==0 when swapped out, we could use |
| the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if |
| we force bit[7]==1 when swapped out, we can use all zeroes to indicate |
| empty. This is convenient, because the page tables get cleared to zero |
| when they are allocated. |
| |
| */ |
| #define _PTE_EMPTY 0x0 |
| #define pte_present(x) (pte_val(x) & _PAGE_PRESENT) |
| #define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY))) |
| #define pte_none(x) (pte_val(x) == _PTE_EMPTY) |
| |
| /* |
| * Some definitions to translate between mem_map, PTEs, and page |
| * addresses: |
| */ |
| |
| /* |
| * Given a PTE, return the index of the mem_map[] entry corresponding |
| * to the page frame the PTE. Get the absolute physical address, make |
| * a relative physical address and translate it to an index. |
| */ |
| #define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \ |
| __MEMORY_START) >> PAGE_SHIFT) |
| |
| /* |
| * Given a PTE, return the "struct page *". |
| */ |
| #define pte_page(x) (mem_map + pte_pagenr(x)) |
| |
| /* |
| * Return number of (down rounded) MB corresponding to x pages. |
| */ |
| #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT)) |
| |
| |
| /* |
| * The following have defined behavior only work if pte_present() is true. |
| */ |
| static inline int pte_read(pte_t pte) { return pte_val(pte) & _PAGE_READ; } |
| static inline int pte_exec(pte_t pte) { return pte_val(pte) & _PAGE_EXECUTE; } |
| static inline int pte_dirty(pte_t pte){ return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte){ return pte_val(pte) & _PAGE_ACCESSED; } |
| static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; } |
| static inline int pte_write(pte_t pte){ return pte_val(pte) & _PAGE_WRITE; } |
| |
| extern inline pte_t pte_rdprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_READ)); return pte; } |
| extern inline pte_t pte_wrprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_WRITE)); return pte; } |
| extern inline pte_t pte_exprotect(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_EXECUTE)); return pte; } |
| extern inline pte_t pte_mkclean(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_DIRTY)); return pte; } |
| extern inline pte_t pte_mkold(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) & ~_PAGE_ACCESSED)); return pte; } |
| |
| extern inline pte_t pte_mkread(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_READ)); return pte; } |
| extern inline pte_t pte_mkwrite(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_WRITE)); return pte; } |
| extern inline pte_t pte_mkexec(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_EXECUTE)); return pte; } |
| extern inline pte_t pte_mkdirty(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_DIRTY)); return pte; } |
| extern inline pte_t pte_mkyoung(pte_t pte) { set_pte(&pte, __pte(pte_val(pte) | _PAGE_ACCESSED)); return pte; } |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry. |
| * |
| * extern pte_t mk_pte(struct page *page, pgprot_t pgprot) |
| */ |
| #define mk_pte(page,pgprot) \ |
| ({ \ |
| pte_t __pte; \ |
| \ |
| set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \ |
| __MEMORY_START | pgprot_val((pgprot)))); \ |
| __pte; \ |
| }) |
| |
| /* |
| * This takes a (absolute) physical page address that is used |
| * by the remapping functions |
| */ |
| #define mk_pte_phys(physpage, pgprot) \ |
| ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; }) |
| |
| extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { set_pte(&pte, __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot))); return pte; } |
| |
| #define page_pte_prot(page, prot) mk_pte(page, prot) |
| #define page_pte(page) page_pte_prot(page, __pgprot(0)) |
| |
| typedef pte_t *pte_addr_t; |
| #define pgtable_cache_init() do { } while (0) |
| |
| extern void update_mmu_cache(struct vm_area_struct * vma, |
| unsigned long address, pte_t pte); |
| |
| /* Encode and decode a swap entry */ |
| #define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c)) |
| #define __swp_offset(x) ((x).val >> 8) |
| #define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) }) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| /* Encode and decode a nonlinear file mapping entry */ |
| #define PTE_FILE_MAX_BITS 29 |
| #define pte_to_pgoff(pte) (pte_val(pte)) |
| #define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE }) |
| |
| /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */ |
| #define PageSkip(page) (0) |
| #define kern_addr_valid(addr) (1) |
| |
| #define io_remap_page_range(vma, vaddr, paddr, size, prot) \ |
| remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot) |
| |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \ |
| remap_pfn_range(vma, vaddr, pfn, size, prot) |
| |
| #define MK_IOSPACE_PFN(space, pfn) (pfn) |
| #define GET_IOSPACE(pfn) 0 |
| #define GET_PFN(pfn) (pfn) |
| |
| #endif /* !__ASSEMBLY__ */ |
| |
| /* |
| * No page table caches to initialise |
| */ |
| #define pgtable_cache_init() do { } while (0) |
| |
| #define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT) |
| #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; |
| |
| #include <asm-generic/pgtable.h> |
| |
| #endif /* __ASM_SH64_PGTABLE_H */ |